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Abstract

Managing critical infrastructures requires to increasingly rely on Information and Communi-

cation Technologies. The last past years showed an incredible increase in the sophistication

of attacks. For this reason, it is necessary to develop new algorithms for monitoring these

infrastructures. In this scenario, Machine Learning can represent a very useful ally. After a

brief introduction on the issue of cybersecurity in Industrial Control Systems and an overview

of the state of the art regarding Machine Learning based cybersecurity monitoring, the

present work proposes three approaches that target different layers of the control network

architecture. The �rst one focuses on covert channels based on the DNS protocol, which can

be used to establish a command and control channel, allowing attackers to send malicious

commands. The second one focuses on the �eld layer of electrical power systems, proposing

a physics-based anomaly detection algorithm for Distributed Energy Resources. The third

one proposed a �rst attempt to integrate physical and cyber security systems, in order to face

complex threats. All these three approaches are supported by promising results, which gives

hope to practical applications in the next future.
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Chapter 1

Introduction

Industrialized societies depend on the proper functioning of a set of technological infrastruc-

tures, such as electricity, road and rail networks and telecommunications which, because of

their relevance, are generally referred to as critical infrastructure. The USA Committee on

National Security System de�nes them as (3)

Critical Infrastructures are systems and assets, whether physical or virtual, so vi-

tal for a state that the incapacity or destruction of such systems and assets would

have a debilitating impact on security, national economic security, national

public health or safety, or any combination of those matters.

These infrastructures, once essentially isolated and vertically integrated systems, have become

increasingly interdependent to such an extent that an adverse event that occurs to one of

them, in a given geographical location, may spread to other infrastructures amplifying the

negative effects and af�icting subjects also located in very remote locations compared to the

origin of the initial event (4).

Several episodes in the last decade have highlighted how the growing complexity of these

infrastructures has meant that they are fragile, to the point that some scholars consider almost

inevitable catastrophic events that lead to their damage. According to (1), the interdepen-

dencies are analyzed considering six different "dimensions" in order to capture the different

elements that characterize both the behavior linked to the presence of interdependence and

its arise, as shown in Figure 1.1. In particular, they identify in which directions the analysis

should be developed:

• Environment: that is the structure within which owners and operators establish purposes

and goals, build value systems to de�ne their business, etc. Obviously the operational
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Figure 1.1 The six dimensions of interdependencies in critical infrastructures (1)

status and conditions of each infrastructure affects the surrounding environment and,

in turn, the environment in�uences the infrastructure itself.

• Types of Interdependence: an interdependence can be classi�ed as physical, if the

two infrastructures are physically interdependent and the state of one is dependent on

the material output of the other (for example, a central coal-�red electricity and its

supply rail network); cyber, if the status of both depends on information transmitted

through cyberspace; geographic, when a local environmental event may cause changes

in the status of other infrastructures; logical, when the state of the infrastructures

depends on the state of the other through a mechanism that is not anybody of those

previously explicited. This classi�cation can also be extended to include interdependent

sociological relationships, caused by the (irrational) behavior of users/operators. In this

way, it is possible to model phenomena such as saturation of communication channels

in presence of crisis events or the fact that operators may disregard their tasks to ethical

or social reasons.

• Operational status: To fully understand interdependencies it is necessary to determine,

for each infrastructure, on which it depends, both in normal operation, in abnormal

situations and during the recovery phase following a failure/malfunction.
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• Infrastructure characteristics: In this context, elements such as spatial scale, about

which a hierarchy of elements can be de�ned, and the time scale, since the horizon of

interest may vary of seconds (for energy system operations, for example), of hours (for

operations connected with the supply of water, gas or the transmission system), over

the years (for improvements or capacity building of an infrastructure).

• Fault types: Interdependencies between infrastructures can be the means through which

a failure can propagate. In this perspective, we speak of cascade propagation, when the

malfunction causes a fault in a second infrastructure, which in turn leads to an anomaly

in a third party, and so on; intensifying: when a malfunction in an infrastructure makes

a malfunction, independent of the �rst, in a second infrastructure; for common reasons:

where two or more infrastructures suffer damage in the same moment and for the same

reason.

• Coupling level: depending on the degree of coupling (narrow or slack), varies both the

propagation time and the transmitted intensity of any malfunction. Such interactions

may be either linear, if they are the result of the design (generally known, visible

and generated by a planned sequence of operations), or complex, when they occur

unexpectedly to following unscheduled sequences of operations.

Note that, unlike the others, Cyber interdependence is an absolute property and not rela-

tive. This underlines how, this type of interaction, may involve an extended interdependence

(substantially) with any other infrastructure using cyberspace. Many cyberattacks indeed

spread further beyond the main target of the attackers. One of the most famous examples is

Stuxnet (5): according to (6), as of October 2010, there were approximately 100000 infected

hosts, from over 155 countries, even the vast majority (60%) was in Iran.

In this context, it is crucial to develop proper cybersecurity monitoring of such infras-

tructures. The purpose of this work is to address the issue of cybersecurity monitoring

from different perspectives. The state of the art presents a scenario in which algorithms

are becoming more specialized to detect speci�c attacks in speci�c infrastructures since the

attacks themselves are growing in complexity. For these reasons, cybersecurity monitoring

systems will be composed of several subsystems, each of them addressing speci�c issues.

The present work is structured as follows. Chapter 2 introduces the issue of cybersecurity

in industrial control systems, discussing the models, procedures, standards and guidelines

that are commonly used, and provides also a brief overview of real attacks towards critical

infrastructures which had success in the last past years. Chapter 3 discusses the applications

of Machine Learning technologies in cybersecurity monitoring, with a particular focus on
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anomaly detection approaches, including traditional Intrusion Detection Systems and novel

approaches, like physics-based anomaly detection. Then, three main novel approaches,

addressing the issue of cybersecurity monitoring on different layers of the control systems are

presented. Chapter 4 presents a particular covert channel attack based on the DNS protocol,

and presents an ensemble classi�er built on different algorithms already in the state of the

art, showing how such classi�er outperforms each single algorithm. In Chapter 5 the smart

grid environment for distribution networks and microgrids is analyzed, in order to highlight

the main possible vulnerabilities; then, a physics-based anomaly detection algorithm for

monitoring Distributed Energy Resources is presented, and the approach is validated in a

simulation environment of a photovoltaic system connected to the grid. Chapter 6 proposes

a novel approach that expand the possibilities of cybersecurity monitoring by integrating

two traditionally separated systems: the physical security monitoring systems, like access

control, and cybersecurity log systems, like Intrusion Detection or Firewalls. All of the three

Chapters present also a discussion of the results and the future developments. Finally, in

Chapter 7 the conclusions are drawn.



Chapter 2

Industrial Control Systems

Cybersecurity

Industrial control system (ICS) is a general term that encompasses several types of control

systems, including supervisory control and data acquisition (SCADA) systems, distributed

control systems (DCS), and other control system con�gurations such as Programmable Logic

Controllers (PLC) often found in the industrial sectors and critical infrastructures. An ICS

consists of combinations of control components (e.g., electrical, mechanical, hydraulic, pneu-

matic) that act together to achieve an industrial objective (e.g., manufacturing, transportation

of matter or energy) (7)

ICSs increasingly rely on Information and Communication Technologies (ICT). Many

of today's ICSs evolved from the insertion of IT capabilities into existing physical systems,

often replacing or supplementing physical control mechanisms.

The engineering of ICSs continues to evolve to provide new capabilities while maintaining

the typical long lifecycles of these systems. The introduction of IT capabilities into physical

systems presents emergent behavior that has security implications. Engineering models and

analyses are evolving to address these emergent properties including safety, security, privacy,

and environmental impact interdependencies.

A typical ICS contains numerous control loops, human interfaces, and remote diagnostics

and maintenance tools built by using an array of network protocols on layered network

architectures. A control loop utilizes sensors, actuators, and controllers (e.g., PLCs) to

manipulate the process. A sensor is a device that produces a measurement of some physical

property and then sends this information as controlled variables to the controller. The

controller interprets the signals and generates corresponding manipulated variables, based

on a control algorithm and target set points, which it transmits to the actuators. Actuators
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such as control valves, breakers, switches, and motors are used to directly manipulate the

controlled process based on commands from the controller, as shown in Figure 2.1. Operators

and engineers use human interfaces to monitor and con�gure set points, control algorithms,

and to adjust and establish parameters in the controller. The human interface also displays

process status information and historical information.

Figure 2.1 Industrial Automation logical scheme

Diagnostics and maintenance utilities are used to prevent, identify, and recover from

abnormal operations or failures. Sometimes these control loops are nested and/or cascading

whereby the set point for one loop is based on the process variable determined by another

loop. Supervisory level loops and lower level loops operate continuously throughout a

process with cycle times ranging in the order of milliseconds to minutes.

2.1 Architecture of an ICS

To cope with the complexity, different models have been developed to represent ICS systems.

Most of the time, the large scale of these systems, as well as the diversity of devices and

requirements, requires ICS systems to be segmented into multiple operational zones. From a

cyber security perspective, ICS systems can be broadly segmented into three different zones

(8):

• Enterprise zone

• Control zone
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• Field zone

The Enterprise zone includes business networks and enterprise systems; it includes diverse

endpoint devices that evolve rapidly and are upgraded continuously, including business

networks, commonly based on the IP protocol and very often connected to external networks

and the Internet. The enterprise zone is very similar to traditional IT environments found

outside the realm of ICSs. Therefore, many cybersecurity solutions from the IT world can

be directly applied. These networks are most of the time kept separate from the operational

networks used in the other zones.

The Control zone includes the distributed control elements in SCADA systems. These

zones include the control room environments. The Control zone shares a few similarities

with the Enterprise zone, such as networks based on the IP protocol. The requirements of

the Control zone, however, shift drastically to emphasize safety and reliability. The devices

in this zone may not be updated as often and the networks may be subject to strict timing

constraints. Therefore, few cybersecurity solutions from the IT world can be directly used in

this zone.

The Field zone, also known as the plant, process, or operations zone, includes the devices

and networks in charge of control and automation. The devices in this zone often include

single-purpose embedded devices, such as Programmable Logic Controllers, which have

constrained computational resources. The communication networks in this zone are much

more diverse and go beyond IP networks, employing a large variety of industrial protocols

and physical interfaces. Devices and networks in the �eld zone are subject to strict safety,

reliability, and timing requirements. Therefore, the cybersecurity solutions from the IT world

rarely, if ever, apply.

This three-tiered model is admittedly oversimpli�ed. A slightly more complex archi-

tecture is presented in the so-called "Purdue Model" (9), which is adopted by the ISA-95

standard. The standard's purpose is "To create a standard that will de�ne the interface

between control functions and other enterprise functions based upon the Purdue Reference

Model for CIM (hierarchical form) as published by ISA. The interface initially considered is

the interface between levels 3 and 4 of that model. Additional interfaces will be considered,

as appropriate. The goal is to reduce the risk, cost, and errors associated with implementing

these interfaces. The standard must de�ne information exchange that is robust, safe, and cost-

effective. The exchange mechanism must preserve the integrity of each system's information

and span of control."

The Purdue Model de�nes 5 principal layers, and two Zones, as shown in Figure 2.2:
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• Level 0: consists of a wide variety of sensors, actuators, and devices involved in

the basic manufacturing process. These devices perform the basic functions of the

industrial automation and control system, such as driving a motor, measuring variables,

setting an output, and performing key functions such as painting, welding, bending,

and so on.

• Level 1: consists of basic controllers that control and manipulate the manufacturing

process which its key function is to interface with the Level 0 devices (I/O, linking

devices, bridges, etc). In discrete manufacturing, this is typically a programmable

logic controller (PLC). In process manufacturing, the basic controller is referred to as

a distributed control system (DCS).

• Level 2 represents the systems and functions associated with the runtime supervision

and operation of an area of a production facility. These include operator interfaces

or Human Machine Iinterfaces (HMIs), alarms or alerting systems, Process historian

batch management systems, Control room workstations.

• Level 3: represents the highest level of industrial automation and control systems. The

systems and applications that exist at this level manage site-wide industrial automation

and control functions

• Level 4 is where the functions and systems that need standard access to services

provided by the enterprise network reside. This level is viewed as an extension of

the enterprise network. The basic business administration tasks are performed here

and rely on standard IT services. These functions and systems include wired and

wireless access to enterprise network services such as Internet access, E-mail, Non-

critical production systems such as manufacturing execution systems and overall plant

reporting, Enterprise applications.

• Level 5 is where the centralized IT systems and functions exist. Enterprise resource

management, business-to-business, and business-to-customer services typically reside

at this level. The industrial automation and control systems must integrate with the

enterprise applications to exchange production and resource data. Direct access to the

industrial automation and control systems is typically not required, with the exception

of partner access. Access to data and the industrial automation and control network

must be managed and controlled to maintain availability and stability.

The Manufacturing and Cell/Area Zone is the Security critical environment of the whole

architecture. A violation of a device or of communication at any level of these areas can
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Figure 2.2 Architecture of the Purdue Model

af�ict the safety of the whole process, with severe potential consequences on the integrity of

devices and even people. For these reasons, the interfaces between different levels and zones

of the Purdue model must be carefully designed.

Despite the Model's in�uence, in the IoT era, the �ow of data is no longer strictly

hierarchical as prescribed in the Purdue Model. As intelligence is added to sensors and

actuators (Level 0 of the Purdue Model) and controllers (Level 1 of the Purdue Model), new

potentials for control system exposure are occurring much further down the pyramid than the

Purdue Model ever considered. And with the use of edge computing devices becoming more

common, vast amounts of data can be collected at Level 1, processed, and sent directly to the

cloud, thereby bypassing the hierarchical structure of data �ows in the Purdue Model.

Nevertheless, the basic idea is that in order to properly defend the control network, we

have to de�ne the boundaries of the network, and to identify areas which require stronger

controls for ensuring the safety and the availability of the whole industrial process.

This problem is addressed by the standard IEC 62443, which introduces the concepts

of Zones, Conduits, and Security Levels in order to provide a methodology for the security

assessment of an infrastructure. The IEC 62443 will be detailed in Section 2.3
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2.2 Defense In Depth

An organization's cybersecurity strategy should protect the assets that it deems critical to

successful operation. Unfortunately, there are no shortcuts, simple solutions, or “silver

bullet” implementations to solve cybersecurity vulnerabilities within critical infrastructure

ICS. It requires a layered approach known as Defense in Depth. Defense in Depth is a

concept originated in military strategy to provide barriers to impede the progress of intruders

from attaining their goals while monitoring their progress and developing and implementing

responses to the incident in order to repel them. In the cybersecurity paradigm, Defense in

Depth correlates to detective and protective measures designed to impede the progress of a

cyber intruder while enabling an organization to detect and respond to the intrusion with the

goal of reducing and mitigating the consequences of a breach.

According to (10), applying the Defense-in-Depth paradigm in an ICS environment

involves the following procedures and Technologies (Table 2.1):

Of course, improving cybersecurity posture by implementing an ICS Defense-in-Depth

strategy starts with developing an understanding of the business risk associated with ICS

cybersecurity and managing that risk according to the overall business risk appetite. Risk

management can be de�ned as the process of identi�cation, evaluation, and prioritization

of risks, followed by coordinated and economical application of resources to minimize,

monitor, and control the probability or impact of unfortunate events or to maximize the

realization of opportunities. This problem is addressed by many standards, including NIST

800-83 (11). Organizations also have to face many challenges in managing the human

factor within ICS organizations. Large and complex systems are susceptible to mistakes

made by inexperienced or untrained personnel, as well as the activities of malicious insider

threats. Organizations should design clear and actionable policies and procedures, and

provide security training and awareness activities to the personnel. A growing problem is

also represented by Supply Chain Management. ICS manufacturers and software developers

create their products in many different locations around the world. Ensuring the security

of the system or application throughout its development life cycle is impossible for most

ICS operators. Unfortunately, purchasing commercial off-the-shelf (COTS) technologies

increases the likelihood of receiving nongenuine equipment. The same caution shall be used

for cloud services. It's not the purpose of this work to discuss organizational aspects of

cybersecurity. This work will focus on technological aspects, and particularly on security

monitoring.
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Table 2.1 Defense in Depth Procedures and Technologies

Defense in Depth Strategy Elements

Risk Management Program
• Identify Threats
• Characterize Risk
• Maintain Asset Inventory

Cybersecurity Architecture
• Standards/ Recommendations
• Policy
• Procedures

Physical Security
• Field Electronics Locked Down
• Control Center Access Controls
• Remote Site Video, Access Controls, Barriers

ICS Network Architecture
• Common Architectural Zones
• Demilitarized Zones (DMZ)
• Virtual LANs

ICS Network Perimeter Security
• Firewalls/ One-Way Diodes
• Remote Access & Authentication
• Jump Servers/ Hosts

Host Security
• Patch and Vulnerability Management
• Field Devices
• Virtual Machines

Security Monitoring
• Intrusion Detection Systems
• Security Audit Logging
• Security Incident and Event Monitoring

Vendor Management
• Supply Chain Management
• Managed Services/ Outsourcing
• Leveraging Cloud Services

The Human Element
• Policies
• Procedures
• Training and Awareness
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The �rst step to secure a control system is to de�ne the boundaries of the control network,

de�ning the accesses to the external network and implementing perimeter defense. The

convergence of once-isolated ICSs has helped organizations simplify the management of

complex environments. Nevertheless, connecting these networks and incorporating IT

components into the ICS domain introduces vulnerabilities that asset owners must address

before issues arise. Merging a modern IT architecture with an isolated network that may

not have any countermeasures in place is challenging. Using simple connectivity (that is,

routers and switches) provides the most obvious way to interconnect networks; however,

unauthorized access by an individual could result in unlimited access to the ICS. Securing a

control network from the design stage, the so-called "Security by Design" is, of course, much

simpler than operating on existing infrastructures.

The architecture of and ICS has been discussed in Section 2.1. Dividing common control

system architectures into zones can assist organizations in creating clear boundaries in order

to effectively apply multiple layers of defense. Understanding how to achieve network

segmentation is vital to create architectural zones and determining the best methodologies

for segmenting networks within and around control system environments In respect to Figure

2.2, the main goal is to clearly de�ne the allowed communication between the Manufacturing

Zone and the Enterprise Zone, and Between the Enterprise Zone and the Internet.

From a traditional perspective, in an attack scenario, the intrusion begins at some point

outside the control zone and the actor pries deeper and deeper into the architecture. Layered

strategies that secure each of the core zones can create a defensive strategy with depth,

offering the administrators more opportunities for information and resource control, as

well as introducing cascading countermeasures that will not necessarily impede business

functionality. This is guaranteed through secure network architecture, involving VLANs,

Demilitarized Zones (DMZ), and devices at the "gate" of the zones, like Firewalls. A

demilitarized zone is a physical and logical sub-network that acts as an intermediary for

connected security devices so that they avoid exposure to a larger and untrusted network,

usually the Internet. The ability to establish a DMZ between the corporate and control

networks represents a signi�cant improvement with the use of �rewalls. Each DMZ holds

one or more critical components, such as the data historian, the wireless access point, or

remote and third-party access systems. Creating a DMZ requires that the �rewall offers three

or more interfaces, rather than the typical public and private interfaces. One of the interfaces

connects to the corporate network, the second to the control network, and the remaining

interfaces to the shared or insecure devices such as the data historian server or wireless access

points on the DMZ network. In this way, by placing corporate-accessible components in a
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DMZ, no direct communication paths are required from the corporate network to the control

network; each path effectively ends in the DMZ. The role of Firewalls is to establish domain

separation, monitor (and log) system events, authenticate users before they are allowed

access, monitor ingress and egress traf�c and disallow unauthorized communications. These

tasks can be done by using different techniques, controlling network traf�c at different layers

of the OSI architecture.

Actually, this vision is only partially true. It's not mandatory that an attack begins from

some areas external to the whole ICS. In some scenarios, an attacker could gain access to

some point within the control network, both in the enterprise or manufacturing area. These

scenarios include the presence of intruders, people that use personal devices within the

control network (Bring-Your-Own-Device), but also physically dislocated areas (which is

particularly common for electrical grids) for which may be dif�cult to guarantee physical

security for all the devices. All the previously discussed countermeasures remain still valid,

but simply insuf�cient.

The present work focuses on another fundamental element of the defense-in-depth

paradigm, which is the security monitoring. The concept of Defense in Depth says a system

must detect and alert an organization of an intrusion early on so they can take defensive action

before critical assets are breached. Without system monitoring in place, intruders could

breach the system and no one would know of the intrusion before they achieved their objective,

if they know at all. Security monitoring can be achieved through different technologies,

including Intrusion Detection Systems and Security Incident and Event Monitoring (SIEM).

The state of the art of Intrusion Detection Systems will be presented in Section 3.2. Chapters

4, 5 and 6 present some innovative solution to address problems in different layers of the ICS

infrastructure.

2.3 Standards and Best Practices

Many standards address the issue of cyber security of ICS. The main normative agencies are

the International Organization for Standardization (ISO), the International Electrotechnical

Commission (IEC), the National Institute of Standards and Technology (NIST), the Institute

of Electrical and Electronics Engineers (IEEE), and the Internet Engineering Task Force

(IETF).

The International Organization for Standardization (ISO) is an international standard-

setting body composed of representatives from various national standards organizations.

Founded on 23 February 1947, the organization develops and publishes worldwide technical,
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industrial and commercial standards. It is headquartered in Geneva, Switzerland and works

in 165 countries.

The International Electrotechnical Commission is an international standards organization

that prepares and publishes international standards for all electrical, electronic and related

technologies – collectively known as "electrotechnology". IEC standards cover a vast range

of technologies; all electrotechnologies are covered by IEC Standards, including energy

production and distribution, electronics, magnetics and electromagnetics, electroacoustics,

multimedia, telecommunication and medical technology, as well as associated general

disciplines such as terminology and symbols, electromagnetic compatibility, measurement

and performance, dependability, design and development, safety and the environment. The

IEC also manages four global conformity assessment systems that certify whether equipment,

system or components conform to its international standards.

The National Institute of Standards and Technology is a physical sciences laboratory

and non-regulatory agency of the United States Department of Commerce. Its mission is

to promote American innovation and industrial competitiveness. NIST's activities are orga-

nized into laboratory programs that include nanoscale science and technology, engineering,

information technology, neutron research, material measurement, and physical measurement.

The Institute of Electrical and Electronics Engineers (IEEE) is a professional association

for electronic engineering and electrical engineering (and associated disciplines) with its

corporate of�ce in New York City and its operations center in Piscataway, New Jersey. It was

formed in 1963 from the amalgamation of the American Institute of Electrical Engineers and

the Institute of Radio Engineers. As of 2018, it is the world's largest association of technical

professionals with more than 423,000 members in over 160 countries around the world.

Its objectives are the educational and technical advancement of electrical and electronic

engineering, telecommunications, computer engineering and similar disciplines.

The Internet Engineering Task Force (IETF) is an open standards organization, which

develops and promotes voluntary Internet standards, in particular the technical standards

that comprise the Internet protocol suite (TCP/IP). It has no formal membership roster

or membership requirements. All participants and managers are volunteers, though their

work is usually funded by their employers or sponsors. The IETF started out as an activity

supported by the federal government of the United States, but since 1993 it has operated as a

standards-development function under the auspices of the Internet Society, an international

membership-based non-pro�t organization.

We can distinguish between general standards, which can be applied to a large variety of

infrastructures, and standards designed to be applicable in speci�c domains. ISO standards,
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like ISO 27001, are general standards for managing information security, which can be

applied in the ICS environment. More speci�c for ICS are the IEC 62443 and NIST 800-82.

Then, others address speci�c sectors. Considering the electrical domain, we can mention

the ones from IEC, like IEC 62351, and some works provided by the IEEE, like the IEEE

1686. Most of them refer to RFC for the security of Internet Protocols. An overall picture of

available standards is shown in Figure 2.3

Figure 2.3 Main Standard for Security of the Electrical Sector

The two main general standards for industrial automation and control systems are the

NIST Special Publication 800-82 "Guide to Industrial Control Systems (ICS) Security" and

the IEC 62443.

The NIST 800-82 is part of the NIST 800 Series. The NIST 800 Series is a set of

documents that describe the United States federal government computer security policies,

procedures and guidelines. NIST (National Institute of Standards and Technology) is a unit of

the Commerce Department. The documents are available free of charge and can be useful to

businesses and educational institutions, as well as to government agencies. The publications

cover all NIST-recommended procedures and criteria for assessing and documenting threats

and vulnerabilities and for implementing security measures to minimize the risk of adverse

events. The publications can be useful as guidelines for enforcement of security rules and as

legal references in case of litigation involving security issues. The purpose of NIST 800-82
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is to provide guidance for securing industrial control systems, including supervisory control

and data acquisition systems, distributed control systems, and other systems performing

control functions. The document provides a notional overview of ICS, reviews typical system

topologies and architectures, identi�es known threats and vulnerabilities to these systems,

and provides recommended security countermeasures to mitigate the associated risks. The

structure of the document is reported in Table 2.2

Table 2.2 Structure of the NIST 800-82 Standard

Section Description

Chapter 1 Introduction
Chapter 2 Overview of Industrial Control Systems
Chapter 3 ICS Risk Management and Assessment
Chapter 4 ICS Security Program Development and Deployment
Chapter 5 ICS Security Architecture
Chapter 6 Applying Security Controls to ICS

The document provides very practical guidelines for managing an ICS, like how to design

the architecture of the control network in order to respect the Network Segmentation and

Segregation, or how to implement a �rewall, also providing recommended �rewall rules for

speci�c services.

IEC 62443 is an international series of standards on cybersecurity for ICS. It describes

both technical and process-related aspects of industrial cybersecurity. It divides the industry

into different roles: the operator, the integrators (service providers for integration and

maintenance) and the manufacturers. The different roles each follow a risk-based approach

to prevent and manage security risks in their activities. Initially, the ISA99 committee

considered IT standards and practices for use in the ICS. However, it was soon found that

this was not suf�cient to ensure the safety, integrity, reliability, and security of an ICS.

Starting in 2002, the Industrial Automation and Control System Security Committee (ISA99)

of the International Society of Automation developed a multi-part series of standards and

technical reports on the subject of Industrial Automation and Control System (IACS) security.

These work products were submitted to the ISA for approval and then published under

ANSI. The documents were originally referred to as ANSI/ISA-99 or ISA99 standards and

were renumbered to be the ANSI/ISA-62443 series in 2010. The content of this series was

submitted to and used by the IEC working groups. The structure of the standard is reported

in Table 2.3.
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Table 2.3 Structure of the IEC 62443

Part Section Description

General

62443-1-1 Terminology, concepts and models
62443-1-2 Master glossary of terms and abbreviations
62443-1-3 System security conformance metrics
62443-1-4 IACS security lifecycle and use-cases

Policies &
Procedures

62443-2-1 Establishing an IACS security program
62443-2-2 IACS security program rating
62443-2-3 Patch management in the IACS environment
62443-2-4 Security program requirements for IACS service providers
62443-2-5 Implementation guidance for IACS asset owners

System
62443-3-1 Security technologies for IACS
62443-3-2 Security risk assessment for system design
62443-3-3 System security requirements and security levels

Component
62443-4-1 Product security development lifecycle requirements
62443-4-2 Technical security requirements for IACS components

The standard introduces some fundamental concepts. Part 3-2 describes the requirements

for addressing the cybersecurity risks in an IACS, including the use of Zones and Conduits,

and Security Levels. A Zone is de�ned as a grouping of logical or physical assets based upon

risk or other criteria such as criticality of assets, operational function, physical or logical

location, required access, or responsible organization. A Conduit is de�ned as a logical

grouping of communication channels that share common security requirements connecting

two or more zones. A key step in the Risk Assessment process is to partition the System

Under Consideration into separate Zones and Conduits. The intent is to identify those assets

which share common security characteristics in order to establish a set of common security

requirements that reduce cybersecurity risk. Partitioning the System Under Consideration

into Zones and Conduits can also reduce overall risk by limiting the scope of a successful

cyber-attack. Security Level is de�ned as the measure of con�dence that the System Under

Consideration, Zone, or Conduit is free from vulnerabilities and functions in the intended

manner. There are four levels:

1. Protection against casual or coincidental violation

2. Protection against intentional violation using simple means with low resources, generic

skills, and low motivation

3. Protection against intentional violation using sophisticated means with moderate

resources, IACS-speci�c skills, and moderate motivation
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4. Protection against intentional violation using sophisticated means with extended re-

sources, IACS-speci�c skills, and high motivation

There are three types of Security Levels that are used throughout the ISA/IEC 62443

Series:

• Capability Security Levels: are the security levels that systems or components can

provide when properly integrated and con�gured.

• Target Security Levels: are the desired level of security for a particular Automation

Solution

• Achieved Security Levels: are the actual levels of security for a particular Automation

The ISA Global Security Alliance and the ISA Security Compliance Institute recently

released a co-sponsored Industrial Internet of Things (IIoT) certi�cation study entitled, “IIoT

Component Certi�cation Based on the 62443 Standard.” The study addresses the urgent need

for industry-vetted IIoT certi�cation programs, with the goal of determining the applicability

of the ISA/IEC 62443 series of standards and certi�cations to IIoT components and systems.

This included examining whether existing 62443 requirements and methods for validating

these requirements under existing certi�cation programs are necessary and suf�cient for the

IIoT environment.

Many standards address speci�c issues in speci�c sectors. Regarding the electrical sector

for example, one of the most important standard is represented by the IEC 62351, even if is

not yet largely implemented in industrial plants.

2.4 Real Cyberattacks against ICS

In the last past years, the number of attacks targeting control systems is incredibly intensifying,

as shown in Figure 2.4.

The �rst malware who brought the attention on the topic worldwide has been without

doubt the Stuxnet worm (5). Stuxnet is a malicious computer worm �rst uncovered in 2010

and thought to have been in development since at least 2005. The worm was at �rst identi�ed

by the security company VirusBlokAda in mid-June 2010.

Stuxnet differs from past malware in several ways (12). First, most malwares try to infect

as many computers as possible, whereas Stuxnet appears to target industrial control systems

and delivers its payload under very speci�c conditions. In particular, Stuxnet attacks Windows
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Figure 2.4 Timeline of attacks targeting ICS
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PCs that program speci�c Siemens programmable logic controllers. When an infected PC

connects to a Siemens Simatic PLC, Stuxnet installs a malicious .dll �le, replacing the PLC's

original .dll �le. The malicious .dll �le lets Stuxnet monitor and intercept all communication

between the PC and PLC. Depending on speci�c PLC conditions, Stuxnet injects its own

code onto the PLC in a manner undetectable by the PC operator. Second, Stuxnet is larger and

more complex than other malware. It contains exploits for four unpatched vulnerabilities—an

unusually high number. The code is approximately 500 Kbytes and written in multiple

languages. Stuxnet's sophistication points to an unusually high effort level. Ilias Chantzos,

director of government relations at Symantec, estimated the manpower required to develop

Stuxnet to have been 5 to 10 people working for six months with access to SCADA systems.

All reports examining Stuxnet have agreed on the likelihood of at least one government's

involvement in its development. Besides detailed insider knowledge of the target, other

aspects suggest that Stuxnet's creators expended considerable resources. The code contains

an unprecedented four zero-day Windows exploits. Attackers value zero-day exploits, so

four represents an unusually high investment. The Con�cker worm likewise exploited the

Windows Server Service RPC vulnerability, for which Microsoft issued a patch in 2008, but

Stuxnet's creators seemed to know that patching Scada systems is time-consuming. Stuxnet

is digitally signed by two certi�cates to appear legitimate. Initially, it used a stolen certi�cate

from Realtek Semiconductor, but VeriSign revoked the certi�cate on 16 July 2010. The next

day, Stuxnet was found to be using a stolen certi�cate from JMicron Technology, which was

subsequently revoked on 22 July. The two companies are situated near each other, suggesting

physical theft at those locations. A complete analysis of Stuxnet can be found in (6).

After Stuxnet, of course, other similar malwares have been found in the following years.

Two malwares that have been called the "cousins" of Stuxnet are Duqu and Flame (13).

A quite common attack that has been pursued in the last years is Ransomware. Examples

are Petya (14) and Wannacry (15). Even if they are not designed to target speci�cally ICS,

the malware targets Microsoft Windows–based systems, infecting the master boot record

to execute a payload that encrypts a hard drive's �le system table and prevents Windows

from booting. The Petya malware had infected millions of people during the �rst year of

its release, and have been found in several critical infrastructures; one of the main concerns

regards, in fact, the medical sector (16).

While Stuxnet has been the �rst complex malware targeting ICS, there have been other

"�rst times" in ICS attacks. The �rst time the power system was shut down by a cyberattack

has been in 2015. On December 23, 2015, the Ukrainian Kyivoblenergo, a regional electricity

distribution company, reported service outages to customers. The outages were due to a
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third party's illegal entry into the company's computer and SCADA systems: Starting at

approximately 3:35 p.m. local time, seven 110 kV and 23 35 kV substations were discon-

nected for three hours. Later statements indicated that the cyber attack impacted additional

portions of the distribution grid and forced operators to switch to manual mode. The event

was elaborated on by the Ukrainian news media, who conducted interviews and determined

that a foreign attacker remotely controlled the SCADA distribution management system. The

outages were originally thought to have affected approximately 80,000 customers, based on

the Kyivoblenergo's update to customers. However, later it was revealed that three different

distribution oblenergos (a term used to describe an energy company) were attacked, resulting

in several outages that caused approximately 225,000 customers to lose power across various

areas. The attackers demonstrated a variety of capabilities, including spear-phishing emails,

variants of the BlackEnergy malware, and the manipulation of Microsoft Of�ce documents

that contained the malware to gain a foothold into the Information Technology (IT) networks

of the electricity companies. Then, the adversaries demonstrated the capability and willing-

ness to target �eld devices at substations, write custom malicious �rmware, and render the

devices, such as serial-to-ethernet convertors, inoperable and unrecoverable. In one case, the

attackers also used telephone systems to generate thousands of calls to the energy company's

call center to deny access to customers reporting outages. Another alarming element is

represented by their capability to perform long-term reconnaissance operations required to

learn the environment and execute a highly synchronized, multistage, multisite attack. A

more complete analysis can be found in (17).

Another malware is worth mentioning is TRISIS, because it's the �rst targeting a Safety

Instrumented System (SIS). TRISIS, also known as TRITON or HatMan, is a malware variant

that targets Schneider Electric Triconex Safety Instrumented System (SIS) controllers, which

consist of a Python script compiled with py2exe, a publicly available compiler (it is done that

way to allow TRISIS to execute in an environment without requiring the prior installation of

Python, which often would not make sense in an industrial environment) whose objective is

to change the logic on a target SIS. Trisis has been discovered in mid-November 2017 by

the Dragos, Inc. team (18), when it has been deployed against at least one victim. Safety

Instrumented Systems are those control systems, maintaining safe conditions if other failures

occur. It is not currently known what the speci�c safety implications of TRISIS would be in

a production environment. However, alterations to logic on the �nal control element imply

that there could be a risk to operational safety. Safety controllers are designed to provide

robust safety for critical processes. Typically, safety controllers are deployed to provide

life-saving stopping logic. These may include mechanisms to stop rotating machinery when
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a dangerous condition is detected, or stop in�ow or heating of gasses when a dangerous

temperature, pressure, or other potentially life-threatening condition exists. Safety controllers

operate independently of normal process control logic systems and are focused on detecting

and preventing dangerous physical events. Safety controllers are most often connected to

actuators which will make it impossible for normal process control systems to continue

operating. This is by design since the normal process control system's continued operation

would feed into the life-threatening situation that has been detected. Safety controllers are

generally a type of programmable logic controller (PLC). They allow engineers to con�gure

logic, typically in IEC-61131 logic. While on their face they are similar to PLCs, safety

controllers have a higher standard of design, construction, and deployment. They are designed

to be more accurate and less prone to failure. Both the hardware and the software for these

controllers must be designed and built to the Safety Integrity Level (SIL) blanket of standards

(IEC-61508). This includes the use of error-correcting memories and redundant components

and design that favors failing an operation safety over continuing operations. Each SIS is

deployed for speci�c process requirements after a process hazard analysis (PHA) identi�es

the needs for a speci�c industrial environment. In this way, the systems are unique in their

implementation even when the vendor technology remains the same. A safety controller's

output cards usually have a �rmware, and a con�guration, which allows the output card to

fail into a safe state should the main processors fail entirely. This may even include failing

outputs to a known-safe state in the event that the safety controller loses power. Many safety

controllers offer redundancy, in the form of redundant processor modules. In the case of the

Triconex system, the controller utilizes three separate processor modules. The modules all

run the same logic, and each module is given a vote on the output of its logic function blocks

on each cycle. If one of the modules offers a different set of outputs from the other two, that

module is considered faulted and is automatically removed from service. This prevents a

module that is experiencing an issue such as an internal transient or bit-�ip from causing

an improper safety decision. Safety controller architecture has been debated in the industry.

Even in this case, connecting these devices to the control network makes them prone to

cyberattacks. TRISIS represents, in several ways, a `game-changing' impact for the defense

of ICS networks since an attack on an SIS is a considerable step forward in causing harm.

Even indirectly, targeting SIS, the malware could even cause a loss of life.

A complete analysis of the malware in the ICS scenario is not the aim of the present work.

This short overview aims to show how the scenario is continuously evolving, broadening the

attacker's capabilities. Different types of critical infrastructures already suffered successful
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attacks, and there is no reason to believe that in the next few years many others won't be

targeted.



Chapter 3

State of the art of Machine Learning

Applications for Cybersecurity

Monitoring

Machine Learning can be de�ned as the use and development of computer systems that

are able to learn and adapt without following explicit instructions, by using algorithms and

statistical models to analyze and draw inferences from patterns in data. Applications of

machine learning methods to large databases is called data mining. The analogy is that a

large volume of raw material is extracted from a mine, which when processed leads to a

small amount of very precious material; similarly, in data mining, a large volume of data is

processed to construct a simple model with valuable use, for example, having high predictive

accuracy.

A complete overview of the state of the art of Machine Learning and its relative application

in Industrial Control Systems and Cybersecurity is beyond the scope of the present work.

After a brief introduction, the present work focuses on the application of ML in Intrusion

Detection Systems, and on a particular �eld of ML called Anomaly Detection which results,

for many reasons, particularly interesting for security monitoring of ICS.

3.1 Introduction to Machine Learning

The �rst important distinction is between Arti�cial Intelligence (AI) and Machine Learning

(ML). While the terms are frequently used interchangeably, there are fundamental differences.

Arti�cial Intelligence can be de�ned as the theory and development of computer systems
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able to perform tasks normally requiring human intelligence (19). This is a much broader

de�nition of the one of machine learning, whose aim is to mimic a speci�c task of human

intelligence, that is to learn. Finally, Deep Learning (DL) is a speci�c mathematical model

that can be applied in Machine Learning. For these reasons, we can say that Machine

Learning is a branch of Arti�cial Intelligence, and Deep Learning is a branch of Machine

Learning, as shown in Figure 3.1.

Figure 3.1 Differences between AI, ML and DL

Classical problems of Machine Learning comprehend (20):

• Regression: predict numerical valuer

• Classi�cation: predict the belonging to one class

• Clustering: group similar examples

Regression, Classi�cation and Clustering can be thought as answers to the question

"what" ML can do. Regarding the "how", another common classi�cation of ML algorithm is:

• Supervised Learning: given data in the form of examples with labels, the algorithm

will learn to approximate the exact nature of the relationship between examples and

their labels. When fully trained, the supervised learning algorithm will be able to

observe a new, never-before-seen example and predict a good label for it.

• Unsupervised Learning: the algorithm would be fed a lot of data and given the tools to

understand the properties of the data. From there, it can learn to group, cluster, and/or

organize the data in a way such that a human (or other intelligent algorithms) can come

in and make sense of the newly organized data.
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• Reinforcement Learning: algorithms that improve upon themselves and learn from

new situations by using a trial-and-error method.

Actually, this classi�cation is only partially correct. There are families of algorithms

that don't �t with the previous classi�cation. One of them is anomaly detection. Anomaly

detection is the task of recognizing samples that differ from those considered normal; usually

these algorithms utilize datasets that are partially labeled, for example only normal data are

labeled. In this sense, anomaly detection could also be de�ned as semi-supervised learning.

Talking about Deep Learning, algorithms have a much broader �eld of application

(21). Deep Learning algorithms can be used for complex tasks like arti�cial vision, speech

recognition and data generation (images, sounds, videos ...). The basic element (cell) of a

neural network is the arti�cial neuron. The basic mathematical model of an arti�cial neuron

is shown in �gure 3.2 and Equation (3.1):

Figure 3.2 Model of an arti�cial neuron

y = f (å wixi + b) (3.1)

Where the activation function is can be represented by a particular function, as one of the

ones shown in Figure 3.3

Other types of cells are Convolutional and Recurrent. Convolutional cells are much

like feed-forward cells, except they're typically connected to only a few neurons from the

previous layer. In convolutional neural networks are often utilized layers that are not actually

neurons, but perform different operations like Pooling and interpolating cells. A particular

type of cell is represented by recurrent cells. Recurrent cells have connections not just in the

realm of layers, but also over time. Each cell internally stores its previous value. They are

updated just like basic cells, but with extra weights: connected to the previous values of the

cells and most of the time also to all the cells in the same layer. These weights between the
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Figure 3.3 Activation Functions in Neural Networks

current value and the stored previous value work much like a volatile memory (like RAM),

inheriting both properties of having a certain “state” and vanishing if not fed. Because the

previous value is a value passed through an activation function, and each update passes this

activated value along with the other weights through the activation function, information is

continually lost. In fact, the retention rate is so low, that only four or �ve iterations later,

almost all of the information is lost.

The most basic way of connecting neurons to form graphs is by connecting everything

to absolutely everything. After a while it was discovered that breaking the network up into

distinct layers is a useful feature, where the de�nition of a layer is a set or group of neurons

which are not connected to each other, but only to neurons from other group(s). The idea of

using layers is nowadays generalized for any number of layers and it can be found in almost

all current architectures.

A Deep Neural Network is trained basically by minimizing the loss function which

maps the input of the network with the desired output. The intuitive way to do so is to take

each training example, pass through the network to get the number, subtract it from the

actual number we wanted to get and square it. Once de�ned the loss function, the goal is to

minimize it. When we start off with our neural network we initialize our weights randomly.

Then, through an iterative process, weights are set. In particular, in order to minimize the

loss function, it is necessary to use strategies like the Stochastic Gradient Descent, which

basically iteratively tries to reduce the loss function by adjusting weights. The weights that

will be used are the ones that minimize the loss function.
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The use of complex architectures of arti�cial neurons creates a broad �eld of applications.

In Chapter 5 a neural network architecture called autoencoder is used to build an anomaly

detection algorithm.

3.2 Machine Learning for Intrusion Detection Systems

Intrusion Detection Systems (IDS) are devices or software applications that monitor a portion

of the systems and try detecting malicious activities and policy violations. IDS can be

classi�ed from different viewpoints. We can identify two big families:

• Network Intrusion Detection Systems (NIDS) that analyze network traf�c collected

from one or more points of the communication network; and

• Host Intrusion Detection Systems (HIDS) that analyze the activity of a single host (i.e.,

a terminal) of the network.

Other classi�cations can be based on the strategy used to detect the malicious activity

(signature-based or anomaly-based) or on the action that the system implements after detect-

ing an attack (IDS can be purely passive or block traf�c �ows/applications, usually referred

to as Intrusion Prevention System (IPS)), as shown in Table 3.1.

Table 3.1 IDS classi�cation.

IDS Classi�cation

By monitored element Network-IDS Host-IDS
By actions Passive (IDS) Active (IDS and IPS)
By detection methods Signature-based Anomaly-based

NIDS are usually passive elements of the network. Even if it signi�cantly slows down the

responses to attack, it would be dangerous to implement an active element in a safety-critical

control network due to the possible high false positive rate that would affect the whole system

safety.

Several works proposed NIDS speci�cally designed for SCADA networks and proto-

cols. SCADA networks are characterized by regular traf�c patterns and a limited set of

telecommunication protocols. The number of connections is mainly permanent, while the

connectivity of particular nodes depends on their functions in the network. Such features

are inherently suitable for the development and implementation of anomaly-based intrusion

detection techniques. According to (22), NIDS for SCADA follows three main approaches:
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• Statistical-based techniques: use statistical properties and tests to determine whether

the observed behavior deviates signi�cantly from the expected behavior. They include

a number of techniques based on univariate, multivariate, time-series models and

cumulative sum

• Knowledge-based techniques: try to capture the claimed behavior from the available

system data. They involve techniques based on �nite automata, description languages

and expert systems.

• Machine learning-based techniques establish an explicit or implicit model that allows

the classi�cation of analyzed patterns. Well-known machine learning-based tech-

niques are Bayesian networks, Markov models, neural networks, fuzzy logic, genetic

algorithms, and clustering and outlier detection algorithms

(22) also provides a review of the main recent works following the mentioned approaches.

Some works focus on speci�c protocols. Regarding the electrical sector, (23) proposes a

multidimensional IDS for IEC 61850-Based SCADA networks which comprises access

control detection, protocol whitelisting, model-based detection, and multiparameter-based

detection, while (24) proposes a ML approach based on the extraction of statistical features on

the usage of MMS and GOOSE protocols and One Class Support Vector Machine algorithm.

The other important elements of traditional security monitoring are HIDS. In the IT

�eld, two common HIDS solutions are Open Source HIDS SECurity (OSSEC) and Tripwire.

OSSEC is a free and open-source HIDS that supports a wide range of Operating Systems

(OS), while Tripwire is a commercial solution. These solutions combine passive actions

performed periodically in order to not affect the system performance, such as the identi�-

cation of unauthorized �le modi�cations (through, for example, �le integrity checking by

using checksum databases), of malicious processes, and of log behaviors (for instance by

monitoring speci�c parameters), and active capabilities, similarly to host �rewalls that allow

blocking unauthorized network communications by adding �rewall rules.

A further improvement in the �eld of HIDS is online intrusion detection (or “real-time” or

“in-line” intrusion detection). Real-time HIDS analyze different features of the host, including

OS aggregated behavior, such as CPU and memory metrics, shell commands, and system

calls; application information, such as loaded modules and libraries, programming code,

and processes; user behavior and host network information, such as physical and logical

interfaces, and their con�guration, as well as network packets (25).

Nevertheless, in order to implement HIDS in ICS devices, further considerations are

necessary. Two major challenges have to be faced: the time performance in devices with
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severe latency requirements and low computational power, and the risk related to the imple-

mentation of active HIDS. Attributes that a HIDS suitable for ICS application should include

are (26):

• Con�gurability: capability to be con�gured as speci�ed by the requirements of the

target system;

• Con�guration and Knowledge Security: HIDS con�guration and used data should be

protected against unauthorized access and modi�cations;

• Resiliency: HIDS action cannot affect the availability of the device;

• Low Performance Overhead: the execution of the HIDS on the target device should

not negatively in�uence the performance of the underlying system;

• Low Detection Time: detection and response to intrusions should be as fast as possible;

and

• Interoperability: the HIDS should be able to interact with other technologies, such as

Security Information and Event Management (SIEM).

In general, regarding embedded industrial devices, operational requirements for industrial

environments, such as real-time capabilities, and availability must be ensured, even in the

context of a cybersecurity action. Domain speci�c standards, guidelines, and recommenda-

tions that can be applied for speci�c industrial sectors must be considered to address this

issue.

For example, in an electrical microgrid environment, the most time-critical devices are

PLC, Remote Terminal Units (RTU), and, in particular, electrical protections. To give a few

examples about electrical protections:

• IEC 60834 requires that the latency of the transmission and reception of a control

signal related to a protective action has to be lower than 10 ms, while IEC 61850

imposes a latency lower than 3 ms;

• IEEE 1646-2004 requires information on protective actions to be exchanged by the

devices inside the same substation in a time lower than a quarter of a period (i.e., 5 or

4 ms depending on the 50 or 60 Hz frequency); and

• less stringent limits (between 8 and 12 ms) are required for the exchange of information

on protective actions with devices outside the substation.



3.3 Anomaly Detection Techniques 31

Most PLC and RTU are based on Real-Time Operating Systems (RTOS) (27). The main

characteristic of RTOS is the way they handle operations and resources, completing and

executing tasks within a de�ned time frame due to their optimized architecture and features.

Multi-tasking is still possible, thanks to task scheduling. RTOS handle priority: each task

has a priority, and the task with the highest priority has a preference of execution, even if

it is necessary to prevent a lower-priority task from being executed. Real-Time HIDS are

sometimes implemented as a kernel module in Linux-based operating systems. This type of

implementation can affect the device's performance. For this reason, even if some papers

already propose HIDS speci�cally designed for ICD devices (26), a further effort has to be

put forth to verify the applicability of these solutions to electrical devices.

3.3 Anomaly Detection Techniques

Novelty detection is the task of classifying test data that differ in some respect from the data

that are available during training. This may be seen as “one-class classi�cation”, in which

a model is constructed to describe “normal” training data. The novelty detection approach

is typically used when the quantity of available “abnormal” data is insuf�cient to construct

explicit models for non-normal classes.

This situation is very common in the �eld of security monitoring of industrial control

systems, at different levels. The network traf�c in the manufacturing zone is highly pre-

dictable; moreover, researchers do not dispose of high amount of data regarding malwares

and attacks within control networks. On the contrary, it is very clear what should be the

normal behavior of the whole system. For these reasons, utilizing an anomaly detection

algorithm may allow reaching a high accuracy, even in detecting unknown threats. These

considerations can be applied not only to the network traf�c. Another important application

is in the �eld of physics-based anomaly detection algorithms, that will be discussed in the

next section.

According to (28), novelty detection techniques can be classi�ed according to the follow-

ing �ve general categories:

• Probabilistic approaches: are based on estimating the generative probability density

function (pdf) of the data. The resultant distribution may then be thresholded to de�ne

the boundaries of normality in the data space and test whether a test sample comes

from the same distribution or not.
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• Distance-based methods: including clustering or nearest neighbor methods, are another

type of techniques that can be used for performing a task equivalent to that of estimating

the pdf of data. These methods rely on well-de�ned distance metrics to compute the

distance (similarity measure) between two data points.

• Reconstruction-based methods: are often used in safety-critical applications for regres-

sion or classi�cation purposes. They can autonomously model the underlying data,

and when test data are presented to the system, the reconstruction error, de�ned to be

the distance between the test vector and the output of the system, can be related to the

novelty score. Neural networks and subspace-based methods can be trained in this way

• Domain-based methods: they require a boundary to be created based on the structure

of the training dataset. These methods are typically insensitive to the speci�c sampling

and density of the target class, because they describe the target class boundary, or

the domain, and not the class density. Class membership of unknown data is then

determined by their location with respect to the boundary. As with two-class Support

Vector Machine (SVM), novelty detection SVMs (most commonly termed “one-class

SVMs” in the literature) determine the location of the novelty boundary by using only

those data that lie closest to it (in the transformed space); i.e., the support vectors. All

other data from the training set (those that are not support vectors) are not considered

when setting the novelty boundary. Hence, the distribution of data in the training set is

not considered which is seen as “not solving a more general problem than is necessary”

• Information theoretic methods compute the information content of a dataset by using

measures such as entropy, relative entropy, etc. These methods assume that novelty

signi�cantly alters the information content of the otherwise “normal” dataset. Typically,

metrics are calculated by using the whole dataset and then that subset of points whose

elimination from the dataset induces the biggest difference in the metric is found. This

subset is then assumed to consist of novel data.

Each category of methods has its own strengths and weaknesses, and faces different chal-

lenges for complex datasets. Reconstruction-based methods are very �exible and typically

address high-dimensionality problems, with no a priori assumptions about the properties

of the data distribution. However, they require the optimization of a pre-de�ned number of

parameters that de�ne the structure of the model, and may also be very sensitive to these

model parameters. A reconstruction-based approach relying on a neural network architecture
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called autoencoder will be discussed in Section 5.3 for the development of a physics-based

anomaly detection algorithm for a photovoltaic system.

3.4 Physics-Based Anomaly Detection

Cyber-attacks against industrial systems aim to modify the physical behavior of the usual

system process. In cyber-physical systems, the physical evolution of the system state is

predictable. For this reason, some works propose to add a further line of defense in ICS,

represented by algorithms able to rapidly notice abnormal physical behaviors based on

measures extracted from the industrial process.

One of the fundamentally unique properties of industrial control—when compared to

general Information Technology (IT) systems is that the physical evolution of the state of

a system has to follow immutable laws of nature. For example, the physical properties of

water systems (�uid dynamics) or the power grid (electromagnetics) can be used to create

time-series models that we can then use to con�rm that the control commands sent to the

�eld were executed correctly and that the information coming from sensors is consistent with

the expected behavior of the system. For example, if we open an intake valve, we should

expect that the water level in the tank should rise, otherwise, we may have a problem with the

control, actuator, or the sensor; this anomaly can be either due to an attack or a faulty device.

The idea of creating models of the normal operation of control systems to detect attacks has

been presented in an increasing number of publications appearing in security conferences in

the past couple of years.

Monitoring the “physics” of cyber-physical systems to detect attacks is a growing area of

research. In its basic form, a security monitor creates time-series models of sensor readings

for an industrial control system and identi�es anomalies in these measurements to identify

potentially false control commands or false sensor readings. Applications include water

control systems, state estimation in the power grid, boilers in power plants, chemical process

control, capturing the physics of active sensors, electricity consumption data from smart

meters, video feeds from cameras, medical devices, and other control systems.

Research communities from different backgrounds ranging from control theory, power

systems, and cyber-security have tried to provide their own solutions to physics-based attack

detection. A complete review of physics-based anomaly detection algorithms has been

presented in (29). In the �eld of industrial processes and especially in power systems, typical

anomaly detection strategies are based on the dynamic state estimation, basically composed

by using the equations that describe the physical system, and on the comparison between
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the forecast behavior and the real measurements. Even if very ef�cient, this approach has

some drawbacks: implementing the equations requires knowledge of the exact behavior of

the system, i.e., the exact parameters of the equations; moreover, it could be very hard to

write a closed-form equation that takes into account heterogeneous types of parameters, and

even if possible, it would require a customized design. Machine Learning (ML) approaches

could be useful to face up such types of problems.



Chapter 4

Enterprise Layer

4.1 Covert Channels

In computer security, a covert channel is a type of attack that creates a capability to transfer

information objects between processes that are not supposed to be allowed to communicate by

the computer security policy. The term, originated in 1973 by Butler Lampson, is de�ned as

channels "not intended for information transfer at all, such as the service program's effect on

system load," to distinguish it from legitimate channels that are subjected to access controls.

In short, covert channels transfer information by using non-standard methods against the

system design. Today, covert channels and their technological side – steganography –

represent the new frontier of cyber-crime and cyber-espionage.

The ubiquitous presence of a small number of network protocols suitable as carriers (e.g.

the Internet Protocol) makes covert channels widely available. Reference (30) identi�ed in

2007 a list of possible covert channels techniques, based on the mechanism and not on the

layers of the Open Systems Interconnection (OSI) model:

• Unused Header Bits: example include Type of Service (TOS) �eld or the TCP header's

Flags �eld, the IP header's Don't Fragment (DF) bit (can be set to arbitrary values if

the sender knows the Maximum Transfer Unit (MTU) size of the path to the receiver),

the TCP Urgent Pointer (used to indicate high priority data that is unused if the URG

bit is not set), the TCP Reset segments (TCP segments with the RST �ag set abort

the connection and usually contain no data), the unused code �elds of some Internet

Control Message Protocol (ICMP) messages and various IPv6 header �elds such as

Traf�c Class and Flow Label
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• Header Extensions and Paddings: examples include IPv6 destination options header,

IPv6 Hop-by-Hop, Routing, Fragment, Authentication and Encapsulating Security

Payload extension headers, IP Route Record option headers, padding of the IP and

TCP header to 4-byte boundaries

• IP Identi�cation and Fragment Offset: the IP Identi�cation header �eld is used for

reassembling fragmented IP packets. The only requirement from the IP standard is that

each IP ID uniquely identi�es an IP packet for a certain time period. The Fragment

Offset is used to determine in which sequence the fragments need to be reassembled.

Several techniques can be used, like multiplying each byte of the covert information

by 256 and directly using it as the IP ID

• TCP Initial Sequence Number �eld: TCP sequence numbers are used to coordinate

which data has been transmitted and received guaranteeing reliable transport. The �rst

sequence number selected by the client is called the Initial Sequence Number (ISN).

The ISN must be chosen such that the sequence numbers of new incarnations of a TCP

connection do not overlap with the sequence numbers of earlier incarnations of a TCP

connection. Several techniques can be used, like multiplying each covert byte with

2563 and directly using it as the TCP ISN

• Checksum Field: The Checksum �eld is modi�ed to encode the secret information

and an IP header extension is added with the content chosen such that the modi�ed

checksum is correct again. The same technique could be used for the TCP header

checksum.

• Modulating the IP Time To Live Field, or Address Fields and Packet Lenghts, or

Modulating Timestamp Fields.

• Packet Rate/Timing: Covert information can be encoded by varying packet rates, which

is equivalent to modulating the packet timing (the interpacket times)

• Message Sequence Timing: the possibility of constructing covert channels by modulat-

ing the use of protocol operations

• Packet Loss and Packet Sorting: the technique requires per packet sequence numbers

and erasures are realized by skipping sequence numbers (arti�cially losing packets at

the sender)
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• Frame Collisions: exploiting the Carrier Sense Multiple Access Collision Detection

mechanism, the covert sender jams any packets of another user, then it uses a back-off

delay of either zero or the maximum value.

• Ad-Hoc Routing Protocols: Covert information can be encoded in header �elds present

in Dynamic Source Routing protocol.

• Wireless LAN: for example, embedding covert data in the RC4 initialisation vector,

which is part of the IEEE 802.11 Wired Equivalent Privacy (WEP) mechanism.

• HTTP: an observer who cannot look into the content transported by HTTP cannot

distinguish between harmless web surfers and the covert senders/receivers.

• DNS: like for HTTP, an observer who cannot look into the content transported by DNS

cannot distinguish between harmless web surfers and the covert senders/receivers.

• Other Application Protocols: many different application protocols present possibilities

to hide information.

• Payload Tunneling: Payload tunnels are covert channels that tunnel one protocol

(usually the IP protocol) in the payload of another protocol. This can be particularly

hard to detect in case of encrypted communication.

Firewalls may be con�gured in order to block all the unusual protocols or connections to

unusual ports. Nevertheless, covert channels can exploit protocols that are usually allowed,

like DNS or HTTP. In these cases, it is necessary that the �rewall inspects also the traf�c

related to allowed connections. One protocol that the vast majority of �rewalls don't inspect

is DNS. In the next chapters, we will focus on covert channels based on DNS, presenting the

attack model and a novel algorithm for the identi�cation of the attack.

4.2 The DNS Tunneling Attack

DNS is a hierarchical and decentralised naming system whose main aim is to associate more

readily memorised domain names, called URL, to the numerical IP addresses needed for

locating devices, such as computers and servers, running services, such as web mailing and

cloud storage. DNS concepts and speci�cations have been de�ned in the two documents

RFC 1034 (31) and RFC 1035 (32). In the rest of this work, the couples of terms DNS

server - server, DNS clients - clients, DNS request - request, DNS response - response, DNS
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query - query, DNS answer - answer, DNS channel - channel, and DNS tunnel - tunnel are

intercharged for simplicity.

DNS is a client-server application: the entities that know the association between domain

names and IP addresses are called DNS servers and the ones that require this information are

called DNS clients. A host that needs to map an IP address to a domain name, or vice versa,

directly sends a mapping request message, called DNS request, to a known DNS server. If the

server has the required information, it satis�es the client sending a response message called

DNS response. In this case, the server is called authoritative DNS server for the required

domain name. Otherwise, the server can act in two different ways:

• Recursive: the server forwards the request to another server and waits for the response.

If this contacted server does not have the required information, it contacts another

server, and again until the request reaches the authoritative server for that domain. The

response travels back from server to server until it �nally reaches the requesting client

(Fig. 4.1).

• Iterative: the server sends to the requesting client the IP address of the server that it

assumes can resolve the request. The client repeats the request to this second server,

and, if necessary, again until it asks to the correct server, i.e. the authoritative one. The

response is sent from the authoritative server directly to the requesting client (Fig. 4.2).

Figure 4.1 DNS Recursive Resolution

The mechanism described above can be exploited to create a covert communication

within a covert DNS channel, also called DNS tunnel, between a client and a server. The

covert channels exploit DNS requests and responses in order to bypass �rewalls that do not

implement DNS packet inspection. This can be achieved by compromising a DNS client

inside a local network usually protected by a �rewall and employing a malicious (rogue)



4.2 The DNS Tunneling Attack 39

Figure 4.2 DNS Iterative Resolution

DNS server. In particular, DNS request and response packets, called DNS query and DNS

reply, respectively, can be used for two main malicious purposes: i) provide an Internet

connection outside of a delimited network bypassing the �rewall. In this way, data from

the compromised client can be encapsulated within DNS packets sent to the rough server.

This kind of attack is called data ex�ltration. ii) create Command and Control channels for

malware, in particular, botnet. It is the DNS client the one that starts the communication.

DNS server cannot do that because clients do not have a service listening for DNS requests

and, most times, are behind a �rewall that blocks these requests from outside. A DNS channel

is activated when a client receives the response to its previously sent request.

We can identify two main scenarios about the communication between the compromised

client and the rogue server:

1. Direct: the client is able to set its own server address, e.g., in the operative system's

settings, and so to directly create a covert channel between the client and the rogue

server. The compromised client will send all its requests to the rogue server. Typically,

this con�guration is fruitless since the �rewall usually blocks all outgoing direct

connections to port 53 (the port used for DNS packets exchange).

2. Proxy: the attacker registers a fake domain and deploys, outside the client local

network, a rogue server that is authoritative for that speci�c domain. The compromised

client will send all its requests to the nearest genuine server which will forward to the

rogue server only the requests to the fake domain, as shown in Figure 4.3.
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Figure 4.3 DNS tunnelling proxy attack model

There are different tools, available on the Internet, that can be used to open DNS tun-

nels. They can be classi�ed depending on the abstraction layer at which the information is

encapsulated. Some tools just tunnel binary data that can be used to issue Operating System

commands and transfer �les, while others encapsulate another protocol over DNS, such as IP

or TCP, as shown in Table 4.1.

Table 4.1 Examples of tools that create DNS tunnels

Abstraction layer Tools

Binary data Reverse_DNS_Shell
IP over DNS NSTX, DNSCat, Iodine, TUNS

TCP over DNS DNS2TCP, OzimanDNS

Besides the simple tools, a lot of malware have been created to open and exploit DNS

tunnels for different malicious purposes. Nowadays, the main ones are (33) (34):

• Morto Worm;

• FeederBot;

• PlugX;

• FrameworkPOS;

• Wekby;

• BernhardPOS;

• Jaku;
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• Multigrain;

• DNSMessenger;

Even if they work in different ways, their common goal is to create DNS tunnels for

covert command and control or data ex�ltration communications.

4.3 Ensemble Classi�er for Detecting DNS tunneling At-

tack

Several works in the literature address the issue of DNS-based covert channels. The present

work proposes a classi�cation into four big families depending on the set of information

considered to extract the statistical features: Per-transaction, Per-query, Per-domain, and

Per-IP approaches.

Per-transaction approaches try to discover covert channels between couples client/server

entities by analysing properties related to the request/response transactions. These approaches

use as input each pair of request/response grouped by client/server IP address and identi�ed

by transaction ID:X(clienti ;serverj )  � transID1; : : : ; transIDn. They extract arrival timing

information and/or some information from both query and reply �elds. The extracted features

allow identifying a compromised(clienti ;serverj ) DNS communication.

The main papers describing Per-transaction approaches and the considered features are

reported in Table 4.2.

One of the �rst and most promising works is proposed in (35). The authors consider

the inter-arrival time between DNS packets, query length, response length, and the related

statistics up to the4th order (mean, variance, skewness, and kurtosis) as the features to detect

the presence of active DNS tunnels. Subsequently, some binary classi�ers are compared

to identify malicious activities. The work has been subsequently expanded by using PCA

and MI on the same features in (36) and (37), and a further performance evaluation with

unsupervised ML algorithm is presented in (38). In (39), a set of 10 features is used as input

to an ensemble classi�er composed of three supervised binary classi�ers (K-nn, Random

forest, and multi-layer perceptron).

Per-query approaches try to discover tunnels analysing FQDN queries regardless of

client/server interactions. These approaches consider in input some �elds of every single DNS

query and/or reply. The extracted features are mainly based on character space properties of

the query/reply �elds and allow identifying each compromised DNS packet. The main papers

describing Per-query approaches and the considered features are reported in Table 4.3.
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Table 4.2 Main papers investigating Per-transaction detection approaches

Papers Features Algorithms

(35) inter-arrival time between
DNS packets, query length,
response length

linear discriminant analysis,
K-nn, NN, SVM

(36), (37) inter-arrival time between
DNS packets, query length,
response length

a PCA + MI

(38) inter-arrival time between
DNS packets, query length,
response length

k-means, logic learning ma-
chine

(39) query Question type, query
Question length, query Ques-
tion info bit, query Ques-
tion entropy, response Answer
length, response answer info
bits, response info bit, re-
sponse entropy

Ensemble classi�ers (K-nn,
Random forest, multi-layer
perceptron)

There is a huge variety of features that can be extracted from a single query, including

the ratio of vowels, consonants, numbers, special characters, but also the computation

of parameters like entropy. Many works utilize a lexicographic approach for detecting

anomalous queries. For example, in (40) many different features are extracted from the

queries and subsequently analyzed by the one class Isolation Forest algorithm. The main

drawback of this approach is that many websites utilize random strings, so that many queries

are classi�ed as false positive for the design itself of the algorithms.

Some papers propose to exploit some deep learning architectures to process the entire

packets at a byte level, such as in (44), where a convolutional neural network is used to

process a representation of the entire DNS packet in a supervised ML-based classi�cation.

The main paper following this approach is reported in Table 4.4

Per-domain approaches collect all the DNS packets that are sent to a speci�c second-level

domain and compute the features over sets of these packets. Each set includes a �xed

amount of packets or all the packets collected within a �xed time interval. The extracted

features allow identifying a compromiseddomaini . The main papers describing Per-Domain

approaches and the considered features are reported in Table 4.5.
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Table 4.3 Main papers investigating Per-query detection approaches

Papers Features Algorithms

(40) character entropy, total count
of characters, count of charac-
ters in sub-domain, count of
uppercase and numeric char-
acters, number of labels, max-
imum label length and average
label length

Isolation Forest

(41) entropy, query length, IP
packet sender length, IP
packet response length, en-
coded query name length, re-
quest application layer en-
tropy, IP packet entropy, query
name entropy

SVM, J48, Naive Bayes

(42) entropy, length, characters ra-
tio, upper case ratio, lower
case ratio, digit ratio, num-
ber of subdomains, Responses:
TXT records, upper case
count, lower case count, num-
ber of digits, number of
spaces, dash count, slash
count, equal count, other char-
acters count, normalized en-
tropy

Logistic Regression, K-means
clustering

(43) Longest Meaningful Charac-
ters Ratio, N-gram Score, En-
tropy of Subdomain Names,
Numerical Characters Ratio,
Different Alphabetic Charac-
ters Ratio, Different Numeri-
cal Characters Ratio, Length
of Subdomain Names, Vowel
Characters Ratio, Number of
Alphanumeric Swaps

PCA + ensemble binary clas-
si�er
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Table 4.4 Main papers proposing a per-query featureless approach

Papers Algorithms

(45) 1D convolutional neural network

(44) convolutional neural network

(46) feed-forward deep learning

(47) Autoencoder based anomaly detection

Table 4.5 Main papers investigating Per-domain detection approaches

Papers Features Algorithms

(34) character entropy, rate of
A and AAAA records, non-
IP type ratio, unique query
ratio and volume, average
query length, ratio between
the length of the longest mean-
ingful word and the subdo-
main length

Isolation Forest

(48) nameservers, domains and
lowest level subdomains char-
acter frequencies

compare the character ranks
and frequencies with Zip�an
distribution of the English lan-
guage

(49) 29 feature, including statistics
over subdomains and record
types

Isolation Forest
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Per domain approaches perform differently over speci�c attacks from the ones based

on per-query or per-transaction strategy. For example, authors in (34) declare their solution

addresses the problem of detecting low throughput DNS tunneling attacks. Per-domain

approaches can also be useful to detect botnets that utilize DNS tunnels for command and

control.

Per-IP approaches consider all the packets that are sent by a speci�c IP address. The

extracted features are mainly based on timings and allow identifying a compromisedclienti .

The main papers describing Per-IP approaches and the considered features are reported in

Table 4.6. In particular, authors in (50) propose a method based on 4 elements (time interval,

Table 4.6 Main papers investigating Per-IP detection approaches

Papers Features Algorithms

(50) 4 elements (time interval,
packet size, subdomain en-
tropy and record types) for an
overall amount of 18 features

binary classi�cation ML

(51) Average length of domain
names, Average number of
labels, Number of different
hostnames, Average length
of hostnames, Information
entropy of hostnames, Av-
erage length of DNS mes-
sages, Proportion of big up-
stream packets, Proportion
of small downstream packets,
Upload/Download payload ra-
tio

Decision Tree, Random For-
est, K-nn, and SVM

packet size, subdomain entropy, and record types) for an overall amount of 18 features

extracted from 1000 request/response pairs that share the same source IP address, destination

IP address, and intended query domain, used as input to a binary classi�cation ML algorithm.

Some other papers worth mentioning propose approaches that do not well �t in one of

the four mentioned categories. For example, (52) addresses the issue of covert channels over

encrypted traf�c, that are exploited especially in some botnets, proposing to detect DGA via

the amount and rate of NXDomain responses.

These papers are reported in Table 4.7.
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Table 4.7 Other approaches for the detection of DNS tunnels

Papers Features Algorithms

(53) number of answer, character
ratio (letter/total, used charac-
ter), inter arrival per domain
(request and answer), num-
ber of substring, longest sub-
string, packet length, DNS
type, DNS type frequency,. . .

Random Forest

4.3.1 Proposed Approach

Each approach proposed in the literature shows a signi�cant ef�ciency in detecting some

speci�c tools or malware. Nevertheless, none of these works is able to assure a high ef�ciency

in detecting all the possible types of covert channels.

The present work proposes an architecture that aims to analyze the DNS traf�c in order

to detect different forms of covert channels jointly exploiting the detecting capabilities of

different solutions proposed in the literature. We also want to structure the solution in a

modular and scalable way to be able to add new algorithms that could be proposed in the

future for addressing some speci�c new threats. The architecture of the proposed approach is

shown in Figure 4.4.

The basic idea is to run in parallel different solutions based on different ML algorithms

and a different set of features, where each of them speci�cally targets different kinds of DNS

tunneling attacks.

The main blocks are:

• DNS �lter : it �lters the DNS traf�c which will be the only one considered in the DNS

tunneling detection process.

• Feature Extractor: it periodically extracts statistical features from the input DNS

traf�c.

• Feature Selector: each family includes a feature selection block that aims to select a

set of features from the ones extracted by the Feature Extraction block depending on

the ML algorithm's needs.

• ML algorithm : each algorithm takes a "tunnel" or "no tunnel" decision concerning

the portion of the DNS traf�c related to the input features.
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