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Sirtuin 1 (SIRT1) is a histone deacetylase belonging to the family of Sirtuins, a class of

nicotinamide adenine dinucleotide (NAD+)-dependent enzymes with multiple metabolic

functions. SIRT1 localizes in the nucleus and cytoplasm, and is implicated in the

regulation of cell survival in response to several stimuli, including metabolic ones. The

expression of SIRT1 is associated with lifespan and is reduced with aging both in animal

models and in humans, where the lack of SIRT1 is regarded as a potential mediator

of age-related cardiovascular diseases. In this review, we will summarize the extensive

evidence linking SIRT1 functional and quantitative defects to cellular senescence and

aging, with particular regard to their role in determining endothelial dysfunction and

consequent cardiovascular diseases. Ultimately, we outline the translational perspectives

for this topic, in order to highlight the missing evidence and the future research steps.

Keywords: sirtuin (SIRT1), aging–old age–seniors, eNOS (endothelial nitric oxide synthase), inflammaging,

endothelial (dys)function, atherosclerosis, cardiovascular disease

INTRODUCTION

Aging is defined as the result of a progressive functional decay in multiple tissues and physiologic
functions. Cellular senescence, defined as a permanent arrest of the cell cycle, and the subsequent
progression toward apoptosis, is one of the cellular mechanisms contributing to the loss of tissue
regenerative potential and progressive loss of function with aging (Hernandez-Segura et al., 2018).

Overall, aging is associated with an increased risk of diseases and death, with different organs
and systems being differently influenced by aging, and whereby the cardiovascular system is among
the most severely hit. As a result, age represents the most relevant risk factor for cardiovascular and
cerebrovascular diseases (Camici et al., 2015). Accordingly, the possibility to address the molecular
mechanisms underlying aging of the cardiovascular system is an exciting perspective in order to
reduce the burden of death and disability associated with cardiovascular diseases.

The interest in Sirtuins emerged as pioneering studies demonstrated an increased lifespan of
yeast Saccharomyces cerevisiae with Sir2 (Silent information regulator 2) overexpression, whereas
a loss of function of Sir2 leads to defect in epigenetic silencing, DNA repair process, and shorter
lifespan (Kaeberlein et al., 1999). Such effect was then demonstrated in animals, Caenorhabditis
elegans and Drosophila, showing the highly conserved roles and domains of Sir2 (Tissenbaum
and Guarente, 2001; Rogina and Helfand, 2004; Viswanathan et al., 2005). Mammals express
seven homologs of Sir2, named Sirtuins (i.e., SIRT1–SIRT7) (Yamamoto et al., 2007). Sirtuins are
located in different cellular compartments and exert their role by acting on different targets, in a
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non-redundant manner (Liberale et al., 2020a; Puspitasari
et al., 2021). To date, Sirtuin 1 (SIRT1), localized in the
nucleus, is the most well-studied and the best characterized of
mammalian sirtuins.

This narrative review is based on the material available on
PubMed as of June 2021. The following search terms were
employed: “Sirtuins; SIRT1” in combination with “endothelial
(dys)function; cardiovascular disease.”

In the following paragraphs we will summarize the existing
evidence about the pathophysiological role of SIRT1 in
atherosclerotic cardiovascular disease (ASCVD), and in
particular in one of its main functional features, namely
endothelial dysfunction (ED).

A PARADIGM FOR CARDIOVASCULAR
AGING: THE ROLE OF SIRTUINS

Sirtuins are a family of nicotinamide adenine dinucleotide
(NAD+)-dependent enzymes that catalyze histone and non-
histone deacetylation of lysine residues (Guarente, 2011; Camici
et al., 2015; Winnik et al., 2015). Sirtuins belong to class III
histone deacetylases, and their catalytic activity is regulated
by the dynamic changes of NAD+ level and NAD+/NADH
ratio (Grabowska et al., 2017). Due to their dependency on
NAD+ as co-substrate, sirtuins have been implicated in various
cellular processes, including modulation of cellular redox state
and mediation of heterochromatin formation (Dang, 2014; Singh
et al., 2018). Multiple studies demonstrated the involvement of
sirtuins in glucose and lipid metabolism, suggesting their role in
maintaining metabolic health (Houtkooper et al., 2012).

SIRT1 is the closest mammalian homolog of the yeast Sir2
protein (Michan and Sinclair, 2007). SIRT1 was demonstrated to
participate in various biological processes, including DNA repair,
inflammation, autophagy, and longevity. Thus, its function was
associated to several diseases, including ASCVD (Haigis and
Guarente, 2006; Chen et al., 2020). A large number of proteins
were identified as substrates of SIRT1. The first recognized
function of SIRT1 is deacetylation of lysine residues of histone
protein H1, H3, and H4, thus modulating chromatin structure
and expression of target genes (Singh et al., 2018; Chen et al.,
2020). Besides, non-histone proteins were recognized as its
targets, including p53, nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), and the forkhead box O class
(FOXO) transcription factors.

To date, the association of SIRT1 with aging and longevity
has been described in human and non-human mammalians.
Specifically, aging is associated with a significant decrease of
SIRT1 activity and expression in several organs and tissue,
including the cardiovascular system (Braidy et al., 2011; Donato
et al., 2011). This phenomenon is partially driven by the decline
in NAD+ levels observed with aging, yet experimental evidence
demonstrated that SIRT1 inhibition leads to genomic instability
and development of a senescent phenotype in endothelial cells,
irrespective of NAD+ bio-availability (Mostoslavsky et al., 2006;
Ota et al., 2007).

Senescence of endothelial cells is the result of several
mechanisms, such as DNA injury, telomeres shortening
below the critical length of 50–200 base pairs, mitochondrial
dysfunction with accumulation of reactive oxygen species
(ROS), and impaired proteostasis, following a failure of
lysosomal protein degradation through autophagy or the
ubiquitin-proteasome system (Laina et al., 2018).

Sirtuins have been reported to participate in DNA single-chain
and double chain damage repair by deacetylating the DNA repair
machinery components (Yamamori et al., 2009; Alves-Fernandes
and Jasiulionis, 2019; Lagunas-Rangel, 2019) and p53, a crucial
process for cell recovery after DNA injury (Yamamori et al.,
2009). Furthermore, SIRT1 promotes the elongation of telomeres
(Palacios et al., 2010) through the induction of the telomere
reverse transcriptase (TERT), mediated by c-Myc activation (De
Bonis et al., 2014).

SIRT1 indirectly modulates mitochondrial ROS production
and promotes the expression of antioxidants through the
induction of the FOXO transcription factors (Maiese, 2021).
Sources of ROS include mitochondrial respiration, catabolism
of purine bases through xanthine oxidase, cyclooxygenases, and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(Panth et al., 2016). These processes are ubiquitous in mammals’
tissues and, therefore, the redox balance is maintained in a steady
state by endogenous anti-oxidant systems (Wu et al., 2004; Panth
et al., 2016; Bacchetti et al., 2020). SIRT1 plays an active role
in the cellular defense against oxidative stress and, at the same
time, its function is affected by the presence of ROS through
post-translational modifications (Hwang et al., 2013).

FOXO transcription factors are also involved in inflammation
and autophagy, together with the mechanistic target of
rapamycin (mTOR) (Singh et al., 2018; Cheng, 2019; Chen
et al., 2020). The latter is a negative regulator of autophagy
and impaired autophagy associates to accumulation of oxidative
damage, loss of proteostasis, genomic instability and epigenetic
alteration, inducing cellular senescence (Rajendran et al., 2019;
Stead et al., 2019). Senescent cells, although quiescent under a
replicative point of view, are metabolically active and develop
a peculiar senescence associated secretory profile (SASP),
consisting in molecules with prevalent pro-inflammatory effects
(Cayo et al., 2021). Activation of mTOR was associated with
both a reduction and an enhancement of autophagy and,
consequently, with both a promotion and a prevention of
senescence (Laberge et al., 2015; Sung et al., 2018). As proposed
by Cayo et al. the effect of mTOR on autophagy probably
depends on the cellular senescence status (Cayo et al., 2021).
Takeda-Watanabe and coll. found that SIRT1 inhibition results in
increased phosphorylation of mTOR and its downstream target,
p70-s6 kinase, with a net decrease in autophagy and increase in
inflammation in macrophages (Takeda-Watanabe et al., 2012).

Inflammation has a relevant impact on endothelial
dysfunction and aging; this notion was recently reinforced
with the coining of the new term “inflamm-aging” (Liberale
et al., 2020b). In this context, oxidative stress plays a pivotal role
in the development of inflamm-aging through the activation of
different intracellular pathways converging on the transcription
factor NF-κB (Morgan and Liu, 2011) and leading to the release
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of pro-inflammatory cytokines and pro-thrombotic factors.
SIRT1 interacts with NF-κB through the RelA/p65 subunit and
deacetylates it at Lys310, leading to inhibition of signaling and
suppression of inflammation (Yeung et al., 2004). Conversely,
NF-κB down-regulates SIRT1 activity through the expression of
miR-34a, interferon γ (IFNγ), and ROS (Kauppinen et al., 2013).

Endothelial dysfunction (ED) is a main feature of
cardiovascular aging. It is defined as the failure of endothelium
to mediate an adequate vasodilatatory response to hypoxia or
hemodynamic stimuli, such as shear stress (Lüscher and Corti,
2004; Godo and Shimokawa, 2017). ED is associated with a
pro-inflammatory and pro-thrombotic status, and eventually
with an increased risk of cardiovascular events (Bonetti et al.,
2004; Kitta et al., 2009).

Endothelial cells exert their functions through multiple,
redundant, molecular pathways, the most relevant being nitric
oxide (NO) production. ED is characterized by a reduced
NO bioavailability, to such an extent that this itself is also
considered as a definition for ED (Dimitris et al., 2011).
NO is a soluble radical with vasodilatatory, anti-inflammatory,
anti-adhesive and anti-thrombotic properties, produced by the
oxidation of L-arginine to L-citrulline, catalyzed by the enzyme
nitric oxide synthase (NOS) (Cyr et al., 2020). Endothelial
cells are characterized by a constitutively expressed isoform of
NOS, named endothelial NOS (eNOS), whereas many other cell
types can express the inducible isoform of NOS (iNOS) under
cytokines stimulation (Förstermann and Sessa, 2012).

The imbalance between substrate availability and NO
production by eNOS is termed eNOS uncoupling and is a pivotal
mechanism of endothelial dysfunction. The main cause of eNOS
uncoupling is the unbalance of the redox state toward oxidation,
caused by ROS (Yoshida and Kisugi, 2010; Bacchetti et al., 2020).
Other causes of eNOS uncoupling, include asymmetric dimethyl-
L-arginine (ADMA) (Susanne et al., 2014) and enzymatic post-
translational modifications of eNOS (Fleming and Busse, 2003;
Chen et al., 2010). Finally, the bioavailability of L-arginine
itself can be reduced by the activity of arginases, produced by
endothelial and inflammatory cells (Berkowitz et al., 2003).

SIRT1 promotes NO availability through different direct and
indirect mechanisms. Most importantly, SIRT1 has a direct
activating effect on eNOS through deacetylation at Lys496 and
Lys506 (Mattagajasingh et al., 2007). Interestingly, a positive
feedback between NO and SIRT 1 exists, since NO promotes in
turn the transcription of SIRT1 (Arunachalam et al., 2010; Caito
et al., 2010). Additionally, SIRT1 inhibits the transcription of
the adaptor protein p66Shc through deacetylation of the histone
protein H3 in the promoter region. Since p66Shc promotes the
mitochondrial formation of ROS and inhibits the transcription
of the antioxidant enzyme superoxide dismutase 2 (SOD2),
its downregulation results in a net antioxidant effect (Di Lisa
et al., 2009; Trinei et al., 2013). Finally, SIRT1 was reported to
induce the nuclear factor erythroid 2—related factor 2 (Nrf2),
a transcription factor having a key role in the expression of
the most relevant anti-oxidant enzymes, such as glutathione S-
transferase Ya (GST Ya) subunit, heme oxygenase 1 (HO-1),
and γ-glutamylcysteine synthetase (γ-GCS) (Kaspar et al., 2009;
Kawai et al., 2011; Ma et al., 2019).

By regulating the balance between oxidant and anti-oxidant
systems, SIRT1 holds specific functions at the level of the
endothelium and arterial wall. The main physiologic effects of
SIRT1 in the endothelium are summarized in Figure 1. More in
general, SIRT1 preserves endothelial function and integrity from
the detrimental effects of oxidative stress. Indeed, oxidative stress
induces premature cell senescence and apoptosis in endothelial
cells through the acetylation of FOXO3 and p53, whereas
SIRT1 promotes their deacetylation and, eventually, cell survival
(Brunet et al., 1999, 2004; Ota et al., 2007, 2008). Noteworthy,
the acetylation of FOXO3, induced by oxidative stress, is able to
promote also ROS detoxification and DNA repair (Kops et al.,
2002; Tran et al., 2002); so, it is expected to have a dual effect on
endothelial cells survival. Interestingly, the deacetylating effect
of SIRT1 on FOXO3 does not affect its ability to arrest the cell
cycle and provide ROS detoxification and DNA repair (Brunet
et al., 2004). Furthermore, FOXO3 regulates multiple functions
of vascular smooth muscle cells (VSMCs), including migration,
differentiation, proliferation, contractility and senescence (Allard
et al., 2008; Huang et al., 2015; Jin et al., 2015; Wang et al.,
2015; Liu et al., 2018). In particular, the SIRT1/FOXO3 axis has
been demonstrated to promote differentiation and contractility
of VSMCs (Huang et al., 2015; Liu et al., 2018), and these novel
mechanisms could contribute to the overall effect of SIRT1 on
vascular function.

Finally, oxidative stress promotes endothelial-to-
mesenchymal transition, a pivotal process in neoangiogenesis
and vascular development, but associated with cardiovascular
diseases and ED, too (Kovacic et al., 2019).

Chronic low-grade systemic inflammation was identified
as a main feature at the crossroad of aging, atherosclerosis
and ED (Steyers and Miller, 2014; Ministrini et al., 2021).
Pro-inflammatory cytokines, such as tumor necrosis factor α

(TNF-α), interleukin 1 (IL-1) and IFN- γ, have a detrimental
effect on endothelial function, promoting the apoptosis of
endothelial cells and impairing the bioavailability of NO
through multiple mechanisms, such as inhibition of eNOS gene
expression, degradation of eNOS mRNA, inhibition of ADMA
degradation and promotion of ROS production by NADPH
oxidase (Carbone and Montecucco, 2015). As reported above,
SIRT1 interferes with the signaling of these pro-inflammatory
molecules, through inhibition of NF-κB and promotion of the
immune-modulatory FOXO transcription factors (Peng, 2008),
thus exerting an overall anti-inflammatory effect and blunting the
age-related ED.

SIRT1 IN CARDIOVASCULAR DISEASES

As a ubiquitous molecule with a role in multiple cell functions,
the relationship between SIRT1 and cardiovascular disease is not
limited to endothelial function. In particular, SIRT1 counteracts
the progression of atherosclerotic lesions through different
actions (Zhang et al., 2008), including oxidation of lipoproteins
(Stein et al., 2010), sub-endothelial inflammatory cells infiltration
(Breitenstein et al., 2013), senescence of endothelial progenitor
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FIGURE 1 | SIRT1 and endothelial dysfunction. Summary of molecular mechanisms (created with BioRender.com). ADMA, asymmetric dimethyl-arginine; APE1,

apurinic/apyrimidinic endonuclease 1; eNOS, endothelial nitric oxide synthase; FOXO, forkhead box O class; γ-GCS, γ-glutamylcysteine synthetase; GST Ya,

glutathione S-transferase Ya; HO 1, heme oxygenase 1; IFNγ, interferon γ; mTOR, mechanistic target of Rapamycin; NAD: nicotinamide adenine dinucleotide; NF-κB,

nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2—related factor 2; ROS, reactive oxygen species; SIRT1, Sirtuin 1;

SOD2, superoxide dismutase 2.

cells (Ming et al., 2016), neo-intima proliferation (Li et al., 2011)
and plaque destabilization (Xia et al., 2012).

Furthermore, SIRT1 has a glucose lowering action, since
it promotes insulin secretion and the peripheral utilization
of glucose (Strycharz et al., 2018). As it is well-known,
hyperglycemia, insulin resistance and diabetes mellitus are
major determinants of cardiovascular diseases, and the glucose-
lowering property of SIRT1 is thought to contribute to its
protective function toward cardiovascular diseases.

Moreover, SIRT1 holds important roles also in
cardiomyocytes, where it exerts anti-apoptotic functions
(Matsushima and Sadoshima, 2015), counteracts endoplasmic
reticulum stress (Prola et al., 2017), increases myocardial
contractility (Hsu et al., 2017) and resistance to
ischemia/reperfusion injury (Wang et al., 2018). SIRT1 is
upregulated during pressure overload, caloric restriction and
physical exercise, whereas it is downregulated during acute
ischemia (Matsushima and Sadoshima, 2015; Najafipour et al.,
2021). Interestingly, also constitutional overexpression of SIRT1

in transgenic mice was associated with a reduced contractile
function of the myocardium (Alcendor et al., 2007; Kawashima
et al., 2011) and, therefore, a U-shaped dose-response curve
was hypothesized for the relationship between SIRT1 and
myocardial function.

Considering the above, SIRT1 is expected to have a relevant
effect on the burden of ASCVD in humans. Consistently, a
reduced intracellular expression of SIRT1 gene was observed in
patients with stable coronary artery disease (sCAD) and acute
coronary syndrome (Breitenstein et al., 2013; Hu et al., 2015),
whereas increased circulating levels were associated with sCAD
(Kilic et al., 2014). Conversely, lower levels of circulating SIRT1
were associated with a history of atrial fibrillation (Kalstad et al.,
2021), whereas an increased levels were observed in the left atrial
appendage of patients with valvular atrial fibrillation (Sun et al.,
2012).

These apparent discrepancies can be explained considering
the multiple epigenetic factors differently regulating the
expression of SIRT in the various cell types.
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More robust evidence for the association between SIRT1
and the ASCVD in humans was collected in genomic studies.
Multiple single nucleotide polymorphisms (SNPs) of the
SIRT1 gene have been found to associate with ASCVD: the
polymorphisms rs7069102 C>G, localized in the intron 4, and
rs2273773 C>T, localized in the exon 5, are associated with
an increased risk of sCAD, an increased level of circulating
SIRT1 and a reduced expression of eNOS (Kilic et al., 2014).
The polymorphism rs12413112 A>G, localized in the 3′

untranscribed region, was negatively associated with the presence
of CAD (Nasiri et al., 2018), but positively with the presence of
carotid intima-media thickness (cIMT) (Kedenko et al., 2014).
Conversely, the intronic polymorphism rs1467568 A>G has been
associated with a reduced cIMT (Kedenko et al., 2014), but only
in themale sex, andwith a borderline significant reduction for the
risk of CAD (Nasiri et al., 2018). Ultimately, the polymorphism
rs3758391 T>C located in the gene promoter is associated with
a higher expression of SIRT1 mRNA during acute coronary
syndromes (Hu et al., 2015).

TRANSLATIONAL RELEVANCE OF SIRT1:
WHERE DO WE STAND SO FAR?

Considering the above-mentioned evidence, the possibility to
enhance the activity of SIRT1 through pharmacologic and non-
pharmacologic treatments for the management or prevention of
age-associated diseases, has become increasingly appealing. The
main therapeutic strategies, and the relative claimed mechanisms
of action, are summarized in Figure 2.

Caloric restriction (CR) is the most consistent non-
pharmacologic intervention to increase lifespan in animalmodels
(Cantó and Auwerx, 2009). It is defined as a moderate reduction
of caloric intake (usually 20–49%), compared to a normal
ad libitum diet, without compromising the intake of essential
macro- and micronutrients (Piper and Bartke, 2008). CR was
associated with an increased expression of SIRT1 both in animal
models and humans (Guarente, 2013), and SIRT1 was suggested
as the main mediator of prolonged lifespan after CR since
the genetic deletion of SIRT1 reduces the benefits of CR in

FIGURE 2 | Translational relevance of SIRT1. Summary of potential pharmacologic and non-pharmacologic interventions to increase SIRT1 activity (created with

BioRender.com). eNOS, endothelial nitric oxide synthase; FOXO, forkhead box O class; NAD, nicotinamide adenine dinucleotide; NO, nitric oxide; SIRT1, Sirtuin 1;

NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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murine models (Chen et al., 2005). Reciprocally, both high
fat diet and obesity lead to a reduced expression of SIRT1 in
both animals and humans (Guarente, 2013). Multiple hypotheses
were proposed to explain the link between CR, SIRT1, and
prolonged lifespan, all involving the bioavailability of NAD+ as
limiting factor for the activity of SIRT1 (Cantó and Auwerx,
2009), but none of these hypotheses found an experimental
confirmation. Currently, it is widespread opinion that CR
leads to lifespan prolongation through multiple biochemical
pathways, both Sirtuins-dependent and -independent (Lee et al.,
2019).

CR activates eNOS and increases the bioavailability of
NO, leading to an improvement of endothelial function in
animals and humans (Zanetti et al., 2010; Shinmura, 2011).
Overall, CR showed a positive effect on cardiovascular aging
and atherosclerosis, both in animals and humans, through
multiple mechanisms, including the amelioration of systemic
inflammation, ROS production, dyslipidemia, hypertension, and
insulin resistance (Abiri and Vafa, 2019). However, to date we
are unable to discriminate whether these effects are mediated by
SIRT1 and to which extent. Interestingly, it was suggested that
some nutritional treatments like intermittent fasting couldmimic
the effect of CR in humans producing an analog effect on SIRT1
activity (Abiri and Vafa, 2019).

Physical activity (PA) has an established role in cardiovascular
prevention, because of its beneficial effects on insulin sensitivity,
lipid profile, blood pressure, and cardiorespiratory fitness (Myers
et al., 2019). PA was associated with an increased expression of
SIRT1 and a reduction of ROS in the skeletal muscle, both in
animals and in humans (Pacifici et al., 2019). This effect was
observed also in older animals, suggesting that PA could at least
partially revert the age-related decay of SIRT1 activity (Ferrara
et al., 2008). However, the extent of SIRT1 activation seems to be
age-dependent, with a reducing enhancement with advancing age
(Huang et al., 2016). Interestingly, PA-induced increased SIRT1
was also observed in animal models of myocardial infarction,
and was associated with a reduction of apoptotic markers and
overall myocardial damage (Donniacuo et al., 2019), suggesting
that SIRT1 could play a role in mediating the beneficial effects of
PA after ischemic myocardial damage.

Pharmacologic modulation of SIRT1 activity is also a
promising opportunity. Two main classes of substances were
observed to enhance SIRT1 activity: natural polyphenolic
substances, such as Resveratrol, Fisetin and Quercetin, and
synthetic small molecules, such as SRT1720, SRT1460, Selisistat
(EX 527), SCIC2.1 and AGK2 (Bai et al., 2018; Scisciola et al.,
2020).

Resveratrol has recently gained attention because of its anti-
oxidant properties, and several potential health benefits of
resveratrol were accordingly proposed. Resveratrol is a natural-
derived flavonoid, with several direct and indirect molecular
targets, including SIRT1 (Hori et al., 2013; Liberale et al.,
2019; Li et al., 2019). Notably, Resveratrol is a non-specific
activator of Sirtuins and some of the observed effects could
be mediated also by Sirtuins other than SIRT1 (Sun et al.,
2021). Resveratrol directly induces the transcription of SIRT1

(Xia et al., 2017), increases the bioavailability of NAD+
through the inhibition of phosphodiesterases (Park et al.,
2012) and promotes the binding of SIRT1 to its nuclear
activator lamin A (Liu et al., 2012). Interestingly, a mutation
of lamin A gene (LMNA) causes, in humans, Hutchinson-
Gilford progeria syndrome, characterized by premature death
due to cardiovascular diseases (Ahmed et al., 2018). Resveratrol
was demonstrated to increase the expression of eNOS in
vitro, in a SIRT1/FOXO dependent manner (Xia et al., 2013).
Moreover, Resveratrol enhances the activity of eNOS, promoting
the phosphorylation at Ser-1177 by adenosine-mononucleotide-
activated protein kinase (AMPK) (Xu et al., 2009; Heiss and
Dirsch, 2014) and the deacetylation at Lys496 and Lys506
by SIRT1 (Mattagajasingh et al., 2007; Arunachalam et al.,
2010). Oral administration of resveratrol was demonstrated
to improve endothelial function in different animal models
of cardiometabolic diseases, such as systemic hypertension
(Dolinsky et al., 2013), diabetes mellitus (Zhang et al., 2009)
and dyslipidemia (Zou et al., 2003). However, a large meta-
analysis did not find any significant difference between subjects
treated with Resveratrol and controls in terms of plasma glucose,
cholesterol, and blood pressure (Sahebkar et al., 2015). The
main limitation to the therapeutic use of Resveratrol is its low
bioavailability (Alcaín and Villalba, 2009), so novel formulations
are currently included in commercially available nutraceuticals,
intended for the treatment and prevention of cardio-metabolic
disorders (Timmers et al., 2011). In particular, the administration
of commercially available nutraceuticals was associated with an
improvement of flow-mediated vasodilation, a surrogatemeasure
of endothelial function, in humans (Fujitaka et al., 2011; Wong
et al., 2011).

Similar mechanisms, and similar effects on ED and
cardiovascular risk, have been proposed also for other flavonoids,
such as Quercetin and Fisetin, although fewer studies have been
performed with these agents (Gupta et al., 2018; Patel et al.,
2018). Similar to Resveratrol, these compounds are frequently
included in commercially available nutraceuticals with claimed
anti-oxidant properties.

More recently, non-flavonoid small molecules, able to activate
SIRT1 were identified and proposed as potential treatments for
humans. These compounds can stimulate SIRT1 activity in vitro
of with a hundred-fold higher potency than Resveratrol (Villalba
andAlcaín, 2012). In vitro and in vivo experiments with SRT1720,
a small molecule activator of SIRT1, demonstrated its efficacy
in improving mitochondrial biogenesis (Funk et al., 2010),
promoting antioxidants expression and blunting inflammation
through normalization of NF-κB (Gano et al., 2014). Evidence
of the efficacy of this compound in preventing or reducing ED is
still limited (Gano et al., 2014; Fiorentino et al., 2015) and no trial
in humans has been performed so far. More recently, Scisciola
et al. identified two novel potent inhibitors of SIRT1, SCIC2 and
its derivative SCIC2.1, which were demonstrated to reduce the
progression of cellular senescence in vitro (Scisciola et al., 2020).
As reported by Charles et al. the actual efficacy of SIRT1 activators
is still debatable, due to limitations of the models and validation
of the outcomes (Charles et al., 2017).
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FUTURE PERSPECTIVES FOR BASIC AND
TRANSLATIONAL RESEARCH

Although the role of SIRT1 in aging, and especially in
cardiovascular aging, has been extensively studied in the last
years, our revision of the literature discloses that still some
relevant issues need to be clarified.

From a strictly molecular point of view, the role of SIRT1
in telomeres shortening and nuclear stability, through the
interaction with the telomerase complex and lamin A/C, are still
poorly understood and need further studies. Similarly, the role
of SIRT1 in proteostasis needs to be further investigated. Indeed,
the role of SIRT1 and mTOR in autophagy is still largely unclear,
whereas a potential role of SIRT1 on the ubiquitin-proteasome
system has not been investigated so far.

From a translational point of view, ASCVD seems to associate
to a reduction of SIRT1 in tissues, and a paradoxical increase in
plasma. This aspect needs to be clarified in details, disclosing the
molecular mechanisms underneath. Similarly, the role of SIRT1
gene polymorphisms in cardiovascular risk should be better
characterized, in order to investigate whether they are associated
with a quantitative or qualitative modification of the protein.

Finally, high-quality clinical trials are necessary to test the
effects of PA on SIRT1 and the efficacy of small molecule
activators of SIRT1 in reducing cardiovascular risk.

CONCLUSIONS

Sirtuins regulate multiple effector targets involved in multiple
cell functions such as mitochondrial respiration, redox balance,
apoptosis, cell signaling, and inflammation. All these properties
contribute to determine the well-known effect of SIRT1 in
preventing cell senescence and prolonging lifespan in animals.

Since the cardiovascular system is severely affected by aging,
and ASCVD are the most common age-related diseases in
industrialized countries, the pathophysiological role of SIRT1 in
ASCVD was intensively investigated in the past 20 years. The
results of these studies clearly depict a protective role of SIRT1
toward endothelial integrity and functionmainly mediated by the
increased bio-availability of NO.

Accordingly, the possibility to enhance the activity of SIRT1
through pharmacologic and non-pharmacologic interventions
is a promising perspective in the prevention and treatment of
ED and ASVCD, although convincing evidence in humans, and
particularly in patients, is still missing. Clinical and pre-clinical
studies on this promising topic are still ongoing. Accumulating
evidence supports the potential role of CR and PA as non-
pharmacologic interventions, whereas flavonoids are currently
included in nutraceutical products. Pre-clinical studies with small
molecule activators of SIRT1 are showing promising data.
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