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Abstract: The Mediterranean Sea is one of the most impacted basins in terms of microplastics pollu-
tion. Land-based activities are the major sources of plastic litter to the ocean, with harbors probably
representing significant hotspots. In the framework of the SPlasH! project (Stop alle Plastiche in H2O,
Interreg Marittimo project), microplastics were sampled in three north-western Mediterranean har-
bors during summer and winter. In this study, the areal concentrations of microplastics ranged from
5576 to 379,965 items·km−2. A decreasing gradient was observed from the inner to the outer zones of
the studied harbors, pointing out these enclosed systems as hotspots regarding microplastic pollution.
During summer, the areal concentrations of microplastics were higher than in winter, which could
be explained by an enhancement of port activities leading to MPs production. The investigation
of microplastics size classes distribution in the surface waters revealed that microplastics within
the size range between 300 µm and 500 µm were the least represented. In this study, we assessed
trace metal (Pb, Fe, Cu, V, Cd and As) bioaccumulation by the biofilm which developed on the
surface of microplastics. The results highlighted that concentrations within the biofilm were higher
than those in the surrounding waters. This result strongly suggested trace metal bioaccumulation
on microplastics through biofilm formation. When trace metal concentrations were normalized
over the corresponding surface of microplastics and macroplastics, higher values were obtained for
microplastics, evidencing their enhanced capacities to bioaccumulate contaminants when compared
to macroplastics.

Keywords: microplastic; harbor; trace metal; Mediterranean Sea; biofilm; bioconcentration

1. Introduction

Microplastics (MPs) are artificial particles of plastic within a size range below 5 mm.
Because of their wide distribution over the global ocean, MPs pollution and its impact on
ecosystems is getting an increasing attention. Plastics have been mass-produced since the
60′s, with a substantial increase observed during the last years [1], thus resulting in the
MPs widespread in marine environments. MPs are defined as primary microplastics when
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they are emitted in the form of scrubbing agents or secondary microplastics when they
result from the degradation of larger plastics, by photodegradation, mechanical abrasion
and/or weathering for example [2].

The Mediterranean Sea hosts 17,000 species, thereby contributing by 7% to the world’s
ocean biodiversity [3]. On the other hand, human impacts have contributed to threaten
this ecosystem since the industrial revolution, resulting in habitat destruction, pollution
and eutrophication [4]. The Mediterranean Sea is an oceanic basin representative of an
enclosed mini-ocean. Its own conveyor belt and its fast circulation with respect to the
global ocean make it highly reactive to external forcing, especially matter fluxes at the
interfaces [5]. In fact, in terms of MPs pollution, the Mediterranean Sea is one of the most
impacted basins within the global ocean [6,7], with reported concentrations comparable to
those of the subtropical ocean gyres [8]. These high concentrations are the result of high
human pressure, resulting from land-based plastic wastes [9] and of the long residence
times of surface waters [7].

In these populated and industrialized coastal areas, harbors are receiving MPs inputs
from the coast, therefore representing hotspots for plastic pollution [9,10] and consequently
sources to the open ocean. Furthermore, harbors gather industrial and transport activities,
an additional source of MPs into local waters but also to the open sea [11]. Today, although
there is evidence that MPs pollution could have a strong impact on harbors ecosystems, its
magnitude is still poorly resolved.

In seawater, MPs are rapidly colonized by marine microorganisms, which adhere to
their surface through a complex matrix of extracellular polymeric substances (EPS) includ-
ing, among others, polysaccharides, proteins, lipids and DNA [12], forming a biofilm. This
3D-structure offers microorganisms a protective layer from the external environment [13].
Inorganic contaminants can bioaccumulate on the biofilm through complexation with
bacterial EPS, occurring at the surface of the cells, or through intracellular biosorption [14].
Hence, biofouled MPs can bioaccumulate inorganic and organic contaminants [15,16],
increasing their chance to enter food webs [17]. In this way, MPs, being disseminated
through currents, can be a vector pathway for contaminants over large spatial scales but
also through trophic networks if ingested.

In the framework of the INTERREG-Italia-France Marittimo Splash! Project (Stop alle
Plastiche in H2O!, http://interreg-maritime.eu/web/splash (accessed on 16 December
2020)), three north-western Mediterranean harbors: Toulon (TLN) in France, Genova (GEN)
and Olbia (OLB) in Italy were sampled in winter (W) 2018 and summer (S) 2019 in order to
characterize MPs pollution and biofilm-related inorganic contaminants.

2. Materials and Methods
2.1. Sampling

Toulon is an urban area in the south-eastern France, with approximately
600,000 inhabitants. The bay is a shallow semi-enclosed area, separated in two parts
by a dyke (Figure 1). The small bay (10 km2), at the west, is close to the town and thus
mostly hosts all the anthropogenic activities (marina, industry, commercial traffic, French
Navy, raw sewage and mussel farms). The large bay (42 km2), at the east, is connected to
the offshore which favors water exchange [18]. Two rivers flow into the bay of Toulon. In
the western part, the Las river and in the eastern part the Eygoutier, with drainage basins
of 60 km2 and 70 km2, respectively.

http://interreg-maritime.eu/web/splash
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Genova is located in the north-western Italy and hosts an urban area reaching
580,000 inhabitants. The inner harbor waters are separated from the open sea by a seawall,
with eastern and western entrances, and the inner harbor also hosts the river Sampier-
darena channel (Figure 1). There is a wide range of activities inside the harbor. The western
harbor hosts the majority of industrial activities, with a coal power plant, ore tanker, chemi-
cal, steel and container terminals (http://www.porto.genova.it/ (accessed on 16 December
2020).

In addition, the Polcevera river, with a catchment surface area of 140 km2, flows in the
western part of the harbor. The eastern harbor is influenced by the Bisagno river with a
catchment surface area of 93 km2 [19] and also hosts industrial and commercial activities
with dry docks, shipyards and a ferry terminal.

Olbia is located in the north-eastern Sardinia (Italy) with an urban area of
60,000 inhabitants. The harbor hosts a ferry terminal, an industrial zone dock, a ma-
rina and mussel cultures. The Padrogiano river with a drainage basin of 450 km2, flows to
the northern area of the harbor (Figure 1).

Sampling transects (n = 1 per season) were performed in the inner and outer areas
of each harbor (Orange lines, Figure 1). Microplastics were collected from surface water
using a Manta net with a 60 × 16 cm rectangular mouth and 300 µm mesh. Manta net was
trawled in the seawater surface (first 10 cm) for 30 min to 1 h with a speed of 2.5 knots.
To recover MPs, the manta net was gently rinsed with surface seawater, flushing all the
fragments inside a collector. The sampled surface was calculated by measuring the distance
between the beginning and the end of the sampling using a GPS tracker and multiplying
it by the net opening area width. This allows us to calculate a quantity of MP items as a
function of surface, hereafter labelled as areal concentration, or a mass of MPs as a function
of surface, hereafter labelled mass areal concentration. In addition, the water volume
was calculated by multiplying the sampled surface by the immersed net opening length
corresponding to 10 cm.

The samples were transferred into 1 L Pyrex bottle with surface seawater (locally
sampled) and stored at −20 ◦C until analysis [20]. Unlike the other harbours, in Genova,
the sample also contained some pieces of macroplastics (sizes ranging between 30 and
100 mm) of different composition (bottle ring, rubber band, film, . . . ). In order to assess
the relationship between plastics sizes and trace metal bioconcentration, these pieces were
kept and processed the same manner as for MPs. Inorganic contaminants in MPs and
macroplastics were compared to determine the bioaccumulation according to surface size.

2.2. Sample Treatment

The first step of sample treatment consisted of a visual identification and separation
of microplastics, with a binocular loupe (Leika) and trace metal clean forceps, thanks to
their shape, color, opacity and texture. As a matter of fact, for the size range studied here
(>300 µm), polymer particles are generally straightforward to discriminate from mineral or
vegetal particles by an experienced operator on the basis of brightness, hardness, stiffness
and absence of striation [21].

Then, for each sample, all the collected MPs were gathered, and immersed for 24 h
into 5 mL of a 0.1 M NaOH solution (30%, suprapur) to extract the MPs biofilm. After im-
mersion, the solution was filtered through 0.2 µm cellulose acetate syringe filters (Sartorius,
Minisart, Goettingen, Germany). Then 4.5 mL MilliQ water and 500 µL of peroxide hydro-
gen (30%, suprapur) were added to the solution which was irradiated in a UV-digester
(Metrohm, Herisau, Switzerland) for 12 h. The recovered extract was acidified with HCl
(37%, suprapur) for preservation and trace metals were analyzed using an ICP-MS (Perkin
Elmer NexIon 300X, Waltham, MA, USA).

After biofilm digestion and separation from the solution through filtering, the dried
fragments were weighed and one-by-one digitally recorded using a Zooscan V4, version
2.4.0. This technology was initially designed for zooplankton and phytoplankton iden-
tification and has recently been adapted for microplastics identification [22]. Using the

http://www.porto.genova.it/
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web application Ecotaxa (ecotaxa.obs-vlfr.fr), counting, maximum length and surface were
determined. Based on their length, MPs were partitioned according to the following size
classes: 300–500 µm, 500–1000 µm, 1–2 mm, 2–3 mm, 3–4 mm, 4–5 mm by site. The influ-
ence of the season and sites on MPs areal concentrations, class distribution and inorganic
contaminants was tested by one-way ANOVA (F) or non-parametric Kruskal–Wallis tests
(H) after checking normal distribution and homogeneity of variance.

3. Results and Discussion
3.1. Microplastics Areal Concentrations in the North-Western Mediterranean Harbors

In this study, the minimal (5576 items·km−2) and maximal (379,965 items·km−2) areal
concentrations were observed in Genova during cold and warm seasons, respectively. The
detailed results are presented below (Table 1; Figure 2; Figure S1).

Table 1. Number, areal and mass areal concentrations of microplastics at different sites (TLN: Toulon,
GEN: Genova and OLB: Olbia), seasons (W: winter and S: summer) and zones (Inner and Outer).

Site Season Zone
Volume Surface

Items
Concentrations

[g·km−2][m3] [m2] [Items·km−2]

TLN W
Inner 217 2166 54 24,931 36.00
Outer 164 1644 10 6083 0.06

TLN S
Inner 167 1666 68 40,816 33.20
Outer 213 2128 61 28,665 8.18

GEN W
Inner-West 180 1800 41 22,778 15.00
Inner-East 168 1680 19 11,310 9.30

Outer 323 3228 18 5576 1.90

GEN S
Inner-West 136 1158 440 379,965 551.00

Outer 116 1362 80 58,737 130.00

OLB W
Inner 174 1736 100 57,604 6.96
Outer 155 1547 26 16,807 0.36
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Figure 2. Areal concentrations of microplastics at different sites (TLN: Toulon, in orange, GEN:
Genova, in blue and OLB: Olbia, in green), seasons (W: winter, in dark color and S: summer, in light
color) and zones (Inner and Outer). The box-plots at right represent the interquartile range for each
site and season with the median represented by an horizontal line.

The measured areal concentrations were in the same range as those observed in
other locations close to urban agglomerations in the north-western Mediterranean coast:
70,000 items·km−2 in Cartagena [23], 96,103 items·km−2 and 123,846 items·km−2 in Toulon,
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206,845 items·km−2 in Nice and 169,186 items·km−2 in Genova [10] and 112,000 items·km−2

in Marseille [24]. The mass areal concentration average ranged between 0.06 and 551 g·km−2.
The comparison between the three studied harbors was only possible during the cold

season because of a lack of data for Olbia during summer.
The maximum average areal concentrations found in Olbia are probably related to

a higher drainage basin (450 km2) of the river flowing into the harbor with respect to
those in Toulon (60 km2 and 70 km2) and Genova (140 km2 and 93 km2). In addition, the
storm Amelie, an intense episode of Mediterranean rainfall, happened in the north-western
Mediterranean basin during November, previous to sampling, which probably increased
the river discharge and consequently MPs inputs. Indeed, land run-off can be an important
source of MPs to the sea, carried out by rivers [25].

3.2. Spatial Variability of Microplastics Areal Concentrations in the North-Western Mediterranean
Harbors

The inner zones of the harbors presented an average value higher than the outer
parts, with 85,163 ± 131,217 items·km−2 (n = 7) and 14,283 ± 10,897 items·km−2 (n = 4),
respectively (H = 3.571, p = 0.059). Microplastic areal concentrations in the inner harbor
areas were systematically between 3 and 4 times higher than the outer parts, in all the
studied harbors. The impact of industrialized and urbanized areas regarding MPs areal
concentrations within both water columns and sediments has already been pointed out
between inner and outer harbor [10,26–28], thus explaining the difference of MPs in this
study, from inshore to offshore waters. In addition, harbors are semi-enclosed systems,
where plastic waste and water masses can have longer residence times with respect to open
waters, increasing the number of MPs. Hence, the higher areal concentrations observed in
the inner harbor support the hypothesis of the potential contribution of harbors to MPs
inputs into marine environments.

Microplastics in the Genova harbor were sampled in two zones (Inner east and Inner
west) to assess the impact of different anthropogenic activities. The influence of the
Polcevera river to the western part of the channel [19] and the outflow from the inner
harbor caused by the northern winds [29] could have enhanced the areal concentrations
observed in the western part of the Genova harbor in comparison to the eastern part,
during both the warm (58,737 items·km−2 in the east and 379,965 items·km−2 in the west)
and the cold seasons (11,310 items·km−2 in the east and 22,778 items·km−2 in the west).

3.3. Influence of Seasonality on Microplastics Areal Concentrations

The season has a significant impact on MPs areal concentrations. The reported values
were significantly higher during summer than winter, with 127,046 ± 169,065 items·km−2

(n = 4) and 20,727 ± 17,934 items·km−2 (n = 7), respectively (H = 5.14, p < 0.05). More
specifically, in the bay of Toulon, between winter and summer, MPs areal concentrations
increased up to 2 and 5 times in the inner and the outer harbor, respectively. Likewise, in
Genova, an increase up to 5 and 17 times in the eastern and western zones was observed,
respectively.

The increase of MPs areal concentrations observed during summer can be related to
an enhancement of the activity. In fact, the number of passengers reported for December
2018 and March 2019 in Genova were 124,310 and 410,601 (http://www.porto.genova.it
(accessed on 16 December 2020)) and 44,802 and 237,693 in Toulon (CCI-Var), respectively.
In addition, the more important number of passengers recorded in Genova, which reflect
more numerous activities than in Toulon harbor, can explain the observed maximal MPs
areal concentrations in the area, during this study. Harbor activities can influence MPs
areal concentrations in different ways: firstly, acting as a local source of plastic litter to
surface waters [9,30]; secondly, by resuspending MPs occurring in bottom waters and/or
deposited on sediments [31], due to dredging operations and maritime transport in shallow
waters.

Conversely, rivers which are the main source of MPs to the coastal waters, present an
inverse seasonality, with higher areal concentrations and more important inputs during the

http://www.porto.genova.it
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cold season [25,30,32,33]. The higher concentrations observed after an episodic Mediter-
ranean rainfall during winter in Olbia supports the role of rivers as sources of MPs during
the wet season. Jimenez-Castro et al. [34] suggested a correlation between plastic litter and
water discharge in the Rhône river and pointed rivers as major sources.

In this study, higher areal concentrations were reported, in contrast, during summer
and highlighted harbors as a local major source, especially during summer.

3.4. Size Distribution of Microplastics in the North-Western Mediterranean Harbors

During this study, the lower and upper size limits considered for MPs identification
were 300 µm and 5 mm, respectively. This range is within the limits recommended by
Cutroneo et al. [20] for sampling MPs in port environments and are in agreement with
the guidance lines of the Marine Strategy Framework Directive, Technical Subgroup on
Marine Litter [35]. The class size distribution of MPs can gain insight regarding the
proximity of MPs sources, their dynamics [36] and thus their potential influence on marine
organisms [21], which is critical for a better characterization of MPs pollution.

In Toulon, MPs partitioning exhibited a maximal contribution of the 300–500 µm class
during winter (31% of the total fraction) and of the 2000–3000 µm class during summer
(26% of the total fraction). In Genova, whatever the sampling season, the 2000–3000 µm
class was always the most represented: 29% of the total fraction during winter and 32%
during summer. In Olbia, data are available only for the winter period, and the most
represented fraction was the 500–1000 µm class: 38% of the total fraction. Significant
differences between MPs size classes were only observed in Genova (F = 4.90, p < 0.05)
(Table S1, Figure 3).
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In this study, during winter, Toulon samples showed an overrepresentation of the
small classes (300–500 µm) in the inner and the outer part, contributing in average to 31%
to the total fraction of MPs sampled (Figure 3). The predominance of small classes in
surface waters during winter may be related to the mixing of the water column, most likely
occurring during winter, thus leading to their upward dynamics and/or resuspension. Con-
versely, as a result of this water column mixing, higher MPs size classes which are buoyant
can be transferred into the bottom waters through convective movements, constraining
their sampling. The overrepresentation of small classes in bottom waters observed in
estuaries supports this hypothesis [37]. Therefore, episodic storms can influence MPs size
distribution in the water column and consequently their transfer to marine organisms.
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In most of the samples, except Toulon during winter, low and high MPs size classes
are underrepresented, intermediate ones being predominant, a result already reported
in previous studies [10,24,37,38]. The overrepresentation of intermediate classes may be
related to degradation of high size classes into smaller fragments [39]. Many factors can
drive degradation including photooxidation, biodegradation, thermo-oxidation, hydrolysis,
thermal and mechanical stress [40]. As a result, an exponential increase of MPs areal
concentration is expected, following the decrease of MPs size. This low representativeness
of small MPs size class may reflect a continuous degradation spectrum of MPs, resulting
in size fraction lower than the net mesh size (300 µm), and are consequently not sampled,
underestimating small classes of MPs [21,41]. However, the most common explanation is
linked to the sinking of MPs due to an increase of their specific surface alongside to their
colonization by microorganisms and biofilm growth, modifying their buoyancy [38,42,43].

Although size class distributions fluctuated between harbors, a similar MPs size class
distribution was observed for the outer and inner part of each harbor, suggesting that
MPs sampled in the outer zones were very probably transferred from the inner parts. The
different size distributions observed between the three sites may be linked to a source-
dependent signature. The higher MPs size classes, more frequent in Genova, indicated
fresh and nearby sources probably related to the harbor activities and lower residence
time [24]. Microplastics may have been transported and deposited by the waves, exposed
to degradation and reintroduced [36].

This size class determination is linked to a potential impact. Due to their small
dimensions, small MPs size fraction can be easily confused with sources of food and
thereby be ingested by organisms [44]. The size classes sampled during this study are in
the range of MPs sizes reported to be ingested by aquatic organisms [45,46]. In addition to
their direct impact, one can ask the additional impact of the metal load of the MPs.

3.5. Inorganic Contaminants

The biofilm covering the MPs has been extracted to analyze trace metal contami-
nants. The average concentrations reported during the project were 4.8 ± 4.5 mg·kg−1

for Pb, 2371 ± 7636 mg·kg−1 for Fe, 13 ± 14 mg·kg−1 for Cu, 2.96 ± 6.18 mg·kg−1 for V,
380 ± 988 µg·kg−1 for Cd, 479 ± 293 µg·kg−1 for As. (Table 2, Figure S2).

Table 2. Trace metal mass-related concentrations in biofilm extracted from microplastics at the different sites (TLN: Toulon,
GEN: Genova and OLB: Olbia), seasons (W: winter and S: summer), zones (Inner and Outer). F = ANOVA’s Fisher statistics
and p = p-value.

Sample Site Pb Fe Cu V Cd As
mg·kg−1 mg·kg−1 mg·kg−1 mg·kg−1 µg·kg−1 µg·kg−1

TLN-W-Inner TLN 1.8 22 2.54 1.53 3 862
TLN-W-Outer <DL 181.8 46 1.982 2821 400.11
TLN-S-Inner 0.66 8 15.1 1.11 24 444.35
TLN-S-Outer 2.08 71.3 2.57 1.087 9.98 504

GEN-W-Inner West GEN 11.72 89.76 6 2.152 <DL 185
GEN-W-Inner East 3.78 37.6 12.74 0.4 <DL <DL

GEN-W-Outer 7.97 187 23.3 1.25 <DL <DL
GEN-S-Inner West 1.342 10 3.2 0.7 5.2 273
GEN-S-Inner East 1.89 5.2 3.25 0.51 0.96 211

OLB-W-Inner OLB 3.79 80.4 0.728 0.309 1.7 258
OLB-W-Outer 12.98 25,393 29.6 21.5 176 969

Analysis of variance H = 4.06 H = 2.00 H = 0.06 H = 0.65 H = 2.00 H = 4.31
p = 0.131 p = 0.367 p = 0.968 p = 0.720 p = 0.367 p = 0.115

Regulations of quality guidelines [47] can be used to determine the toxicity levels of the
studied contaminants. Concerning lead, whatever the studied site and the season, the mea-
sured concentrations were always below the recommended guideline values for sediment
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(sediment quality guideline value of 50 mg·kg−1 and Predicted No Effect Concentration
of 53.4 mg·kg−1). Yet, when compared with recommended concentrations reported in
bivalves (CE No 1881/2006, commission on the 19 December 2006), lead exceeded the limit
of 1.5 mg·kg−1 in half of the samples in Toulon, in almost all collected samples in Genova
and the totality of those collected in Olbia. Concerning copper, whatever the studied site
and the season, the measured concentrations were always below the recommended quality
guideline value for sediment (65 mg·kg−1) but always above the recommended ecotoxi-
cology guideline value for sediment (Predicted No Effect Concentration of 0.8 mg·kg−1).
Concerning cadmium, whatever the studied site and the season, the measured concentra-
tions were always below the recommended guideline value for sediment (sediment quality
guideline value of 1.5 mg·kg−1 and Predicted No Effect Concentration of 2.3 mg·kg−1) and
also below the No Effect Concentration for benthic organism (115 mg·kg−1). Yet, when
compared with recommended concentrations reported in bivalves (CE No 1881/2006, com-
mission on the 19 December 2006), cadmium exceeded the limit of 1 mg·kg−1 in one case,
during winter in the outer part of the Toulon bay. Concerning arsenic, whatever the studied
site and the season, the measured concentrations were always below the recommended
guideline value for sediment (sediment quality guideline value of 20 mg·kg−1) but always
equal or above the quality value for benthic organisms (230 µg·kg−1). The results therefore
demonstrated an important bioaccumulation that should, in many cases, impact on the
biofilm and the ecosystems.

Considering the typical orders of magnitude of dissolved trace elements in the
north-Mediterranean coastal waters [48–50], the average bioconcentration factors (BCF)
reported during this study in Toulon were 1.37 × 105 L·kg−1 for Pb, 8.01 × 105 L·kg−1

for Fe, 1.47 × 105 L·kg−1 for Cu, 1.66 × 103 L·kg−1 for V, 4.76 × 104 L·kg−1 for Cd and
3.51 × 102 L·kg−1 for As (Table S2). These bioconcentration factors of inorganic contami-
nants, ranging between 102 to 106 L·kg−1, reflected at least two orders of magnitude be-
tween dissolved and particulate phase (water and biofilm), a partitioning already reported
for biofilms [51,52]. Therefore, biofilm is most likely responsible for trace metal concen-
trations through biosorption at the surface of MPs [14,16]. In a previous study [53], most
of the metals were removed after washing MPs with NaOH, suggesting larger amounts
of trace metals associated with biofilm than those specific to MPs matrix. Whatever its
composition and aspect, biofilm will always represent a narrow layer compared to MPs.
Therefore, as the metal concentration was normalized in this study over the mass of MPs,
it has to be underlined that this bioaccumulation may be largely underestimated if, rather
than the MPs mass, the biofilm mass would be considered.

In general, the highest average inorganic contaminant concentrations were observed
in Olbia, with higher concentrations for Cd and Cu occurring in Toulon. Genova presented
the lowest concentrations in heavy metals reported during this study. Higher trace metal
concentrations in surface sediments reported in Toulon with respects to Genova [19,54],
evidencing a major impact of human activities in Toulon harbor, probably explained the
observed differences. In fact, biofilm on MPs acts as a passive sampler reflecting the
concentrations in surrounding waters [15,55,56]. Many factors can impact on trace metal
biosorption such as the stage of maturity of the biofilm, MPs surface and physicochemical
conditions of exposition (pH, salinity, temperature, oxygen, organic ligands . . . ) [15].
Likewise, depending on the site, bacterioplankton communities have a different influence
on trace metal mobilization in seawater [57]. Finally, the different concentrations can also be
governed by the prevalence of small classes of MPs which present higher specific surfaces.
In this study, in terms of trace metal concentrations, no difference was observed between
inner and outer zones, probably due to the rapid modification of biofilm according to the
surrounding waters.

In order to assess the relationship between MPs size and trace metal bioconcentration,
inorganic contaminants in MPs were compared to those measured in macroplastics. Due to
their different specific surface and to allow comparison, concentrations were normalized
to their surface (Figure 4, Table S3). The concentration per surface area for micro and
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macroplastics collected in the harbor of Genova were, respectively, 34.7 ± 16.3 ng·cm−2

and 2.05 ± 1.48 ng·cm−2 for Pb, 368.7 ± 356.5 ng·cm−2 and 43.4 ± 43.9 ng·cm−2 for Fe,
65.7 ± 36.7 ng·cm−2 and 13.9 ± 19.0 ng·cm−2 for Cu, 7.40 ± 3.21 ng·cm−2 and
0.89 ± 0.38 ng·cm−2 for V, 38 pg·cm−2 and 6.05 pg·cm−2 for Cd, 2.69 ± 1.67 ng·cm−2

and 0.41 ± 0.38 ng·cm−2 for As.
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Inorganic contaminants extracted from biofilm showed higher average concentra-
tions in microplastics than macroplastics, with a significant difference for Pb, Fe, Cu and V
(Table S3). Although the type of encountered MPs and macroplastics can weakly influence
the sorption of trace metals [16], it has been recently shown that the biofilm stage of devel-
opment highly influences trace metal bioaccumulation [15]. Indeed, a longer immersion
favors bacteria colonization, leading to an increase in bioaccumulation efficiency [14,16,52].
For some metals, the amount of biofilm has been recently evidenced as well correlated
with trace metals bioaccumulation [15]. Furthermore, an enhanced weathering of MPs is
also susceptible to modify their surface properties, promoting biofouling [58,59], thus trace
metal sorption [60]. Therefore, in this study, higher trace metal concentrations observed in
MPs could potentially reflect a longer exposition to environmental alterations and/or to
bacteria, both leading to higher biofilm growth.

Although MPs areal concentrations can be low compared to particles in coastal en-
vironments, their positive buoyancy and currents are susceptible to transport them to
open sea areas. Hence, trace metals associated with MPs can be released or ingested by
organisms, affecting remote food webs [21,61,62].

Concerning the bay of Toulon, various studies [18,63] have highlighted the presence
of strong wind between 25% and 30% of the time, in a direction flushing away the waters
from the harbor to the open sea [18]. Elsewhere, in the bay of Genova, during summer, the
dominant south eastern winds divide the eastern port entrance in two opposite current
directions flowing outwards in the south and inwards in the north. During winter, current
flows outwards due to the northern winds [64]. When linking this to the results obtained
in this study, it is therefore evident that such windy conditions would favor the dissem-
ination of MPs from an area where they are more numerous and loaded with inorganic
contaminants to the open sea.

4. Conclusions

Microplastic concentrations in the north-western Mediterranean harbors, including
Genova, Olbia and Toulon, exhibited the same order of magnitudes as MPs concentrations
reported in coastal Mediterranean waters. A decreasing gradient from inner areas to
outer areas was systematically observed, evidencing harbors as an important source of
MPs to open marine environments. In this study, seasonal differences were pointed out,
evidencing higher concentrations during the summer period in relation with more intense
harbor activities. Besides, during episodic storms, river and/or land-based sources were
highlighted in this study as playing a major role in MPs inputs to the harbors.

Alongside MPs pollution, this study demonstrated that trace metal concentrations
associated with these biofouled artificial micro-particles exceeded in some cases quality
guidelines, potentially threatening marine organisms. Indeed, the semi enclosed dynamic
of harbors constrains water exchanges with open seas, increasing exposure time of MPs
to polluted waters. Therefore, harbors may promote biofilm-driven interactions between
water and MPs. The export of the metal-loaded on MPs to the open sea needs to be
underlined, as MPs export promotes a threat to sea life.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-131
2/9/3/337/s1. Figure S1: Microplastics digital records using a Zooscan. The upper figure refers
to the sample collected in the inner part of the Genova harbor (GEN-S-Inner West) and, on the
bottom, the sample collected in the inner part of Toulon harbor (TLN-S-Inner), both during summer,
Figure S2: Boxplot of trace metal concentrations in MPs normalized over MPs mass in Toulon (TLN),
Genova (GEN) and Olbia (OLB). The average value is represented with a horizontal bar while raw
data is represented by black dots, Table S1: Percentage of contribution of microplastics size fraction
(300–500 µm, 500–1000 µm, 1000–2000 µm, 2000–3000 µm, 3000–4000 µm, 4000–5000 µm) to the total
sampled fraction (>300 µm) at the different sites (TLN: Toulon, GEN: Genova and OLB: Olbia), zones
(Inner and Outer) and seasons (W: winter and S: summer). Table S2: Bioconcentration factors (BCF) of
trace metals in biofilm extracted from microplastics at the different sites (TLN: Toulon, GEN: Genova
and OLB: Olbia), seasons (W: winter and S: summer), zones (Inner and outer). Table S3: Trace metal
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surface-related concentrations in biofilm extracted from microplastics and macroplastics in Genova.
H = Kruskal–Wallis χ2 statistics, F = ANOVA’s Fisher statistics and p = p-value.
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