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Abstract—Smart speakers and voice-based virtual assistants
are core components for the success of the IoT paradigm. Unfor-
tunately, they are vulnerable to various privacy threats exploiting
machine learning to analyze the generated encrypted traffic. To
cope with that, deep adversarial learning approaches can be
used to build black-box countermeasures altering the network
traffic (e.g., via packet padding) and its statistical information.
This letter showcases the inadequacy of such countermeasures
against machine learning attacks with a dedicated experimental
campaign on a real network dataset. Results indicate the need
for a major re-engineering to guarantee the suitable protection
of commercially available smart speakers.

Index Terms—smart speakers, IoT privacy, deep adversarial
learing, machine learning, privacy leaks.

I. INTRODUCTION

The popularity of smart speakers (including voice-based
virtual assistants) is rooted in their ability to control IoT nodes,
network appliances, and other devices via natural speech.
They can also be used to access multimedia contents and
obtain various information, including news, weather forecasts,
and traffic conditions. To implement such functionalities, the
speaker exchanges information with a remote data center,
leading to several security issues, e.g., device enumeration
attacks, mass profiling, and privacy threats. An emerging
trend in cybersecurity exploits machine learning techniques
to obtain information from the encrypted traffic exchanged by
the speaker with its ecosystem [1], [2].

Literature abounds in works investigating how statistical
analysis of network flows produced by smart devices can be
abused for reconnaissance or attack purposes. For instance, the
traffic produced by home devices can be used to understand
if a user is at home [3] as well as to model daily routines [4]
or the sleep cycle [2]. In general, attacks leveraging machine
learning proved to be effective, even when relying upon “poor”
information. As an example, IoT nodes and connected devices
can be identified by simply using the length of the produced
protocol data units [5]. When HTTP-based interactions are
present, it is possible to infer precise details, e.g., the status of
a light bulb, as well as hijacking the conversation or physically
endanger the target [6].

An emerging research trend explores the use of various arti-
ficial intelligence and machine learning techniques to classify
the commands issued to smart speakers (see, e.g., [7] and the
references therein). To this aim, attackers take advantage of

traffic features not protected by the encryption, such as inter-
packet time, throughput, the location of some endpoints, and
the number of connections. Since the classification is typically
accurate, the attacker can infer details like the number of
devices controlled by the smart speaker, the presence of the
user (even when the interaction is absent), and the “kind”
of the issued commands [3]–[7]. Moreover, a relevant part
of the traffic produced by smart speakers shares functional
and technological traits with VoIP, meaning that it is also
susceptible to attacks for disclosing the language of the talker
or other sensitive behaviors [8].

Therefore, this letter focuses on investigating deep adversar-
ial learning countermeasures against machine learning attacks
targeting the traffic produced by smart speakers. To the best
of our knowledge, this aspect has been mostly overlooked
so far. The only notable exception is [9], which proposes
a padding scheme to protect IoT and smart devices from
statistical analysis. Instead, our work aims to showcase the
limitations of traffic manipulation or morphing approaches,
which often lead to flawed countermeasures [10].

To do so, we built a new dataset containing the network
traffic of a typical smart home environment and an exper-
imental testbed to evaluate the efficacy of deep adversar-
ial learning techniques. The experimental activities exploit
both theoretical approaches, i.e., the usage of Savitzky–Golay
filters and Additive White Gaussian Noise (AWGN) on all
the statistical features, and realistic ones, named “Realistic
Adversarial”, that use constant padding and AWGN techniques
that considers the constraints of the protocols and networks
in use. The achieved results argue that smart speaker privacy
needs a complete rethink.

The rest of the letter is structured as follows: Section II
provides the background and the threat model, Section III
presents the deep adversarial techniques used in this work.
Section IV describes the evaluation testbed and Section V
presents the obtained results. Finally, Section VI concludes
the letter.

II. BACKGROUND AND ATTACK MODEL

Figure 1 depicts a typical smart speaker ecosystem that
provides the voice-activated user interface and acts as a hub
for other IoT nodes and network appliances. In essence, the
speaker collects, samples, and transmits voice commands to
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remote cloud services in charge of processing data to deliver
back textual/binary representations as well as additional con-
tent, e.g., multimedia streams. The smart speaker can also
provide feedback to the user, play content, retrieve data from
third-party providers (e.g., music streaming services) or drive
other nodes via local network or short-range links like IEEE
802.15.4. Even if the information gathered by commands
exchanged locally between the speaker and various nodes can
be used to threaten the privacy of the ecosystem [11]. This
letter focuses on the attacks exploiting the network traffic
exchanged between the speaker and its remote cloud.

Fig. 1: MITM threat model of a smart home ecosystem.

From a security perspective, the continuous exchange of
data between the smart speaker and the cloud is a prime point
of fragility. As depicted in Figure 1, an adversary (denoted as
attacker) can mount MITM (Man-in-the-Middle) attacks [12]
to gather network traffic even in the case of a communication
encrypted with TLS/SSL [13].

Even if many commercial smart speakers implement coun-
termeasures to protect the network traffic, the majority is
still prone to a variety of privacy-breaking attacks targeting
a composite set of features observable within the encrypted
traffic flows [1], [14]. Specifically, we focus on an attacker
willing to use machine learning or deep learning algorithms
on encrypted traffic samples to infer “behavioral” information,
e.g., the presence of the victim or the “type” of the requested
information [3]–[7]. Owing to the end-to-end encryption, the
attacker can only observe and acquire the traffic produced by
the smart speaker and cannot alter, manipulate or perform deep
packet inspection operations. The attacker can then only rely
on general statistics, e.g., the throughput, the size of protocol
data units, IP addresses, the number of different endpoints,
flags within the headers of the packets, or the behavior of the
congestion control of the TCP [7].

The standard approach to mitigate machine learning attacks
on the network traffic exploits the use of a middlebox (denoted
as anonymization box in Figure 1) able to “sanitize” the net-
work traffic by removing (or altering) the data that the attacker
can exploit. For instance, the anonymization box can pad
packets [9] or perform NAT-like operations to prevent profiling
endpoints or probing [15]. All in all, since the anonymization
box is outside the device, it cannot alter the protocol/commu-
nication architecture of the smart speaker ecosystem. Rather,
it can only manipulate the traffic without disrupting the flow
or penalizing the QoE perceived by the user, for instance, in
terms of real-time guarantees (see, e.g., [16] and references
therein). In the following, we will showcase the limits of such
an approach, which appears to be unsuited to face modern
machine learning-capable threats.

III. DEEP ADVERSARIAL LEARNING TECHNIQUES

This letter investigates both theoretical and practical deep
adversarial learning techniques to lower the classification
accuracy. Ideally, we would like to reduce the classification
accuracy to be as close as possible to a “coin toss” (e.g.,
50% on a two-class classification problem). As in previous
works [7], [17], [18], the attacker can only acquire encrypted
traffic to compute statistical metrics and analyze them using
machine learning techniques. Such a computation requires
using a suitable number of packets grouped using either time
spans of length ∆t or bursts of a fixed size of N packets.

The methods considered for this work are: i) smooth-
ing of features through Savitzky–Golay filter, ii) injecting
Additive White Gaussian Noise (AWGN) into the features
time series and iii) applying a Realistic Adversarial, i.e., a
targeted approach to feature degradation that also considers
the constraints of the protocols and networks in use.

The first two approaches aim to show the theoretical perfor-
mances that could be obtained by randomizing, without any
constraints, the statistics of the packets and the features derived
from them. In detail, the Savitzky–Golay filter [19] allows
smoothing all features through a moving window. The length
of the filter window determines the number of samples taken
into consideration, and a polynomial of user-defined order
subsequently approximates these samples.

The second adversarial technique uses Additive White
Gaussian Noise (AWGN) – therefore with zero mean – whose
variance is set proportionally to the variance of the original
signal subject to adversarial.

The Realistic Adversarial, instead, represents an approach
that takes into account which features can actually be distorted
at the egress of the IoT device (therefore with external hard-
ware such as an anonymization box) without compromising its
operation (e.g., it is possible to add padding to the packets,
but it is not possible to randomize the TCP window without
disrupting the service completely). In this work, we exploited
two Realistic Adversarial techniques: the first is a constant
padding within the whole time series, which was simulated
selecting the maximum value of the mean TCP packet length
(mean len pack). The standard deviation of the TCP packet
length (std len pack) was set to zero to match this operation.
The second technique concerns the injection of AWGN in the
following features:

• std ipt: to simulate jitter while sending packets;
• n pack tcp and n pack udp: to simulate decoy connec-

tions and packets between endpoints;
• n pack icmp: to simulate decoy ping/traceroute packets

between endpoints;
• n port unique:, to simulate decoy TCP/UDP packets

addressed to random port numbers.
Moreover, to match the realistic scenario, we cannot
modify the following features: max diff time, n ip unique,
mean window and std window.

IV. EXPERIMENTAL TESTBED

We developed an experimental testbed to prove the effec-
tiveness of privacy threats and the inadequacy of countermea-
sures applied to smart speakers’ network traffic. Briefly, we
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Feature Name Adversarial Technique Feature Name Adversarial Technique

Number of different IP address (n ip unique) None Number of different TCP/UDP ports (n port unique) AWGN

Number of TCP packets (n pack udp) AWGN Number of UDP packets (n pack udp) AWGN

Number of ICMP packets (n pack icmp) AWGN Per-window Inter packet time (max diff time) None

Average of TCP Window (mean window) None Standard deviation of TCP Window (std window) None

Average of IPT (mean ipt) None Standard deviation of IPT (std ipt) AWGN

Average of packet length (mean len pack) Const. Padding Standard Deviation of packet length (std len pack) Set to Zero

TABLE I: Name and Acronym of statistical indicator used and the adversarial techniques applied to them

collected a dataset with the network traffic of the IoT device
during typical usage scenarios, e.g., during voice queries or
media playback. Then, we used a set of deep adversarial
learning techniques to alter the statistical information of out-
bound traffic. Finally, we applied a set of ML techniques to
evaluate the corresponding degradation of the classification
process. The experimental activities were carried out on an
Intel Core i7-3770 computer equipped with 16 GB of RAM
and Ubuntu 16.04 LTS, and a Google Home Mini smart
speaker. The traffic has been captured via an instrumented
computer acting as an IEEE 802.11 access point running ad-
hoc scripts for tshark1. All the generated traffic traces have
been anonymized and made available through Kaggle2.

A. Dataset Definition

In this letter, we extend the dataset already published in
our previous work [7]. Briefly, the original dataset consists
of 9-days of network traffic that comprise: i) traffic with the
microphone disabled (Mic On-Off ), ii) microphone enabled
in a quiet environment, and iii) microphone enabled with
background noise (Mic On-Noise).

Thus, to mimic the normal use of smart speakers by users,
we extended the available data with three different classes of
queries for the smart speaker, i.e., media, travel, and utility3.
To do so, we executed three different rounds of measurements
that last three days each. In essence, a synthetic talker has
been created by using various voice records representing
a wide range of speakers (e.g., male and female or with
different accents or talking speeds) and it has been used to
issue commands to the smart speaker. In the first round, we
focused on retrieving the network traffic generated to playback
multimedia content. For example, we captured traffic when the
synthetic talker asked questions like “What’s the latest news?”
or “Play some music”. For the second round, we performed
queries related to travels, thus accounting for the interaction
with services providing traffic indications or weather forecasts.
In this case, we asked questions like “How is the weather
today?”. Lastly, we performed general queries belonging to
the utility category, like “What’s on my agenda today?” and
“What time is it?”.

For each query, we collected 30 seconds of inbound and
outbound network traffic to have a proper tradeoff between
accuracy and size of the data. The newly collected data

1https://www.wireshark.org/docs/man-pages/tshark.html
2https://www.kaggle.com/smartspeaker/google-home-pcap
3https://voicebot.ai/2019/03/12/smart-speaker-owners-agree-that-questions-music-and-weather-are-killer-apps-what-comes-next/

contains 2, 500k packets for media queries, 400k packets for
travel queries, and 310k for utility queries.

B. Deep Adversarial Techniques Setup

We implemented the three deep adversarial learning tech-
niques presented in Sect. III. In detail, we set the Sav-
itzky–Golay filter moving window to 51, and we applied
different polynomials degrees, i.e., ψ = {1, 3, 5, 7, 9}. For
the Additive White Gaussian Noise (AWGN) techniques, we
multiplied the original variance using a constant ν = [0.2, 2.0]
for the Mic On-Off and Mic On-Noise scenario and ν =
{2, 8, 16, 32, 64} for the utility/media/travel scenario.

Table I lists the set of network features computed for
the experimental activity of this letter and the corresponding
employed deep adversarial technique.

C. ML techniques

To implement the attacker, we used machine learning algo-
rithms provided by the scikit-learn and Fast.ai libraries. We
considered the most popular techniques commonly used in the
literature, i.e., AdaBoost (AB), Decision Tree (DT), k-Nearest
Neighbors (kNN), Random Forest (RF) and Neural Networks
(NN) [7], [20], [21]. In our experiment, we assume that the
attacker is able to collect 3 days of traffic for each scenario,
similar to [7]. The classifiers were neither pre-trained with the
original data nor fed with previously trained models.

V. EXPERIMENTAL RESULTS

In this section, we show and discuss the numerical results
obtained. First, we show the performance and accuracy of
machine learning algorithms used to infer the query category.
Next, we discuss the efficacy of the deep adversarial learning
techniques to protect the network traffic.

Query Classification. Fig. 4 shows the classification ac-
curacy for ML techniques trained on the original data (not
subjected to any adversarial technique) of the Utility/Me-
dia/Travel scenario. With sampling and feature generation
intervals higher than 500 packets, all the considered algorithms
achieve a classification accuracy higher than 90%, being the
kNN algorithm the less precise. The accuracy of the neural
network model (i.e., NN) also tends to drop slightly as the
interval increases because the number of samples decreases too
much for the training “from scratch” of a neural network (at
1500 packets, the number of samples is just above 300 units
for this scenario). Such behavior is also consistent with the
classification of the Mic On-Off and Mic On-Noise scenarios
whose accuracy is higher than 80% (as described in [7]).

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.kaggle.com/smartspeaker/google-home-pcap
https://voicebot.ai/2019/03/12/smart-speaker-owners-agree-that-questions-music-and-weather-are-killer-apps-what-comes-next/


IEEE COMMUNICATIONS LETTERS, VOL. X , NO. Y , MONTH 2020 4

(a) Mic On-Off Adversarial with smoothing (b) Mic On-Off Adversarial with noise (c) Mic On-Off Realistic adversarial

(d) Mic On-Noise Adversarial with smoothing (e) Mic On-Noise Adversarial with noise (f) Mic On-Noise Realistic adversarial

Fig. 2: Mic On/Off On/Noise scenario: classification accuracy of the neural network model after different adversarial techniques
have been applied to the original features: (a),(d) Savitzky–Golay filter, (b),(e) AWGN, (c),(f) Realistic adversarial technique.

(a) Utility/Media/Travel Adversarial with smoothing (b) Utility/Media/Travel Adversarial with noise (c) Utility/Media/Travel Realistic adversarial

Fig. 3: Utility/Media/Travel scenario: classification accuracy of the neural network model after different adversarial techniques
have been applied to the original features: (a) Savitzky–Golay filter, (b) AWGN, (c) Realistic adversarial technique.

Mitigation Results. The set of images in Fig. 2 and Fig. 3
depict the accuracy of a classifier trained on data subjected to
the three deep adversarial techniques.

In detail, Fig. 2a to 2c show the accuracy obtained in the
Mic On-Off classification scenario, Fig. 2d to 2f refer to the
Mic On-Noise scenario, and Fig. 3 shows the classification
performance of a classifier trained on the traffic features from
the Utility/Media/Travel scenario.

In the first two scenarios, the trend is similar: the theoreti-
cally most effective adversarial technique is the polynomial
smoothing as it deprives the signal of most of its high-

frequency components. On the contrary, AWGN injection is
less effective as it leaves much of the information untouched,
especially with low values of ν (i.e. variance multiplier val-
ues). Fig. 2c and 2f, conversely, show the implementation
of a realistic adversarial technique which is therefore not
able to degrade all the features simultaneously. As can be
seen from the accuracy levels (for some sampling intervals
> 1250 packets, higher than 90%), the neural network model
is sufficiently “intelligent” to correctly predict the class using
just the few remaining features and ignoring all the others. In
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Fig. 4: Utility/Media/Travel scenario: classification accuracy
of the different machine learning/deep learning models using
unmodified original features.

this case, higher AWGN intensity does not appear to affect
the prediction in any way.

The analysis of the queries scenario in Fig. 3 confirms that
the polynomial smoothing techniques are the most efficient,
bringing the accuracy of the classifier to around 40%, very
close to the theoretical level of a 33% random choice of
a problem with three classes (cf. Fig. 3a). On the contrary,
Fig. 3b highlights the need for a substantially higher ν value
for the AWGN in order to sufficiently degrade the features
for this scenario. Indeed, unlike the Mic On-Off and Mic
On-Noise scenarios (with ν = 2.0), this scenario requires a
variance multiplier ν = 64 to bring the accuracy level of the
ML classifiers to values close to the 33%.

Finally, Fig. 3c shows the accuracy obtained from the same
neural network architecture trained on degraded features with
realistic adversarial. As in Fig. 2c and 2f, the impossibility
of degrading all the features at once, leaving some of them
intact, preserves enough information for the neural network to
learn how to correctly identify the three classes of the problem,
even with an accuracy of 95% considering an interval of 1000
packets, independently from the magnitude of the injected
AWGN.

VI. CONCLUSIONS

In this letter we have empirically demonstrated how adver-
sarial learning countermeasures applied to the virtual assis-
tant’s outbound traffic are ineffective against machine learning
attacks, thus leading to serious concerns for the privacy of
users in smart home environments.

The results indicate the need for a major HW/SW redesign
of virtual assistant platforms to ensure adequate protection of
commercially available smart speakers.
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