6

Conclusion

The goal of this thesis has been to propose and validate novel machine and
deep learning methods and, in particular, to cope with some of the limi-
tations which usually restrict their range of applicability. This is achieved
by integrating statistical modeling in order to inject as much a priori in-
formation as possible. Indeed, in the last years, several new remote sensing
technologies have been designed, developed, and deployed. At the same time,
future sensors and missions are already on sight, being planned every day.
In contrast with the constant evolution of the quality and typology of the
sources of information, the availability of automatic methods able to jointly
exploit all the complementary data sources is almost steady.

The ideal solution would be exploiting the huge power that deep learning
has shown in many aspects of signal processing. However, the field of remote
sensing is cursed by the huge amount of available data together with the
scarcity of ground truth data which can be used for training the models.
For that reason, the vast majority of supervised method struggles to find
its way through the remote sensing field. It is in fact very hard to get a
vast and reliable training set by crowdsourcing, as ImageNet was created for
object recognition, both due to the generally higher difficulty for non expert
to interpret the multisource data they see and to the fact that many datasets
are still classified and not publicly available. For that reason, applications
based on deep learning methods risk to remain limited to the benchmark
datasets and online competitions, fighting for few additional score points
without ever seeing the light in a real case scenario. The aim of this thesis is
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trying to overcome such limitations by integrating statistical modeling and
being able to exploit the power of machine and deep learning in the whole
procedure which lead from the raw data to the final product.

In this framework, first, in the context of multisensor image registration,
an approach capable to exploit the domain adaptation and image-to-image
translation capabilities of conditional generative adversarial networks has
been proposed for registration purposes. The idea was to to transform a
multisensor registration problem into a simpler, more canonical and faster-
to-solve single-sensor registration problem. This was done by translating the
optical image into the SAR domain, by creating a fake SAR image. The
major cost was the necessity of having some coregistered optical and SAR
patches to train a ¢cGAN. But, once the model was trained, the generated
fake SAR image was in most cases so accurate to be almost impossible to be
distinguished from the real SAR image by a human. At this point, the great
advantage to reduce the computation cost of the problem was the use of a
very simple correlation-type metric to match the real and fake SAR images.
Remarkably, such correlation-type metric are usually ineffective in the appli-
cation to multisensor image registration, but has been made effective within
the proposed approach thanks to the integration of the registration method
with the powerful image translation capabilities of the ¢cGAN architecture.
The experimental results suggested the capability of the method to obtain
sub-pixel error and /or visually accurate results, exhibiting a rather small im-
pact of seasonality issues and outperforming a previous area-based approach
that used an information-theoretic metric. Moreover, the method proved to
be also resilient to the application to different resolutions and to data with
different distributions without retraining or even fine tuning.

Second, an approximation of a fully connected conditional random field
designed to work with convolutional neural networks has been proposed.
When beyond the context of online competitions and benchmark datasets,
no detailed pixel-level ground truths are available for training the models.
The resulting weakly trained CNN models tend to provide results with much
less accuracy and usually cannot even match the accuracies of other, more
consolidated, state-of-the-art methods. For that reason, the idea was to
integrate as much a priori information as possible in the resulting maps. The
ideal solution would be a fully connected conditional random field, which is
however intractable from the computational viewpoint. Then, the proposed
approach integrates intermediate information acquired by the inner layer of




the CNN in the form of activations (which are usually discarded after the
classification) so to define long range relationships among the pixels. This
is done by applying a clustering process to a tensor which includes both
original input data and increasingly semantic information coming from the
network. Thanks to the additional structure made of clusters, it was possible
to deploy an approximation of a fully connected CRF, capable of enforcing
inference thought pixels across the image, regardless of their spatial distance.
The proposed method has been validated on two well-known subdecimetric
semantic segmentation benchmark datasets, in conjunction with two different
CNN architectures. The proposed method has proven able to partially fill
the gap between the densely and weakly trained models, by retrieving objects
that were even completely missed by the CNN, and to outperform even the
most recent state-of-the-art methods.

Finally, a large scale multi-sensor data fusion method has been pro-
posed. The method is based on consensus theory, Markov random fields
and integrates a Cascade approach and consists of specific formulations and
implementations which allow the application of such methods to very large
scale scenarios within reasonable computational times. The idea was to re-
formulating the iterated conditional modes minimization algorithm so that
is could be performed by mean of a convolution operation. Thanks to the
the interest acquired by such specific operation due to convolutional neural
networks, highly optimized strategies for performing convolutions are avail-
able. Several stages of validation, starting from the most specific case up
to a quantitative validation over an entire subcontinental area, proved the
proposed method to be able to greatly improve the results as compared to
what could be achieved using single-sensor Sentinel-1 and Sentinel-2 time
series. The proposed method is capable of discriminating the correct infor-
mation from the input data sources though logarithmic opinion pool and to
enforce contextual information through MRF. Then, for what regards histor-
ical classification, the proposed method is capable of integrating a cascade
approach and enforcing temporal coherence into the classification maps and
to recover errors caused by scarcity of input images in the past. For what
regards the computational complexity, a central aspect when dealing with
such large scale applications, the proposed methods proved to be remarkably
fast. In fact, thanks to the proposed formulation, the time required to run
MRF on a full 10 meters resolution Sentinel-2 tile, which has an extension
of 10980 x 10980 pixels, is of about 8 minutes on a standard desktop ma-
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chine. In the historical case, the corresponding 30 meters resolution tile has
an extent of 3660 x 3660 pixels and the whole processing including MRF and
Cascade requires and average of 30 to 40 seconds only.

The previous paragraphs have been meant to briefly recall the conclu-
sions related to the specific methodologies that have been proposed in this
thesis. Nevertheless, it is also worth analysing the possible impact of the
proposed methods from a broader perspective. A whole end-to-end deep
learning framework would allow to open new possibilities to more and more
accurate studies related to several EO crucial aspects, first of all, climate
changes. This is in fact receiving primary attention by the remote sensing
community and, in particular, by the space agencies. The collection of radar
and optical data by Sentinel-1 and Sentinel-2, which is made available by
the European Space Agency, together with the Landsat archives by NASA
and USGS, and the recent international contests organized by communities
like the IEEE Geoscience and Remote Sensing Society, are a clear example
of such an interest. Given the huge success that deep learning methodologies
are having in many other fields, they are catching more and more attention
by the remote sensing community. Indeed, they allow integrating comple-
mentary data sources in diverse applications and, due to the heterogeneous
nature of their input data, are flexible enough to meet the requirements of
the ever growing sets of diverse data that are currently available and that
will be available in the future. However, several obstacles usually arise, in
particular in relation with the need of training data for such models. This
thesis tries to tackle down some of these issues, opening the applicability of
deep learning solutions to real case remote sensing applications, both con-
sidering the current perspectives and the ones which can be projected in the
next future.
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