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The COVID-19 pandemic has highlighted the need for advancing the development and

implementation of novel means for home-based telerehabilitation in order to enable

remote assessment and training for individuals with disabling conditions in need of

therapy. While somatosensory input is essential for motor function, to date, most

telerehabilitation therapies and technologies focus on assessing and training motor

impairments, while the somatosensorial aspect is largely neglected. The integration of

tactile devices into home-based rehabilitation practice has the potential to enhance the

recovery of sensorimotor impairments and to promote functional gains through practice

in an enriched environment with augmented tactile feedback and haptic interactions. In

the current review, we outline the clinical approaches for stimulating somatosensation

in home-based telerehabilitation and review the existing technologies for conveying

mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations).

We focus on tactile feedback technologies that can be integrated into home-based

practice due to their relatively low cost, compact size, and lightweight. The advantages

and opportunities, as well as the long-term challenges and gaps with regards to

implementing these technologies into home-based telerehabilitation, are discussed.

Keywords: haptic, training, stroke, neurorehabiliation, somatosensory, assessment

INTRODUCTION

The COVID-19 pandemic highlights the need to accelerate the development and implementation
of innovative approaches for home-based rehabilitation (Simpson and Robinson, 2020). While in
normal, non-pandemic times many individuals in need of rehabilitation services do not receive
sufficient therapy due to difficulties posed by the need to travel to the location where the therapy is
provided, a shortage of regional rehabilitation care, and poor adherence to assignments (Cramer
et al., 2019), the COVID-19 pandemic is presenting new challenges to rehabilitation services.
The restrictions imposed to contain the spread of infection further limit access to rehabilitation
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services (Chaler et al., 2020) and challenge societal well-being.
This may lead to long-term negative consequences by increasing
functional impairments, and reducing participation and quality
of life (Boldrini et al., 2020b). Telerehabilitation from home
may partially mitigate these challenges, but state of the art
telerehabilitation systems often only use visual or/and auditory
feedback and lack somatosensory feedback (Navarro et al., 2018).

Somatosensory input is essential for accurate motor control
and interactions with the external world (Pearson, 2000; Perez
et al., 2003; Borich et al., 2015). The somatosensory impairment
that is observed in many neurological disorders such as stroke,
traumatic brain injury, and spinal cord injury can lead to
impairments in adjusting the amount of force applied during
grasping and fine manipulation of objects (Sullivan and Hedman,
2008; Doyle et al., 2010, 2014; Connell et al., 2014; Hill et al., 2014)
and in performing tasks that require rapid dextrous movements
(Goebl and Palmer, 2008), as well as in controlling more gross
functions such as gait and posture (Maki and McIlroy, 1997;
Horak, 2006).

In in-person rehabilitation intervention therapists frequently
use touch to assist, and to provide and perceive information, as
well as to comfort and encourage patients (Roger et al., 2002).
In a survey regarding satisfaction with telerehabilitation during
the COVID-19 pandemic, the absence of touch was reported by
patients as a limitation (Tenforde et al., 2020). The current review
focuses on tactile technologies that can be used as innovative
solutions to support home-based telerehabilitation and addresses
some challenges that have become more salient during the
COVID-19 pandemic.

Previous reviews discussed telerehabilitation and wearable
haptic devices; however, none has provided a comprehensive
perspective on the variety of tactile stimulation technologies
and the ways to exploit them for home-based telerehabilitation.
An overview on tactile displays was conducted by Jones and
Sarter (2008); however, since then significant developments
in tactile technology have been presented. Culbertson et al.
(2018b) reviewed the design, control, and general applications of
haptic devices, but did not focus on rehabilitation applications.
Several reviews focused on wearable technologies (not necessarily
haptics) that can be used for remote monitoring of physiological
and kinematic measurements, with a brief overview on the
applications for home-based rehabilitation (Patel et al., 2012;
Wang et al., 2017). Navarro et al. (2018) proposed features related
to adaptive, multisensorial, physiological and social aspects that
should be considered in the development process of the next
generation of telerehabilitation systems. A systematic review of
virtual reality technologies for rehabilitation examined the effect
of haptic feedback on motor performance (Rose et al., 2018).
Another review (Shull and Damian, 2015) examined wearable
haptic applications for a variety of sensory impairments; however,
the focus of that review was on stimulations to enhance motor
performance. A previous narrative review focused on tactile
technologies for hand rehabilitation in central nervous system
disorders (Demain et al., 2013). In this work, we extend previous
reviews by covering the development in tactile technologies
over the last decade with an emphasis on wearable devices that
potentially could be utilized at home. We also expand the scope

to include the assessment of somatosensory deficits, in addition
to various rehabilitative applications, and address the recent
developments in mediation of social interaction. Specifically, we
review: (1) clinical approaches for stimulating somatosensation
in home-based rehabilitation, (2) tactile technologies that can be
integrated into home-based rehabilitation, and (3) the challenges
and gaps, as well as the opportunities, in this field.

CLINICAL APPROACHES FOR
STIMULATING SOMATOSENSATION IN
HOME-BASED NEUROREHABILITATION

Providing Tactile Augmented Feedback to
Enhance Motor Control Performance and
Learning
Somatosensory augmented feedback provides additional sensory
cues that complement and/or replace native sensory input from
the somatosensory, visual, and/or vestibular systems (Bach-y-
Rita and Kercel, 2003). Tactile cues can guide patients on how
to improve their movements (Bark et al., 2015) and may assist
them in achieving their goals more quickly and/or more easily
(Magill, 2004). A promising application of tactile feedback is
to provide patients with guidance on how to improve their
movements without the constant presence of a therapist (Bark
et al., 2015; Bao et al., 2018), including when practicing on
their own. The augmented feedback can be triggered by the
participant’s motor performance and can provide information
continuously during the action or at specified times (Ferris and
Sarter, 2011; Galambos, 2012; Kaul and Rohs, 2017). Compared
with visual feedback, real time tactile feedback makes it possible
for patients to receive information regarding movement errors
without the need to shift visual attention, thus affording a more
“natural” movement (Bark et al., 2015).

Tactile stimulation can also be beneficial even if it does
not provide any information. For instance, subthreshold tactile
stimulations (i.e., below the level at which a person can
perceive the stimulation) add noise to proprioceptive signals
and might help these signals to overcome the threshold of
specific neural circuits. This phenomenon, also known as the
stochastic resonance theory (Gammaitoni, 1995; Gammaitoni
et al., 1998; Moss et al., 2004), facilitates more efficient detection
of somatosensory information, and improves sensorimotor
performance (Collins et al., 1996, 2003). As such, it could be used
in the rehabilitation of individuals with sensorimotor deficits
to improve motor functions (e.g., grasp, object manipulation,
balance and gait) and tactile sensation (Enders et al., 2013; Seo
et al., 2014, 2019).

Applying Tactile Stimulations to
Improve/Restore Cutaneous
Somatosensation
Somatosensory impairment is considered to have a negative
prognostic impact on rehabilitation interventions and overall
motor function recovery (Bowerman et al., 2012; Dietz and
Fouad, 2014; Zandvliet et al., 2020). Although the current
literature in this field is limited, a recent systematic review
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and meta-analysis indicated positive effects in improving
somatosensory impairments (Serrada et al., 2019). Specifically,
sensory discrimination training by repeated practice to
distinguish textures and localize tactile stimuli can influence the
sensory system and drive recovery (Carey et al., 1993; Yekutiel
and Guttman, 1993; Turville et al., 2019).

Presenting Tactile Feedback in Virtual
Reality Environments
Telerehabilitation is often based on virtual reality systems and
interactive video games that aim to facilitate repetitions of
movements and to make the repetitive exercises more engaging,
enjoyable and motivating (Standen et al., 2015). The virtual
experience can be further enhanced by using tactile devices that
can convey haptic interactions between the user and the virtual
objects (Galambos, 2012; Culbertson et al., 2018b).

Conveying Social Tactile Interaction
Haptic feedback plays a critical role in emotional and social
communication (Strong and Gaver, 1996; Brave and Dahley,
1997). During in-person rehabilitation sessions therapists often
use touch to comfort and encourage patients (Roger et al., 2002).
Recent developments in wearable tactile devices demonstrate
very promising results in conveying sensations such as comfort
and affection (Culbertson et al., 2018a; Nunez et al., 2019, 2020),
attention (Baumann et al., 2010), playfulness (Mullenbach et al.,
2014), or social presence (Baldi et al., 2020). The integration of
social tactile aspects into telerehabilitation systems would open
new possibilities for remote therapist-patient communication
andmay facilitate wider adoption of telerehabilitation from home
by patients.

Assessing Tactile Impairments
In addition to the above training strategies, the use of measures
to quantify somatosensory deficits could help therapists to
understand patients’ impairments beyond motor and functional
status and assist in targeting appropriate interventions.
The assessment of somatosensory functions, including
proprioception and sensitivity to light touch, pressure, and
temperature, cannot be done remotely in the traditional way
where the therapist applies the stimulation and evaluates the
performance using scales. Portable, and often wearable devices
that apply multimodal stimulations have the potential to provide
reliable and quantitative information regarding somatosensory
impairments in a home-based setting (Rinderknecht et al., 2015,
2019). Such portable devices have already been used in some
virtual reality systems for baseline measurements of activity and
kinematics and for tracking changes over time (Patel et al., 2012;
Chen et al., 2015; Bortone et al., 2018).

TACTILE STIMULATION TECHNOLOGIES

Over the last few decades, technologies that can provide versatile
tactile stimulations have become very popular and many new
devices continue to be developed. These devices can be integrated
into wearable technologies and utilized for telerehabilitation
due to their low cost, compact size, and lightweight. From

the technological point of view, there is a variety of ways to
apply tactile stimulation. These can be categorized according
to the mechanism evoking the tactile sensation: mechanical,
electrotactile, and thermal. In order to provide an in depth
review of the technology and its applications, in this review
we focus on mechanical tactile stimulations. However, it should
be noted that electrotactile stimulation is also used for various
assistive technologies and rehabilitation applications such as for
people with visual (Bliss et al., 1970; Kajimoto et al., 2001) and
auditory impairments (Weisenberger et al., 1989), as well as in
prostheses, orthoses (Schweisfurth et al., 2016; Svensson et al.,
2017) and stroke rehabilitation (for a review see Laufer and
Elboim-Gabyzon, 2011).

Mechanical tactile stimulations can be further divided
into vibration, skin deformation, and mid-air stimulations.
Recently the idea of wearable tactile devices that combine
vibration, stretch, and pressure for conveying multimodal haptic
information was introduced (Aggravi et al., 2018; Sullivan et al.,
2019; Dunkelberger et al., 2020), highlighting the importance of
understanding the unique properties of each stimulation type and
harnessing the advantages of each to design devices that are more
than the sum of their parts. In the remainder of this section,
we review the state of the art in mechanical tactile stimulation
devices. For each type of device we review the technology,
its applications for healthy and patient populations, and its
advantages and disadvantages. The different devices and studies
are summarized in Tables 1, 2. Table 1 summarizes the devices
by stimulation type, actuator type, technological maturity level,
and application. We rank the technological maturity level based
on how extensively testing of the device has been reported in the
literature, with the following levels: prototype demonstration (N
< 10); healthy user studies (N = 10–100); extensive healthy user
studies (N > 100); patient user studies (N = 10–100); extensive
patient user studies (N > 100). Table 2 summarizes the studies
that were reviewed here that were tested on patient populations
for different rehabilitation applications.

Vibration
Vibration is the simplest and most common tactile stimulation
technology that has become ubiquitous and is used in a
wide variety of devices such as phones, watches, games,
and home appliances (Culbertson et al., 2018b). Typically,
the actuators used in wearable devices produce vibration
at frequencies above 100Hz, which activates the Pacinian
corpuscles mechanoreceptors (Culbertson et al., 2018b). The
most common locations for applying the vibrotactile stimulation
are the arm (Bark et al., 2008; Huisman et al., 2013; Krueger
et al., 2017; Shah et al., 2018; Risi et al., 2019) and the torso
(Van Erp et al., 2005; Lee et al., 2012; Ballardini et al., 2020).
Other locations for stimulation include the hand (Jiang et al.,
2009; Wan et al., 2016) and different locations on the lower limb
(Chen B. et al., 2016; Shi et al., 2019). The design of the device
and the stimulation patterns (e.g., frequency and amplitude of
the vibration) need to take into account the targeted dermatomes
and the density and size of the mechanoreceptors’ receptive fields
which vary across the body (Jones and Sarter, 2008; Johansson
and Flanagan, 2009; Shah et al., 2019) and across the skin type
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TABLE 1 | Tactile stimulation devices by type, maturity level, and applications in healthy individuals.

Stimulation type Device type Device maturity level Applications Commercial availability

Vibration Single actuator Extensive healthy and patient user

studies

Improve walking pattern (Janssen et al., 2009) BalanceFreedom of SwayStar system

https://www.b2i.info/web/index.htm

Improve force control accuracy (Ahmaniemi, 2012)

Convey proprioceptive information (Bark et al., 2008)

Multiple actuators Extensive healthy and patient user

studies

Enhance motor learning and performance (Lieberman and Breazeal,

2007; Bark et al., 2015; Kaul and Rohs, 2017; Van Breda et al., 2017;

Shah et al., 2018)

Guide movement direction (Van Erp et al., 2005; Krueger et al., 2017;

Risi et al., 2019)

Improve standing balance (Lee et al., 2012; Ma and Lee, 2017;

Ballardini et al., 2020)

Vertiguard RT https://zeisberg.net/

posturographie.html

Improve walking pattern (Chen B. et al., 2016; Wan et al., 2016;

Muijzer-Witteveen et al., 2017; Xu et al., 2017)

Convey various types of information (Ferris and Sarter, 2011; Cobus

et al., 2018)

Convey affective touch (Israr and Abnousi, 2018)

Assess somatosensory impairments (Tommerdahl et al., 2019) Brain Gauge https://www.

corticalmetrics.com/howitworks

Multiple actuators on a

glove

Healthy and patient user studies Convey virtual objects information (Muramatsu et al., 2012) CyberTouch http://www.

cyberglovesystems.com/cybertouch2

Convey force information (Galambos, 2012)

Assess somatosensory impairments (Rinderknecht et al., 2015, 2019)

Single actuator with

multiple probes

Healthy user studies Assess somatosensory impairments (Holden et al., 2012; Puts et al.,

2013; Mikkelsen et al., 2020)

Skin

deformation—tangential

and stretch

Tactor Extensive healthy user studies and

patient studies

Alter mechanical properties of virtual objects (Sylvester and

Provancher, 2007; Quek et al., 2013, 2014b; Schorr et al., 2013;

Farajian et al., 2020a,b)

Convey direction information (Bark et al., 2010; Guinan et al., 2012,

2013a,b; Norman et al., 2014; Chinello et al., 2018; Kanjanapas et al.,

2019)

Convey information about curvature (Frisoli et al., 2008; Prattichizzo

et al., 2013), weight (Kato et al., 2016; Choi et al., 2017), and virtual

objects information (Yem and Kajimoto, 2017; Wang et al., 2020)

Improve object manipulation (Leonardis et al., 2017; Schorr and

Okamura, 2017b; Bortone et al., 2018), tracking (Quek et al., 2014b),

insertion (Quek et al., 2015b), palpation (Schorr et al., 2015) and

grasping (Westebring van der Putten et al., 2010; Kim and Colgate,

2012; Quek et al., 2015a; Choi et al., 2017; Stephens-Fripp et al.,

2018; Avraham and Nisky, 2020; Bitton et al., 2020; Farajian et al.,

2020b)

Guide movement direction (Bark et al., 2010; Guinan et al., 2012,

2013a,b; Norman et al., 2014; Chinello et al., 2018)

Improve standing balance (Hur et al., 2019)

(Continued)
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TABLE 1 | Continued

Stimulation type Device type Device maturity level Applications Commercial availability

Convey affective touch (Nunez et al., 2019)

Assess somatosensory impairments (Ballardini et al., 2018)

Adhesive rings Healthy user studies Convey affective touch (Haynes et al., 2019)

Belt/Vest Healthy user studies Substitute and augment force and torque feedback (Pacchierotti et al.,

2016), convey sensation of mass (Minamizawa et al., 2007), and

sensation of virtual objects (Minamizawa et al., 2008),

Convey direction information (Bianchi, 2016)

Provide feedback about grasping force (Casini et al., 2015)

Guide movement direction (Stanley and Kuchenbecker, 2012; Pezent

et al., 2019; Smith et al., 2020) and convey path information (Kumar

et al., 2017)

General tactile stimulation (Nakamura and Jones, 2003; Wu et al.,

2010)

Rocker and roller Healthy user studies Enhance virtual object manipulation (Provancher et al., 2005)

Convey proprioceptive information (Battaglia et al., 2017 and 2019;

Colella et al., 2019) (Clark et al., 2018)

Mechanical cranks Healthy user studies General tactile stimulation (Stephens-Fripp et al., 2018)

Skin

deformation—pressure

Indentator Healthy and patient user studies General tactile stimulations (Chinello et al., 2015)

Convey sensations of softness (Frediani and Carpi, 2020), and holding

a virtual object (Merrett et al., 2011)

Convey direction information (Raitor et al., 2017; Agharese et al., 2018)

Render shape information of remote and virtual objects (Chinello et al.,

2019)

Convey affective touch (Culbertson et al., 2018a)

Assess somatosensory impairments (Jacobs et al., 2000)

Belt Prototype demonstration Convey affective touch (Prattichizzo et al., 2010)

Pin array Healthy and patient user studies Create 2D and 3D graphic display (Shimizu et al., 1993; Leo et al.,

2016; Brayda et al., 2018)

General tactile stimulations (Caldwell et al., 1999),

Convey sensations of roughness (Kim et al., 2009), and texture

(Sarakoglou et al., 2005; Kyung and Park, 2007; Garcia-Hernandez

et al., 2011)

Skin deformation or

vibration ultrasound

Mid-air technology using

phased arrays

Extensive healthy user studies Create 3D haptic shapes (Long et al., 2014; Vo and Brewster, 2015;

Makino et al., 2016)

UltraLeap https://www.ultraleap.com/

Convey affective touch (Shakeri et al., 2017, 2018)

Maturity level is ranked by the following levels: prototype demonstration (N < 10); healthy user studies (N = 10–100); extensive healthy user studies (N > 100); patient user studies (N = 10–100); extensive patient user studies (N > 100).

Note that the applications column refers to studies in healthy individuals; for types of devices that were also tested on patients please refer to Table 2 for more detailed information about the specific studies. Commercial availability of

devices that were reviewed in the current paper and tested either on healthy or patient populations.
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TABLE 2 | Tactile device applications for rehabilitation.

Application Population Tested in a home

setting (Yes/No)

Type of stimulation Type of device Wearable/

Non-wearable

References

Enhance upper extremity

function

Multiple Sclerosis (N = 24) No Vibration Multiple actuators Wearable Jiang et al., 2009

Stroke (N = 12) No Subthreshold vibration Single actuator, (TheraBracelet) Wearable Seo et al., 2019

Enhance gait and balance

control

Stroke (N = 8) No Vibration Multiple actuators Wearable Afzal et al., 2019

Stroke (N = 17) No Vibration Multiple actuators Wearable Yasuda et al., 2017

Stroke (N = 3) No Vibration Platform (The Rutgers Ankle

Haptic Interface)

Non-wearable Boian et al., 2003

Stroke (N = 20) No Vibration Multiple actuators Wearable Jaffe et al., 2004

Parkinson’s disease (N = 43) No Vibration Single actuator (VibroGait) Wearable Fino and Mancini, 2020

Parkinson’s disease (N = 20) No Vibration Multiple actuators

(BalanceFreedom)

Wearable Nanhoe-Mahabier et al., 2012

Parkinson’s disease (N = 16) No Pressure Steel stick Non-wearable Barbic et al., 2014

Parkinson’s disease (N = 10) No Vibration Multiple actuators (Vertiguard) Wearable Rossi-Izquierdo et al., 2013

Parkinson’s disease (N = 9) and older adults at high

risk for falls (N = 8) and older adults (N = 10)

No Vibration Multiple actuators Wearable High et al., 2018

Parkinson’s disease (N = 9) and older adults (N = 9) No Vibration Multiple actuators Wearable Lee et al., 2018

Older adults (N= 12) Yes Vibration Multiple actuators Wearable Bao et al., 2018

Peripheral Neuropathy (N = 4) No Pressure Ballon arrays Wearable McKinney et al., 2014

Vestibular disorder (N = 6) No Vibration Multiple actuators Wearable Sienko et al., 2012

Vestibular disorder (N = 7) No Vibration Multiple actuators Wearable Sienko et al., 2013

Vestibular disorder (N = 13) No Vibration Multiple actuators (Vertiguard) Wearable Brugnera et al., 2015

Vestibular disorder (N = 8) No Vibration Multiple actuators Wearable Bao et al., 2019

Vestibular disorder (N = 105) No Vibration Multiple actuators, (Vertiguard) Wearable Basta et al., 2011

Enhance tactile sensation Stroke (N = 5), diabetic neuropathy (N = 8) and

older adults (N = 12)

No Subthreshold vibration Single actuator Non-wearable Liu et al., 2002

Stroke (N = 10) No Subthreshold vibration Single actuator Wearable Enders et al., 2013

Stroke (N = 16) Yes Vibration Multiple actuators on a glove Wearable Seim et al., 2020b

Digital nerve injuries (N = 49) No Pressure Rotating disk and a card Non-wearable Cheng, 2000

Chronic pain (N = 13) No Pressure Probe Non-wearable Moseley et al., 2008

Spinal cord injury (N = 7) Yes Vibration Multiple actuators on a glove

(Mobile Music Touch)

Wearable Estes et al., 2015

Somatosensory

assessment

Stroke (N= 2) No Vibration Multiple actuators on a glove

(ReHaptic Glove)

Wearable Rinderknecht et al., 2019

Stroke (N = 3) No Skin stretch Tactor Non-wearable Ballardini et al., 2018

Brain injury (N = 1) No Vibration Multiple actuators (Brain Gauge) Non-wearable King et al., 2018

Enhance interaction realism

in virtual reality environment

Children with neuromotor impairments (N = 20) No Skin stretch and

pressure

Tactor Wearable Bortone et al., 2018

Spinal cord injury (N = 9) No Vibration Multiple actuators on a glove

(CyberTouch)

Wearable Dimbwadyo-Terrer et al., 2016
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(e.g., hairy skin has a reduced number of Pacinian corpuscles
compared to glabrous skin) (Colgate and Brown, 1994; Ackerley
et al., 2014). Skin type can also influence the quality of stimulation
via its mechanical properties and its physical propagation of the
vibration (Dandu et al., 2019; Hachisu and Suzuki, 2019).

Technology
Vibrotactile feedback can be conveyed by a single actuator,
or by an array of actuators that create an oscillating
movement. The choice of the actuator affects the size,
shape, cost, availability, robustness, speed of response, input
requirements, and power consumption of the device (Choi and
Kuchenbecker, 2013). An overview of the different actuators
can be found in Choi and Kuchenbecker (2013) and Kern
(2009).

The stimulation patterns can be divided into two fundamental
categories: (1) binary on-off state, and (2) continuous vibration,
created by changing parameters of the vibration signals such
as amplitude, frequency, duration, rhythm, and waveform
(Brewster and Brown, 2004; Jones and Sarter, 2008). Binary
feedback is not continuously provided but is triggered by specific
events such as an alarm or event-cue related information (Ferris
and Sarter, 2011; Galambos, 2012; Kaul and Rohs, 2017). The
vibration intensity can be constant or may vary according to the
event (Cobus et al., 2018). Continuous vibrotactile stimulation
is used to convey various types of information to the users,
including: (1) state feedback, encoding position and/or velocity
of limbs (Ferris and Sarter, 2011; Krueger et al., 2017; Shah et al.,
2018; Risi et al., 2019), (2) force feedback, encoding the amount
of force exerted (Ahmaniemi, 2012), and (3) error feedback,
encoding information regarding the goal of the task and the
state of the end-effector (Wall et al., 2001; Cuppone et al., 2016;
Krueger et al., 2017).

By controlling the shape and timing of the signals from
multiple static actuators, it is also possible to display illusions of
movement that can enrich the design space of tactile stimulation.
Prominent examples are: (1) phi (or beta) movement, where a
smooth apparent motion of a single stimulus is created by the
periodic activation of two spatially separated stimuli (Sherrick
and Rogers, 1966; Lederman and Klatzky, 2009), (2) saltatory
(or rabbit) illusion, i.e., illusory sweeping movement of discrete
taps that occur by activating actuators in sequence (Geldard and
Sherrick, 1972; Lederman and Klatzky, 2009), and (3) the tendons
vibration illusion, which is an illusory perception of movement
that can be evoked by triggering the muscle spindle afferents
through vibrations applied to the tendon (Goodwin et al., 1972;
Taylor et al., 2017).

Applications for Enhancing Sensorimotor

Performance and Learning
In healthy individuals, vibrotactile feedback is used to enhance
motor control and learning (Lieberman and Breazeal, 2007; Van
Breda et al., 2017; Shah et al., 2018). It has been demonstrated that
state feedback regarding the force exerted improved the accuracy
of force repetition (Ahmaniemi, 2012). Other studies used state
and/or error feedback to guide upper limb reaching movements
in the absence of visual information (Krueger et al., 2017; Shah

et al., 2018; Risi et al., 2019) and to reach accuracy levels beyond
the limits of natural proprioception (Risi et al., 2019). Results
from a meta-analysis indicated that vibrotactile feedback was
effective in reducing task completion times, but neither forces
nor errors were significantly reduced (Nitsch and Färber, 2012).
In addition, vibration feedback encoding center of mass or center
of pressure motion was used to improve standing balance (Lee
et al., 2012; Ma and Lee, 2017; Ballardini et al., 2020) and walking
patterns (Janssen et al., 2009; Muijzer-Witteveen et al., 2017; Xu
et al., 2017). Vibrotactile feedback based on stochastic resonance
was applied for improving visuomotor temporal integration
in hand control (Nobusako et al., 2019) and balance control
(Magalhães and Kohn, 2011). Vibrations that informed the users
about collisions with virtual objects in a virtual reality context
added realism and improved performance (Galambos, 2012; Kaul
and Rohs, 2017). Also, a vibrotactile glove interface has been used
to convey sensations of virtual objects (Muramatsu et al., 2012).

Applications in Rehabilitation
In persons with multiple sclerosis, vibrotactile feedback applied
to the fingernails of the contralateral hand improved the
performance of a grasping and lifting task of the more impaired
hand (Jiang et al., 2009). In addition, real time state vibrotactile
cues reduced postural sway during standing balance tasks and
improved gait parameters after stroke (Yasuda et al., 2017;
Afzal et al., 2019), in people with Parkinson’s disease (Nanhoe-
Mahabier et al., 2012; High et al., 2018; Lee et al., 2018; Fino
and Mancini, 2020) and with vestibular disorders (Sienko et al.,
2012, 2013). However, in all of these studies improvements were
observed during trials, and long-term effects were not tested.
Vibrotactile stimulations were also used to enhance interaction
realism in a rehabilitation system based on virtual reality (Boian
et al., 2003; Dimbwadyo-Terrer et al., 2016), and to avoid
collisions during walking in stroke survivors (Jaffe et al., 2004).

Several randomized controlled trials (RCTs) with small
cohorts tested the effect of balance training programs with
vibrotactile stimulations. Following a 2-week training program
using vibrotactile feedback, individuals with Parkinson’s disease
improved their balance control parameters and performance-
based measures and retained improvements 3 months after
training (Rossi-Izquierdo et al., 2013). Additionally, adults with
vestibular disorders improved their balance performance and felt
more confident regarding their balance while performing daily
activities after a training protocol with vibrotactile stimulations
compared with a control group that trained without stimulations
(Brugnera et al., 2015; Bao et al., 2019). Furthermore, balance
improvements were retained at 6-month follow-up assessments
(Bao et al., 2019). Also, reduced body sway and improved
clinical outcome measures [e.g., Sensory Organization Test
(SOT) (Franchignoni et al., 2010) and Dizziness Handicap
Inventory (Jacobson and Newman, 1990)] were observed in a
study with a large cohort of participants with vestibular disorders
(n = 105) who trained with vibrotactile stimulations over 2-
weeks (i.e., ten-sessions) compared with a control group that
trained with a sham device (Basta et al., 2011).

Subthreshold vibrotactile stimulation improved
somatosensation and motor function in persons with
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sensorimotor impairments: stimulations applied at the wrist
and dorsal hand improved the immediate fingertips light-touch
sensation and grip ability of the paretic hand in stroke survivors
(Enders et al., 2013). In addition, the vibrotactile detection
threshold (i.e., the minimum level of vibration amplitude to
be detected) at the tip of the middle finger in persons with
diabetic neuropathy and stroke survivors was decreased (Liu
et al., 2002). In persons with diabetic neuropathy the threshold
was decreased at the foot as well (Liu et al., 2002; Khaodhiar
et al., 2003). In a pilot randomized controlled trial, subthreshold
vibratory stimulation was applied to the paretic wrist of stroke
survivors during upper extremity task training (a total of 6
sessions provided in 2 weeks). The treatment group showed a
significant improvement in hand motor function at the end of
therapy, which was sustained 19 days after therapy, whereas
the control group that practiced without stimulation did not
improve from baseline performance (Seo et al., 2019).

While these studies were conducted in laboratory settings, few
studies provided participants with vibrotactile devices to practice
at home. Bao et al. (2018) tested the effect of long-term home-
based balance training with vibrotactile sensory augmentation
among community-dwelling healthy older adults. Participants
were trained in static and dynamic standing and gait exercises
for 8 weeks (3 sessions per week, 45-min each) using smartphone
balance trainers that provided guidance while monitoring trunk
sway. The experimental group received directional vibrotactile
cues via actuators that were aligned around the torso in case the
activation signal exceeded a pre-set threshold, while the control
group practiced without supplemental feedback. Participants
in the experimental group demonstrated significantly higher
improvements in their SOT (Franchignoni et al., 2010) and
Mini Balance Evaluation Systems Test scores (Clendaniel, 2000)
compared with the control group at post training assessment.
Seim et al. (2020a) designed a glove that provides subthreshold
vibrotactile stimulation for stroke survivors to use at home
and demonstrated the feasibility of wearing the glove for 3 h

daily for 8 weeks. Also, in a double-blind RCT, chronic stroke
survivors with impaired tactile sensation in the hand were
given a glove to take home and asked to wear it during
their normal daily routine (i.e., 3 h daily for 8 weeks) (Seim
et al., 2020b). One group received a glove which provided
vibrotactile stimulation to the hand and another group received
a glove with the vibration disabled. Participants receiving tactile
stimulations demonstrated significant improvement in tactile
perception (assessed with monofilaments) in the affected hand.
In another study, improvement in hand sensation was observed
in participants with spinal cord injury after training with a glove
providing vibration stimulations compared with participants
who trained without stimulations (Estes et al., 2015). Vibration
stimulations were applied during active practice sessions of
playing piano in in-lab sessions (3 times a week for 30min a
session for 8 weeks) and during passive practice at home (2 h a
day, 5 times a week). An illustration of a vibrotactile stimulation
device is presented in Figure 1.

Applications for Conveying Social Tactile Cues
Gentle stroking touches resembling those of soft calming and
caressing sensations are considered highly relevant in social
interactions (Huisman et al., 2016). Using artificial means
to convey such touches might enhance social presence in
telecommunication or in virtual settings. Israr and Abnousi
(2018), developed a vibrotactile device worn on the forearm
that delivers stimuli which resemble caressing and calming
sensations. Participants rated low frequency stimuli (<40Hz)
as pleasant sensations that feel like massaging and noted that
they would be even more realistic with context. Huisman et al.
(2013) developed a virtual agent setup that incorporates an
augmented reality screen and a vibrotactile sleeve worn on the
user’s forearm. In this setup the forearm was placed under a
tablet, thus allowing the user to see his/her forearm “through”
the tablet. The vibrotactile stimulation combined with the visual

FIGURE 1 | Vibrotactile stimulation devices. The smartphone-based balance trainer used in Bao et al. (2018). The sensing unit is attached to an elastic belt worn

around the torso to measure trunk sway. The four tactors are aligned over the anterior, posterior, and right and left sides of the torso to provide directional

vibrotactile cues.

Frontiers in Neurorobotics | www.frontiersin.org 8 February 2021 | Volume 15 | Article 617636

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Handelzalts et al. Tactile Augmentation Technologies for Neurorehabilitation

representation of a hand touching the user created a more
realistic touching illusion.

Assessment of Tactile Impairments
Vibrotactile simulation can be used for assessment applications.
In clinical settings the duration of vibration sensation and the
perception threshold are commonly measured using a tuning
fork (Perkins et al., 2001; Alanazy et al., 2018). However, results
regarding its reliability are variable across studies (O’Neill et al.,
2006; Lai et al., 2014; Lanting et al., 2020), and, most importantly,
the assessment does not quantitatively provide the degree of
dysfunction and depends on the level of clinical experience
(Lanting et al., 2020).

To address limitations of clinical assessments, an automated
approach to quantify topesthesia (i.e., the ability to recognize the
location of a tactile stimulus) was developed (Rinderknecht et al.,
2015). The system consists of two wearable gloves that can apply
vibrations on the hand at 24 possible locations and a touchscreen
to directly indicate with the non-tested hand the precise location
of perception on the tested hand. The assessment provides a
standardized, repeatable measurement as well as continuous
outcome measures on ratio scales (Rinderknecht et al., 2015). It
was tested on healthy individuals (Rinderknecht et al., 2015) and
on stroke survivors (Rinderknecht et al., 2019).

In addition, a portable vibrotactile stimulator device was
used to probe tactile function through a battery of tests
assessing reaction time (“press the button when you feel
the vibrotactile stimulation”), threshold detection (the weakest
detectable stimulus), amplitude and frequency discrimination
(discriminating between two stimuli that are simultaneously
applied and discriminating between the frequency of two
sequentially applied stimuli). The battery targets different
mechanisms of somatosensory processing (Holden et al., 2012;
Puts et al., 2013; King et al., 2018; Tommerdahl et al., 2019;
Mikkelsen et al., 2020). These tests were used on healthy adults
and children (Puts et al., 2013) for monitoring recovery from
concussion (King et al., 2018) as well as a wide range of
neurological disorders (Tommerdahl et al., 2019). There are also
other specific tests that aim to independently evaluate only one of
the aspects investigated by this paradigm; an overview of the tests
assessing vibrotactile perception in healthy subjects can be found
in Jones and Sarter (2008).

Advantages and Disadvantages
A major advantage of vibrotactile devices is that the actuators
can be easily integrated into wearable devices because they
are small, lightweight, low- power, and low-cost (Alahakone
and Senanayake, 2009). On the other hand, disadvantages
of vibrotactile feedback stem from the properties of the
mechanoreceptors activated by vibration. First, it is difficult to
accurately locate the source of the stimulations if they are placed
close together, because of the propagation of the vibration (Sofia
and Jones, 2013; Shah et al., 2019) and the large size of the
mechanoreceptors’ receptive fields (Johnson et al., 2000). Second,
it is difficult to convey directional information, unless several
actuators are used in a spatially and/or temporally coordinated

mode (Rotella et al., 2012). Third, it has been suggested that
the feedback coding of some vibrotactile devices may be less
effective than of others in reducing applied forces i.e., if the
vibration frequency or location varies, vibrotactile feedback
may be less effective in conveying information on intensity or
direction than a uniform signal that alerts the user of a required
response (Nitsch and Färber, 2012). Fourth, prolonged exposure
to continuous vibratory stimulation could result in an unpleasant
sensation (Bark et al., 2008) and has been associated with long-
term nerve and tissue damage (Takeuchi et al., 1986). Also,
choosing the right type, number, and target location of the
actuators for patients with possible degradation of perception due
to aging or disease might be challenging (Jones and Sarter, 2008).

SKIN DEFORMATION

Tangential Force and Skin Stretch
Tangential skin deformation is evoked by pressure of the skin
against a device, combined with a lateral movement of the
entire device or a small part of it. Such deformation occurs
naturally when touched by a therapist, when interacting with
a real object, or when a device applies forces on a user, but
it may also be elicited by technological solutions specifically
designed to provide tactile stimulation (Bark et al., 2009; Quek
et al., 2014b; Pan et al., 2017). The stimulation is detected by
the Ruffini corpuscles which are slow adapting SA-II tactile
afferents in the skin that are sensitive to tangential shear strain
as well as the Meissner’s corpuscles which are rapid adapting RA-
I tactile afferents that are sensitive to dynamic skin deformation
(Johansson and Flanagan, 2009). The detection resolution of the
skin stretch at the fingertip is 0.1–0.2mm, while the direction of
the stretch can be accurately perceived with less than 1.0mm of
movement (Gould et al., 1979; Greenspan and Bolanowski, 1996).

Technology
There are different methods to render tangential and stretch
forces, e.g., a roller (Provancher et al., 2005), a belt (Minamizawa
et al., 2007), or a moving tactor (Quek et al., 2013). The most
common location for applying the stimulation is the finger pad
(Pasquero and Hayward, 2003; Drewing et al., 2005; Gleeson
et al., 2010a; Solazzi et al., 2011; Tsetserukou et al., 2014), as
it contains a very high density of mechanoreceptors (Abraira
and Ginty, 2013). Other locations include the palm (Guzererler
et al., 2016; Ballardini et al., 2018), the forearm (Bark et al., 2008;
Kuniyasu et al., 2012; Chinello et al., 2016), the arm (Casini et al.,
2015; Battaglia et al., 2017), and different locations on the lower
limb (Chen D. K. Y. et al., 2016; Omori et al., 2019; Wang et al.,
2020). Themechanism and actuation of the device can be tailored
to the desired application (see Pacchierotti et al., 2017 for a review
on wearable devices). By changing the magnitude and direction
of the tactile stimulations it is possible to convey different types
of information such as forces and directional guidance (Biggs and
Srinivasan, 2002; Paré et al., 2002; Provancher et al., 2005; Guinan
et al., 2014; Bianchi, 2016; Leonardis et al., 2017; Kanjanapas
et al., 2019; Bitton et al., 2020).
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Applications for Enhancing Sensorimotor

Performance and Learning
Adding a skin stretch to force feedback has been shown to
affect stiffness (Quek et al., 2013, 2014a,b; Schorr et al., 2013;
Farajian et al., 2020a,b) and friction (Sylvester and Provancher,
2007; Provancher and Sylvester, 2009) perception. In addition,
concurrent tangential and normal skin deformation can be used
to substitute and/or augment upper extremity force and torque
feedback in navigation, tracking, insertion and palpation tasks
(Quek et al., 2014b, 2015b; Schorr et al., 2015; Pacchierotti
et al., 2016; Clark et al., 2018), generating a high fidelity haptic
feedback for the sensation of mass (Minamizawa et al., 2007; Kato
et al., 2016) and virtual objects (Minamizawa et al., 2008). It can
also be used to enhance perception and performance in object
manipulation tasks (Leonardis et al., 2017; Schorr and Okamura,
2017b), and to deliver grasp force information (Casini et al.,
2015).

Skin stretch feedback providing position information
improved the movement accuracy of healthy participants who
controlled the movement of a virtual arm (Bark et al., 2008).
Compared with vibrotactile stimulation, skin stretch feedback
provided superior results, particularly when the virtual arm
was in a low-inertia configuration and at low velocity (Bark
et al., 2008). Gleeson et al. demonstrated the ability of healthy
participants to accurately identify the direction of tangential
skin deformation at the fingertip, and highlighted the potential
of using skin stretch cues to aid patients with balance control
impairments (Gleeson et al., 2010b). Skin stretch stimulation
was also found to be effective for improving performance in a
curvature discrimination task (Frisoli et al., 2008; Prattichizzo
et al., 2013).

Stretching the skin can affect not only perception, but also
forces that are applied by the user for stabilization. Westebring
van der Putten et al. (2010) explored the influence of skin
stretch and tangential deformation feedback on grasp control and
demonstrated a significant improvement in pinch force control
for participants who received augmented tactile feedback. Bitton
et al. (2020) showed that applying tactile stimulation of the
fingertips increases grip force, even in a static force maintenance
task. In addition, adding an artificial skin stretch to the finger
pads in the same direction as force applied by a virtual object
or a haptic device increased the applied grip force (Quek et al.,
2015a; Avraham andNisky, 2020; Farajian et al., 2020b), although
this effect was not seen in Quek et al. (2015b), or in the case of
skin-stretch that is in the opposite direction to the external force
(Avraham and Nisky, 2020).

In addition, studies have shown the ability of participants
to accurately produce motion according to haptic stimuli
provided by a skin stretch device (Bark et al., 2010; Stanley
and Kuchenbecker, 2012; Guinan et al., 2013b; Norman et al.,
2014; Chinello et al., 2018; Pezent et al., 2019; Smith et al.,
2020), including in gaming applications (Guinan et al., 2012,
2013a). Skin stretch feedback encoding the velocity of postural
sway along the anterior-posterior direction enhanced standing
balance with perturbed sensory systems (removed vision and
unreliable vestibular systems) in healthy young adults compared
with conditions without skin stretch feedback (Hur et al., 2019).

In virtual reality systems, skin stretch feedback has been
applied at different body locations to simulate rich physical
properties during the interaction with virtual environments and
objects (Minamizawa et al., 2007, 2008; Choi et al., 2017; Yem
and Kajimoto, 2017; Wang et al., 2020). For example, a leg-
worn device that applies varied skin stretch profiles to induce
an illusory force improved the realism and enjoyment of virtual
reality applications (Wang et al., 2020).

Applications in Rehabilitation
To date, most applications of skin stretch stimulation were
demonstrated in the context of prostheses or assistive devices.
For example, a multimodal tactile stimulation device helped
to improve the grip force control of an electromyographic-
controlled virtual prosthetic hand that was operated by
targeted reinnervation amputees (Kim and Colgate, 2012). Other
examples conveyed proprioceptive (Battaglia et al., 2017, 2019;
Colella et al., 2019), grasp force and position information to users
of prosthetic hands (Casini et al., 2015; Stephens-Fripp et al.,
2018), or path information to users of a powered-wheelchair
(Kumar et al., 2017). Although it has not yet been tested
directly in rehabilitation protocols for neurological populations,
these technologies could potentially be used for tasks such as
restoration of fine object manipulation. An example of such
an application was demonstrated on children with neuromotor
impairments who trained in performing upper limb movements,
including reach to grasp, path tracking, and hand orientation,
with a wearable haptic device rendering contact forces by
deformation of the fingerpad (Bortone et al., 2018).

Applications for Conveying Social Tactile Cues
Recently, wearable devices that can generate pleasant tactile
sensations have been developed (Haynes et al., 2019; Nunez et al.,
2019). A skin slip technology was used to generate an illusory
sensation of continuous lateral motion that could be used to
convey social touch cues, such as comfort and affection, in which
stroking motions are used (Nunez et al., 2019). The stimulation
was perceived as pleasant when the speed was closer to 10 cm/s
and applied on the volar side of the forearm.

Assessment of Tactile Impairments
The assessment of tactile directional sensitivity (i.e., the ability
to identify the direction of an object’s motion across the skin)
is considered to be a sensitive screening test of sensory function
after injuries in the central or peripheral nervous system (Wall
and Noordenbos, 1977; Bender et al., 1982; Hankey and Edis,
1989; Norrsell and Olausson, 1992). However, to our knowledge,
assessment properties (e.g., reliability) were not tested. Recently,
a skin stretch device was developed to assess somatosensory
impairments at different body areas (Ballardini et al., 2018). The
system offers quantitative and reliable measures of tactile acuity
(i.e., testing discrimination of the direction and amplitude of skin
stretch stimuli) and was validated in healthy participants and in a
small cohort of stroke survivors.

Advantages and Disadvantages
There are many advantages to skin stretch deformation. This
stimulation provides a strong, quick, and accurate response to
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changes in skin strain (Edin, 2004). In addition, skin stretch
at low frequencies is attractive for wearable devices as it does
not require much power (Bark et al., 2008). It can also convey
direction even with a single actuator, does not suffer from
adaptation effects, and is effective even at low velocities and
with small movements (Bark et al., 2008). Moreover, skin
stretch feedback is effective in inducing the perception of virtual
textures and illusory forces and can be used to convey intuitive
proprioceptive feedback (Chossat et al., 2019). Nevertheless, skin
stretch stimulation has some disadvantages. The amount of skin
deformation depends on the mechanical properties of the skin
and the strength of the normal forces against the actuator, and
thus partial or full slippage may occur. These and other factors
contribute to large inter-participant variability in the perceptual
effects of skin stretch (Quek et al., 2014b; Farajian et al., 2020b),
while some individuals are not at all sensitive to stretch effects
(Quek et al., 2014b). Also, this type of stimulation is commonly
applied at the finger pad where there is a limited area for applying
the stretch. Finally, although skin stretch devices are usually
safe, when developing the device, one should carefully consider
unpleasant sensations and abrasion. Illustrations of tangential
and stretch stimulation devices are presented in Figure 2.

Pressure
Pressure triggers a response in the low frequency range of
the slow adapting afferents SA-I, innervating the Merkel cells
(Johansson and Flanagan, 2009). Technologies that provide this
type of feedback deliver forces that cause deformation, and
the strength of the stimulus is determined based on sensitivity
thresholds, which vary across the body.

Technology
Pressure stimulation is commonly provided by devices that
contact the skin with a single end-effector that can: (1) change
its properties, such as the shape in soft actuators (Koehler et al.,
2020) or the viscosity in electrorheological ormagnetorheological
fluids (Taylor et al., 1997; Jungmann and Schlaak, 2002; Jansen
et al., 2010; Yang et al., 2010; Kim et al., 2016), (2) tighten a band
around a body location, like the fingertip (Merrett et al., 2011),
wrist (Stanley and Kuchenbecker, 2012) or forearm (Meli et al.,
2018), and (3) press on the skin with a servomotor (Quek et al.,
2015b; Schorr and Okamura, 2017a) or a hydraulic, or pneumatic
actuator (Franks et al., 2008; Yem et al., 2015; Talhan and Jeon,
2018). For the latter solution, it is also possible to enlarge the
area of stimulation by increasing the number of end-effectors
in contact with the skin using a pin array matrix, i.e., a matrix
of actuators that can be activated separately. In order to provide
efficient tactile stimulation it is also important to consider the size
and density of the contact points, since these will affect the cost
and weight of the device, as well as its perceptual effect.

Applications for Enhancing Sensorimotor

Performance and Learning
Using force indentation at different orientations makes it possible
to display contact forces for multiple applications. Already in
1993, the technology was used to produce 2D and 3D graphic
display for haptic recognition of familiar objects and was tested

in blind and sighted participants (Shimizu et al., 1993; Leo et al.,
2016; Brayda et al., 2018). Since then, multiple tactile devices
with lightweight and compact mechanisms have been developed
to produce pressure stimulation, thereby providing a range of
tactile sensations including natural touch (Caldwell et al., 1999;
Chinello et al., 2015; Culbertson et al., 2018a), roughness (Kim
et al., 2009), softness (Frediani and Carpi, 2020), and texture
(Sarakoglou et al., 2005; Kyung and Park, 2007; Kim et al., 2009;
Garcia-Hernandez et al., 2011). In addition, pressure stimulation
was used for conveying directional cues (Raitor et al., 2017;
Agharese et al., 2018), and for rendering shape in virtual and
remote environments (Chinello et al., 2019).

Applications in Rehabilitation
In patients with digital nerve injury, stroking, and pressing
a pocket tactile stimulator and contacting the rotating
disc of a tactile stimulator improved functional sensitivity
measured by the smallest perceivable force using Semmes-
Weinstein monofilaments (Semmes et al., 1960), and the
shortest perceivable distance using a standardized two-point
discrimination test instrument (Dellon et al., 1987; Cheng, 2000).
In patients with complex regional pain syndrome of one limb,
tactile stimulation was shown to decrease pain and increase
tactile acuity when patients were required to discriminate
between the type and location of tactile stimuli (Moseley et al.,
2008). Skin pressure stimulation at the hallux and first metatarsal
joint of the feet applied to participants with Parkinson’s disease
increased step length and gait velocity and reduced cadence
compared with baseline measurements (Barbic et al., 2014). A
wearable tactile feedback system that was originally developed
for sensory augmentation of prosthetic limbs has been adapted
for individuals with bilateral peripheral neuropathy (McKinney
et al., 2014). Using thigh cuffs (one per leg) with silicone
balloons for conveying sensory information specific to each foot,
participants could modify their gait in real time (i.e., increase
walking speed, step cadence and step length). Although not
tested in populations undergoing rehabilitation, tactile vests
worn on the torso have been shown to create a variety of tactile
stimuli that could potentially be useful in applications such
as balance control training (Nakamura and Jones, 2003; Wu
et al., 2010). Also, pressure applied simultaneously to the thumb
and index fingers generated a perception of holding an object,
exhibiting the potential to provide a realistic haptic sensation in
virtual reality based rehabilitation (Merrett et al., 2011).

Applications for Conveying Social Tactile Cues
Culbertson et al. developed a device that creates a stroking
sensation using a linear array of voice coil actuators embedded
in a fabric sleeve worn around the arm. The voice coils were
controlled to indent the skin in a linear pattern to create
the sensation of a stroking motion even though only normal
force was applied (Culbertson et al., 2018a). As indicated
from participants’ ratings, to create a continuous and pleasant
sensation the device should be controlled with a short delay
and long pulse width (800ms, 12.5% delay). Another system,
the RemoTouch (Prattichizzo et al., 2010), was designed to
provide experiences of remote touch. The user perceives force
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FIGURE 2 | Skin deformation—tangential and stretch stimulation devices. (A) A wearable device that is comprised of pneumatic actuators to guide motion direction

(Kanjanapas et al., 2019). (B) The Rice Haptic Rocker that was designed to convey proprioceptive information to users of prostheses (Battaglia et al., 2019). (C) A

wearable device that was used to render virtual environment forces (Schorr and Okamura, 2017b). (D) An aperture and tactor skin-stretch device that was used to

study the contribution of tactile stimulation of the fingertips to motor adaptation (Avraham and Nisky, 2020). (E) The Tactile-STAR, a skin brushing stimulator (top right)

and a recorder (top left) that were used to assess and train tactile perception acuity. The device was specifically designed to be appropriate for use with stroke

survivors who may have difficulty in maintaining contact with an aperture and tactor type of a device (Ballardini et al., 2018).

feedback recorded by a human that wears a glove equipped
with force sensors. The measured contact force at the remote
interaction is fed back to the user through wearable tactile
displays for each finger. Preliminary tests show that the
realism of this remote experience largely improved with the
tactile feedback.

Assessment of Tactile Impairments
Sensitivity to pressure is often used as a measure of absolute
tactile sensitivity (for more details see Demain et al., 2013). The
most commonly used method to assess pressure sensation is the
Semmes–Weinstein monofilaments that are calibrated to apply
predetermined forces to the skin (Semmes et al., 1960; Bell-
Krotoski, 1984). Jacobs et al., suggested another approach for
examining the psychophysical detection threshold of pressure
stimulation of a prosthetic and a normal limb (Jacobs et al.,
2000). Stimulations were applied using a computer connected to
a probe and to a remote control that was operated by the patient.
The patient could control the amplitude of the pushing force by
pressing the remote control. To measure the detection threshold
the up-down method was used (i.e., the amplitude of the pushing
force was decreased until the patient did not feel the stimulation
and stopped pressing the remote control). Then, the amplitude
was increased until 16 reversals were obtained. This setup can be
modified for home-based assessment, possibly by using a smaller
controller instead of the computer.

Advantages and Disadvantages
Pressure stimulation enables rendering perceptual properties
such as shape, curvature, orientation, and texture (Gabardi et al.,
2016). However, sensitivity to pressure is largely dependent
on the area of stimulation (Stevens, 1982). In addition, while
multiple actuation approaches are available for applying pressure
to the skin, each approach is suitable for a different application.
Therefore, one should carefully consider the specifications of the
design that would be appropriate for the desired application.
Illustrations of pressure stimulation devices are presented
in Figure 3.

Mid-air
All the technologies described above require physical contact
between the device and the body to provide somatosensory
feedback, and the energy produced by the actuators is transferred
to the skin through a solid medium. This allows efficient energy
transduction, creating natural haptic sensations with the aid
of appropriate contactors to the skin. However, these solutions
present some limitations: (1) they do not exploit arbitrary body
locations, i.e., can deliver feedback only at a location close to
the device’s end effector, (2) they may cause undesired effects
due to the continuous contact between the skin and the devices,
and (3) if used by different individuals, they require cleaning
and disinfecting, especially in light of the recent COVID-19
related recommendations (Thomas et al., 2020). Several recent
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FIGURE 3 | Skin deformation—pressure stimulation devices. (A) A wearable finger device that was designed and tested in virtual reality applications (Chinello et al.,

2019). (B) The RemoTouch system that provides experience of remote touch (Prattichizzo et al., 2010).

developments address these limitations by proposing mid-air
technologies. They transmit the energy of the stimulus through
air, avoiding the direct contact with the skin.

Technology
One of the main approaches to creating mid-air stimulation
relies on ultrasonic waves, typically at 40 or 70 kHz frequencies
(for survey see Rakkolainen et al., 2019). In this type of mid-
air tactile stimulation the sensation is caused by a non-linear
effect of focused ultrasound called acoustic radiation force, which
induces a shear wave in the skin, creating a displacement,
which triggers themechanoreceptors within the skin and evoking
mainly a pressure sensation (Gavrilov and Tsirulnikov, 2002).
Most ultrasound haptic systems targeting the hand trigger the

Lamellar corpuscles (Rakkolainen et al., 2019). In other body
locations ultrasound can trigger other mechanoreceptors, such
as Meissner corpuscles on the face (Gil et al., 2018), and Ruffini
corpuscles orMerkel disks on the upper limb (Suzuki et al., 2018).

The most widely used technological solution to evoke
tactile sensation with ultrasound is based on phased arrays of
transducers, i.e., multiple transducers whose phase and intensity
can be controlled individually, with a defined timing. In this way,
the focused ultrasound waves can generate one or more localized
regions of pressure in the 3D space, called focal points, without
moving or turning the device. These focal points cannot be fully
singular because of secondary peaks and wavelength limitations
(Rakkolainen et al., 2019). However, several focal points can be
controlled together to create shapes (Long et al., 2014) or textures
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(Monnai et al., 2015; Freeman et al., 2017). If the radiation force
is modulated at the 1–1 kHz range the ultrasound waves can also
evoke a vibratory sensation in addition to the pressure sensation
(Hasegawa and Shinoda, 2013; Howard et al., 2020; Rutten et al.,
2020).

Applications for Enhancing Sensorimotor

Performance and Learning
The use of focused ultrasound as a non-invasive method of
stimulation has been studied since the early 1970s (Gavrilov
et al., 1977). Recently, this technology was used for several
proof-of-concept applications, including creating floating 2D
icons (Gavrilov, 2008) and 3D haptic shapes (Long et al., 2014;
Monnai et al., 2014; Vo and Brewster, 2015; Makino et al.,
2016), interacting in a virtual reality environment (Romanus
et al., 2019; Howard et al., 2020), and gesture interaction (Shakeri
et al., 2017, 2018). To the best of our knowledge, mid-air haptic
devices have not yet been used for rehabilitative purposes or for
somatosensory assessment.

Applications for Conveying Social Tactile Cues
The communication of emotions through a haptic system that
uses tactile stimulation in mid-air communication was explored
by Obrist et al. and showed promising results of interpretability
of emotions (Obrist et al., 2015). Despite these promising results
the application of ultrasound devices for conveying emotions and
social interaction has not yet been extensively investigated.

Advantages and Disadvantages
The major advantage of this emerging technology is its not
requiring contact with the body, while easily and efficiently
creating static or dynamic textures and volumetric shapes.
Another important advantage is that commercial devices are
available that use this technology, even at this early stage. In
its current state, this technology has some inherent limitations
that may have an impact on potential applications, including
the size and the weight of the transducers (Rakkolainen et al.,
2019) and the low intensity of the force conveyed to the user,
which is at most 160 mN (Tsalamlal et al., 2013), and so
does not allow the rendering of real-word interaction forces.
Nevertheless, we anticipate that mid-air solutions will develop in
the next few years, and we foresee that they will be designed for
rehabilitation purposes and clinical assessments. Illustrations of
mid-air stimulation devices are presented in Figure 4.

DISCUSSION

The COVID-19 pandemic is currently placing significant
pressure on health services including rehabilitation services,
worldwide. The reduced access to rehabilitation care due to
restrictions as well as the reduction in rehabilitation services as
a consequence of reassignment of rehabilitation professionals to
acute care and the transformation of rehabilitation facilities into
makeshift inpatient wards (Boldrini et al., 2020a; Chaler et al.,
2020) are expected to lead to long-lasting negative consequences
for individuals with disabilities (Boldrini et al., 2020b). In fact,
these are only the tip of the iceberg when considering the
long-standing and more severe problem of limited resources in

hospital care together with the rising number of individuals with
chronic diseases (Koh et al., 2015; Steihaug et al., 2016; Dodakian
et al., 2017).

Remote communication technologies, as well as technologies
developed for home-based telerehabilitation, have the potential
to support neurorehabilitation care and make breakthroughs
in treatment by facilitating continuous and intensive training.
The emerging technological solutions reviewed in the current
paper highlight the promise of wearable tactile stimulation
devices to enhance home-based rehabilitation training gains
by the provision of tactile feedback and haptic interactions.
These technologies seem propitious and attractive for home-
based rehabilitation: the devices are wearable, portable, and
relatively low cost (estimated cost between tens and hundreds
of dollars). Moreover, some of these technologies can easily be
integrated into virtual/telerehabilitation environments (Feintuch
et al., 2006; Bortone et al., 2018; Wang et al., 2020).

However, despite technological advantages and great potential
for home-based practice, to date, tactile feedback devices have
not yet evolved into common solutions for rehabilitation. There
are still challenges that need to be met in a joint effort between
sensorimotor neuroscientists, technology developers and
clinicians in order to successfully integrate tactile technologies
into neurorehabilitation programs. We review these challenges
in the remainder of this section.

Testing Training Effects on Large Patient
Populations
Most tactile device prototypes were tested on healthy individuals
or on small cohorts of patients and their effects need to be
further examined: (1) on larger patient populations, ideally in
randomized controlled trials, (2) over longer training periods,
and with long-term follow up assessments to evaluate whether
improvements observed immediately post training have been
retained after training is completed and (3) with respect
to outcome measures relevant to the daily life function of
the patients. Studies conducted on healthy individuals often
focus on laboratory parameters, while in patients undergoing
rehabilitation exploring whether training effects have transferred
to daily life activities is of clinical significance. As was
demonstrated above, few such examples exist in the literature;
however, these are the exception and not the rule, and more
studies are needed. Several factors contribute to the difficulty
of overcoming this challenge. First, the lack of collaborations
between technology developers, researchers, clinicians, and
rehabilitation facilities. Second, it is difficult to secure funding
for such large-scale studies. Third, the facts that most tactile
devices are not commercially available and do not have medical
device safety approval limits the ability to easily test them on
patient populations.

Translation Into Clinical Practice
To integrate tactile stimulations into rehabilitation training it is
critical to identify the optimal method to provide the feedback
and the patients that would benefit from such training. The
feedback provided by some common devices might be difficult
to interpret and integrate. Also, the tactile stimuli patterns might
not be intuitive or might be too complex for the user, due to
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FIGURE 4 | Mid-air devices. (A) The Ultraleap device (https://www.ultraleap.com/). (B) Its application to interaction with a virtual reality environment (Howard et al.,

2020).

either the number of tactile motors forcing the user to process
a redundant set of signals, or to the encoding methods that may
require specific attention (Brewster and Brown, 2004; Ballardini
et al., 2020). This is especially important for patients undergoing
rehabilitation training, who are often at the initial stages of
learning that already require a relatively high degree of cognitive
effort and attention (Fitts and Posner, 1967). Moreover, some
neurological patients suffer from cognitive and attention deficits,
and hence, to benefit from added information, the feedback
must be simple (Van Vliet and Wulf, 2006). Additionally, the
cognitive load of interpreting tactile cues in applications where
the patient’s attention is divided among multiple tasks, and how
this might reduce the saliency of the cues, should be further
explored (Gleeson et al., 2010b; Shah et al., 2018).

The optimal timing of providing somatosensory feedback also
needs to be examined. For example, providing feedback for the
entire duration of training can improve short term performance,
but may limit motor learning. Conversely, providing feedback
for only portions of training might produce poor initial
performance, but improve motor skill retention (Winstein
and Schmidt, 1990). Moreover, the conditions under which
tactile feedback is most effective at improving task performance
should be examined (e.g., whether it is most effective when
supplementing another modality), as well as the temporal and
spatial patterns and the location for applying the stimulation.

In addition, affective haptic feedback, used to render realistic
feelings, has the potential to enhance remote patient-therapist
communication. It can also be applied to reinvigorate the
patient’s interest when he/she is bored or frustrated during
practice (Eid and Al Osman, 2015). While wearable haptic
devices were designed to replicate a specific interaction or gesture
such as comfort and affection (Culbertson et al., 2018a; Nunez
et al., 2019, 2020), attention (Baumann et al., 2010) or social
presence (Baldi et al., 2020), further exploration is needed in
order to gain a better understanding of how to create realistic
sensations, how to display them in complete synchronization
with other display modalities (i.e., visual, auditory, olfactory,
etc.), and how to integrate them in the right context during
remote rehabilitation sessions. Other important challenges relate
to touch etiquette in social interaction and how to incorporate

social, cultural and individual differences with respect to the
acceptance and meaning of affective touch (Eid and Al Osman,
2015).

Using the Technology at Home
Although the devices seem promising for home use and some
have already been tested in at-home practice (Bao et al., 2018;
Seim et al., 2020a,b) some gaps still need to be bridged in
this regard. First, further studies are needed to explore the
feasibility of using tactile devices by patients undergoing home-
based telerehabilitation: whether patients can correctly wear and
operate the device without assistance, whether the form of the
device is compatible for patients with different impairments,
the adherence of using or wearing the device (Seim et al.,
2020a), and safety and technical problems that may arise when
using it during the training period (Seo et al., 2020). Second,
tactile devices need to be integrated into already existing or
new telerehabilitation/virtual reality systems to provide the whole
framework of sensorimotor training (Feintuch et al., 2006).

Rehabilitation platforms that are capable of intelligent,
adaptable tactile feedback configurations, adjustable in terms
of difficulty level, capable of measuring performance and
progression and of providing exercises relevant to daily living
activities as well as motivating the user’s engagement could
provide a more tailored training intervention to maximize
improvements (Shull and Damian, 2015; Navarro et al.,
2018). Additionally, there are other important issues related
to telerehabilitation in general, such as web communication
between the therapist and the patient, information security, and
data storing that are beyond the technical-clinical outlook of
our review.

CONCLUSIONS

The COVID-19 pandemic has highlighted the need for
home-based telerehabilitation and at the same time has
accelerated the adoption of a digital culture worldwide.
Exploiting this opportunity together with the rapid developments
in wearable haptic technologies offers a time window to advance
sensorimotor neurorehabilitation, elevating it to innovative
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solutions for home-based therapies. Although there remain
gaps and challenges that still need to be addressed jointly by
scientists, technology developers and clinicians, wearable haptic
devices, if correctly adapted, could potentially turn into cost-
effective medical devices for use at home by individuals in need
of rehabilitation treatments. The integration of tactile devices
into home-based telerehabilitation practice has the potential to
enhance patients’ functional gains and quality of life through
practice in an enriched environment with augmented tactile
feedback and tactile interactions.
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