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Abstract: (1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor
protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation
promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are
expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs
in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers
of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The
direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via
flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage
tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for
immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch.
(3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4
and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β
secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified
VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet
and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke.
(4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC
phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in
atherosclerotic plaque stability in human atherosclerosis.

Keywords: NLRP3 inflammasome activation; vascular smooth muscle; vascular smooth muscle
phenotypic switch; atherosclerosis; atherosclerosis plaques stability

1. Introduction

Cardiovascular diseases (CVD) are still the predominant cause of death and morbidity,
with atherosclerosis as the main underlying cause [1]. Atherosclerosis is a lipid-driven,
chronic inflammatory disease characterized by the build-up of subendothelial deposition
of cholesterol and the formation of leukocyte-rich plaques in the intimal layer of the arter-
ies. Inflammation plays a major role in promoting the disruption of the fibrous cap that
covers the atherosclerotic plaque, resulting in myocardial infarction and stroke [2]. The
fibrous cap is composed mainly of VSMCs. Expansion of monocytes is an independent
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risk factor for CVD, causally linked to the enlargement of the atherosclerotic lesion [3].
Oxidized low-density lipoprotein (oxLDL)-activated monocytes enhance atherogenesis by
triggering inflammatory cascades and overproduction of reactive oxygen species (ROS),
and the accumulation of monocyte-derived macrophages [3]. The uptake of oxLDL by
macrophages results in the formation of lipid-laden foam cells with impaired migratory
ability, that dies and forms a necrotic core that further contributes to destabilizing the
plaques [4–6]. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)
inflammasome activation has been shown to be a powerful mediator of inflammatory
response via the release of the pro-inflammatory mediators interleukin-1β (IL) and IL-18
that boost lipid deposition, foam cell accumulation, and atherosclerosis progression [7].
Furthermore, the CANTOS trial confirmed the inflammatory hypothesis of atherosclerosis
as well as the significant role of IL-1β in the pathogenesis of atherosclerosis, although
this did not result in approval of the studied IL-1β-inhibitor canakinumab due to higher
rates of infection in the active treatment group [8]. Interestingly, 60% to 70% of foam
cells in atherosclerotic lesions are of VSMC, not leukocyte origin, but whether NLRP3 in-
flammasome activation plays a role in VSMC phenotypic switch is not known. IL-1β is
a proinflammatory cytokine exerting its functions through autocrine, paracrine, or en-
docrine mechanisms [9]. Moreover, IL-1β has been shown to induce its own gene expression
in various cell types in an amplification loop manner called autoinduction [10,11]. IL-1β
promotes endothelial dysfunction [12], leukocyte-endothelial cell adhesion, procoagulant
activity, and recruitment of leukocytes [12] and neutrophils promoting atherogenesis and
plaque rupture [13,14]. Interestingly, it has been shown that IL-1β triggers proliferation,
IL-6 and platelet-derived growth factor production in VSMCs [10]. A recent publication by
the group of Owens demonstrated that after using VSMC Il1r1 knockout mice, IL-1 signal-
ing is required for the investment of VSMCs into the fibrous cap in a model of advanced
atherosclerosis [15]. However, the effects of an IL-1β-neutralizing antibody deleterious to
fibrous cap stability in mice [15] proved to be beneficial in reducing cardiovascular events
in the CANTOS trial in humans [8]. Since NLRP3 inflammasome activation was shown to
be an important mechanism driving atherogenesis, inflammation, and foam cell formation,
it could emerge also as a crucial mechanism triggering VSMC phenotypic switch and
subsequently plaque destabilization. Until now, this hypothesis has not been investigated
and it could open a door to the revelation of a new mechanism in vascular pathology.

2. Results
2.1. OxLDL-Activated Monocytes Promote VSMC Phenotypic Switch

VSMCs were isolated from the aortic arch of 8 to 12 weeks old C57BL/6 mice and
after VSMCs expansion, the phenotype and purity were confirmed by staining with anti-
mouse α-SMA, SM22α, and CD31 (endothelial cell marker) and CD90 (fibroblasts cell
marker). Supplementary Figure S1a shows that the obtained VSMCs expressed the VSMC-
specific markers α-SMA, SM22α, but are negative for the endothelial cells marker (CD31)
as well as the fibroblasts marker (CD90). Mouse monocytes were isolated from bone
marrow of C57BL/6 mice and after purity check up (Supplementary Figure S1b) were
used in co-culture experiments with VSMCs. OxLDL-activated monocytes are known to
trigger inflammatory cascades, promoting endothelial dysfunction and enhancing athero-
genesis [4–6]. To demonstrate the effect of oxLDL on monocytes activation we showed
a dose-dependent ROS production and IL-6 expression in oxLDL-activated monocytes as
indicated by the increase of the mean fluorescent intensity of carboxylated H2DCFDA and
upregulated expression of IL-6 (Supplementary Figure S1c,d). To study the direct effect of
monocytes and particularly the role of oxLDL-activated monocytes on VSMCs phenotypic
modulation, we performed co-culture experiments in a trans-well system in which VSMCs
were plated in the plate wells while monocytes or oxLDL-activated monocytes were added
to the well cell culture inserts (Figure 1a). Monocytes oxLDL activation was induced
upon direct supplementation of oxLDL to well cell culture inserts impermeable to oxLDL
to ensure monocytes restricted activation. Treatment of VSMCs with oxLDL resulted in
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a pronounced reduction in the expression of the VSMC-specific markers α-SMA and
SM22α. Importantly, the supplementation of VSMCs with oxLDL-activated monocytes
resulted in a pronounced reduction in the expression of VSMC-specific markers α-SMA
and SM22α expressed as mean fluorescence intensity (Figure 1b,c). Interestingly, the per-
centage of double positive α-SMA+SM22α+ VSMCs was only prominently downregulated
in VSMC upon co-cultured with oxLDL-activated monocytes (Figure 1d). As expected,
oxLDL treatment of VSMCs promoted increased expression of macrophages markers
MAC2 and F4/80 in VSMCs (Figure 1d,e). Furthermore, co-culture with oxLDL-activated
monocytes elevated the expression of MAC2 and F4/80 (Figure 1d,e) in VSMCs as well
as the expression of CD68 which was only significantly elevated post co-culture with
oxLDL-activated monocytes (Figure 1f). In line with our hypothesis, monocytes and
oxLDL-activated monocytes downregulated the expression of the transcription factor
Oct-4 in VSMC, known to be important in preserving VSMC contractile phenotype [16],
while KLF-4 showed to promote VSMCs phenotypic modulation [17,18], was upregulated
in VSMCs (Figure 2a,b). Taken together, these results demonstrate that oxLDL activated
monocytes are effective at promoting VSMCs phenotypic switch and their transdifferenti-
ation to macrophages-like cells.

2.2. Monocytes Promote VSMC NLRP3 Inflammasome Activation

Despite a great deal of evidence pointing out the critical role of monocytes/macrophages
in atherosclerosis vascular diseases [19], previous studies have not clearly defined the
inflammatory effect of monocytes on VSMCs in atherosclerosis. Furthermore, NLRP3 in-
flammasome activation was shown to be an important mechanism driving atherogenesis,
inflammation, and foam cells formation, therefore it could emerge as a crucial mechanism
triggering VSMCs phenotypic switch. However, until now this hypothesis has not been
investigated and it could open a door to the revelation of a new mechanism in vascular
pathology. To demonstrate the effect of monocytes and oxLDL on VSMCs NLRP3 in-
flammasome activation we performed co-culture experiments where the direct effect of
monocytes or oxLDL-activated monocytes on VSMCs NLRP3 inflammasome activation
was investigated. We used a trans-well system in the co-culture experiments in which
VSMCs were plated in the plate wells while monocytes or oxLDL-activated monocytes
were added to oxLDL impermeable trans well inserts, as previously described. In order
to facilitate inflammasome assembly, NLRP3 interacts with the N-terminus of the adapter
protein ASC via PYD–PYD interactions; the C-terminus of ASC has a caspase recruitment
domain (CARD) that binds to procaspase-1 via CARD–CARD interactions triggering cas-
pase dimerization and subsequent activation. Interestingly due to its prion-like properties
ASC forms large fibrillar aggregates known as “specks” [20]. Using the above-described
co-culture system we could demonstrate that monocytes, as well as oxLDL-activated mono-
cytes, promote ASC specks formation as visualized by confocal microscopic analysis of ASC
speck formation in VSMCs (Supplementary Figure S2a). To further confirm that ASC speck
formation results in the activation of caspase-1 involved in the maturation of IL-1β into
a biologically active form, and cleavage of gasdermin D (GSDMD) to promote pyroptotic
cell death (pyroptosis) [21], we investigated caspase 1 activation and pyroptosis in VSMCs
treated with oxLDL or co-cultured with monocytes or oxLDL activated monocytes as de-
scribed previously. Caspase 1 activity in VSMCs was raised particularly when VSMCs were
exposed to paracrine mediators from monocytes as well as oxLDL-activated monocytes in
the co-culture system (Figure 3a). To measure IL-1β secretion specifically in VSMCs the
trans-well inserts were removed and VSMC were supplemented with a fresh medium to
be able to evaluate IL-1β secretion specifically by VSMCs. In line with the caspase 1 acti-
vation induction, the co-culture with monocytes or oxLDL activated monocytes triggered
IL-1β secretion by VSMCs (Figure 3b). Pyroptosis programmed cell death associated with
NLRP3 inflammasome activation [21] was more pronouncedly induced in VSMCs after they
were exposed to paracrine factors release by oxLDL-activated monocytes in the co-culture
system (Figure 3c). In parallel, VSMCs treated with oxLDL or co-cultured with monocytes
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or oxLDL-activated monocytes showed a pronounced increase in cell death as evaluated by
VSMCs positive staining for the red live/dead propidium iodide and 7-AAD staining apop-
totic cells and quantified by flow cytometry analysis (Supplementary Figure S1e). Under
hypercholesteremia, Apoe−/− mice exhibit an increased percentage of VSMCs undergoing
phenotypic switch and expressing NLRP3 as indicated by co-expression of α-SMA, CD68,
and NLRP3 (Supplementary Figure S2b). Moreover, NLRP3 inhibitor MCC950 abrogated
oxLDL or oxLDL-activated monocytes-induced VSMC phenotypic switch as evident by the
pronounced reduction in F4/80 expression in Myh11 positive VSMCs and VSMCs foam
cells (F4/80+ LipidTOX+) (Figure 4a,b). These results provide evidence for the involvement
of NLRP3 in VSMCs phenotypical switch upon hypercholesteremia or in the presence of
oxLDL-activated monocytes.
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Figure 1. (a) Scheme of in vitro experimental setting and graph bars represent the mean± SEM
of flow cytometry analysis of VSMCs phenotypic switch (b) α-SMA+, (c) SM22α+ expressed as
mean fluorescence intensity and (d) α-SMA+SM22α+, (e) MAC2+, (f) MAC2+F4/80+, and (g) CD68+

cells, expressed as percentage of indicated VSMC cells upon oxLDL treatment or co-culture with
monocytes, with n = 6/group and * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, one-way
ANOVA. Representative flow cytometry zebra plots of (h) α-SMA+SM22α+ and (i) MAC2+F4/80+

expression quantification.
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Figure 2. Graph bars represent the mean± SEM of mRNA expression of (a) Oct-4 and (b) KLF-4
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oxLDL-activated monocytes, as indicated, with n = 6/group and * p < 0.05, ** p < 0.01, and *** p < 0.001,
one-way ANOVA.
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2.3. IL-1β Promotes VSMC Phenotypic Switch and Transdifferentiation to Macrophages-Like Cells

To investigate whether IL-1β has a direct effect on promoting VSMCs phenotypic
switch, we supplemented IL-1β to VSMCs. Treatment of VSMCs with 10 ng/mL of IL-1β
for 7 days promoted pronounced reduction in the expression of α-SMA (Figure 5a). Fur-
thermore, IL-1β treatment of VSMCs promoted a pronounced increase in the expression
of macrophages markers MAC2+ (LGALS3+) while the combination of IL-1β in addition
to oxLDL treatment further upraised the expression of MAC2 in Myh11+ VSMC cells
(Figure 5b). Remarkably, IL-1β treatment resulted in a profound increase of lipids accu-
mulation in VSMCs as evidenced by amplification of the Myh11 cells expressing Lipid-
TOX as an indicator of lipids cell accumulation and subsequently foam cells formation
(Figure 5c). These data not only support a critical role for IL-1β in induction of VSMCs phe-
notypic switch to macrophages-like cell but also reveal the involvement of IL-1β in VSMCs
foam cells formation, with a critical role in atherosclerotic plaque stability. Interestingly,
in the presence of ZVAD-FMK a cell-permeable pan-caspase inhibitor, the oxLDL and
IL-1β-induced VSMC phenotypic switch were partly abrogated, as evident by a restora-
tion of α-SMA expression in VSMCs as well as reduction of MAC2 expression in Myh11+

VSMCs (Figure 5d,e,g). Furthermore, ZVAD-FMK significantly diminished the percentage
of Myh11 cells expressing LipidTOX (foam cells formation) in comparison to oxLDL and
IL-1β-treated VSMCs (Figure 5f). These findings clearly demonstrate that inhibition of
IL-1β signal transduction might be a way to regulate VSMCs phenotypic switch and foam
cells formation. The specific involvement of NLRP3 inflammasome activation in VSMC
phenotypic switch induced by oxLDL and IL-1β was demonstrated using MCC950 which
is a potent highly specific small molecule inhibitor of both canonical and noncanonical acti-
vation of NLRP3 inflammasome leading to reduction of IL-1β production [22]. OxLDL and
IL-1β promoted reduction in the expression of VSMCs-specific contractile protein Myh11+

while MCC950 supplementation completely restored the Myh11 expression in VSMCs
(Figure 5h). Moreover, MCC950 reduced prominently the expression of the macrophage
markers in VSMCs treated with oxLDL and IL-1β (Figure 5i,j). The presented findings
clearly demonstrate the specific involvement of NLRP3 inflammasome activation in VSMC
phenotypic switch since small molecule inhibitor of NLRP3 inflammasome MCC950 abro-
gated VSMCs phenotypic switch.

2.4. NLRP3 Inflammasome Inhibition Abrogates VSMCs Phenotypic Switch

COLCOT (Colchicine Cardiovascular Outcomes Trial) and LoDoCo2 (Low Dose
Colchicine2) trial demonstrated that low-dose colchicine is efficient in preventing ma-
jor adverse cardiovascular events [23,24]. However, the precise mechanism of colchicine-
mediated effects is not revealed. In this regard, we could demonstrate that oxLDL promoted
VSMCs phenotypic switch, as indicated by the reduction in α-SMA expression and in-
creased expression of CD68 and MAC2 in VSMCs, while colchicine treatment abrogated
the VSMC phenotypic switch (Figure 6a–c). The presented data strongly suggest that
hypercholesteremia induces NLRP3 inflammasome activation in VSMCs and subsequent
VSMC phenotypic switch, and demonstrate the potential inhibitory effect of colchicine on
oxLDL-induced VSMC phenotypic switch, which could potentially result in the prevention
of plaque progression and destabilization.
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and (c) Myh11+LipidTOX+ (foam cells) formation of VSMCs upon oxLDL and IL-β treatment as
indicated, with n = 6/group and * p < 0.05, ** p < 0.01, *** p < 0.001. Graph bars represent the
mean± SEM of (d) α-SMA+, (e) Myh11+MAC2+, expressed as mean fluorescence intensity and
(f) Myh11+LipidTOX+ (foam cells) expressed as a percentage of a alive VSMC upon oxLDL and/or
IL-β and/or ZVAD treatment as indicated, with n = 6/group and * p < 0.05, ** p < 0.01, *** p < 0.001,
one-way ANOVA. (g) Representative flow cytometry zebra plots of Myh11+MAC2+ cells. Graph bars
represent the mean± SEM of (h) Myh11+, (i) F4/80+ expressed as mean fluorescence intensity and
(j) Myh11+F4/80+ as a percentage of alive VSMC upon oxLDL and/or IL-β and/or MCC950 treatment
as indicated, with n = 6/group and * p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA.
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expression in VSMCs upon colchicine and/or oxLDL treatment as indicated, with n = 5–6/group
and ** p < 0.01, *** p < 0.001, **** p < 0.0001 one-way ANOVA.

2.5. Hypercholesteremia In Vivo Promotes NLRP3 Inflammasome Activation in VSMCs Associated
with VSMCs Phenotypic Switch

To demonstrate that NLRP3 inflammasome activation in VSMCs is a relevant mech-
anism involved in VSMCs phenotypic switch in vivo, we used VSMCs lineage tracking
mice. Apoe−/− Myh11ERT2-CreR26R-eYFP mice with a tamoxifen-inducible recombinase
driven by a VSMC-specific gene (Myh11) promoter in combination with reporter protein to
facilitate specific labeling of VSMC in Apoe−/− mice [25] were fed NCD or HCD. HCD-
fed Apoe−/− Myh11ERT2-CreR26R-eYFP mice showed significantly elevated levels of
cholesterol and LDL-C as well as larger atherosclerotic lesions in the aortic roots as well as
abdominal aorta in comparison to NCD-fed Apoe−/− Myh11ERT2-CreR26R-eYFP mice
(data not shown). Apoe−/− Myh11ERT2-CreR26R-eYFP mice are an excellent model for
the objective since they allow stable labeling of VSMCs at baseline, which facilitates VSMCs
precise tracing and importantly the tracking of VSMC-derived cells during atherogenesis,
even when VSMC characteristics might otherwise have been lost. Importantly, Apoe−/−

Myh11ERT2-CreR26R-eYFP mice exhibited pronounced NLRP3 inflammasome activation
as demonstrated by cleaved caspase 1 and IL-1β expression in VSMCs (Myh11eYFP+

cells) undergoing phenotypic switch (co-expressing CD68) in the aortic roots (Figure 7a,b).
Moreover, hypercholesteremia significantly increases the expression of cleaved caspase
1 and IL-1β in Myh11eYFP+ cell co-expressing CD68 in comparison to the mice fed NCD.
(Figure 7c,d). These findings clearly demonstrate that that inflammasome activation is
indeed involved in VSMC phenotypic switch in response to hypercholesteremia in vivo.

2.6. NLRP3-Inflammasome Activation in VSMCs Is Associated with Plaque Rupture in Human
Carotid Artery Disease

To gain insight into a possible role of NLRP3 inflammasome activation in VSMCs phe-
notypic switch and its relevance for the destabilization of human atherosclerotic plaques,
we performed immunofluorescence staining of human carotid atherosclerotic plaques de-
rived from carotid artery disease patients. We found that VSMCs (Myh11+) undergoing
transdifferentiation to macrophages-like cells in human atherosclerotic plaques co-express
cleaved caspase 1 as well as IL-1β, indicating the involvement of NLRP3 inflammasome ac-
tivation in VSMCs phenotypic switch in human atherosclerosis (Figure 8a,b). Furthermore,
symptomatic patients who had experienced an ipsilateral ischemic stroke in comparison
to asymptomatic patients (no ischemic events) had a significant increase in the number
of Myh11+ Cleaved Caspase 1+ CD68+ as a percentage of the total Myh11+ present in
human carotid atherosclerotic plaques in comparison to asymptomatic patients (Figure 8c).
In line with the observed cleaved caspase 1 upregulation, we found a higher percentage
of Myh11 +CD68+ IL-1β+ cells present in human carotid atherosclerotic plaques of symp-
tomatic patients versus asymptomatic CAD patients (Figure 8d). These findings imply that
the increased number of VSMCs undergoing switch could have a causal role in human
atherosclerotic plaque destabilization. Taken all together our data imply the involvement of
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NLRP3 inflammasome activation in VSMCs phenotypic switch with possible implications
in human atherosclerotic plaque destabilization.
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Figure 7. Representative immunofluorescence staining of Myh11eYFP+ cells, expressing (a) cleaved
caspase 1, CD68 and (b) IL-1β, CD68 in the aortic roots of Apoe−/− Myh11ERT2-CreR26R-eYFP mice
showing NLRP3 inflammasome activation in VSMC undergoing phenotypic switch in vivo, taken
by confocal microscopy (LSM 800 Airyscan). Graph bars show the mean ± SEM of (c) Myh11eYFP+

CD68+ Cleaved Caspase1+ and (d). Myh11eYFP+ CD68+ IL-1β co-expressing cells as a percentage
of all Myh11eYFP+ cells in the aortic roots plaquesm with n = 8/group and * p < 0.05, ** p < 0.01,
unpaired t-test.
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Figure 8. Representative immunofluorescence staining of Myh11+ cells, expressing (a) cleaved
caspase 1, CD68 and (b) IL-1β, CD68 in human atherosclerotic plaques associated with NLRP3-
inflammasome activation in VSMC and linked to plaque rupture in human carotid artery disease
shown by confocal microscopy. Graph bars show the mean ± SEM of (c) Myh11+ CD68+ cleaved
caspase 1 + and (d) Myh11+ CD68+ IL-1β+ co-expressing cells as a percentage of plaque Myh11 cells+

cells with n = 12/group and * p < 0.05, unpaired t-test.

3. Discussion

Our present study provides evidence for the involvement of monocytes in triggering
NLRP3 inflammasome signaling promoting VSMCs phenotypic switch and atherosclero-
sis progression. NLRP3 inflammasome activation and IL-1β signaling appeared to play
a direct role in VSMCs phenotypic modulation. Our results provide insight into the direct
role of monocytes and hypercholesteremia in triggering NLRP3 inflammasome activation
involved in VSMCs phenotypic switch/foam cells formation with a possible implications
for the destabilization of human atherosclerotic plaques.

Upon entrance to the intima, monocytes uptake ox-LDL and undergo macrophages
foam cells formation via metabolization of ox-LDL through membrane scavenger recep-
tors [26]. The accumulated foam cells are commonly found in early atherosclerotic lesions
which can impact the functionality of VSMCs. Indeed, the interaction of VSMCs with
monocytes/macrophages has been shown to promote matrix metalloproteinases produc-
tion involved in VSMCs migration [27,28], affect the VSMCs phenotype and prolifera-
tive capacity [29–31], and promote VSMC apoptosis via Fas receptor-ligand binding to
macrophages [32,33]. The present study reveals a major novel mechanistic controlling the
initiation of VSMCs phenotypic switch/foam cell formation in atherosclerosis. Monocyte
promotes VSMCs phenotypic switch to macrophages-like cells via VSMCs NLRPs inflam-
masome activation. We observed that monocytes and hyperlipidemia modulate VSMCs
as follow: (1) Promote their phenotypic switch to macrophages-like cells; (2) reduce the
expression of the transcription factor Oct-4 in VSMC, known to be important in preserving
VSMC contractile phenotype [16], and upregulate KLF-4 expression shown to promote
VSMC phenotypic modulation [17,18]; (3) trigger NLRP3 inflammasome activation and



Int. J. Mol. Sci. 2022, 23, 340 11 of 17

IL-1β secretion by VSMCs as well as; (4) induction of pyroptosis programmed cell death
associated with NLRP3 inflammasome activation [21] and with the atherosclerosis plaque
rupture [34]. Taking all together, monocytes and hypercholesteremia trigger VSMC pheno-
typic modulation, cholesterol accumulation, inflammasome activation, secretion of highly
pro-inflammatory cytokine—IL-1β and cells death. The effect of these all could result in
induction of necrotic core formation, which in turn may lead to overwhelming plaque desta-
bilization leading to plaque rupture. Indeed, we have observed that NLRP3-inflammasome
activation in VSMCs is associated with plaque rupture in human carotid artery disease.

IL-1 isoform can act extracellularly in an autocrine or paracrine manner [9], while IL-1β
induce its own gene expression in an amplification loop manner called autoinduction [10,11].
Secondary necrosis of apoptotic VSMCs promotes the release of both IL-1α and IL-1β,
which induces the surrounding viable VSMCs to produce proinflammatory cytokines,
thus causing a chronic inflammation associated with atherosclerosis [35]. In the present
study, we could demonstrate that IL-1β triggers VSMCs phenotypic switch and trans-
differentiation to macrophages-like cells whose effect was amplified in the presence of
oxLDL. Remarkably, IL-1β treatment increased profoundly the lipids accumulation and
VSMCs foam cells formation highlighting the critical role of IL-1β in atherosclerosis pro-
gression as well as VSMCs foam cells formation, with consequences for atherosclerotic
plaque stability. Interestingly, ZVAD-FMK a cell-permeable pan-caspase inhibitor partly
abrogated VSMCs phenotypic switch as well as foam cells formation. These findings
clearly demonstrate that caspase inhibition might be a way to preserve VSMCs contractile
phenotype. More interestingly, we could demonstrate the role of NLRP3 inflammasome
activation in VSMC phenotypic triggered by OxLDL or OxLDL-activated monocytes or
IL-1β using MCC950, a potent highly specific small molecule inhibitor of both canon-
ical and noncanonical activation of NLRP3 inflammasome leading to the reduction of
IL-1β production [22].

Current widely used anti-atherosclerosis therapies modulate only the factors asso-
ciated with the development of the disease while growing evidence supports a role for
inflammation in atherosclerosis. Colchicine is a small molecule, a natural product derived
from the autumn crocus plant which has been used to treat chronic auto-inflammatory con-
ditions [36] as well as pericarditis, stable coronary artery disease, and postpericardiotomy
syndrome [37]. Colchicine interferes with the assembly of microtubules and in this way,
it impedes the assembly of the multiple components that comprise inflammasomes and thus
colchicine blocks inflammasome assembly and thus IL-1β production [38]. Colchicine is
currently under extensive evaluation for safety and efficacy in large randomized controlled
trials. The COLCOT (Colchicine Cardiovascular Outcomes Trial) and LoDoCo2 (Low Dose
Colchicine2) trial both demonstrated that low-dose colchicine is efficient in preventing
major adverse cardiovascular events [23]. Among the ongoing trials it is worth mentioning
the COLPOT trial in patients with recent acute coronary syndromes, the CLEAR-SYNERGY
(OASIS-9) trial in patients with STEMI undergoing percutaneous coronary intervention
(PCI) or the CONVINCE trial which will determine the long-term tolerability and efficacy
of low-dose colchicine for secondary prevention in patients with CAD [39]. However, there
is a need for mechanistic studies explaining the athero-protective effects of colchicine and
particularly whether colchicine could affect VSMC phenotypic switch and subsequently
plaques destabilization. Our present finding shows the direct inhibitory effect of colchicine
on oxLDL-induced VSMC phenotypic switch which could at least partly explain the athero-
protective effect of colchicine in preventing major adverse cardiovascular events [23].

The finding of this study goes beyond the simple understanding of the pathogenesis
of atherogenesis, since it provides a new mechanistic insight of therapeutic strategies
preventing plaque destabilization and major adverse cardiovascular events. Taken all
together our data implies that NLRP3 inflammasome activation is a critical mechanism
involved in VSMCs phenotypic switch with possible implications in human atherosclerotic
plaque destabilization.
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4. Materials and Methods
4.1. Animals

Eight to twelve-week-old C57BL/6 mice were used for VSMCs or monocytes isola-
tion. Eleven-week-old male Apoe−/− or Apoe−/− Myh11-CreERT2, ROSA26 STOP-flox
eYFP+/+ mice were fed a NCD (4.6% fat, 21.1% protein, 4.5% fiber, 6.4% ash, Special Diets
Services, UK) for 16 weeks (early atherogenesis) [40] or a HCD for 11 weeks (20.1% fat,
1.25% cholesterol, Research Diets, Inc., New Brunswick, New Jersey, United States) to
promote advanced atherogenesis [41]. To facilitate VSMCs lineage tracing, injection of ta-
moxifen was used to induce Cre recombinase activation in male Apoe−/− Myh11-CreERT2,
ROSA26 STOP-flox eYFP+/+ mice [42]. A series of ten intraperitoneal 1 mg tamoxifen
(Sigma) injections from 9 to 11 weeks of age, for a total of 10 mg of tamoxifen per mouse,
and an average bodyweight of 25 g for the 2 weeks running up to the start of the high
cholesterol diet was performed [15]. Whole blood was collected and serum triglycerides, to-
tal cholesterol, low-density lipoprotein-cholesterol (LDL-C) were measured. Animals were
sacrificed by exsanguination after anesthesia with 4% isoflurane. Experimental protocols
and procedures were reviewed and approved by the Institutional Animal Care and Use
Committee of the Geneva University School of Medicine. Animal care and experimental
procedures were carried out in accordance with the guidelines of the Institutional Animal
Care and Use Committee of the Geneva University School of Medicine. All procedures
conform to the guidelines from Directive 2010/63/EU of the European Parliament on the
protection of animals used for scientific purposes or the NIH Guide for the Care and Use of
Laboratory Animals.

4.2. Human Samples

Specimens of internal carotid plaques of a previously published cohort study [43] from
symptomatic patients with CAD and a first episode of ipsilateral ischemic stroke (ipsilateral
focal neurological deficit of acute onset lasting >24 h), as well as of asymptomatic patients
(no history of ischemic symptoms) undergoing endarterectomy for severe carotid stenosis
were used for immunofluorescent analysis. Carotid endarterectomy (CEA) was performed
due to extra cranial high-grade internal carotid stenosis (>70% luminal narrowing) in
symptomatic and asymptomatic patients. US Doppler echography and angiographic
confirmation using the criteria of the North American Symptomatic Carotid Endarterectomy
Trial (NASCET) [44] was applied to determine the degree of luminal narrowing. The
indication for CEA for asymptomatic patients was based on the recommendations of
Asymptomatic Carotid Surgery Trial (ACST) [45] while for symptomatic patients, CEA
indication followed the recommendations of the European Carotid Surgery Trial (ECST) [46]
and the North American Symptomatic Carotid Endarterectomy Trial (NASCET) [46]. After
surgical excision, the internal carotid plaque specimens were cut perpendicular to the long
axis through the point of maximum stenosis to obtain the atherosclerotic plaque upstream
to the blood flow. The upstream internal carotid plaque specimens from symptomatic and
asymptomatic patients were embedded in optimal cutting temperature (OCT) compound.
The study was approved by the Medical Ethics Committee of San Martino Hospital in Genoa
(Italy) and conducted in compliance with the Declaration of Helsinki after participants
provided written informed consent.

4.3. Cells Isolation

VSMCs isolation from the aorta of 8–12-weeks old C57BL/6 mice was successfully
established in the laboratory. Briefly, after intracardial perfusion, the aorta is surgically
excised. The aortic arch is separated from the thoracic part of the aorta. The aorta adven-
titia was carefully excised by sharp surgical dissection in a clearly defined plan, to leave
a naked media over the length of the aortal segment. The intima was scrapped softly to
eliminate endothelial cells. The obtained arch is digested for 40 min—1 h at 37 ◦C in DMEM
containing Collagenase P, Dispase and DnaseI. VSMCs were isolated from via digestion
at 37 ◦C in DMEM containing Collagenase P, dispase and DnaseI. VSMC phenotype was
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confirmed by flow cytometry analysis for smooth muscle α-actin and Myh11 positive
expression and negative expression of CD31 (endothelia cell marker) and CD90 (fibroblasts
cell marker). These cells were cultured at a density of 3 × 104 cells/cm2 using SmBMTM
Basal Medium (CC-3181, Lonza) and SmGMTM-2 SingleQuotsTM supplements (CC-4149,
Lonza) required for growth of VSMC for 3 weeks. The medium was renewed every
3 days. Briefly, the iliac, tibiae, and femur marrow cells were obtained from 8–12-weeks
old C57BL/6 mice via flushing with cold PBS using a 22-gauge needle and passing the
cell suspension through a 40-µm cell strainer (BD Biosciences, MD, USA). Mononuclear
cells from blood were obtained after centrifugation by density gradient sedimentation
using Histopaque (Sigma). Erythrocytes were lysed and nucleated cells were washed
twice, counted, and suspended in PBS. Monocytes were isolated using mouse Monocyte
Isolation Kit (BM) (Miltenyi Biotec, 130-100-629) according to the manufacturer instructions
under sterile conditions. Dead cells and doublets were excluded based on exclusion dye or
forward scatter profiles, respectively. Monocytes cell purity (>95%) and phenotype were
confirmed by flow cytometry using Anti-Ly-6C-FITC, mouse (Miltenyi Biotec, 130-102-295)
CD11b-VioBlue, (Miltenyi Biotec, 130-113-810).

4.4. Flow Cytometry Analysis of Vascular Smooth Muscle Cells Phenotypic Switch

Quantification of VSMC transdifferentiation was performed using VSMC in passage 1.
In vitro VSMC were stimulated with either 40 ng/mL oxLDL (Thermo fisher), Z-VAD-FMK
10 µM (InvivoGen) or 100 ng/mL Colchicine (Sigma-Aldrich), or 10 ng/mL of IL-1β for
7 days or co-cultured with monocytes derived from male C57Bl/6 mice using Transwell
Cell Culture Inserts for 7 days. VSMCs were co-cultured with monocytes or monocytes
activated with oxLDL upon direct supplementation of 40 ng/mL oxLDL (Thermo Fisher)
to well cell culture inserts (pore size 0.02 µm) in the trans well plates for 7 days. The direct
supplementation of oxLDL with a known diameter size of more than 20 nm [47] ensured
monocytes restricted oxLDL activation since oxLDL was retained in the trans well inserts
with a pore size of 0.02 µm. Quantification of VSMC transdifferentiation was performed
via flow cytometry analysis of anti-mouse CD68 PerCP/Cy5.5 (Biolegnd), anti-mouse
MAC2 PE/Cy7 (Biolegnd), anti-mouse F4/80 Brilliant Violet 650™, α-SMA Alexa Fluor
488, SM22α+ Alexa Fluor 700 after excluding dead cells via LIVE/DEAD Fixable Near-IR
Dead Cell Dye staining (Thermo fisher). Samples were acquired in Gallios flow cytome-
ter (Beckman Coulter) and analyzed using FlowJo software (TreeStar, Version 10.0.8r1,
Ashland, OR, USA).

4.5. Quantitative Real-Time PCR

Total mRNA was prepared by Trizol® (Thermofischer), according to the provider
protocol. Reverse transcription was performed using the ImProm-II Reverse Transcription
System (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Real-
time PCR (StepOne Plus, Applied Biosystems, Waltham, MA, USA) was performed with
the SensiFast (LabGene). Real-time duplex qPCR analysis was conducted. The levels of
mRNA expression were normalized against the expression of a housekeeping gene (hprt)
and analyzed using the comparative ∆CT method. Probes were purchased from Applied
Biosystems. All measurements were conducted in triplicate.

4.6. Immunofluorescent Staining and Quantification

VSMCs stimulated with oxLDL or co-cultured with monocytes or oxLDL-activated
monocytes were cultured in 6-well chamber slides for 24 h at 37 ◦C with 5% CO2. The cells
were fixed with 4% paraformaldehyde for 30 min at room temperature (RT), permeabilized
for 30 min with PBS plus 0.01% Triton X-100 for 30 min, and stained with Phalloidin (Ab-
cam) for 1 h at RT followed by three washing steps for 10 min and counterstained with ASC
(Cell Signaling). Confocal microscopy was performed with a confocal LSM 800 Airyscan
(Zeiss). Internal carotid plaque specimens from symptomatic and asymptomatic patients,
and the aortic roots of male Apoe−/− Myh11-CreERT2, ROSA26 STOP-flox eYFP+/+ mice
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on NCD and HCD were embedded in OCT serially cut into 5-µm sections. Cryosections
were fixed in 1% paraformaldehyde and then washed with 1xPBS and incubated with
blocking solution, consisting of 5% BSA in PBS for 30 min, then permeabilized with Triton
X-100 0.1%. Endarterectomy specimens were stained with primary anti-Myh11 (Thermo
Fischer) and CD68, cleaved caspase 1 or Il-1β antibody (Cell Signaling) in blocking solution.
After washing, the samples were incubated with secondary antibody and mounted with
ProLong Glass Antifade Mountant (Thermo Fischer). Immunofluorescent images will be
acquired with Axioscan Z1 microscope, analyzed, and quantified with QuPath software
platform for whole slide image analysis. The extent of VSMC phenotypic switch/NLRP3 in-
flammasome activation was corelated with the risk of CAD events in human atherosclerosis
using the two groups of CAD patients (symptomatic versus asymptomatic). Aortic roots
cryosections of Apoe−/− or Apoe−/− Myh11-CreERT2, ROSA26 STOP-flox eYFP+/+ mice
fed NCD or HCD were stained with primary rabbit anti-CD68 (BioRad), cleaved caspase 1
(Cell Signaling), NLRP3 (Cell Signaling), α-SMA (Abcam), or IL-1β (Cell Signaling) anti-
body in blocking solution. After washing, the samples were incubated with the following
secondary antibody Alexa 647 anti-rabbit (Thermo Fischer) and DyLight 405 and mounted
with ProLong Glass Antifade Mountant (Thermo Fischer). Immunofluorescent images were
acquired with Axioscan Z1 microscopy and analyzed and quantified with QuPath software
platform for whole slide image analysis.

4.7. Caspase-1 Activity Assay and Pyroptosis/Caspase-1 Assay

Caspase 1 activity was measured with a caspase-1 colorimetric assay (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s protocol. In brief, 50 µL containing
100 µg of VSMCs protein extract was mixed with 50 µL of 2X Reaction Buffer 1 and 5 µL of
a caspase-1 colorimetric substrate and incubated for 2 hours at 37 ◦C. The caspase 1 activity
in the samples was quantified with a microplate reader using a wavelength of 405 nm.
Data represent the absorbance of the samples. For pyroptosis/caspase-1 assay, caspase-
1 activity was assessed in whole VSMC cells in vitro treated with oxLDL or co-cultured
with monocytes or oxLDL-activated monocytes as previously described, using FAM-YVAD-
FMK Pyroptosis/Caspase-1 Assay, Green (ImmunoChemistry Technologie), according to
the manufacturer’s protocol. The activity of the caspase-1 enzyme inside the cells was
quantified using a cell-permeant FLICA retaining the green, fluorescent signal within the
cell, with no interference from pro-caspases or inactive forms of the enzymes. To access
pyroptosis, after labelling with FLICA, VSMCs were counter-stained with the red live/dead
stains propidium iodide (ImmunoChemistry Technologie) and 7-AAD (ImmunoChemistry
Technologie) and the fluorescence signal was quantified via flow cytometer. Samples were
acquired in Gallios flow cytometer (Beckman Coulter) and analyzed using FlowJo software
(TreeStar, Version 10.0.8r1).

4.8. IL-1β ELISA

To measure IL-1β secretion specifically in VSMSs upon oxLDL or co-culture with
monocytes or oxLDL activated monocytes as previously described, the transwell inserts
were removed and the VSMC in the well plates were supplemented with fresh medium,
which was collected after 3 days and IL-1β secreted by VSMCs was determined using
a mouse IL-1β ELISA kit (Cloud Clone Corp., Houston, TX, USA) according to the manu-
facturer’s protocol.

4.9. Statistical Analysis

Statistical analysis was performed using a GraphPad Software, Inc., La Jolla, CA, USA.
All data sets were tested for normal distribution with normality tests before proceeding
with parametric or non-parametric analysis. Grubb’s test was performed in order to
exclude spurious outliers. Statistical significance was tested using unpaired t-test, one-way
analysis of variance (ANOVA) with Tukey post-test and two-way ANOVA with Bonferroni
post-test for data sets with normal distributions. Statistical significance was tested with
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Mann–Whitney test and one-way ANOVA with Dunn’s post-test for data sets without
a normal distribution. Data are presented as mean± SEM. Differences were significant
when the two-sided p-value was lower than 0.05.
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