
1324 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 3, MAY 2021

Detection of Flow-Regime Transitions Using Dynamic Mode
Decomposition and Moving Horizon Estimation

Angelo Alessandri , Patrizia Bagnerini , Mauro Gaggero , Davide Lengani , and Daniele Simoni

Abstract— The spatial and time behaviors of fluid flows at
different Reynolds numbers and free-stream turbulence intensity
levels are studied by combining dynamic mode decomposition
(DMD) and moving horizon estimation to detect flow-regime
transitions. In more detail, the norm of residuals provided by
DMD when processing successive snapshots of the flow velocity
field shows a trend that is identified by means of a moving horizon
estimator based on a switching model. This allows detecting
the change from stable to unstable flow regimes, which in turn
enables to extract modes, frequencies, and growth rates of com-
plex structures such as vortices, characterizing the fluid flow in
the spatial and temporal domains. Different cases of experimental
measurements given by a particle image velocimetry are analyzed
to recognize the complexity of the underlying flow physics, while
showing the effectiveness of the proposed approach.

Index Terms— Dynamic mode decomposition (DMD), fluid
flow, moving horizon estimation (MHE), nonlinear switching
systems.

I. INTRODUCTION

THE transition process of boundary layers is a complex
phenomenon that is widely studied in fluid dynamics.

It depends on the Reynolds number (Re) and the free-stream
turbulence intensity (FSTI) level [1]–[6]. Due to the need
of dealing with a large amount of information on the fluid
flow, the automatic detection of the dominant dynamics is
usually difficult. Thus, low-order models are often employed
to reduce the computational burden. These models enable to
easily represent complex structures characterizing the flow,
such as vortices in the spatial and temporal domains [7]–[9].
Toward this end, dynamic mode decomposition (DMD) has
become quite a popular tool to construct reduced-order models
that are useful to analyze fluid flows [10]. In more detail,
the DMD procedure isolates the main dynamics of a flow and
provides a synthetic representation of the dominant structures
(the modes of decomposition) and their spatial and temporal
evolutions. The computation of the modes, their frequencies,
and their growth (or decay) rates allows identifying unstable
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waves that are responsible for transition from a stable to an
unstable flow regime.

In this study, the best fitting in the least-squares sense
of successive ensembles of velocity field snapshots is first
determined by using DMD. Then, moving horizon estimation
(MHE) is applied to the resulting DMD residuals to quickly
and robustly identify changes of the regime. More specifically,
two spatial regions are determined, which correspond to the
stable and unstable flow regimes, respectively. This enables
extracting the modes, frequencies, and growth/decay rates of
the fluid flow in an accurate way by applying again DMD
separately in the various regions instead of processing the
entire data set at hand, which may lead to poor results.
Finally, the growth/decay rates and frequencies computed by
the proposed DMD/MHE technique are compared with those
obtained experimentally, thus showing the effectiveness of the
proposed approach.

In general, DMD provides a local linear approximation of
complex spatio-temporal dynamics, which in principle may be
used for the purpose of real-time control [11], [12]. Among the
various DMD algorithms reported in the literature to construct
reduced-order models, the method proposed in [10] allows
projecting the sparse matrices of flow fields on a subspace
of lower dimension. In [13], a different technique is proposed
that is based on an orthonormal subspace representation and
optimization with the conjugate gradient method. Another
approach based on the subtraction from the whole data set
of a sort of “mean snapshot” is presented in [14]. The
DMD algorithm discussed in [15] consists in minimizing
the effects of the noise by using an augmented snapshot
matrix to be projected onto a subspace, irrespective of the
method adopted for the computation of the modes. Low-order
reduction is addressed also in [16] by solving a regularized
least-squares problem to impose sparsity with the choice of a
suitable penalization weight.

Modeling based on hybrid systems is nowadays well estab-
lished in a number of applications [17], as it enables to
account for the plant behavior over a large range of operating
conditions [18]–[21]. Piecewise linear models are proposed
in [22] to detect fluid flow transitions, and such models
are identified and validated by using DMD. Instead, in this
work, we explicitly deal with the switching from stability
to instability regimes, whereas in [22] this aspect is faced
only heuristically. Preliminary results on the application of
MHE for the evaluation of DMD residuals to identify changes
of the regime are reported in [23]. Based on the aforesaid,
here the trend in the norm of DMD residuals is estimated to
identify the switching between different regimes in boundary

1063-6536 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on May 07,2021 at 16:09:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6878-9106
https://orcid.org/0000-0003-1743-1512
https://orcid.org/0000-0002-5048-4141
https://orcid.org/0000-0001-6347-0817
https://orcid.org/0000-0003-4161-0721


ALESSANDRI et al.: DETECTION OF FLOW-REGIME TRANSITIONS USING DMD AND MHE 1325

Fig. 1. (a) Sketch of the snapshots following a temporal evolution, (b) a
spatial evolution along the x-direction, and (c) a spatial evolution along the
y-direction, i.e., with nv = NxNy , nv = NtNy , and nv = NtNx,
respectively.

layers. Specifically, we focus on the change from a stable
(usually referred to as pre-transitional) regime to an unstable
(also named transitional) one [24]–[27]. Toward this end, the
identification of a trend is cast as a constrained state estimation
problem subject to switching [28], [29]. The proposed method
is applied to an experimental data set obtained by a time-
resolved particle image velocimetry (TR-PIV) to study the
transition processes of boundary layers growing with a strong
adverse pressure gradient.

In the last decades, a lot of attention has been devoted to the
estimation of systems in which continuous and discrete states
(DSs) interact dynamically. Among the various alternatives
reported in the literature, we focus on MHE, as this approach
is characterized by an intrinsic robustness to noises and
is well suited to performing estimation in the presence of
constraints [30], [31]. Recent investigations on MHE have con-
cerned the reduction of the computational burden [32], [33],
which is fundamental for real-time applications. In the context
of fluid flows, we show that MHE is able to identify the
different flow regimes associated with the occurrence of a
switching.

The rest of this work is organized as follows. The
DMD algorithm is presented in Section II. The proposed
method for residual trend identification based on MHE is
described in Section III. The results on the application of
such an approach on experimental data sets are showcased
in Section IV. Finally, conclusions are given in Section V.

Throughout the manuscript, we adopt the following nota-
tion. The symbol (x, y), where x and y are column vectors,
stands for [x�, y�]�. Given a real vector v, |v| := (v�v)1/2

denotes its Euclidean norm. The Frobenius norm of a real
matrix M is given by |M |F := (tr(M�M))1/2. Given a com-
plex matrix C, C∗ denotes its Hermitian. A function ϕ :
[0,+∞) → R is said to be a K-function if it is continuous,
strictly monotone increasing, and such that ϕ(0) = 0.

II. DYNAMIC MODE DECOMPOSITION

We consider the DMD approach presented in [10], which
allows finding a linear model that approximates the underlying
flow dynamics and can also provide additional information.
Toward this end, let us denote by vi ∈ R

nv the snapshot of
a two-dimensional velocity field according to a temporal or
spatial evolution, as shown, for instance, in Fig. 1(a), where
the vectors vi are associated with Nx measuring points in

the streamwise direction and Ny measuring points in the
wall-normal direction over Nt time instants. Let V k

1 :=
col(v1, v2, . . . , vk) and V k+1

2 := col(v2, . . . , vk+1) be the
matrices resulting from the collection of the snapshots from
1 to k and from 2 to k + 1, respectively. We assume that,
given the sequence v1, . . . , vk, vk+1 ∈ R

nv , the dynamics is
described by a linear mapping A ∈ R

nv×nv , i.e., vk+1 = Avk.
Thus, we can write

V k
1 = col(v1, Av1, . . . , Ak−1v1) .

The purpose of the DMD procedure is to extract the flow
information of the physical phenomenon described by A with-
out the need of finding A, which may be of large dimension.
Thus, if the column vectors of V k

1 become linearly dependent
as the number of snapshots increases, the dimensionality
issues are reduced by letting vk+1 be a linear combination
of v1, v2, . . . , vk, that is

vk+1 = a1v1 + a2v2 + · · · + akvk + ρ = V k
1 a+ ρ

where a := (a1, . . . , ak) ∈ R
k and ρ ∈ R

nv is a residual
to be minimized according to [10]. If we define ek :=
(0, . . . , 0, 1) ∈ R

k, we obtain

V k+1
2 = col(v2, . . . , V k

1 a) + ρ ek.

The previous expression is equivalent to

V k+1
2 = V k

1 S + ρ ek

where S is a companion matrix given by

S :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · a1

1 0 · · · · · · a2

0
. . .

. . .
...

...
. . . 1 0 ak−1

0 · · · 0 1 ak

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
k×k.

To sum up, DMD consists in finding the solution of the
optimization problem

min
S∈S

∣∣V k+1
2 − V k

1 S
∣∣2
F

(1)

where S denotes the set of all real matrices having the com-
panion structure above. Then, flow information is extracted
from the projection S̃◦

k ∈ R
k×k of the optimal matrix

S◦
k := argminS∈S |V k+1

2 − V k
1 S|2F on the proper orthog-

onal decomposition modes. In more detail, the overall
DMD procedure is composed of the steps reported in
Algorithm 1, which, for all k, provides the matrix S̃◦

k as final
outcome. In Algorithm 1, Δp is the step between snapshots,
which may be equal to Δt, Δx, or Δy (see Fig. 1).

Complex structures such as vortices in the flow can be
localized by analyzing the matrix S̃◦

k . In general, it is more
convenient to use S̃◦

k instead of S◦
k since the extraction

of flow information from S◦
k is ill-conditioned, with the

consequence that only the largest modes can be precisely
identified [10]. The real part of the eigenvalues of S̃◦

k provides
the growth/decay rate of the structure identified by the corre-
sponding DMD mode, whereas the imaginary part provides the
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Algorithm 1 Steps of the DMD Algorithm

Fig. 2. Two different trends of residuals resulting from the application of
the DMD procedure.

frequency of the vortex shedding. Positive growth rates indi-
cate growing structures, leading to the generation of unstable
waves within the flow. The unstable regime of the boundary
layer is then identified as the region where positive growth
rates are measured. On the contrary, the stable regime is
characterized by negative or null growth rates.

The aim of this study is to identify the position of the
switching between the pre-transitional (stable) region and
the transitional (unstable) one. This enables applying the
DMD procedure separately in the various regions in order
to compute in an accurate way frequencies and growth rates
of the structures characterizing the flow. Toward this end,
in order to identify the switching, we sequentially apply the
DMD algorithm over a region of increasing size and with a
larger amount of snapshots. This corresponds to an increase
in the dimension of the data matrices V k

1 and V k+1
2 . The

variation of the slope in the trend of the residuals identifies
the turning point of the switching between the stable region
and the unstable one (see Fig. 2 for an example of switching
of a residual trend). The reason of this trend behavior lies
in the fact that the pre-transitional regime is ruled by linear
effects and low velocity fluctuations, and therefore the DMD
residuals decrease when the number of snapshots increases.
Instead, the velocity fluctuations in the transitional regime
increase significantly, and hence also the DMD residuals grow.

In more detail, after choosing a sufficiently large k0

(a certain number of column vectors in V k
1 is necessary to

apply the DMD algorithm in a reliable way), we sequentially
process the snapshots from 1 to k using DMD, with k varying

from k0 to Np, where Np corresponds to Nt, Nx, or Ny

depending on whether a temporal or spatial analysis is
performed, according to Fig. 1 (in this work, we have focused
on a spatial analysis). In other words, we apply DMD to the
matrices V k

1 and V k+1
2 chosen with k varying as described

above. Let Rk := V k+1
2 −V k

1 S̃◦
k be the corresponding residual

matrix with k columns. In order to identify the change of
regime, we employ the cumulative average rk of the Euclidean
norm of the columns of Rk, that is

rk :=

∑k
j=1

∣∣Rj
k

∣∣
k

(2)

for increasing values of k, where Rj
k is the jth column of Rk.

In Section III, we propose to use MHE to detect a change in
the trend of the cumulative average rk.

III. ESTIMATION OF TREND DYNAMICS

To detect changes of the regime in the fluid flow, we rely
on a simple switching dynamics with state ξk := (ξ1,k, ξ2,k)
for modeling the trend of DMD residuals with turning point as
in Fig. 2. More specifically, we consider a switching nonlinear
second-order system with two DSs, as follows:

DS#1

⎧⎨
⎩
ξ1,k+1 = ξ2,k ξ1,k

ξ2,k+1 = a1

zk = ξ1,k

(3a)

DS#2

⎧⎨
⎩
ξ1,k+1 = ξ2,k ξ1,k

ξ2,k+1 = a2

zk = ξ1,k

(3b)

where k = 0, 1, . . . with a1 ∈ (0, 1) and a2 > 1 unknown.
DS#1 accounts for a decreasing trend, while DS#2 refers to an
increasing one, with rates a1 and a2, respectively. The variable
zk represents the output of the system, and measurements of
it are available. Note that a switching first-order model would
be sufficient if we knew a1 and a2 exactly.

The problem of identifying the trend reduces to find the
constrained estimates of the unknowns a1 and a2 together
with a decision on the turning point, which is unknown. Since
such estimates may be affected by disturbances, we propose
to use an estimation approach based on MHE, which appears
to be well suited to performing this task owing to its intrinsic
robustness. Toward this end, first of all we consider the more
general problem to estimate the state of a switching discrete-
time system by using MHE. Later, we will turn back to (3).

Consider the general dynamic system

ξk+1 = fλk
(ξk) + wk (4a)

zk = hλk
(ξk) + vk (4b)

where k = 0, 1, . . ., ξk ∈ R
n is the continuous state,

λk ∈ Λ := {1, . . . , q} is the DS, wk ∈ W ⊂ R
n is the system

disturbance, vk ∈ V ⊂ R
m is the measurement disturbance,

and zk ∈ R
m is the output. The functions fi : R

n → R
n and

hi : R
n → R

m, i = 1, . . . , q, are smooth. The sets W and
V are assumed to be compact. System (4) may be subject to
equality or inequality constraints, that is

lλk
(ξk) = 0 (5a)

gλk
(ξk) ≤ 0 (5b)
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for k = 0, 1, . . ., where the functions li : R
n → R

nl and gi :
R

n → R
ng , i = 1, . . . , q, are smooth. Since the goal consists

in devising a moving horizon estimator, we rely on the most
recent batch of output measurements, which we collect in the
vector zk

k−N := (zk, zk−1, . . . , zk−N ). Concerning the DSs, not
all the possible combinations of them may occur in general.
Therefore, after defining by λk

k−N := (λk, λk−1, . . . , λk−N ) a
generic switching pattern from k − N to k, let us denote by
ΛN

0 the set of admissible patterns and by ΛN−ω
α its restriction

from α to N − ω for some integers α ≥ 0 and ω ≥ 0 such
that α+ ω ≤ N . Moreover, let

HN

(
ξk−N , λ

k
k−N

)

:=

⎛
⎜⎜⎜⎜⎜⎝

hλk
◦ fλk−1 ◦ fλk−2 ◦ · · · ◦ fλk−N

(ξk−N )
hλk−1 ◦ fλk−2 ◦ · · · ◦ fλk−N

(ξk−N )
...

hλk−N +1 ◦ fλk−N
(ξk−N )

hλk−N
(ξk−N )

⎞
⎟⎟⎟⎟⎟⎠∈R

(N+1)m.

Assumption 1: There exists Ξ ⊂ R
n compact such that, for

all wk ∈W , vk ∈ V , and admissible λk ∈ Λ, we have ξk ∈ Ξ
for all k = 0, 1, . . . . �

As pointed out in [28] and [34], unless m ≥ n, in gen-
eral, it is not possible to detect switches that occur in the
first or in the last stages of a moving observation batch. As a
consequence, one can deal with a restricted batch, i.e., zk−ω

k−N+α

instead of zk
k−N , to uniquely determine the DS in the restricted

interval from k −N + α to k − ω.
We assume the following, which corresponds to the notion

of observability presented in [34].
Assumption 2: There exist nonnegative α, ω together with

the following:

1) a K-function ψλ̄N
0 ,λ̃N

0
(·) such that

ψλ̄N
0 ,λ̃N

0
(|(ξ̄, ξ̄′) − (ξ̃, ξ̃′)|2)

≤ ∣∣HN

(
ξ̄, λ̄N

0

) −HN

(
ξ̄′, λ̃N

0

)
− (
HN

(
ξ̃, λ̄N

0

) −HN

(
ξ̃′, λ̃N

0

))∣∣2 ∀ξ̄, ξ̄′, ξ̃, ξ̃′ ∈ Ξ
(6)

for every λ̄N
0 , λ̃

N
0 ∈ ΛN

0 with λ̄N−ω
α 
= λ̃N−ω

α ;
2) a K-function ϕλN

0
(·) such that

ϕλN
0

(|ξ̄ − ξ̃|2) ≤
∣∣∣HN(ξ̄, λN−ω

α ) −HN (ξ̃, λN−ω
α )

∣∣∣2
∀ξ̄, ξ̃ ∈ Ξ (7)

for every λN
0 ∈ ΛN

0 and λN−ω
α ∈ ΛN−ω

α .

�
The assumption above turns out to be quite simplified

for (3). Toward this end, using the same notation adopted
for (4), system (3) can be written as follows:

ξk+1 = fλk
(ξk) (8a)

zk = ξ1,k (8b)

where

ξk :=
(
ξ1,k, ξ2,k

)
, fλk

(ξk) :=
(
ξ1,k ξ2,k, ξ2,k

)

with ξ2,k = ai and λk = i, i = 1, 2. In the case of N = 1
(i.e., a moving window with only two measures), we deal
with zk

k−1, and hence, to simplify the notation, let us refer to

z1
0 = H1

(
ξ0, λ

1
0

)
= (ξ1,0 ξ2,0, ξ1,0).

The simultaneous distinguishability of the continuous state and
DS of (8) corresponds to the satisfaction of the following:

H1(ξ̄0, λ̄1
0) = H1(ξ̃0, λ̃1

0) ⇒ ξ̄0 = ξ̃0 and λ̄0 = λ̃0 (9)

with ξ̄0, ξ̃0 ∈ R
2 and λ̄1

0, λ̃
1
0 ∈ Λ1

0. Such a condition is
trivially satisfied for non-null ξ̃1,0, ξ̄1,0, which is necessary for
the switching patterns (	, 1) and (	, 2) to be distinguishable,
i.e., α = 0 and ω = 1.

In general, we need to assume that the functions describing
the state equations are Lipschitz. In the case of (3), this is
easily satisfied.

Assumption 3: The functions fλ and hλ are of class C2 and
Lipschitz, that is

|fλ(ξ) − fλ(ξ′)| ≤ cf |ξ − ξ′| ∀ξ, ξ′ ∈ Ξ
|hλ(ξ) − hλ(ξ′)| ≤ ch |ξ − ξ′| ∀ξ, ξ′ ∈ Ξ

for some cf , ch > 0 and independently of λ ∈ Λ. �
An MHE strategy for (4) provides a state estimate that

minimizes the least-squares cost

Jk

(
ξ̂k−N+α, λ̂

k−ω
k−N+α

)
= μ |ξ̂k−N+α − ξ̄k−N+α|2 +

k−ω∑
i=k−N+α

∣∣zi − hλ̂i

(
ξ̂i

)∣∣2
= μ |ξ̂k−N+α − ξ̄k−N+α|2

+
∣∣zk−ω

k−N+α −HN

(
ξ̂k−N+α, λ̂

k−ω
k−N+α

)∣∣2 (10)

where μ ≥ 0 and ξ̂k−N+α and λ̂k−ω
k−N+α are the estimates of

ξk−N+α and λk−ω
k−N+α, respectively. The quantity ξ̄k−N+α is

a “prediction” of ξk−N+α, whose choice will be described
later.

Thus, we can state the following problem to be solved for
all values of k.

Problem Optimal MHE (OMHE): Find a solution to

min
ξ̂k−N+α∈Ξ,λ̂k−ω

k−N+α∈ΛN−ω
α

Jk(ξ̂k−N+α, λ̂
k−ω
k−N+α)

s.t. ξ̂i+1 = fλ̂i
(ξ̂i)

i = k −N + α, . . . , k − ω − 1
lλ̂i

(ξ̂i) = 0, i = k −N + α, . . . , k − ω

gλ̂i
(ξ̂i) ≤ 0, i = k −N + α, . . . , k − ω

at each k. �
After obtaining the optimal solutions ξ̂◦k−N+α and λ̂k−ω ◦

k−N+α

of Problem OMHE at step k, a convenient choice for
the prediction of ξk−N+α+1 is letting ξ̄k−N+α+1 =
fλ̂◦

k−N+α
(ξ̂◦k−N+α). Based on this prediction, we solve again

Problem OMHE at the next step k + 1 and so on.
The solution of Problem OMHE provides an exponen-

tially bounded estimation error ek−N+α := ξk−N+α−ξ̂ok−N+α,
i.e., there exist a ∈ (0, 1) and b > 0 such that |ek−N+α| ≤
|e0|ak + b, k = N,N + 1, . . ., where e0 is the initial error.
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Theorem 1: Under Assumptions 1–3, if

δ := min
λN
0 ∈ΛN

0

{
inf

ξ,ξ′∈Ξ,ξ �=ξ′

ϕλN
0

(|ξ − ξ′|2)
|ξ − ξ′|2

}
> 0 (12)

and if μ ≥ 0 is such that

8μ c2f
μ+ δ

< 1 (13)

then the estimation error is exponentially bounded.
Proof: This theorem is equivalent to [34, Th. 4, p. 3281].

The proof is based on the use of lower and upper bounds
on the cost (10) in line with previous results reported in the
literature [35, Th. 1, p. 1758]. �

If system (4) is treated in a noise-free setting (i.e., both wk

and vk are identically zero), then the estimation error is not
asymptotically stable to zero in general (see [36]). Indeed, in
the special case of (8), we can prove that the estimation error
is asymptotically stable. Toward this end, first let us verify
that (7) holds for (8). Since

∂H1

(
ξk−N , λ

k−N+1
k−N

)
∂ξk−N

=
(
ξ2,k−N ξ1,k−N

1 0

)
(14)

the rank of (14) is maximum and (9) is satisfied if
ξ1,k−N 
= 0. Therefore, we can apply [37, Proposition 8,
p. 1036] and conclude that there exists δ0 > 0 such that√
δ0

∣∣ξk−N − ξ′k−N

∣∣ ≤ ∣∣H1

(
ξk−N , λ

k−N+1
k−N

)
−H1

(
ξ′k−N , λ

′k−N+1
k−N

)∣∣ (15)

holds over any compact subset Ξ0 of the open positive orthant
of R

2. Moreover, let us denote by c0 the Lipschitz constant
of (8a) over Ξ0.

Theorem 2: If we choose μ ∈ [0, δ0/c20), then the esti-
mation error given by the solution of Problem OMHE for
system (8) over Ξ0 is exponentially stable to zero.
Proof: Since∣∣H1

(
ξk−N , λ

k−N+1
k−N

) −H1

(
ξ̂k−N , λ̂

k−N+1
k−N

)∣∣
≤ ∣∣HN

(
ξk−N , λ

k
k−N

) −HN

(
ξ̂k−N , λ̂

k
k−N

)∣∣
for N > 1, from (15) it follows that

δ0 |ξk−N − ξ̂k−N |2 ≤ ∣∣HN

(
ξk−N , λ

k
k−N

)
−HN

(
ξ̂k−N , λ̂

k
k−N

)∣∣2 (16)

holds for all ξk−N , ξ̂k−N ∈ Ξ0 and N > 1. Using (16), we
obtain a lower bound on the optimal cost, as follows:

δ0
∣∣ξk−N − ξ̂◦k−N

∣∣2 ≤ Jk

(
ξ̂◦k−N , λ̂

k ◦
k−N

)
(17)

and, by the definition of point of optimum, the following upper
bound holds as well:

Jk

(
ξ̂◦k−N , λ̂

k ◦
k−N

)
≤ Jk

(
ξk−N , λ

k
k−N

)
= μ

∣∣ξk−N − ξ̄k−N

∣∣2
= μ

∣∣fλk−N−1(ξk−N−1) − fλ̂◦
k−N−1

(
ξ̂◦k−N−1

)∣∣2.

Owing to the distinguishability of the DS at the beginning of
the moving window (i.e., λ̂◦k−N−1 is correctly estimated with
λk−N−1) and the Lipschitz assumption, we get

Jk

(
ξ̂◦k−N , λ̂

k ◦
k−N

) ≤ μ c20
∣∣ξk−N−1 − ξ̂◦k−N−1

∣∣2 . (18)

Using (17) and (18), it follows that:

δ0 |ek−N |2 ≤ μ c20 |ek−N−1|2.
Therefore, it easy to conclude about the exponential stability
of the estimation error. �

Theorems 1 and 2 enable to perform trend estimation based
on MHE with stability guarantees. In Section IV, the results
obtained by combining DMD and MHE in a real case study
are detailed and discussed.

IV. EXPERIMENTAL RESULTS

In this section, we present the results obtained with a large
data set of velocity measurements, collected on a plate of
chord of length c = 200 mm installed between two contoured
walls inducing boundary layer separation. A TR-PIV has been
used to measure both the streamwise and wall-normal velocity
components. A collection of eight data sets corresponding to
three different Reynolds numbers (based on the plate length
and inlet velocity) and three different FSTI levels (defined
at the plate leading edge) in the ranges [40 000, 90 000] and
[0.65%, 2.87%], respectively, have been analyzed. For each
data set, two time sequences of 3100 instantaneous snapshots
have been acquired at 3168 Hz, which is at least ten times the
vortex shedding frequency measured in the worst condition,
i.e., high Re cases. To provide a statistically representative
distribution of results, the acquisition time has been chosen
sufficiently long to be split in several temporal intervals of
length Nt, selected so as to represent about ten cycles of
the vortical structures driving the transition. For the low
Re and FSTI cases, ten time intervals have been analyzed
(collected in three data sets), while for high Re and FSTI,
we have considered 35 time intervals (grouped into six data
sets). Overall, we have applied 240 times the MHE procedure
described in Section III with different Re and FSTI conditions.

First, the MHE approach has been adopted to estimate the
change of regime in the fluid flow, i.e., from the stable regime
to the unstable one. Therefore, we have taken sequences of
repeated “1” followed by repeated “2” as admissible switch-
ing patterns, as Λ = {1, 2}. Then, the modes, frequencies,
and growth/decay rates of the flow have been computed in
the identified regions (stable and unstable) separately. This
provides much better results than those obtained by applying
DMD to the entire data set at hand.

The MHE trend estimator described in (8) has been applied
to the residuals rk defined in (2) as output variables zk.
Referring to Fig. 1, the snapshot matrices V k

1 and V k+1
2 ∈ R

nv

have been considered in the spatial evolution, i.e., we have
nv = NtNy. DMD has been sequentially applied by increas-
ing the number of snapshots from the first measuring point
up to span the whole measurement domain in the streamwise
direction, i.e., from k = k0 to k = Nx, where k0 = 20
and Nx = 130. The MHE algorithm has been initialized with
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Fig. 3. (a) DMD residuals and corresponding estimates, (b) estimates of the
second state variable, (c) estimated DSs, and (d) boxplots of the computational
times obtained by MHE with different values of the horizon N .

Fig. 4. Example of growth rates obtained by the DMD procedure with k
varying in the (a) stable regime for k = 20, . . . , 87 and in the (b) unstable
one for k = 88, . . . , 130. The growth rates are depicted in green if negative
(stable) and in red if positive (unstable).

Fig. 5. Poles resulting from DMD in the (a) stable regime and in the (b)
unstable one (stable eigenvalues are in green, while unstable ones are in red).

a prediction of the first state randomly generated by using a
Gaussian distribution with mean equal to the real state and
covariance equal to the identity matrix.

We have solved various Problems OMHE on a computer
equipped with a 2.5-GHz Intel Xeon CPU and 16 GB of RAM
by using the fmincon MATLAB routine with constraints given
by the positivity of the variables and the kind of the trend.
The results shown in Figs. 3–5 refer to the case study with
Re = 75 000 and FSTI = 0.65% for the first time range
(of length Nt = 310).

Fig. 6. (a) Growth rates of each time range in the stable regime (green) and
in the unstable one (red) and (b) corresponding frequencies in the unstable
regime.

The results of the application of the MHE approach with
μ = 10 are summarized in Fig. 3. A turning point between the
stable and the unstable regime at k = 87 is identified by the
MHE trend estimator with horizonN = 7 [see Fig. 3(c), where
DS#1 and DS#2 are represented by the low and high values
of the step, respectively]. Thus, it turns out that the MHE
approach with a suitable choice of μ and N is able to identify
the decreasing/increasing trend of residuals. More specifically,
μ is required to be large enough to make the trend estimate
robust to noises. For the same reason, we need to select
a sufficiently large horizon N . This is particularly evident
for the estimate of ξ2,k, which is very noisy for small N
[see Fig. 3(b)]. The estimation accuracy of the state variable
ξ1,k is less sensitive to the choices of μ and N [see Fig. 3(a)].
Concerning the computational effort, reported in Fig. 3(d),
the higher the horizon N , the larger the computational times,
as the solution of Problem OMHE is more computationally
demanding if N increases. It is worth noting that the use
of classical approaches to estimation such as those based on
Kalman filtering is not straightforward, as the trend model
strongly relies on both switching and state constraints.

Fig. 4 reports the growth rates for different values of k and
confirms that the identification of the switching between the
regimes at k = 87 obtained by the MHE algorithm is correct.
In more detail, in Fig. 4(a) the value of k varies in the stable
regime (corresponding to the values up to k = 87), whereas
in Fig. 4(b) it varies in the unstable regime from k = 88 to k =
130. The results make it clear that the larger are the number of
snapshots in the case of the first regime (i.e., the larger is k),
the higher are the growth rates, even if they remain stable (i.e.,
negative). Conversely, the second flow regime exhibits unsta-
ble (i.e., positive) eigenvalues for almost all the values of k.

Fig. 5 depicts the layout of the poles, i.e., the eigenvalues
of the matrix S̃◦

k , as computed at step 3 of Algorithm 1, in the
stable and unstable flow regimes. In the pre-transitional part of
the boundary layer, as shown in Fig. 5(a), only stable eigen-
values are present. On the contrary, in the transitional regime
[see Fig. 5(b)], four unstable poles causing the boundary layer
transition to the unstable regime appear.

As said, the proposed procedure based on the combination
of DMD and MHE has been applied many times for different
time ranges. Fig. 6(a) illustrates the growth rates of each time
range in the stable flow regime, while Fig. 6(b) shows the
growth rates associated with the unstable one. The results
indicate that the first flow regime is essentially stable, as no
unstable eigenvalues have been observed for all the time
instants. Conversely, the second regime shows a variable

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on May 07,2021 at 16:09:55 UTC from IEEE Xplore.  Restrictions apply. 



1330 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 3, MAY 2021

Fig. 7. (a) Time-mean growth rate and (b) time-mean frequency.

number of unstable eigenvalues at various time instants, with
different growth rates and frequencies.

To verify whether the results obtained by the proposed
approach correctly identify the properties of the flow in the
unstable regime where vortices are generated, the growth rates
and frequencies computed by the proposed DMD/MHE tech-
nique have been compared with those obtained in the reference
literature. Toward this end, Fig. 7(a) shows the time-mean
values of the maximum growth rate, while Fig. 7(b) reports
the time-mean frequency. Such values confirm the expected
results with different values of Re and FSTI. In particular,
the Reynolds number has the largest impact on the mean
growth rate, while the variation of the FSTI has a lower effect
on the growth rate, as discussed also in [25]. A similar effect
may be observed on the mean frequency, as expected [38].

The plots in Fig. 8 showcase the real and imaginary parts of
the DMD mode Θv of the wall-normal velocity component v,
which are useful to illustrate the velocity fluctuations in the
wall-normal coordinate and time with a spatial frequency
of 0.42 rad/mm. Since DMD has been applied in space,
the distribution of the modes shows when certain structures
occur at given frequencies. The top plot (real part of the mode)
depicts a sign variation of the DMD mode in time, which
identifies vortical structures within the flow field. The bottom
plot (imaginary part of the mode) shows the same fluctuations
shifted in time of about one-quarter of the wavelength, cor-
responding to the distance between the colored stripes, and
describes the convective behavior of the mode.

The combined analysis of different temporal sequences
and DMD modes allows pointing out the following: 1) the
eigenvalues of S̃◦

k provide the temporal interval with the
maximum growth rate of disturbances and 2) the DMD mode
distribution identifies the temporal behavior within the con-
sidered interval. As a consequence, it is possible to extract
the sequences of instantaneous flow fields, where disturbances
are growing and are showing a periodical behavior of the
wall-normal velocity fluctuations. The instantaneous velocity
fields chosen with these criteria are reported in Fig. 9 for
the same case considered in Fig. 8. In more detail, the plots
show the Reynolds decomposition maps of a velocity field
subject to equally time-spaced perturbations. The temporal
resolution is one-third of the original one. The first instant of
the instantaneous velocity field corresponds to the first time
instant t0 of the DMD mode considered in Fig. 8. In Fig. 9, the
vector spacing is halved with respect to the original TR-PIV
resolution to improve the readability of the plot. The contour
plots of the difference between the wall-normal velocity v and

Fig. 8. Wall-normal velocity component of the DMD mode with frequency
0.42 rad/mm, Re = 75 000, and FSTI = 0.65%: contour of the real part
(top) and imaginary part (bottom).

Fig. 9. Sequence of instantaneous perturbation velocity vectors (Reynolds
decomposition) with Re = 75 000 and FSTI = 0.65%.

its mean (denoted by v′) are also superposed to emphasize the
link between the DMD mode and the flow physics. The dotted
vertical gray line shows the switching point identified by the
proposed approach.

Fig. 9 illustrates the formation of vortical structures. In the
first instant, a small clockwise rotating vortex (marked over the
plot as CWV) that induces a negative v′ is generated close to
the wall, just upstream of the dotted gray line. This vortex is
crossing the dotted gray line in the second time snapshot at
t = t0 + 0.001 s. At the same time, Fig. 8 shows a negative
value of the real part of Θv. The CWV vortex is further
convected downstream: in the last plot at t = t0 + 0.003 s,
a positive v′ is crossing the dotted gray line, and similarly,
the real part of Θv at that time is positive. This confirms
that the DMD mode contour plot reported in Fig. 8 is a
marker of the vortical structures depicted here. Similarly, large
counterclockwise vortices (marked as CCV) may be observed
in the upper portion of the measurement domain. Such vortices
are convected and grow within the identified boundaries.
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V. CONCLUSIONS

We have presented a novel approach to detect changes
of the regime in fluid flows by using the DMD and MHE
approaches with a switching trend model. The combination of
such techniques turns out to be effective, as shown through
the application to experimental data sets for different values
of Re and FSTI.

The successful results suggest various directions of
improvement. For example, a future goal is the development
of more complex switching models that are able to identify
more regimes by exploiting additional information on the
underlying flow physics. The use of fast MHE techniques will
be addressed as well to perform optimization within a time
constraint that allows applying a stabilizing feedback to the
fluid flow.
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