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a b s t r a c t

The present paper presents a methodology to effectively address the evaluation of building energy
retrofitting projects in a highly uncertain context. Buildings are modelled in terms of archetypes which
are characterized by specific features, e.g., U-values, heating plant typology, surface to volume ratio, etc.
By using the Monte Carlo approach, the proposed method can address the influence of more than thirty
important parameters on the final result in terms of energy savings, Net Present Value and other indices
aimed to quantify the level of risk associated to complex energy efficiency interventions, e.g., energy
saving at risk. The methodology is tested on a case study related to a building built in the ‘60s and located
in Rome, Italy. However, the method is applicable irrespectively of the location, climatic conditions, and
typology of the building. Results highlight that a retrofitting intervention consisting in wall insulation
has a risk to be unprofitable equal to 47%. This can be ascribed to the mild climatic conditions of the
location.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Buildings are one of the most relevant sectors to implement
energy efficiency measures, in fact at EU level they represent about
40% of final energy consumption and the share of the residential
segment accounts for about 25% [1]. Similar figures are also re-
ported for the US market [2].

Due to this opportunity, as illustrated by Annunziata et al. [3],
different countries promoted regulations to support the transition
towards the so-called “nearly zero energy buildings”.

The aim of the proposed regulatory frameworks is to support
and drive the deployment of renovations to reduce energy con-
sumption and mitigate the environmental impact of the buildings
sector.

In particular, the highest saving potential is to be found in
existing buildings which can be retrofitted to improve their energy
performance. To this aim, it is necessary to implement accurate
evaluations suggesting the most appropriate and advisable mea-
sures, from both the energy and the financial points of view.

During the last years, many authors tried to address these
problems and many studies can be found in the literature. For
co@libero.it (V. Bianco).
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example, Ascione et al. [4] developed an analysis to optimize
building envelope design by minimizing energy consumption, in-
vestment costs and occupants’ discomfort. Similarly, Bianco et al.
[5] determined the energy demand of residential buildings located
in different climatic areas. They analysed the impact on energy
demand of different parameters, namely wall insulation, orienta-
tion, windows surface, and thermal capacity. Likewise, Krarti et al.
[6] evaluated different energy efficiency options for various build-
ing typologies in Saudi Arabia. Detailed estimations on achievable
savings are proposed even in the presence of highly subsidized
energy prices. They found that the implementation of cheap mea-
sures in the residential sector can guarantee appreciable energy
savings. A similar study was conducted by Spandagos and Ng [7] for
large Asian cities. In particular, they evaluated the impact of heating
and cooling energy consumption by introducing a simplified
method of estimation.

Furthermore, Jermyn and Richman [8] presented a process for
implementing deep renovation strategies in cold climates. In
particular, they developed a case study for residential buildings in
the city of Toronto by taking into account three different building
archetypes. They found that the interventions to prioritize are
related to the insulation of the building envelope and to the sub-
stitution of the boiler.

A country-based analysis was developed by Bianco et al. [9],
who estimated the possible savings resulting from the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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implementation of energy efficiency measures in the Italian hotel
sector by analysing different scenarios. The savings in externalities
were also considered.

The relevance and scientific importance of energy analysis for
buildings is also confirmed by the different review papers devel-
oped on this topic during the last years.

A review summarizing the latest approaches in the estimation of
energy consumption in buildings has been recently developed by
Bourdeau et al. [10]. They tried to summarize the available litera-
ture related to the methodologies for the estimation of energy
consumption in buildings and the corresponding evaluation of
energy efficiency measures. Similarly, Soares et al. [11] analysed the
literature devoted to the study of energetic and environmental
performance of buildings. Furthermore, Fumo [12] proposes a re-
view of the different tools used for energy simulations and esti-
mations in buildings, whereas Zhao and Magoules [13] review
many techniques, encompassing from simple engineering methods
to artificial intelligence approach, for predicting energy consump-
tion in buildings. Finally, Tian [14] offers a summary of the meth-
odologies to be employed in the sensitivity analysis of building
energy simulations.

The above analyses offer a complete picture of the state of art
related to the quantitative estimation of energy consumption in
buildings. From the reviewed literature, it can be observed that the
problem of energy efficiency in buildings attracted the attention of
researchers from many countries demonstrating that the issue is
considered of global importance.

The main weakness revealed by the analysed literature is the
prevalent utilization of deterministic approaches, whereas many of
the parameters utilized in the calculations are characterized by a
level of uncertainty. For example, external weather conditions are
characterized by a high level of uncertainty, as well as the trans-
mittance of the envelope of existing buildings is known only with a
certain degree of approximation. Similarly, in case of technic-
economic analysis, financial variables are affected by substantial
level of uncertainties, as is the case of expected energy prices,
which are a fundamental parameter for evaluating the convenience
of energy efficiency interventions. Addressing this gap is a chal-
lenge to consider in future research. To this aim, it is necessary to
switch to a fully probabilistic method, in order to have more real-
istic estimations. However, the literature illustrating probabilistic
methods is much less developed compared to that available for
deterministic approaches.

One example is provided by Heo et al. [2], who proposed a
methodology to account for uncertainty in the usual models uti-
lized for energy consumption estimations in buildings. In particular,
the study accounts for uncertainties deriving from the imple-
mentation of the interventions and uses them to estimate the risk
of under-performance associated with the retrofitting in-
terventions. Furthermore, Tagliabue et al. [15] illustrate a proba-
bilistic methodology to consider the users’ behaviour, which affects
the real energy consumption in a building but, often, this is not
taken into account in engineering calculations. They statistically
describe user dependent parameters, such as air changes, in order
to obtain probabilistic distributions of thermal load profiles.
Instead, Touzani et al. [16] focused on the evaluation of the un-
certainty associated with the estimation of energy savings. The aim
was to evaluate the modelling error with respect to the savings
actually achieved. They found that the methodologies currently
employed tend to underestimate the uncertainty.

The impact of building components in the energy design of
buildings in tropical locations is analysed in Ref. [17]. Energy Plus is
used in the simulation and the Taguchi method is considered for
statistical analysis of uncontrollable factors. Authors conclude that
an appropriate selection of these factors determines a good
2

enhancement of energy efficiency.
Bordbari et al. [18] compared two statistical methods, namely

two points-estimate method and Monte Carlo, to model un-
certainties in energy consumption analysis of buildings. They
implement both the methods in EnergyPlus. They demonstrate a
relevant save of timewith the two pointsmethod at the expenses of
a bit of accuracy.

A review of recent literature concentrated on the impact of
uncertainty on the energy performance estimation of efficiency
interventions can be found in Ref. [19].

Other studies focus on the statistical analysis of large sets of
buildings to obtain straightforward equations, i.e., by linear re-
gressions estimation [20] or mixed engineering-statistics methods
[21], for evaluation of energy consumption. Statistical approaches
are also considered for energy design optimization [22], for the
post-processing of the results of energy models [23] or for
comparing results from calculations and measurements [24].

Other authors focus on the impact that uncertainty may have on
the evaluation of energy efficiency investments in buildings. For
example, Copiello et al. [25] focused on the uncertainty linked to
the evolution of energy costs. In particular, they proposed to inte-
grate a life cycle cost analysis with aMonte Carlo approach, in order
to take into account the variability of the energy cost. Similarly,
Togashi [26] analysed the risk connected with an energy-saving
investment by calculating the probability distribution of the en-
ergy reduction and evaluating the results using financial methods.
He employed the Monte Carlo method in order to develop a com-
plete risk analysis.

Another field of investigation is linked to the estimation of the
uncertainty related to Energy Performance Contracts (EPCs). Lee
et al. [27] proposed a probabilistic approach to the estimation of the
performance risk in common lighting retrofitting projects. They
consider the variability of some fundamental parameters, such as
daylight availability, occupancy, lamp conditions, etc. They
conclude that the impact of the variability of these parameters can
be substantial. Likewise, Deng et al. [28] suggested a framework
tailored on the needs of Energy Service Companies (ESCOs) for the
evaluation of potential energy saving profits. In particular, they
suggest modelling energy performance and energy price as sto-
chastic processes.

More general analytical frameworks which include both the
technical and financial aspects of the probabilistic estimation of
energy efficiency interventions in buildings, as well as some con-
siderations linked to the development of a risk analysis can be
found in Refs. [29,30]. In particular, Sadeghi and Shavvalpour [29]
discuss the possible approaches for the calculation of the Value at
Risk (VaR), whereas Jackson [30] extends the VaR approach from
the financial to the energy performance by introducing the concept
of Energy Budgets at Risk (EBaR).

Finally, Bozorgi [31] established a conceptual framework for the
implementation of an integrated energy retrofit assessment tools to
include value, risk, and uncertainty.

The reviewed literature highlights the lack of an integrated
quantitative methodology which considers both financial and
technical aspects of energy efficiency interventions aimed at resi-
dential buildings retrofitting by including probabilistic calculations
and risk assessment methodologies. This represents a relevant
research gap since the evaluation of energy efficiency measures
comprises both the technical analysis of the retrofitting in-
terventions and the corresponding financial evaluations. These two
aspects are characterized by many parameters subjected to un-
certainty; therefore, a probabilistic analysis is necessary to perform
accurate evaluations and to quantify the investment risk.

Table 1 highlights that most of the contributions applies the
probabilistic approach on the technical or on the financial analysis,



Fig. 1. Representation of the workflow for the execution of the analysis.
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if included. Studies which consider the joint impact of the uncer-
tainty on technical and financial aspects are missing. Thus, the
current literature is highly fragmented.

The purpose of the present research work is to overcome the
detected fragmentation and to propose an integrated methodology
for the assessment of energy efficiency in buildings including
technical and financial parameters. In addition, the developed
approach is also suitable for analysing clusters of buildings/
dwellings.

The present contribution includes a detailed building energy
model to calculate the impact of energy efficiency measures. Then,
the energy saving is the driver to estimate the generated cash flows
and the corresponding investment valuation. The novelty of the
paper resides in the joint considerations of uncertainties on tech-
nical and financial parameters to develop an overall probabilistic
analysis of the energy efficiency measures. The proposed method-
ology is general and can be applied irrespectively of the considered
country, climatic conditions, and typology of the buildings.
Furthermore, it can be extended to cases other than buildings, e.g.,
industrial processes. Another original contribution is represented
by the introduction of new indicators, i.e., “at risk” values, which
are introduced to provide a quantitative measure of the technical
and financial risk of the interventions. Uncertainty in the weather
conditions is considered too by accounting for the volatility of the
Heating Degree Days (HDD) and solar radiation.

If compared to the existing literature, the perspective reported
in the present work is different from the evaluation of the impact of
a specific intervention on one or more existing dwellings. Most of
the reviewed literature has a focus on the single building or
dwelling and considerations related to bundles of energy efficiency
measures on different typologies of buildings located in different
locations are missing.

Conversely, the present analysis is aimed at the case of an
investor, typically a utility, an energy supplier or a financial insti-
tution, which needs to decide in advance what types of energy
renovation, and on which type of building, would be profitable.
Therefore, the characteristics of the buildings are known only in a
probabilistic sense and the only applicable approach is a probabi-
listic analysis. This problem can also be seen from the perspective of
a policy maker which wants to establish a support program for
energy efficiency. It is necessary to plan in advance which are the
most efficient and profitable measures to support, but the key pa-
rameters are only known in a probabilistic venue.

The present paper differs from other research by introducing
additional uncertainties and hence aligning the calculation model
more with the real-world viewpoint of third parties.

To exemplify the potential of the presented approach, the
methodology is applied to evaluate the feasibility of thermal wall
insulation of a typical Italian building. The presence of tax in-
centives and loans is also considered.

To the best of authors’ knowledge, this paper represents the first
contribution to approach this topic with a high level of detail on a
probabilistic base.
Table 1
Summary of selected reviewed contributions on the application of a probabilistic approa

Paper Approach

Hoe et al. [2] Uncertainties due to retrofitting interve
Tagliabue et al. [15] Probabilistic methodology to take into a
Copiello et al. [25] Uncertainty linked to the evolution of e
Togashi [26] Stochastic valuation of energy efficiency
Lee et al. [27] Estimation of performance risk in EPC f
Jackson [30] Utilization of VaR approach for the estim
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2. Methodology

2.1. Energy analysis

The design of energy efficiency measures generally intends to
decrease the energy consumption of a dwelling. This requires a
preliminary estimation and comparison between the energy per-
formance of the dwelling before and after the application of the
planned renovation measures.

The proposed methodology is not targeted at the energy eval-
uation of a given existing building. It aims to analyse various types
of buildings in an aggregate and statistical manner, thus the
considered analytical approach will be less detailed than the one
used, for instance, in the energy performance certificate (EPC). Fig.1
reports a schematic of the workflow for the energy saving and
financial estimations.

In the considered framework, the actual planimetry of the
considered dwellings is unknown as well as details about their
envelope insulation, window frames and heating equipment. The
thermal profile can be assigned only by typology, referring to coarse
geometric and thermal features of buildings. In particular, the
definition of the buildings to analyse is given in terms of archetypes
as suggested in Ref. [32]. The relevant thermal dispersions are
identified by separating the following contributions, schematized
in Fig. 2:
ch to the study of energy efficiency in buildings.

ntions and valuation of the under-performance risk
ccount users' behavior on energy consumption
nergy cost in the assessment of energy efficiency investments
investment in buildings by assuming a probability distribution in energy saving

ocused on lighting
ation of investments in energy efficiency measures
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- qenv: heat transfer through the envelope, namely the sum of
qwall, qroof, qfloor and qwin

- qwall: heat transfer through the external walls
- qroof: heat transfer through the roof
- qfloor: heat transfer through the floor
- qwin: heat transfer across windows (conduction/convection)

plus other terms which must be taken in to account to complete
the energy balance of the building.

- qisource: internal heat source due to persons and equipment
- qvent: heat transfer due to ventilation (air exchange)
- qsolwin: direct solar radiation entering the windows
- qhs: heat transfer due to the heating system

All the above energy contributions must be roughly compen-
sated by an equal energy quantity, Eh, provided by the heating
system in order to maintain a constant comfortable temperature of
the internal environment.

The basic energy equation for a generic opaque envelope
element, e.g., a wall, is:

Ewall ¼Uwall$Swall$HDD$Cu1 (1)

where U [Wm�2K�1] is the thermal transmittance of the element, S
[m2] its surface and HDD [K day] represents the heating degree days
relative to a given time interval (Ndays), usually the heating period,
dependent on the climatic zone of the considered city according to
the local law. Cu1 is set equal to 3600� 24 [s/day] if [J] is the desired
unit for Ewall.

Eq. (1) must be slightly modified in case of direct solar radiation
hitting the external surface. Indeed, the term U, as usually provided
for structural elements likewall, roof and others, also comprises the
thermal resistance of the internal and external boundary layers, Ri
and Re, that is:

Rwall ¼Ri þ Rw int þ Re or Uwall ¼
1

1=hi þ 1=Uwint þ 1=he
(2)

The reference heat transfer scheme is depicted in the following
Fig. 3 that shows the wall, some key temperature points, and the
thermal resistances, according to the electro-thermal analogy.

Our model, Fig. 4, considers the external direct solar contribu-
tion only since the part transmitted across the windows is directly
added to the energy balance equation. In this case the equivalent
circuit is the following and the true power value to balance is given
4

by:

qwall ¼Uwall$Swall$ðTi � TeÞ � Uwall=he$qsol (3)

or, in terms of energy

Ewall ¼Uwall$Swall$HDD$Cu1 � Uwall=he$Esol (4)

with he set as usual to 23 [W/m2K] and

Esol ¼Cshada$Swall$RAD (5)

where RAD [Jm�2] is the solar energy normal to a vertical plane,
integrated over the considered period. a is the absorption coeffi-
cient of the considered external boundary (e.g. plaster), while Cshad
accounts for both the shading and the fraction of a building surface
hit, on average, by solar radiation. Since the building is an
abstraction, its orientation and shading context are unknown and
Cshad is set to a constant usually smaller than 0.5.

Direct solar radiation across the windows is accounted by the
following:

Esolwin ¼Cshad$SF$Swin$RAD (6)

where SF, the Sun Factor, accounts for the attenuation of the radi-
ation beams due to the considered glasses.

Detailed modelling of thermal bridges is not considered in the
present work. Their impact is accounted by adding an equivalent
heat exchange area to be estimated for each considered archetype.

Ventilation heat transfers are described as a function of the
number of volume changes to which the internal ambient must
adhere according to the energy and comfort regulations. However,
this rule does not hold for aged buildings where the energy lost due
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to ventilation is somewhat a random variable depending on occu-
pants use and on the amount of air leaks through the dwelling,
which in turn depends on the quality of the frames and on external
weather (wind) conditions. We put this quantity proportional to
the net volume, following the formula:

Event ¼Cvent,Vnet,raircp airHDD (7)

with.

Cvent ¼ 0:33 [ h�1], from the standard.

Internal sources account for heat produced by persons and heat
sourced by household equipment [33].

Eisource¼
8<:
�
5:294$Sfloor�0:01557$S2floor

�
$Ndaysif Sfloor<170

h
m2

i
450$Ndays otherwise

(8)

Once all the heat dispersion terms are identified, the heating
energy required to maintain constant, on average, the internal
temperature of a dwelling is obtained by Eq. (9):

Eh ¼maxð 0; Eenv þ Event � Eisource � EsolwinÞ (9)

since the right-hand side of Eq. (9) can assume negative values in
case of well insulated envelope. Please note that the present model
assumes a perfect temperature control of the heating system, able
to exploit any possible free energy source available.

The needed thermal energy for Domestic Hot Water (DHW)
production is computed by:

EDHW ¼
�
0:04 $ Sfloor

�
$cp H2Oð45�15ÞMDHW365 (10)

where four persons for 100 square meter and a typical hot water
load of 30 kg/d/person of DHW are assumed.

The values of 15 �C and 45 �C represent the temperature of the
available tap water and that of the desired DHW [34].

From the values of the needed thermal energy, the required fuel
or electric energy amounts can be derived once the heating
equipment of the dwelling along with the efficiency of each device
are given.
2.1.1. Energy analysis validation
Since all the energy and financial analyses, both deterministic

and stochastic, are based on the energy balance of the considered
dwellings, the estimation of the needed integration to compensate
for the heat losses must be validated against some reference
methods. As said, the implemented energy analysis leaves aside the
actual planimetry of the building and the details about its shape
and orientation, so that the comparison must be made against a
reference based on a similar approach.

The IEE Project TABULA [32,35] conforms to this requirement.
Tabula (Typology Approach for Building Stock Energy Assessment),
cofounded by the Intelligent Energy Europe Programme of the
European Union, developed residential building typologies for
some European Countries. The approach consists of a classification
scheme grouping buildings according to their size, age and other
features. A web tool has been developed too, providing online
calculation of energy related features of buildings and their energy
needs.

The present methodology for the calculation of energy losses
was compared to the one proposed by TABULA with reference to a
set of buildings of various size and structure. The city of Rome, Italy,
5

has been selected as location, since it represents an “average” case
for Italy in terms of climatic conditions.

The investigated buildings are multi-storey construction of two
or three floors with different plant area, inter floor height,
dispersing surface area to volume ratio and wall transmittance. A
sample of the results is reported in the following table.

Table 2 shows an acceptable agreement between TABULA
calculation and results performed with the present methodology.
The error is typically below 10% but, in a few cases, increases up to
20%.

It is difficult to identify the cause of this discrepancy, but it is
probably due to the use of different formulas in the evaluation of
the internal heat source contribution and the heat transfer due to
ventilation.

Focusing on this last aspect, in the case reported in the second-
last row, for example, the heat loss due to ventilation calculated
using Eq. (7) are 16 kWh/m2, and, in the lack of specific information,
is supposed independent on the age of the building. This fact alone
can bring to sensible discrepancies between the methods, differ-
ences that can be avoided if more refined information about the
dwelling is available. The choice not to take this factor into account
derives from the decision to exactly follow the available ruleswhich
do not consider an explicit dependence of the ventilation losses on
the age of the building.

2.2. Financial analysis

To assess the financial viability of the foreseen energy efficiency
measures, different indicators can be calculated, namely Net Pre-
sent Value (NPV), Internal Rate of Return (IRR) and Discounted Pay-
Back Period (DPBP).

The calculations of the considered indexes are based (i) on the
estimation of the amount of capital needed to implement the en-
ergy efficiency measures, assuming that such investment is made
for its entirety at inception (time 0), and (ii) on the estimation of the
future cash flows resulting from the investment, namely the sav-
ings in the energy bills deriving from the implemented energy ef-
ficiency interventions.

Thus, the NPV can be estimated in the following way [36]:

NPV¼ � INV þ DCF (11)

where INV is the initial investment and DCF is the sum of the dis-
counted cash flows occurring during the operating life of the en-
ergy efficiency interventions, calculated according to Eq. (12):

DCF¼
Xn
i¼1

CFi
ð1þ rÞi

(12)

where n is the operating life, i is the time index (usually one year)
and r is the discount rate. The NPV provides an absolute measure of
profitability (a monetary amount), the scale of which is often the
result of the size of the initial amount invested (i.e., huge in-
vestments can lead to huge profits).

The IRR is calculated starting from the same definition of the
NPV and it consists in the calculation of the value of “r” which
makes the NPV equal to 0:

Xn
t¼1

CFi
ð1þ rÞi

¼ INV (13)

The IRR represents a relative measure of profitability (it shows
the percentage return per unit of invested capital), and as such it
allows to compare different investments independently from their
size. The decision rule is to accept all the investments that have an



Table 2
Comparison of building performances in terms of Heat Losses (kWh/m2) as evaluated by the present methodology against the results obtained by using the TABULA project
dedicated tool.

H (m) Sd/V (m�1) Area (m2) n.Floors Uwall (W/m2K) Uroof (W/m2K) Ufloor (W/m^2 K) Uwind (W/m2K) TABULA Heat losses Present study Unsigned Difference %

3,90 0,82 115 2 1,61 1,8 2 5,7 357 335,7 6,0
3,90 0,82 115 2 0,25 0,23 0,23 1,7 55,7 50,7 9,0
3,64 0,72 199 2 0,76 0,98 1,14 2,8 136 141,4 4,0
3,64 0,72 199 2 0,25 0,23 0,23 1,7 44,4 42,9 3,4
3,15 0,54 1121 3 0,58 0,69 0,815 2,2 70,3 81,0 15,2
3,20 0,51 961 3 1,59 1,65 1,3 4,9 170 166,5 2,1
3,03 0,43 3271 6 0,59 0,69 0,77 3,4 62,9 74,8 18,9
3,29 0,46 2869 8 1,10 1,65 1,43 4,9 134 127 5,2
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IRR higher than the required rate of return (discount rate).
Furthermore, by comparing the value of the IRR with the discount
rate, a rough estimation of the risk of having an unprofitable in-
vestment can be obtained. If the values of IRR and r are close, the
risk is higher; on the contrary, if the difference is large, the risk is
lower. However, as opposite to the NPV, IRR does not provide any
information about the absolute level of profitability.

The DPBP can be defined as the time required to recover the
initial investment. The equation has the same form as Eq. (13), but
the unknown variable is the number of years “n”. The solution is
obtained via a numerical method rather than by means of a closed
formula. The DPBP does not consider any cash flow beyond the
payback period. For this reason, instead of a measure of profit-
ability, it is a measure of liquidity of the project. It is then usually
used as a proxy of the liquidity risk associated with an investment,
based on the intuitive principle that the shorter is the period to
recover the investment, the quicker it is converted into cash (i.e.,
the quicker it is possible to exit from the position, without costs).
2.3. Probabilistic approach

Since both the energy and the economic analyses are based on
uncertain values, meaningful results require the knowledge of their
quality, i.e., of their associated confidence bounds.

Uncertainty on the evaluation of energy efficiency investments
in buildings is not only due to unknown future variables like the
evolution of energy costs or unpredictable future weather condi-
tions: all the geometric and thermal properties of the considered
ensemble of buildings are known only as average, approximated
values. The same holds for the considered heating equipment in
terms of efficiencies and heating power.

Various techniques can be implemented in a random or sto-
chastic context. If the shape of the probability distribution is
known, and the system is linear or weakly nonlinear, standard
covariance propagation techniques, i.e., the Lyapunov equation, can
be profitably utilized. More sophisticated approaches are required
if those hypotheses do not hold as, for instance, the unscented
transform [37]. However, if step functions are discretized, then
multimodal distributions could emerge. In these cases, the appli-
cation of the brute force Monte Carlo approach is advisable.

To give an example, though very rough, of the surfacing of a
multimodal distribution, reference will be made to the function
that links the required power of a condensing boiler to the set of
powers of boilers available for sale. Usually, only a finite number of
heating powers is found for sale, typically 24 kW, 28 kW, 35 kWand
so on. In this case, the continuous probability distribution associ-
ated with the required power due to the uncertainty affecting, for
instance, the heat dispersions, will collapse in a comb distribution
as per Fig. 5.

Then, the price being linked to the power; a bimodal random
price distribution could emerge that is shaped around discrete
6

values.
In similar contexts, the Monte Carlo method, though heavy in

terms of processor time and memory usage, represents an effective
way to analyse uncertainty propagation in nonlinear discrete state
models.

In a Monte Carlo analysis, for each new simulation, input values
for geometry, thermophysical properties, climatic conditions, and
design parameters, are randomly sampled from their assumed
probability density functions. A random sampling is utilized, and
variables are considered completely independent and uncorrelated
even if correlation coefficients can be easily implemented.

The physics of the problem is not very demanding in term of
computational resources thus the use of more sophisticated sam-
pling techniques [38] can be avoided.

Table 3 presents the variables considered to be uncertain in the
proposed methodology; namely, more than 30 random variables
are considered.

Application of the Monte Carlo method is straightforward. A
single energy and/or economic analysis is repeated thousands of
times using randomly extracted values of the pertinent variables.

Expected values and confidence bounds are then calculated for
the desired indices by using sample mean and variance, that is with
reference to the generic variable X:

bX ¼ 1
Nmc

X
i

Xi (14)

bs2X ¼ 1
Nmc � 1

X
i

ðXi � bX!2

(15)

where Nmc is the number of Monte Carlo simulations.
As per Table 2, the extraction process is not the same for all the

variables; referring for instance to the evaluation of the NPV and
considering a single analysis, those marked with a “t” must be
extracted every year since they are not constant, e.g., the yearly
heating degree days. Other variables, marked with a “d”, like the
windows transmittance or the burner efficiency, must be extracted
twice if the considered renovation involves replacing the windows
or the burner: a random extraction for the old building configura-
tion and one for the renovated one. The remaining unmarked var-
iables are extracted only once for each simulation: the floor surface
area, for example, does not change with time and is the same in the
given and restructured configuration.

Each quantity is supposed to be Gaussian distributed with given
mean and variance, but other distributions can be selected, e.g.,
triangular, or rectangular, if needed.

The opportunity of changing the variance allows to test the
sensitivity of a particular index to the uncertainty of the single
parameter, thus providing information about which parameter
requires a greater attention when optimizing some economic or



Fig. 5. From the continuous distribution of required power (a) to the comb distribution (b) since only a finite number of heating powers is found for boilers on the market.

Table 3
List of uncertain variables: “t” refers to variables whose value randomly changes over time; “d”means a double extraction is needed: one for the old dwelling configuration and
one for the renovated.

Geometric Thermophysical Heating equipment External environment Economic

Floor area Wall transmittance Burner efficiency d HDD t Fixed costs
Dispersing area to volume ratio Roof transmittance Heat Pump COP d Radiation t Electric energy cost t
Floor to floor height Floor transmittance Distribution efficiency d Heating days t Fuel energy cost t
Windows to floor area ratio d Windows transmittance d Regulation efficiency d Ext. convection coefficient t Discount rate t

Plaster absorption coeff. d Emitter efficiency d Air change rate t
Sun factor d Solar fraction d Shadow coefficient
Insul. thickness (wall) d Burner efficiency (DHW) d
Insul. conductivity (wall) d Heat Pump COP (DHW) d
Insul. thickness (roof) d Electric boiler efficiency (DHW) d
Insul. conductivity (roof) d Heat Pump COP (DHW) d
Insul. thickness (floor) d Hot water load d
Insul. conductivity (floor) d Solar fraction (DHW) d

Primary to electric energy conversion factor t
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energy related index.
Fig. 6 qualitatively shows the typical NPV output, as a function of

time andwith a time horizon of 20 years, that can be expected from
a Monte Carlo analysis while in the next paragraph an application
to an actual case will be provided.

Beyond the NPV, the probabilistic approach allows estimating
the confidence of the results and to identify possible risk areas, also
as a function of time. In the example of Fig. 6, time horizons smaller
than ten years yield negative NPV values with a probability of 97.5%.
After 20 years there is still a 10% risk of loss.

All the reported confidence bounds are sampled results. No
assumption has been made on the shape of the probability distri-
bution involved.

Based on the aforementioned probabilistic analysis, it is possible
to define some metrics which are able to quantitatively measure
the performance risk, both energetic and financial, of an energy
efficiency project.

If X is a metric of interest with its associated probability density,
7

e.g., energy saving (ES), NPV, IRR, etc., it is possible to determine its
expected value E(X), as well as the value VaR5% (X) with an asso-
ciated probability of 5% of worst outcome. This value is usually
called Value at Risk (VaR).

DX@RISK ¼ EðXÞ � VaR5%ðXÞ (16)

which represents the loss of value of X with a probability of 5% with
respect to its expected value.

X can be substituted with all the energy and financial indexes of
interest to develop a complete risk analysis for the project under
investigation.

VaR is complemented with another quantity, namely, the Con-
ditional Value at Risk (CVaR) that, together with VaR, quantifies the
amount of “tail risk” an investment has. Fig. 7 graphically depicts
the difference between the two variables. The Value at Risk divide
the PDF in two regions, the grey one identifying the 5% of worst,
undesired results. The conditional expectation of these results is
CVaR, that is the mean value of the grey region.



Fig. 6. NPV results as a function of time. Example case. Monte Carlo method. 10,000 runs. Dashed lines represent the sampled confidence bounds (95%) while the graph on the right
shows the expected frequency distribution of the NPV20 (20 years). The red zone comprises cases with negative NPV that is investments at a loss. In the depicted case the risk of loss
at 20 years' operation is about 10%. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Safe and Risk zones of an arbitrary metric. The Value at Risk (VaR) represents
the zone border while the conditional Value at Risk (CVaR) is the mean of the Risk
region, that is the expected value of the tail risk, beyond the VaR cutoff point.
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3. A multi-storey application

The presented methodology is applied to the energy and
financial evaluation of a large energy efficiency refurbishment,
namely wall thermal insulation, considered in the renovation of a
hypothetical residential six-storey building located in the city of
Rome, Italy. All the calculations are developed in Visual Basic for
Applications and embedded in a MS-Excel calculation tool which is
used as interface for launching the simulations and for I/O
purposes.

The location has been selected since energy renovation in-
terventions for heating in a warm climate are difficult to design. In
fact, due to the low energy savings achievable, they often lead to
long pay back times and to negative or very small NPV values. In
these cases, an accurate investigation about the influence of various
source or uncertainty is very useful and the application of the
8

Monte Carlo technique is advisable.
Apart from the usual indicators concerning the energy savings

and the investment feasibility, the interest is focused on the in-
fluence of variations of some intrinsic quantities which are rarely
known with great accuracy.

For clarity, given the high number of variables illustrated in
Table 3, we restrict the investigation to the following:

- the ratio between dispersing surface and rough heated volume,
Sd/V,

- the wall thermal transmittance, Uw,
- the heating degree days, HDD,
- the energy price, Eprice.

This case study is not aimed to simply evaluate the joint influ-
ence of a bunch of parameters. The idea is to focus on the very
different effects that the uncertainty of each of the selected vari-
ables can have on the decision process with particular reference to
the NPV estimation, as will be evident in Fig. 9 up to 13.

So, different interesting aspects of the intervention are covered,
that is the dependence on geometry, thermophysical properties,
climatic conditions, and energy cost. We also note that the uncer-
tain knowledge about the internal ambient temperature, also
dependent on personal preferences and control strategies, can be
accounted for by including it in the HDD uncertainty.

It is important to underline that in the investment analysis the
values attributed to the variances of each individual parameter are
fundamental. Without the quantitative knowledge of the uncer-
tainty of the parameters, it is not possible to assess the risk asso-
ciated with the investment. Nonetheless, also in this case, the
methodology can be used for a preliminary investigation of the
sensitivity of the various performance indices with respect to the
considered parameters.

Given the type of analysis, the consumption related to DHWwas
not considered for conciseness.



F. Scarpa, L.A. Tagliafico and V. Bianco Energy 236 (2021) 121491
3.1. Case study

The considered construction belongs to the social housing of the
sixties as shown in Fig. 8. The image is only exemplificative since
the building is hypothetical. The following tables, namely
Tables 4e6, summarize the main characteristics of the location, the
building, and the heating system.

Energy losses through the envelope, also accounting for venti-
lation and internal sources, lead to a yearly thermal energy need of
about 202 MWh, that is 84.1 kWh/m2 (DHW was not considered).

In front of this request, a fuel energy consumption of about
316 MWh per year emerges, with an associated annual fuel bill of
kV 22.3 for a fuel energy price of 0.15 V/kWh.

The Monte Carlo analysis provides the results shown in Table 7,
obtained in terms of confidence bounds where the 95% bounds of
the uncertain variables Sv, Uw, HDD and Eprice are assumed, quite
arbitrarily, as 20%, 20%, 20%, and 1% of their respective value. The
low uncertainty on the energy price reflects the good knowledge of
current values. When future estimates are utilized, as for NPV
calculations, a linear increasing value of uncertainty will be
assumed.

The percentage effect is the same since losses, consumption and
bill are simply scaled values.

Effect of Energy price at year 0 is null since it is assumed a lin-
early increasing uncertainty with perfectly known prices at year 0.
In any case, any value of C.B. assumed at year 0 will reflect, with the
same figure, on the energy bill only.
3.2. Planned intervention

The considered refurbishment, wall thermal insulation, strongly
decreases the heat losses of a building, but it is very invasive, and it
is usually accomplished only if a structural intervention on the
façade is already planned. Only the added cost of the insulation and
that of the associated installation are here considered.

Wall insulation is also an expensive renewal, and it is usually
advisable in cold climate. For the considered building, the rough
overall cost of wall insulation only (no roof and floor insulation),
10 cm of rockwool at 1 V/m2/cm plus installation (V40/m2), for the
considered surface of 2800 m2, is kV 140.
Fig. 8. A typical low-cost Italian multi-storey (1965).
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The effects of the intervention are visible in Table 8 while Table 9
shows the possible savings and associated confidence bounds
caused by the uncertainty of four selected variables Sv, Uw, HDD and
investment cost, CFIX.

Only Sv uncertainty (i.e., the uncertainty on the dispersing sur-
face) will affect intervention cost. The influence of the bare wall
thermal transmittances, Uw, is greatly decreased by the presence of
the insulation, while the HDD effect slightly augments since it is a
percentage quantity, and the heat losses are smaller in the planned
configuration. In fact, if we compare the value of the confidence
bound due to HDD uncertainty, before and after the intervention
we find:

C:B: 95%before ¼54:4 MWH C:B: 95%after ¼ 26:4 MWH

Following the “at risk” measure introduced in paragraph 2.3,
Table 9 also reports the Conditional Value at Risk, for both energy
savings and bill savings, as signed distance from the expected value
as per Fig. 7.

By considering a time horizon of 20 years from the renovation
action, with annual time periods, some useful financial indices can
be calculated to evaluate the feasibility of the proposed interven-
tion. In what follows, the indices NPV, IRR and Discounted PayBack
time (DPB) are given along with their 95% confidence bounds
emerging from the Monte Carlo simulation. The NPV is graphically
reported year by year, starting from the date of the intervention, to
give a better view of the investment. Tax incentives and loans ex-
amples are considered to complete the case study.

The 20 yrs. NPV is weakly positive, V1324, but this figure is
surely low compared to the investment cost of V140 k required.
Indeed, the DPB is 19.7 years, and the IRR is equal to 8.12% assuming
a discount rate of 8% and an annual increase of the fuel cost of 2%.

Differently from Ref. [25], which focuses on probabilistic anal-
ysis of the financial performance of the interventions, the present
approach reports a comprehensive framework for the analysis. In
fact, as highlighted in Tables 8 and 9, the probabilistic estimation of
energy savings and financial performances are connected and
jointly developed according to the methodology reported in the
previous sections of the paper. This is relevant since energy savings
are one of the main drivers for the determination of the financial
performance. This concept is also stressed by Jackson [30], but his
work is more qualitative and descriptive, rather than quantitative
as in the present case.

The methodology illustrated in the present work is more com-
parable toTogashi [26], where a deep focus is given to the stochastic
behaviour of weather conditions, buildings occupants, and energy
cost. On the other hand, Togashi [26] analyses a specific building
with well known features. In fact, he does not consider any un-
certainty on the building elements (e.g., dimensions, U-values, etc.).
The present work is conceived in a different way. The base
assumption is that the building (or group of buildings) is known
only in average without any specific information. Thus, also all the
building parameters are subjected to certain degree of uncertainty.
As shown in Tables 8 and 9, the present methodology allows to
estimate the impact of the uncertainty of selected parameters on
the main figures of merit of the retrofitting project (e.g., energy
savings, NPV, IRR, etc.). A more in-depth analysis of the uncertainty
of building parameters on the financial indicators is illustrated in
the next section.
3.3. NPV confidence bounds

The questionability of the intervention is better explained by
means of the results reported in Figs. 9e13, showing the NPV and
its confidence bounds (95% confidence) as a function of time when



Table 4
Main building properties (6 storey building).

Number
of Floors

Country City Building
Type

Year Surface in
plan [m2]

Floor
Area
[m2]

Total Floor
Area [m2]

Storey
height
[m]

S disp/V
[m�1]

Wall thermal
transmittance [W/
(m2K)

Roof thermal
transmittance [W/
(m2K)

Floor thermal
transmittance [W/
(m2K)

6 Italy Rome multi-
storey

1961
e1975

400 2400 2400 3 0.5 1.76 1.85 1.3

Table 5
Climatic conditions for the considered location.

Rome Tavg ¼ 11.5 �C Tmin ¼ 3 �C Average Daily Solar Radiation [MJ/m^2] South Vertical Wall

HDD Heating days Heating on/off Heating hours per day Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

1415 166 01/11e15/04 (121 days) 12 10.6 11.9 12.6 11.6 10.6 9.9 10.8 12.4 14.2 15.1 11.8 9.3

Table 6
Summary of the main features of the heating system.

Heating System Type Efficiency

heating means Type B open chamber 0.76
Regulation 0.95
Emitters Radiators 0.94
Distribution 0.94
Windows Single Glazed U ¼ 5.7 [W/m2K]
Envelope Insulation No

Table 7
Annual energy need, consumption, and Monte Carlo 95% confidence bounds, C.B.,
(10,000 runs) calculated on the current configuration.

Perturbed Variables

Sv Uw HDD All

Energy losses 201.7 MWh 18% 13.0% 26% 34%
Energy consumption 316 MWh 18% 13.0% 26% 34%
Energy bill 22.3 kV 18% 13.0% 26% 34%

Table 8
Annual energy need, consumption and Monte Carlo 95% C.B. (10,000 runs). Planned
configuration (wall insulation).

Perturbed Variables All

Sd/V Uw HDD CFIX

Energy losses 89.25 MWh 6% 0.6% 29.5% e 30.5%
Energy consumption 140 MWh 6% 0.6% 29.5% e 30.5%
Bill 9.9 kV 6% 0.6% 29.5% e 30.5%
Intervention cost (CFIX) 140 kV 25.5% e e 20% 32.6%

Fig. 9. Effect on the NPV of uncertainty in the dispersing surface to volume ratio. The
main effect is an increased saving with greater wall surface, corresponding to greater
investment. This fact generates the observed convergent NPV bounds.
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uncertainty is accounted for some important variables.
It can be noted that the behaviour of the confidence region is

very different for the considered variables. If unknown variations
are considered in the ratio between dispersing surface and heated
volume, a typical decrease of the bounds is noted. This
Table 9
Annual savings: CVaR and Monte Carlo 95% C.B. (10,000 runs).

Perturbed Varia

Sd/V

Energy savings 176 MWh CVAR/ �51 MWh
95%C.B./ 28.3%

Bill savings 12.4 kV CVAR/ �3.6 kV
95%C.B./ 28.3%

10
counterintuitive effect is due to the link between investment and
savings and to the specific constraint here assumed. Since the floor
area and the inter-floor height are fixed, a variation of Sd/V value
corresponds to a variation of wall surface. With larger surface the
heating losses are greater and wall insulation requires larger in-
vestment, but it is more effective, thus producing higher bill savings
and therefore higher cash flows. Conversely for a smaller surface.
So, the lower bound, for instance, is characterized by a steeper
slope. The resulting effect is therefore the reduction of the confi-
dence in the first period of about 17 years and a subsequent
increase.

In this case, the uncertainty in the knowledge of the Sd/V ratio
has little influence on the final NPV bound which are small in any
case, Fig. 9.
bles

Uw HDD All

�42 MWh �43 MWh �70 MWh
22.7% 23.2% 42.7%
�2.9 kV �3.0 kV �4.9 kV
22.7% 23.2% 42.7%



Fig. 11. Uncertainty in the heating degree days (also accounting for Tbase variations).
The slowly varying bounds are due to the very nature of the stochastic process.

Fig. 12. Uncertainty on investment costs. The effect on NPV confidence is constant over
time.
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Fig. 10 shows that Uw has a completely different influence, in
comparison to Sd/V. Here, a variation of the current, before inter-
vention, thermal transmittance of the wall gives rise to diverging
confidence bounds. This represents a common casewhere variation
on Uw, even if mitigated by the planned insulation, causes variation
in thermal losses that are constant in time. These losses translate in
bill variations, which accumulate in time giving an explanation of
the observed behaviour. In this example large, 20%, confidence
bounds have been assumed to the aim of presenting meaningful
graphics.

Variation of the climatic conditions and internal base temper-
ature (nominal set point at 20 �C), Fig. 11, has not a great influence
on the investment analysis. Differently from case of the thermal
transmittance, where random values are extracted one for all in
correspondence of year 0 (Uw does not randomly changes with
time). During the Monte Carlo simulation different values of HDD
are extracted every year. Statistically, these values, assumed un-
correlated, are symmetrically disposed with respect to the mean so
that their global effects in time result weakened (counterbalanced).

Clearer is the interpretation of the confidence region resulting
from the uncertainty affecting the investment cost. In this case
there are not consequences on the physics of the building or on the
bill, so a constant confidence interval is expected. Fig. 12 reports the
case of an investment cost characterized by an uncertainty of 20%.

The effect on the NPV due to energy price uncertainty is given in
Fig. 13. The price behaviour in time is described by an auto corre-
lated process which produces values characterized by a naturally
increasing uncertainty starting from 0% at year 0, to increase up to
20% after 20 years since the intervention. This hypothesis is justi-
fied to simply describe a knowledge of the market that decreases
for long time extrapolation.

The analysis is completed by Table 10, reporting value at risk
relative to Energy and Financial indices associated to the presented
scenarios of uncertainty.

As expected, wall insulation interventions in warm climate
raises some doubts and all the evaluated indices suggest not to
proceed in this direction. The picture definitively changes if tax
incentives are disposable. For instance, energy saving interventions
are supposed to be promoted with a 65% refund of the investment,
sliced in ten annual repayments discounted from taxes.

Fig. 14(a) shows the changes in NPV and its confidence bounds
emerging in case of uncertainty in the wall thermal transmittance
(see Fig. 10) when the above incentive figure is applied. In this case
an NPV value of 62,400 V is obtained with 0% of loss probability.
Worthy economic results can also be obtained by applying for a
Fig. 10. Uncertainty in the wall thermal transmittance. Effect on the NPV and payback
time.

Fig. 13. Uncertainty on Energy price; correlated forecasting. 95% confidence bound at
year 20 is 20% of the price value.
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loan. Fig. 14(b) presents the NPV obtained in case of a loan covering
the 85% of the initial investment costs, at a fixed rate of 2% and a
refund time of 8 years.

The NPV computed over 20 years is smaller than the previous



Table 10
Various financial indices and associated CVaR, VAR and 95% confidence bounds, C.B., at the horizon time of 20 years. CVaR, VAR are reported as signed distance from the
expected value.

Perturbed Variables

Sd/V Uw HDD CFIX Eprice All

NPV, V þ1324 CVAR/ �3900 �34000 �8200 �29500 �14500 �33500
VAR/ �3100 �27500 �6500 �24000 �12000 �26500
95%C.B./ ±3730 ±32,500 ±7750 ±28,000 ±14,500 ±34,500

IRR, % 8.12 CVAR/ �0.4 �3.2 �0.7 �2.4 �1.3 �4.2
VAR/ �0.3 �2.5 �0.6 �2.0 �1.1 �3.4
95%C.B./ ±0.32 ±2.9 ±0.7 ±2.6 ±1.3 ±3.0

DPBP, yrs. 19.7 CVAR/ �1.2 þ11 þ2.2 þ7.5 þ4.3 þ15
VAR/ �0.9 þ8 þ1.7 þ6.0 þ3.3 þ11
95%C.B./ ±0.95 ±8 ±2 ±6.5 ±3.5 ±8.5

Loss Risk 24% 47% 36.5% 46% 44% 47%
Exp. Loss, V �1120 �13000 �2700 �11000 �5300 �13100

Fig. 14. NPV in case of wall insulation with uncertain thermal transmittance: (a) case of tax incentives with ten years refund time of 65% of investment costs; (b) case of loan on 85%
of the fixed initial expenditures with 2% rate and 8 years' refund.
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but acceptable, about 27,000 V, with the relatively low risk of loss
of 5% (expected conditional loss ¼ 6800V).
4. Conclusions

The investment in real estate projects involving building refur-
bishment by means of energy insulation retrofitting is a difficult
decision, especially when long lasting operating time are needed.
Indeed, a lot of uncertainties, both on actual values of the param-
eters and on time changing variables, make the decision quite
uncertain. In the present paper the Monte Carlo simulation
approach is proposed as a straightforward tool to make reliable
forecasting of energy and financial parameters involved in building
retrofitting projects, including random errors in most of the major
physical, financial, and time-dependent parameters. The outcomes
of this approach can quantify, for each given refurbishment project,
the confidence bounds of the expected benefits as a function of
approximations expected on more than 30 problem data, quanti-
fying also the “value at risk” results. The analysis implemented
using the proposed methodology shows that covariance propaga-
tion can be essential to evaluate the feasibility of an energy reno-
vation project in uncertain environment, especially when climate
or other conditions made the choice a border line decision.

The primacy of the current probabilistic approach over deter-
ministic analysis is evident since without knowledge of the un-
certainty the risk associated to every decision will remain
unknown.

To highlight this aspect, the methodology was applied to a
specific case: the wall insulation of a building sited in a relatively
warm location, namely Rome (Italy). Only the careful application of
statistical techniques leads to informed decisions, also providing
12
correct information about the involved financial risk, and the right
incentive and loan conditions to pursue a secure investment.
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