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Abstract 

Ventricular abnormal potentials (VAPs) identification 

is a challenging issue, since they constitute the ablation 

targets in substrate-guided mapping and ablation 

procedures for ventricular tachycardia (VT) treatment.  

In this work, two approaches for the supervised 

classification of VAPs in bipolar intracardiac 

electrograms are evaluated and compared. To this aim, 

954 bipolar electrograms were retrospectively annotated 

by an expert cardiologist. All signals were acquired from 

six patients affected by post-ischemic VT by the CARTO3 

system at the San Francesco Hospital (Nuoro, Italy) during 

routine procedures.  

The first classification approach was based on a 

support vector machine trained and tested on four different 

features, extracted from both the time and time-scale 

domain, to identify physiological and abnormal potentials. 

Conversely, in order to assess the significance of the first 

approach and its features, in the second approach all the 

samples constituting a time-domain segment of each 

bipolar electrogram were given as input to a feed-forward 

artificial neural network.  

In both cases, the accuracy in VAPs and physiological 

potentials identification exceeded 79%, suggesting their 

efficacy and the possibility of VAPs automatic recognition 

without identifying peculiar features.  

 

 

1. Introduction 

Among ventricular arrhythmias, ventricular tachycardia 

(VT) is frequently associated with sudden cardiac death, 

thus representing one important factor of increased risk of 

mortality. For these patients, although implantable 

cardioverter-defibrillators can be effective to terminate the 

VT, they cannot avoid its onset [1]. Substrate-guided 

mapping and catheter ablation in sinus rhythm (SR) 

represent one of the most successful treatments for VT [2], 

[3]. These clinical procedures aim at identifying slow 

conduction areas within the damaged myocardial substrate 

in SR, which are characterized by electrograms affected by 

ventricular abnormal potentials (VAPs), in order to silence 

them through catheter ablation [2], [3]. Specifically, the 

arrhythmia substrate of sustained VT is mostly identified 

in scar-related re-entrant circuits, which can be caused by 

prior myocardial infarction or other non-ischemic causes 

[1]. However, besides relying on the same principle, many 

different strategies for substrate-based ablation have been 

developed [4].  

In the clinical practice, different 3D mapping systems 

are adopted by expert operators in order to recognize VAPs 

during substrate-guided mapping and ablation procedures, 

such as EnSite Precision (Abbott, Chicago, IL, USA), 

CARTO3v6, (Biosense Webster, Diamond Barr, CA, 

USA) and Rhythmia HDx (Boston Scientific, Cambridge, 

MA, USA). Since ablation outcomes strongly depend on 

the identification of VAPs, several supporting mapping 

tools and identification algorithms have been recently 

proposed, such as the CARTO3 Ripple Mapping Module 

[5], the simultaneous amplitude frequency electrogram 

transformation mapping [6], the Ensite Precision 

fractionation map [7], the Lumipoint algorithm [8], the 

fragmentation map [9] and the combination of voltage 

limit adjustment with the Fast Fourier Transform [10]. 

However, all these algorithms base the VAPs recognition 

on the adoption of thresholds empirically defined on 

specific indexes, without the adoption of machine learning 

tools.  

On the basis of our previous findings [11], in this work 

a comparison of two different approaches to the supervised 

classification of VAPs and physiological potentials is 

presented, aiming to support operators in the identification 

of VAPs during ablation procedures. Both approaches 

were evaluated on a dataset composed of 954 beats from 

six subjects affected by post-ischemic VT.  

In the first approach, two time-scale features by the 
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continuous wavelet transform (CWT) and two time-

domain features were extracted to train a support vector 

machine (SVM) classifier. In the second approach, in order 

to assess the significance of the first method and the actual 

need of exploiting features to solve the classification 

problem, an artificial neural network (ANN) trained and 

tested on time-domain segments of the same intracardiac 

potentials was implemented.  

 

2. Materials and Methods 

2.1. SVM-based approach 

In the first method [11], four features (Pearson’s 

correlation coefficient below 0.83) from the time-scale and 

time domain were identified for the automatic recognition 

of VAPs.  

Initially, in order to remove noisy oscillations of the 

signal that could affect the subsequent feature extraction, a 

translation-invariant wavelet denoising was performed on 

each intracardiac electrogram [11]. Then, from each 

denoised electrogram, a 350 ms window, including 50 ms 

before and 300 ms after the reference annotation, was 

selected. On this window, the CWT decomposition was 

computed considering all the scales covering the signal 

spectral components between about 16 Hz and 500 Hz. 

Then, the sum and standard deviation of the average 

powers on the five most powerful scales were considered 

as time-scale domain features.  

As regards the time-domain features, the peak-to-peak 

amplitude of each bipolar electrogram and a fragmentation 

measure were considered, the former emphasizing the high 

voltage signals (>1.5 mV) with respect to those originating 

from scar-related areas, while the latter to highlight 

fragmented electrograms typically associated with slow-

conduction areas.  

Finally, a SVM classifier with radial basis function 

(RBF) kernel, ν set to 0.5 and box constraint to 1, was 

trained and tested with these features.  

 

2.2. ANN-based approach 

In the second classification approach, the same time-

window of 350 ms around the reference point was adopted 

and the samples composing the time-domain course of 

each raw intracardiac electrogram were considered as input 

for an ANN classifier.  

For this purpose, a pattern recognition feedforward 

network composed of one hidden layer of ten neurons was 

adopted with the Levenberg-Marquardt back-propagation 

algorithm. 

 

2.3. Dataset 

In order to carry out the assessment, a real dataset 

composed of 954 bipolar intracardiac electrograms was 

adopted. In Figure 1 an example of bipolar intracardiac 

electrograms of the dataset is shown.  

Bipolar electrograms were manually annotated by an 

expert cardiologist as VAPs or physiological potentials. 

The manual labelling was performed in a retrospective 

analysis by looking at the intracardiac signals 

morphologies and timings with respect to the 

corresponding simultaneous surface ECG recordings.  
Signals were acquired from six patients affected by 

post-ischemic VT at the San Francesco Hospital (Nuoro, 

Italy) between 2017 and 2018 during electroanatomic 

mapping in SR. Bipolar electrograms recordings 

constituting this dataset was performed by the CARTO3 

system at a sampling frequency of 1 kHz with an embedded 

band-pass filter between 16 Hz and 500 Hz. Usual clinical 

protocols were adopted for the subsequent radiofrequency 

catheter ablation.  

As in [11], only the ending portion of each 2.5 s-long 

recording was exploited for the classification. In this 

regard, the annotation of the reference point, automatically 

saved by the CARTO3 acquisition system, easily allowed 

the identification of each beat of interest.  

 
3.4. Performance evaluation 

In order to provide an objective quantitative evaluation 

of the proposed approaches, both classification methods 

were trained and tested with a 10-times 10-fold cross-

 

 

Figure 1: Examples of bipolar intracardiac electrograms 

constituting the real dataset adopted in this work.  
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validation scheme. Specifically, stratified partitions were 

adopted following the class proportions in the dataset (i.e., 

around 64% of normal beats and 36% of VAPs) to avoid 

discarding physiological examples or introducing unreal 

VAPs by means of oversampling methods. For each fold, 

90% of the samples were divided into 80% for training and 

10% for validation. The remaining 10% was used for test. 

Four performance indexes were computed: the accuracy 

(ACC), the True Positive Rate (TPR), the True Negative 

Rate (TNR) and the Positive Predictive Value (PPV):  

ACC = 
TP + TN

P + N
 (1) 

TPR = 
TP

P
 (2) 

TNR = 
TN

N
 (3) 

PPV = 
TP

TP + FP
 (4) 

where P and N represent the abnormal and physiologic  

class sizes, TP and TN the number of abnormal and 

physiologic potentials correctly identified, respectively, 

while FP the normal electrograms classified as VAPs. 

 

4. Results 

In Table 1, the mean (µ) and standard error of the mean 

(s.e.m) computed across the 10-times 10-fold cross-

validation are reported for each performance index and 

classification approach.  

The accuracy results point out that the classification 

performances are quite high and stable for both  proposed 

methods. However, focusing on the percentages of TPR 

and TNR, their values are rather different. These findings 

suggest that the recognition of abnormal and physiological 

classes is not well-balanced. It is mainly true for the ANN 

classifier, which manages to recognize the physiological 

observations more correctly compared to the abnormal 

ones (i.e., significantly higher TNR than TPR). On the 

other hand, same conclusions can be drawn  for the SVM-

based approach, which however classifies the two classes 

in a slightly more homogeneous way. Nonetheless, PPV 

values underline that both approaches exhibit high 

precision.  

For the sake of completeness, the confusion matrices for 

the best and worst cases identified for each classification 

method are reported in Figures 2 and 3.  

 

5. Conclusions 

In this work, a comparison between two different 

classification methods for the automatic identification of 

VAPs in intracardiac bipolar electrograms was presented. 

The first approach was based on a SVM classifier trained 

on time-scale domain and time domain features, while the 

other one on an ANN trained on the time-course of each 

 

 
 

 

Figure 2: Confusion matrix related to the best (top) and 

worst (bottom) accuracy results obtained with the ANN 

approach over the 10-times 10-fold cross-validation. 

 

Table 1. Mean and standard error for all performance 

indexes across the 10-times 10-fold cross-validation tests. 
 

Index 
ANN 

µ 

ANN 

s.e.m 

SVM 

µ 

SVM 

s.e.m 

Acc[%] 79.3 % 1.5 % 79.4 % 1.0 % 

TPR[%] 62.1 % 1.8 % 71.7 % 1.4 % 

TNR[%] 89.2 % 1.3 % 83.8 % 1.3 % 

PPV[%] 77.6 % 2.2 % 72.1 % 1.9 % 
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bipolar recording. The latter was introduced in order to 

assess the actual need of exploiting features in the 

automatic VAPs recognition. Apart from our previous 

investigation, to the best of the authors’ knowledge, this is 

the first time that artificial intelligence tools for VAPs 

recognition have been exploited.  

Classification results showed high accuracy for both 

proposed methods, with some differences in terms of false 

positive and negative rates according to the chosen 

identification approach. These findings, which underline 

the possibility of an automatic recognition of VAPs also 

without trying to identify some peculiar features 

characterizing abnormal and physiological potentials, are 

promising. Due to the limited number of patients, a 

validation on a larger dataset will be pursued. 
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Figure 3: Confusion matrix related to the best (top) and 

worst (bottom) accuracy results obtained with the SVM 

approach over the 10-times 10-fold cross-validation. 
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