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Venous thromboembolism (VTE) represents the third most frequent cause of acute cardiovascular syndrome. Among VTE, acute
pulmonary embolism (APE) is the most life-threatening complication. Due to the low specificity of symptoms clinical diagnosis of
APE may be sometimes very difficult. Accordingly, the latest European guidelines only suggest clinical prediction tests for
diagnosis of APE, eventually associated with D-dimer, a biomarker burdened by a very low specificity. A growing body of
evidence is highlighting the role of miRNAs in hemostasis and thrombosis. Due to their partial inheritance and susceptibility
to the environmental factors, miRNAs are increasingly described as active modifiers of the classical Virchow’s triad. Clinical
evidence on deep venous thrombosis reported specific miRNA signatures associated to thrombosis development, organization,
recanalization, and resolution. Conversely, data of miRNA profiling as a predictor/diagnostic marker of APE are still
preliminary. Here, we have summarized clinical evidence on the potential role of miRNA in diagnosis of APE. Despite some
intriguing insight, miRNA assay is still far from any potential clinical application. Especially, the small sample size of cohorts
likely represents the major limitation of published studies, so that extensive analysis of miRNA profiles with a machine
learning approach are warranted in the next future. In addition, the cost-benefit ratio of miRNA assay still has a negative
impact on their clinical application and routinely test.

1. Introduction

Venous thromboembolism (VTE) is a family of disease that
includes deep venous thrombosis (DVT) and acute pulmo-
nary embolism (APE). VTE is commonly found in clinical
practice being the third cause of acute cardiovascular syn-
drome after myocardial infarction and stroke [1]. Among
this class of disease, APE represents the most serious com-
plication of VTE thus requiring early diagnosis and treat-
ment. The incidence of APE ranges from about 39 to 115
per 100.000 population every year and accounts for about
300,000 death/year in US [2]. A recent increased in its inci-
dence was also observed during SARS-CoV-2 outbreak,
likely as an expression of the thromboinflammatory storm
triggered by infection [3]. Symptoms of APE are often not spe-
cific—ranging from mild symptoms to sudden death—and
clinical diagnosis may be sometimes very difficult [4]. Pulmo-

nary angiography and computed tomography pulmonary
angiography (CTPA) are highly specific for diagnosis of APE
[5], but they require intravenous contrast infusion that may
represents a great concern in patients with chronic kidney fail-
ure or allergic diathesis. Latest European guidelines published
in 2019 have included two major prediction tests for APE
diagnosis: the revised Geneva rule and the Wells score [6].
Their goal is to increase the rate of APE diagnosis, by stratify-
ing patients across risk categories. Nevertheless, for only 65%
of patients categorized at high-risk APE is finally diagnosed.
The search for biomarkers able to implement the diagnostic
chart—alone or combined with clinical scores—then repre-
sents an urgent clinical need. D-dimer assay offers high sensi-
tivity but low specificity, thus limiting its application as
exclusion test for diagnosis of APE [7, 8]. Here, we summa-
rize the role of microRNAs (miRNAs) in VTE, with a
special focus on APE. Great attention has also been paid
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to link current pathophysiological evidence with potential
therapeutic implications.

2. miRNAs: Pathophysiological Actors and
Potential Useful
Biomarkers of Thromboembolism

miRNAs are noncoding RNAs around 22 nucleotides long
[9] mainly involved in posttranslational messenger RNA
(mRNAs) degradation [10]. miRNAs generate from gene
exons—or less frequently introns—and processed into pre-
miRNAs [11–13]. Once in the cytoplasm, pre-miRNAs are
processed by a Dicer into mature miRNAs [14] that are
released freely or within microvesicles. The way miRNAs
are carried also has high relevance in their pathophysiology.
Within microvesicles, miRNAs may complex and interact
with other molecules, even those involved in thrombosis
and homeostasis. Furthermore, microvesicle composition
may provide information on the cellular source of miRNAs
[15]. By targeting hundreds of genes [16], the spectrum of
activity for each miRNAs broadly ranges from translation
repression [17] to stimulation [18, 19], target degradation,

and transcriptional/posttranscriptional gene silencing as
well [20, 21]. The regulatory role of miRNAs is known since
decades [22] but their applications as diagnostic/prognostic
markers [23]—and even therapeutic targets [24]—have been
only recently investigated. Many features would characterize
miRNAs as ideal biomarkers: stability, low structural com-
plexity, lack of postprocessing modifications, organ- and
cell-specific expression, and tissue- and pathology-specific
regulation [25–27]. miRNAs are also detectable in many
fluids—e.g., such as serum, plasma, urine, and saliva
[28]—where they regulate different biological processes
[29, 30]. In light of these properties, miRNAs are being
increasingly described as potential biomarkers of disease,
including cardiovascular ones: heart failure, arrhythmias,
coronary artery disease, myocardial fibrosis, and pulmonary
arterial hypertension (PAH) [31, 32]. Although bioinformat-
ics plays a big part in identifying putative miRNAs, a range
of techniques has been developed to overcome technical
challenges and simplifying miRNA profiling. Alongside
quantitative PCR—characterized by high specificity and sen-
sitivity but limited to small scale experiments—clinical
application of miRNA assay relies on array or multiplex
profiling, which maintain high sensitivity and specificity

Table 1: miRNAs studied as potential diagnostic biomarkers for APE.

Author Year Study design miRNA (cut-off) Sample Results Concerning

Mao et al.
[63]

2011
32 APE patients vs. 32
healthy controls vs. 22
non-APE patients∗

miRNA-134 (10-fold
difference between
miRNA levels)

Plasma

miRNA-134 was significantly
higher in APE with an AUC of
0.83 (95% CI, 0.74 to 0.93)

p < 0:001

miRNA-134 was
elevated also in UA

Hoekstra
et al. [65]

2016
37 APE patients vs. 37

healthy controls

miRNA-28-3p (4-fold
difference between
miRNA levels)

Plasma

miRNA-28-3p (but neither
miRNA-134 nor miRNA-210) show
a significant increase—stable during
the first 6 hours—in APE. The AUC
was 0.79 (95% CI 0.69 to 0.90)

miRNA-28-3p was
elevated also in DM
and GI malignancies

Zhou
et al. [66]

2018
78 APE patients vs. 70

healthy controls
miRNA-27a/b Plasma

miRNA-27a expression was
upregulated in APE patients

(p < 0:001). The AUC was 0.78
(95% CI 0.69 to 0.88); p < 0:001.

miRNA-27a significantly improved
the AUC of D-dimer

miRNA-27 levels are
also influenced by LVH

Ba et al.
[69]

2016

30 APE patients vs.
NSTEMI (n = 30), DVT
(n = 6), PAH (n = 15),
and 12 healthy controls

miRNA-1233 (11-fold
difference between
miRNA levels)

Serum

In acute state (1st day), miRNA-
1233 was even able to discriminate
APE from NSTEMI with an AUC
of 0.95 (95% CI 0.89 to 1.00); p <
0:001 highest serum level on 1st
day. miRNA-1233 then decreased
levels on 3rd and 5th day with lower

values reached at 9 months

None. Even, miRNA-
1233 was better than
miRNA-134 and

miRNA-27a as APE
biomarker

Nie et al.
[72]

2018
60 APE vs. 50 healthy

controls

miRNA-221 (4-fold
difference between
miRNA levels)

Plasma

miR-221 was significantly
upregulated in APE (p < 0:05)

and showed positive correlations
with BNP, troponin, and D-dimer.
AUC for plasma miR-221 was 0.82
(95% CI 0.76 to 0.91), higher than

that of D-dimer

miRNA-221 was
elevated also in MI

and PAH

APE: acute pulmonary embolism; AUC: area under the curve; UA: unstable angina; DM: diabetes mellitus; GI: gastrointestinal; LVH: left ventricular
hypertrophy; NSTEMI: non-ST elevated nyocardial infarction; DVT: deep venous thrombosis; PAH: pulmonary arterial hypertension; BNP: B-type
natriuretic peptide; MI: myocardial infarction.
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alongside with a straightforward data analysis. Much more is
expected from the incoming development of RNA sequenc-
ing that would perform whole-genome analysis.

2.1. The Role of miRNA on Hemostasis and Thrombosis. A
growing body of evidence has identified for miRNAs an
active role of hemostasis and thrombosis. This effect may
be driven by an active modulation of specific proteins: factor
XI, plasminogen activator inhibitor 1 (PAI-1), protein S,
fibrinogen, tissue factor, and antithrombin [33, 34]. Due to
their partial inheritance expression and susceptibility to
environmental factors, miRNAs may then have a dynamic
role in VTE, which would encompass the whole classical
Virchow’s triad. Many of them have been then tested in clin-
ical studies [35, 36], but a major role has been accounted for
miR-134, miR-145, miR-195, miR-483-3p, miR-532, and
miR-1233 [37]. Among them, miR-145 is specific of vascular
smooth muscle cells (VSMCs) and exerts regulatory proper-
ties on tissue factor (TF) gene expression. miR-145 expres-
sion is also inversely correlated proinflammatory cytokines
and lower incidence of thrombosis [38, 39]. Specific miRNA
signatures have been then associated to all stage of throm-
botic process from initiation to organization, recanalization,
and resolution. Endothelial progenitor cells (EPCs) exert a
control on these processes [40]. Their suppression results
in the overexpression of proinflammatory cytokines and
inhibition of VEGF functions, hallmark of thrombotic risk,
and associated with miR-195. GABA type A receptor-
associated protein like 1 activation has been identified as

the direct target by which miR-195 exerts its detrimental
functions on cell proliferation, migration, angiogenesis, and
autophagy [41].

The role of miRNAs on hemostasis and thrombosis is
not only limited to the coagulation cascade but also involves
platelet activation and reactivity [42, 43]. Increase in platelet
reactivity has been associated with the overexpression of
miR-320 family as consequence of the interaction with the
WIPF1 gene encoding for WAS/WASL-interacting protein
[44]. miR-423-5p is another biomarkers of platelet aggrega-
tion [45]. Both miR-320 family and miR-423-5p may then
raise susceptibility for VTE [46], whereas miR-1233 has been
indicated as connecting signal between platelets and
ECs [47].

Other miRNAs are finally implicated in vascular repair
and thrombus resolution. This effect—mediated by angio-
genesis and EPC proliferation/migration—involves miR-21,
miR-126, miR-150, and miR-424 [48–51].

Although far from routinely clinical application, identi-
fying those specific miRNA signatures—virtually targeting
all Virchow’s triad [52]—would have a rationale for VTE
risk stratification [53].

3. miRNAs in Acute Pulmonary Embolism:
Experimental Data and Clinical Evidence

Despite the epidemiological and clinical relevance, diagnosis
of APE still represents an unmet clinical need. D-dimer is
routinely used as biomarker of APE but it is burdened by a

DVT PE
Embolus

Clot

Virchow triad:
Hypercoagulability
Hemondynamic changes
Endothelial dysfunction

miRNA-21
miRNA-126
miRNA-150
miRNA-424
miR-335-5p
miR-495
miR-195

miRNA-145
miRNA-320a
miRNA-320b
miRNA-423-5p
miRNA-1233

miRNA-134
miRNA-28-3p
miRNA-27a
miRNA-424
miR-1233
miR-221

Figure 1: List of most important microRNAs (miRNAs) involved in venous thromboembolism. Deep venous thrombosis (DVT)
determinants are classically grouped into the Virchow trial. They may be influenced by a wide range of miRNAs, especially
hypercoagulability and endothelial dysfunction. Less is known about pulmonary embolism (PE). Whereas pathophysiological data are
still lacking, different miRNAs are being increasingly described as potential biomarker of disease.
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very low specificity [54]. Many other biomarkers tested in
the last decades failed to replace or improve D-dimer perfor-
mance [55–57]. Concerning miRNAs, experimental data are
mainly focusing on vascular response to APE [58–63], while
data on APE predictor/diagnosis are few. The lack of stan-
dardization their assay represents an additional confounder.
However, all studies here considered share similar laboratory
processes with differences in protocol of centrifugation
(Table 1).

First in 2011, a panel of 30 different miRNAs was tested
in a case control study matching patients with suspected
APE [64]. Among the most expressed miRNAs (10-fold or
higher), plasmatic miR-134 was the best predictor of APE,
also able to identify high/intermediate vs. low-risk patients.
miR-134 was then identified as specifically expressed by
mononuclear blood cells [65] but its specificity for APE
diagnosis was not later confirmed. Rather, a persistent
increase (about 3.6-fold) in miR-28-3p was observed even
hours after the onset of APE [66]. A release by hypoxic-
ischemic lung cells as response to inositol phosphate metab-
olism and phosphatidylinositol pathway activation has been
also hypothesized as mechanisms for the miR-28-3p expres-
sion. More recently, plasmatic concentrations of miR-27a
and miR-27b emerged as further potential diagnostic
markers of APE, being able to increase diagnostic potential
of D-dimer [67]. Accordingly, the miR-27 family is known
to regulate the TF pathway inhibitor (TFPI) in ECs [68,
69]. Platelet-derived miR-1233 is another candidate bio-
marker associated with suppressant activity on platelet acti-
vation and P-selectin expression [70]. Clinical relevance of
miR-1233 relies on the ability in discriminating APE from
other thrombotic disease (e.g., non-ST elevation myocardial
infarction (NSTEMI) and DVT) with an early predictive
value, higher than miRNA-27a and miRNA-134 [71].
Finally, more recent analysis on extensive miRNA panels
identified a role for plasmatic miR-221, a VSMC-specific
product upregulated by platelet-derived growth factor [72,
73]. Plasmatic miR-221 significantly increased in patients
with APE with a cut-off set at 4-fold overexpression [74].
The abovementioned studies provide the rationale but lacks
of definitive proof for translating miRNA assay in clinical
practice (Figure 1). Small sample size and bias involving
patient selection and miRNA analysis protocol are likely
their main weakness. Future studies are expected to address
these issues performing real-life analyses and finally test
whether miRNA assay may overcome D-dimer in diagnos-
ing APE. To date, miRNA assay still remains far from any
potential clinical translation.

4. Conclusion

The recognition of a circulating biomarker able to stratify
the risk for APE would lead more accurately patients with
clinical suspect of APE to second-level diagnostic tools, such
as CTPA. This would be of paramount relevance for patients
with mild/severe contraindications to CTPA, especially
those with chronic kidney disease or history of medium con-
trast allergic reactions. Data from preliminary studies also
suggest a potential role of miRNAs in discriminating APE

from the most frequent confusing clinical conditions (firstly
NSTEMI). Such an achievement would shorten the diagnos-
tic chart and the time-to-treatment protocols, in accordance
with the classic paradigm of “golden hour.” Even if it were,
benefit of miRNA assay should also exceed the economic
burden of their assay. The need of large panel assays and
interaction analyses makes machine learning approach man-
datory to finally establish the sensitivity of miRNA (as single
biomarker or panel) and their clinical relevance. Additional
goals should also include high sensitivity and specificity for
APE. Comparing miRNAs with other biomarkers of APE
(e.g., NT-proBNP, troponins, and D-dimer) would further
help in establishing their potential for clinical use. Not last,
being miRNA expression partially inherited, large-scale
studies should consider different ethnic groups. Finally,
any potential role of anticoagulation therapies on miRNA
expression remains unclear.
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