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ABSTRACT

The Automatic Scene Detection Problem (ASDP) is a combinatorial optimization problem that
arises in the context of video processing and that has a central role in the management, storing
and content retrieval of videos. The problem consists of partitioning the shots of a given video
into scenes by optimizing a measure related to the similarity between the given shots. In this
article, we build up upon the results from the literature on the ASDP in order to design a new
approximate solution algorithm able to outperform the current state-of-the-art both in terms of
speed and quality of the solution.

1. Introduction
Given a positive integer N ≥ 1, consider a video encoded as an ordered set  = {1, 2,… , N} of N groups

of sequential frames, hereafter referred to as shots (see Figure 1). Given a pair of shots i, j ∈  , i ≤ j, let �i,j =
{i, i + 1,… , j − 1, j} denote a scene, i.e., a subset of j − i + 1 consecutive shots in  that starts at shot i and ends at
shot j. For example, the scene �3,5 in Figure 1 refers to the subset of three shots {3, 4, 5}. Whenever we need to refer
to a generic scene in  , we shall drop the indices and just write � ∈  . Let D denote a N ×N symmetric distance
matrix, whose generic entry di,j ∈ ℝ0+ encodes a measure of similarity between the pair of shots i, j ∈  . Let �(⋅)
denote a set function that associates a scene � ∈  with a nonnegative real, according to the following formula

�(�) ∶=
∑

p,q∈�
dp,q .

Fixed a positive integerK ∈ {1,… , N}, let P = {�} denote a partition of  intoK scenes, i.e., a collection of scenes
such that

|P | = K, � ∩ �′ = ∅ ∀�, �′ ∈ P , and
⋃

�∈P
� =  .

Moreover, let  denote the set of the possible partitions of  into K scenes. Then, the Automatic Scene Detection
Problem (ASDP) consists of finding a partition P ∈  that minimizes the following cost function related to the quality
of a partition P :

z(P ) =

∑

�∈P
�(�)

∑

�∈P
|�|2

. (1)
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Video

Frame Layer

21 3 4 5 Shot Layer

σ2,2σ1,1 σ3,5 Scene Layer

Figure 1: An example of a video encoded as a sequence of frames, along with two possible logical partitions of the frames
into shots (the shot layer) and of the shots into scenes (the scene layer), respectively. The ASDP involves the two topmost
layers and consists of partitioning the shots into scenes, by optimizing a measure related to the similarity between the
given shots.

The numerator of z(P ) accounts for the similarity of the shots falling within each scene � ∈ P ; the denominator
accounts for the number of shots in each scene �. The shorter the scene and the higher the similarity of the shots that
fall within it, the lower the value of z(P ). This cost function was proposed by Rotman et al. [17], who reported several
empirical considerations on the efficacy of z(P ) as opposed to other cost functions described in [15, 16]. Incidentally,
we observe that the denominator presented in Rotman et al.’s article was

∑

�∈P |�|
2 −N instead of

∑

�∈P |�|
2, as the

authors intended to neglect the entries dq,q , q ∈ {1,…N}, which are zero by definition. As the authors observed,
however, the subtraction by N in the denominator does not alter the meaning of the cost function z(P ) and can be
omitted. Hence, in the rest of this article we will assume to work just with the cost function (1).

The value of K is part of the input of the problem and is usually fixed by means of heuristics, as described in
[17]. In the case K = 1 or K = N , solving the ASDP is trivial. In fact, in the former case, P is constituted by 1
scene, while in the latter case, P contains exactly K scenes, each consisting of a single shot. The problem instead
becomes nontrivial for generic values of K and deciding its complexity in such a case still remains an open problem.
An example of an ASDP instance is shown in Figure 2.

The ASDP was introduced in the literature on video processing by Rotman et al. [17] as a way to model the
automatic segmentation of the shots from a given video into time-contiguous and semantically coherent scenes. This
task is compelling for the management and storing of video contents. In particular, the massive quantity of videos
that are produced each day, e.g., by means of computers and smart devices, leads the broadcast companies that store
them to automate the tedious and time-consuming manual operations that are involved in content management. As
an example, one of the main tasks in the management of documentary, news and educational videos, consists of
automatically generate metadata for each scene in order to enable an easy browsing of the videos as well as the re-use
of (possibly part of) them [11, 23]. In the context of a sport event, it may be often necessary to highlight the precise
points of a video in which a specific athlete shows up, so as to enable faster video browsing [1, 6, 7]. In the context of
advertising insertions, spots are usually placed in a video in such a way to be as less intrusive as possible; it is therefore
necessary to automatically identify which specific points of the considered video may minimize intrusiveness [12]. In
all of these contexts, scene detection algorithms prove of fundamental assistance: by segmenting a video into semantic
units, these algorithms enable the extraction of metadata that can be subsequently used to manipulate and classify it.

The literature on scene detection provides several examples of algorithms that enable the segmenting of the shots
from a given video into scenes. Wemay classify these algorithms into fourmain classes, based on themethodology used
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Figure 2: An example of a possible distance matrix D (on the left) associated with an instance of the ASDP characterized
by N = 9 shots and K = 3 scenes. The figure on the right shows the Mathematica MatrixForm of D: the lighter the colors
the lower the entries of D they refer to. Conversely, the darker the colors the bigger the entries of D they refer to.

to carry out this task [8]. Specifically, we may distinguish between the rule-based algorithms [9], the stochastic-based
algorithms [10, 22], the graph-based algorithms [14, 19], and finally the clustering algorithms [4, 13, 17]. Discussing
the foundational ideas at the core of each class is out of the scope of the present article. The interested reader, however,
may refer to the article by Del Fabro and Böszörmenyi [8] for an introduction to the topic. Here, we focus on the
clustering algorithms. The idea at their core is to group frames into meaningful clusters based on a measure of the
similarity among shots. Among the major contributions to this class, Baraldi et al.’s works [2, 3, 4, 5] stand out as
one the most important examples that aim to pave the road towards the development of a general framework for scene
detection. In particular, besides presenting a fast shot detection algorithm, as well as a scene detection algorithm
based on hierarchical clustering [4], Baraldi et al. further proposed a clustering algorithm to perform scene detection,
grouping adjacent shots based on their color spectra [2]. The authors proposed the use of color information to generate
a similarity matrix able to quantify the visual and temporal proximity between shots and then applied spectral clustering
to this matrix in order to obtain the desired automatic scene detection. Baraldi et al. [3] further improved the accuracy
of the scene detection, by enriching the color information of the shots with further features from the middle frames
extracted by means of a neural network. Rotman et al. [17] significantly extended Baraldi et al.’s works, by proposing
a framework for video post-processing consisting of four main stages: Baraldi et al.’s shot detection, middle frame
selection and features extraction (performed by means of a neural network), and finally the automatic scene detection
tout court, formulated in terms of the ASDP and in which the input distance matrix D was obtained by processing the
outputs of the three previous steps.

Rotman et al. proposed a dynamic programming algorithm to solve the ASDP, and subsequently improved their
overall framework by modifying the processing of the previous first three steps so as to generate input distance matrices
having combinatorial properties able to vastly speed up the running time of their algorithm, at the cost of slightly loosing
in terms of accuracy [18]. Rotman et al. [17] algorithm, and more in general their overall framework [18], currently
constitutes the current state-of-the-art for the ASDP.

In this article we build upon Rotman et al. [17, 18] seminal works to design a new improved solution algorithm for
the ASDP able to outperform the current state-of-the-art both in terms of speed and quality of the provided solution.
In particular, starting from a recall of the foundations of Rotman et al. [17] algorithm, in Section 3 we exploit the
combinatorics of the ASDP to design a new approximate algorithm characterized by a computational cost not higher
than Rotman et al. [17]’s algorithm. In Section 4, we report on the results obtained by running the new heuristic on an
extensive battery of practical instances of the ASDP taken from the literature and in Section 5 we give a perspective
on possible future developments.
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2. On Rotman et al.’s algorithm
In this section, we recall some fundamental aspects of Rotman et al.’s algorithm. Before proceeding, we introduce

some notation and definitions that will prove useful throughout the article. We start by observing that an instance  of
the ASDP is characterized by the triplet ( ,D, K) and that the total ordering of  allows to look at a scene �i,j both as
a subset of shots and as the discrete interval {i, i + 1,… , i + j}, hereafter denoted as [i, j]. This duality proves useful
not only to recall Rotman et al.’s algorithm but also to formalize the new heuristic discussed in the next sections.

Given an interval [i, j] ⊆ [1, N] =  and a positive integer k such that 1 ≤ k ≤ min{j − i+1, K}, let P ki,j denote a
partition of the interval [i, j] into k scenes. Then the idea at the core of Rotman et al.’s algorithm consists of exploiting
a bottom-up dynamic programming solution approach that progressively combines smaller instances (subproblems) of
an input instance  of the ASDP until obtaining a solution to . The dynamic programming approach is enabled by the
following key observation: if the shots in the interval [i,N] are partitioned into k scenes, for some appropriate values of
i and k, then the shots in the interval [1, i−1]will have to be necessarily partitioned intoK−k scenes in order to ensure
the feasibility of the solution. Hence, for each fixed shot i ∈  and k ∈ �i ∶= [max{1, K − i+1},min{K,N − i+1}],
Rotman et al.’s algorithm finds a partition P ki,N that locally minimizes the following surrogate cost function

Cki (e) ∶=

∑

�∈P ki,N

�(�)

e +
∑

�∈P ki,N

|�|2
,

where the positive integer

e ∈ �ki ∶=

{

[⌈(i − 1)2 ∕ (K − k)⌉, (i −K + k)2 +K − k − 1] k ∈ [1, K − 1]
{0} otherwise,

approximates the sum of the addends at the denominator of (1) related to the partition of the interval [1, i − 1]. The
authors observe that, for each fixed k, a lower bound on e is obtained when the shots in [1, i−1] are grouped as evenly
as possible intoK −k scenes. The upper bound, instead, is achieved when one of theK −k scenes contains the largest
admissible number i − K + k of shots, while the other K − k − 1 scenes contain just one shot each. We observe
here that |�ki | is, in the worst case, of order O(N2). This fact will turn out to be useful later on, when discussing the
computational complexity aspects of Rotman et al.’s algorithm.

For a fixed shot i ∈  = [1, N], the generic base case for Rotman et al.’s algorithm can be easily determined by
observing that there is one and only one partition of the shots in [i,N] if and only if either k = 1 or k = N − i + 1.
The case k = N − i + 1 is trivial because it implies that

∑

�∈P ki,N

�(�) =
q
∑

r=p
dr,r = 0,

i.e., that Cki (e) = 0, for any e ∈ �
k
i . The case k = 1, instead, involves finding the partition P 1i,N that minimizes C1i (e)

over all of the possible values e ∈ �1i . It is easy to see that, because there is just one partition of the shots in [i,N] into
one scene, it holds that

C1i (e) =
�(�i,N )

e + (N − i + 1)2
, ∀ e ∈ �1i .

Hence, the minimization of the surrogate cost function C1i (e) with respect to e can be carried out in quadratic order at
most. Note that there is no need to consider shots i ∈  with i < K because it is not possible to partition [1, i − 1]
into K − 1 scenes. This fact allows Rotman et al.’s algorithm to skip the first [1, K − 1] shots and to focus just on the
interval [K,N].

The iterative step of Rotman et al.’s algorithm consists of considering all of the possible values of k ∈ �i ⧵ {1} and
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finding, for each of them, the partition P ki,N that minimizes the surrogate cost Cki (e), for all e ∈ �ki . To this end, for
each shot j ∈ [i,N−1], Rotman et al.’s algorithm first splits the target interval [i,N] into [i, j] and [j+1, N]. Then, it
considers the partitions P 1i,j and P

k−1
j+1,N for the intervals [i, j] and [j+1, N], respectively, and sets P ki,N = P 1i,j ∪P

k−1
j+1,N .

The partition P ki,N that minimizes the function

Gki,j(e) ∶=

∑

�∈P 1i,j

�(�)

e +
∑

�∈P 1i,j∪P
k−1
j+1,N

|�|2

over all of the possible values of e ∈ �ki is then selected as the best one for the interval [i,N]. Rotman et al. observe
that the values of Cki (e) and G

k
i,j(e) are related by means of the two other quantitiesXk

i (e) and A
k
i (e), corresponding to

the last shot of the first scene of the partition associated with Cki (e), and to the contribution of P
k
i,N to the denominator

of Cki (e), respectively. In particular, the base case for C
k
i (e), X

k
i (e), and A

k
i (e) is computed as

C1i (e) =
�(�i,N )

e + (N − i + 1)2
(2)

X1
i (e) = N (3)
A1i (e) = (N − i + 1)2 (4)

for all i ∈ [K,N] and e ∈ �ki . The iterative step, instead, is characterized by the following relations:

Cki (e) = min
j∈[i,N−k+1]

{

Gki,j(e) + C
k−1
j+1 (e + (j − i + 1)

2)
}

(5)

Gki,j(e) =
�(�i,j)

e + (j − i + 1)2 + Ak−1j+1 (e + (j − i + 1)
2)

(6)

Xk
i (e) = argmin

j∈[i,N−k+1]

{

Gki,j(e) + C
k−1
j+1 (e + (j − i + 1)

2)
}

(7)

Aki (e) = (X
k
i (e) − i + 1)

2 + Ak−1j+1 (e + (j − i + 1)
2) (8)

for i ∈ [1, N], k ∈ �i ⧵ {1}, p ∈ �ki , and j ∈ [i,N − k + 1]. Specifically, for each j ∈ [i,N − k + 1], the partition
of the shots [i, j] into 1 scene and the one of the shots [j + 1, N] into k − 1 scenes are combined according to the
sum of their associated costs Gki,j(e) and C

k−1
j+1 (e+ (j − i+ 1)

2), respectively. As both share the same denominator, the
numerator resulting from their sum corresponds to the sum of the distances between the shots in the two partitions.
In other words, e allows to parameterize the number of shots in the partition of �1,i−1 into K − k scenes, which is not
considered when solving the problem of partitioning �i,N into k scenes.

Algorithm 1 outlines the pseudo-code of Rotman et al.’s algorithm. With a little abuse of notation, we treat C ,
X, and A as tensors in the pseudo-code, consistently with equations (2)–(8). In this way, we can save the computed
values of Cki (e), X

k
i (e), and A

k
i (e), and recall them whenever necessary in the iterations. Instead, we treat Gki,j(e) as

a function, so that computed values are not saved for further use. Lines 1-4 initialize the starting values for C , A and
T . Line 1 initializes Cki (e) to ∞ for each (i, k, e) ∈ F . Lines 2–4 compute the bases cases according to equations
(2)–(4). Lines 5–20 compute the step cases according to equations (5)–(8). Lines 22–25 reconstruct the partition
{[1, s1], [s1 + 1, s2],…[sK−1 + 1, sK ]} associated with the cost of the partition PK1,N denoted as CK1 (0) and equal to

CK1 (0) =

∑

�∈PK1,N

�(�)

0 +
∑

�∈PK1,N

|�|2
= z(PK1,N ).
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Algorithm 1: Rotman et al.’s algorithm
Input : Matrices B and D.
Output : A partition PK1,N and the associate cost CK1 (0).
Internal Data : F ← [1, N] × [1, K] × [0, N2], V , sk ∈ ℤ0+ .
Internal Functions : C ∶ F → ℝ0+ , X ∶ F → ℝ0+ , and A ∶ F → ℤ0+ .

1 Set Cki (e)← ∞, for all i ∈ [1, N], k ∈ [1, K], e ∈ [0, N2];
2 foreach i ∈ [K,N] do
3 foreach e ∈ �1i do
4 Compute C1i (e), X

1
i (e), and A

1
i (e) with equations (2)–(4);

5 foreach i ∈  do
6 foreach k ∈ �i do
7 if k = K then
8 el ← er ← 0;
9 else

10 el ← ⌈(i − 1)2∕(K − k)⌉;
11 er ← (i − 1) − (K − k) + 1)2 +K − k − 1;
12 foreach e ∈ [el , er] do
13 foreach j ∈ [i,N − k + 1] do
14 if Cki (e) = ∞ then
15 continue;

16 Gki,j (e)← �(�i,j ) ∕
(

e + (j − i + 1)2 + Ak−1j+1 (e + (j − i + 1)
2)
)

;

17 if Gki,j (e) + C
k−1
j+1 (e + (j − i + 1)

2) < Cki (e) then
18 Cki (e)← Gki,j (e) + C

k−1
j+1 (e + (j − i + 1)

2);
19 Xk

i (e)← j;
20 Aki (e)← (j − i + 1)2 + Ak−1j+1 (e + (j − i + 1)

2);

21 // Recovering the partition into scenes with equation (7);
22 V ← 0, s0 ← 0;
23 foreach k ∈ [1, K] do
24 sk ← XK−k+1

sk−1+1,V
;

25 V ← V + (sk − sk−1)2;

26 PK1,N ← {[1, s1], [s1 + 1, s2],…[sK−1 + 1, sK ]};
27 return PK1,N , C

K
1 (0);

In particular, observe that, by definition of Xk
i (e), sk is the last shot of k-th scene at the end of the k-th iteration of

lines 23–25. Finally, at line 27, the algorithm returns the partition so computed and the relative value of the associated
cost function.

Rotman et al. also describe a boolean look-up table T kn,e that can be implemented in Algorithm 1 so as to exclude
non admissible values of e. In particular, for n ∈ [1, N], k ∈ �i, and e ∈ �kn+1, T

k
n,e = true when n shots can be

partitioned into k scenes and there exists P ki,j , i, j ∈  , i ≤ j, such that |P ki,j| = e, and false otherwise. The look-up
table can be initialized before Algorithm 1, and employed after line 12 to skip the iteration if T kn,e = false. The base
cases are computed as

T 1n,e =

{

true if n2 = e
false otherwise

for n ∈  and e ∈ �kn+1, since n shots can be partitioned into 1 scene if and only if, for any j − i+ 1 = n, |P
1
i,j| = n

2 is
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equal to e. The relation for T kn,e is

T kn,e =
⌈

√

e⌉−1
⋁

q=1
T k−1
n−q,e−q2

for n ∈  , k ∈ [2,min{K, n}], and e ∈ �kn+1. Specifically, note that as q < n shots can be partitioned into scene �̂ with
|�̂|2 = q2, for each q ∈ [1, ⌈

√

e⌉ − 1], then there is a partition P ′ of n shots into k scenes such that
∑

�∈P ′ � = e, i.e.,
T kn,e = true, if there is a partition P ′′ of n − q shots into k − 1 scenes such that

∑

�∈P ′′ � = e − q2.

Example 1. As an example of execution of Rotman et al.’s algorithm, consider the instance of the ASDP withN = 6,
K = 3, and

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2 1 2 1 1
2 0 2 2 1 0
1 2 0 0 0 2
2 2 0 0 0 2
1 1 0 0 0 0
1 0 2 2 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As a first step of Rotman et al.’s algorithm, we compute the base cases

C13 (2) =
8
18
, C14 (5) =

4
14
, C15 (8) = C

1
5 (10) = C

1
6 (13) = C

1
6 (17) = 0

The subsequent steps exploit (5)–(8), so we have

C23 (4) = min{G
2
3,3(4) + C

1
4 (5), G

2
3,4(4) + C

1
5 (8), G

2
3,5(4) + C

1
6 (13)}

= min
{ 4
14
, 0
12
, 0
14

}

(9)

= 0.

Figure 3 shows a visual representation of such iterative step. Observe that the last two terms of the expression (9) are
equal to 0. If we choose G13,4(4) + C

1
5 (8) = 0, then A13(4) = 12, and X1

3 (4) = 4. Moreover, with simple arithmetic
steps we also obtain

C22 (1) =
4
9
, A22(1) =17, X2

2 (1) =2

C24 (9) =0, A24(9) =5, X2
4 (9) =5

C25 (16) =0, P 25 (16) =2, I25 (16) =5.

Therefore,

C31 (0) = min{G
3
1,1(0) + C

2
2 (1), G

3
1,2(0) + C

2
3 (4), G

3
1,3(0) + C

2
4 (9), G

4
1,4(0) + C

2
5 (16)}

= min
{4
9
, 1
3
, 3
7
, 1

}

= 1
3
,

corresponding to the partition {{1, 2}, {3, 4}, {5, 6}}. Incidentally, it is worth noting that in the considered example, a
better partition can be obtained by considering {{1, 2}, {3, 4, 5}, {6}} which allows to achieve a value 2 ∕ 7 of the cost
function. This fact further confirms the heuristic nature of Rotman et al.’s algorithm.

As regards the computational complexity of Algorithm 1, we first observe that the values �(�i,j), i, j ∈  , can be
precomputed before running Algorithm 1 by means of a simple O(N2) dynamic programming algorithm described
by Rotman et al. [15], and outlined in the following. Hereinafter, we denote by Di,j , i ≤ j, the sub-matrix [dq,r] of
D, where q, r ∈ [i, j]. We observe that Di,j is a square sub-matrix on the main diagonal of D. The algorithm first
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Figure 3: An iterative step performed by Rotman et al.’s algorithm to compute C2
3 (4) in Example 1. We mark in orange

and yellow the entries of the distance matrix that contribute to the numerator of G2
3,4(4) and C

1
5 (8), respectively. Instead,

we mark in red the entries corresponding to the distances between the shots in �1,2. We observe that, at such iterative
step, e is indeed equal to |�1,2|2 = 4.

initializes �(�i,i) = 0, i ∈  . Then, for l ∈ [2, N] and i ∈ [1, N − l + 1], the algorithm computes �(�i,i+l−1) as

�(�i,i+l−1) = �(�i,i+l−2) + �(�i+1,i+l−1) − �(�i+1,i+l−2) + 2di,i+l−1. (10)

The first two terms of (10) are the sums of the entries belonging to the sub-matricesDi,i+l−2 andDi+1,i+l−1. Since these
two sub-matrices share the entries inDi+1,i+l−2, then �(�i+1,i+l−2) is counted twice in the sum �(�i,i+l−2)+�(�i+1,i+l−1),
hence �(�i+1,i+l−2) has to be subtracted once from (10). Finally, the last term accounts for the fact that di,i+l−1 and
its transpose value di+l−1,i are the only two entries in Di,i+l−1 that are not considered in �(�i,i+l−2) + �(�i+1,i+l−1) −
�(�i+1,i+l−2). Hence, their values have to be added in (10). Now, even in the case in which the boolean look-up table
is used, the computational complexity of Algorithm 1 is equal to

O

⎛

⎜

⎜

⎜

⎝

N
∑

i=1

mK,i
∑

k=M1,i

(i−k+1)2+k−1
∑

e=⌈ i
2
k ⌉

(N − (k − 1) − i + 1)

⎞

⎟

⎟

⎟

⎠

,

whereM1,i = max{1, K − i+1} and mK,i = min{K,N − i+1}. This notation can be further simplified by expanding
the innermost sum as follows:

O
⎛

⎜

⎜

⎝

N
∑

i=1

mK,i
∑

k=M1,i

(N − k − i)
(

(i − k + 1)2 + k − i2

k

)

⎞

⎟

⎟

⎠

that leads to

O
⎛

⎜

⎜

⎝

N
∑

i=1

mK,i
∑

k=M1,i

(N − k − i)
(

k − 1
k

i2 + k2 − 2ik − 2k + 2i
)

⎞

⎟

⎟

⎠

∼ O

( N
∑

i=1

mK,i
∑

k=M1,i

N k − 1
k

i2 +Nk2 − 2Nki − 2Nk + 2Ni

− ki2 k − 1
k

− k3 − 2k2i − 2k2 − 2ki − k − 1
k

i3 − k2i + 2ki2 + 2ki − 2i2
)

.

(11)

Now, observe that
∑N
q=1 q

2 = N(N + 1)(2N + 1) ∕ 6. Then, we can rewrite (11) as

O
⎛

⎜

⎜

⎝

N
∑

i=1

mK,i
∑

k=M1,i

(N + k)i2 + (N − 3i)k2 − k − 1
k

i3 − k3 + 2Ni(1 − k)
⎞

⎟

⎟

⎠
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∼ O

( N
∑

i=1

mK,i(mK,i + 2N + 1)
2

i2 + (N − 3i)
mK,i(mK,i + 1)(2mK,i + 1)

6
− i3mK,i −

m2K,i(mK,i + 1)
2

4

)

. (12)

By recalling that

N
∑

q=1
q3 =

N2(N + 1)2

4
∼ O(N4),

N
∑

q=1
q4 =

N(N + 1)(2N + 1)(3N2 + 3N − 1)
30

∼ O(N5),

and by observing that mK,i = K if i < N −K + 1 and mK,i = N − i + 1 otherwise, (12) reduces to

O

(N−K
∑

i=1

K(K + 2N + 1)
2

i2 + (N − 3i)
K(K + 1)(2K + 1)

6
−Ki3 −

K2(K + 1)2

4

+
N
∑

i=N−K+1

(N − i + 1)(3N − i + 2)
2

i2 + (N − 3i)
(N − i + 1)(N − i + 2)(2N − 2i + 3)

6

− i3 (N − i + 1) −
(N − i + 1)2(N − i + 2)2

4

)

∼ O

(N−K
∑

i=1
(K2i2 +NKi2 +K3N −K3i −Ki3 −K4)

+
N
∑

i=N−K+1
((N2 − i2) i2 +N4 −N3i +N2i2 −Ni3 + i4)

)

. (13)

The second sum in (13) is O(KN4), which yields

O(K2(N −K)2 +NK(N −K)2 +K3N −K3(N −K) −K(N −K)3 −K4 +KN4) ∼ O(KN4).

3. A novel heuristic for the ASDP
In this section, we present a novel heuristic for the ASDP that proves able to outperform Rotman et al. [17]’s

algorithm, which currently constitutes the state-of-the-art for the problem. We start by describing the main idea at
the core of the heuristic. Subsequently, we will enter into the details of its pseudo-code and analyze its computational
complexity. Before proceeding, we introduce some notation and definitions that will prove useful throughout the
section.

Given an instance  = ( ,D, K) of the ASDP, a subset of shots [i, j] ⊆  and a positive integer k such that
1 ≤ k ≤ min{K, j − i + 1}, we denote by ki,j ∶= ([i, j],D, K, k) a sub-instance of  that involves the partitioning
of the shots in [i, j] into k scenes. We observe that if i = 1, j = N , and k = K , then ki,j = K1,N = , i.e., the
sub-instance ki,j coincides with the given input instance  to solve. We denote by P̄ ki,j the partition of the feasible
sub-instance ki,j with (locally) minimum cost z(P̄ ki,j), obtained by recursively splitting ki,j into the two feasible sub-
instances ℎi,v and k−ℎv+1,j , for v ∈ [i, j − 1] and ℎ ∈ [1, k − 1]. Then, a possible approach to solution of the ASDP
consists of (i) recursively splitting a sub-instance ki,j into 

ℎ
i,v and 

k−ℎ
v+1,j , for each v ∈ [i, j −1] and ℎ ∈ [1, k−1], (ii)

finding the (locally) minimum cost partitions P̄ ℎi,v and P̄
k−ℎ
v+1,j for 

ℎ
i,v and 

k−ℎ
v+1,j , respectively, and finally (iii) choosing

a partition P̄ ki,j for 
k
i,j that can be written as P̄

k
i,j = P̄

ℎ
i,v ∪ P̄

k−ℎ
v+1,j and that (locally) minimizes the cost function z(P̄ ki,j).

The term “locally” remarks the fact that this particular recursive splitting behaves as a greedy solution approach to
the ASDP, but in general it proves unable to guarantee the optimality of the overall solution computed. This fact is
clarified by means of the following example.

Example 2. Consider the instance  = ([1, 12],D, 7) of the ASDP, for some distance matrix D. Suppose that the
solution to  can be obtained by splitting  as 41,6 ∪ 37,12 and by computing the partition P 71,12 as the union of the
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partitions P̄ 41,6 and P̄
3
7,12, respectively. Finally, suppose that z(P̄

3
7,12) = 11 ∕ 12, and that D1,6 = [dq,r], q, r ∈ [1, 6] be

as follows

D1,6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 5 5 0 0 0
5 0 5 0 0 0
5 5 0 0 0 0
0 0 0 0 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0.5 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

It is easy to see that the optimal partition

P̄ 41,6 = {{1}, {2}, {3, 4}, {5, 6}}

for 41,6 is characterized by a cost z(P̄ 41,6) = 1 ∕ 10. Hence, we have that z(P̄ 71,12) = (1 + 11) ∕ (10 + 12) = 12 ∕ 22.
Now, consider the partition

P̂ 41,6 = {{1}, {2}, {3}, {4, 5, 6}}

and observe that it is locally suboptimal for 41,6, as characterized by a cost z(P̂ 41,6) = 2 ∕ 12 > z(P̄ 41,6). However,
the union of P̂ 41,6 with P̄ 37,12 gives rise to the partition P̂ 71,12 = P̄ 41,6 ∪ P̂

3
7,12 with cost z(P̄ 71,12) = (2 + 11) ∕ (12 +

12) = 13 ∕ 24 < z(P̄ 71,12). Hence, the recursive splitting in which locally optimal partitions are concatenated does not
generally guarantee the optimality of the overall solution to the ASDP.

Although the recursive splitting in general does not preserve the global optimality of the overall solution to a given
instance, it still proves able to generalize Rotman et al. [17]’s splitting strategy. Specifically, note that Rotman et al.
[17]’s solution space, consisting of the set of partitions that can be written as P ki,N = P 1i,j ∪ P

k−1
j+1,N , is contained in

the solution space constituted by the partitions that can be written as P ki,N = P ℎi,j ∪ P
k−ℎ
j+1,N . Hence, provided that both

k > 2 and 1 < ℎ < k hold, the above splitting strategy potentially allows to search for solutions to the ASDP in a
larger space. In the following example, we show that the values of ℎ and k need to be appropriately determined to
avoid incurring in an infeasible partitioning of the given input interval  .

Example 3. Consider the instance  = ([1, 8],D, 4) and the sub-instance 32,7. It is easy to see that the union of P̄ 32,7
(independently of its combinatorial structure) with any other partitioning of the remaining non-sequential shots {1, 8}
would force considering more than the required K = 4 scenes. In this sense, we say that the sub-instance 32,7 is
infeasible.

In order to characterize the concept of feasibility (or infeasibility) of a sub-instance ki,j , we observe that a partition P
k
i,j

constitutes a feasible solution for a sub-instance ki,j of a given instance  of the ASDP if and only if

k ∈ �i,j ∶= [max{K −N + j − i + 1, 1},min{K − min{i − 1, 1} − min{N − j, 1}, j − i + 1}]
= [max{K −N + j − i + 1, 1},min{K −N + j − i + 1, K − 2, K − i, j − i + 1}]. (14)

In particular, because the shots in [i, j] must be partitioned in k scenes and the shots in  ⧵ [i, j] must be partitioned
in K − k scenes, it holds that (i) k cannot exceed the cardinality of [i, j] and must be greater than or equal to 1 and (ii)
K − k cannot exceed the cardinality of  ⧵ [i, j] and must be greater than or equal to 2 in the case i > 1 and j < N ,
greater than or equal to 1 if only one of the last two inequality holds, and 0 otherwise. We say that an instance ki,j is
feasible when the indices i, j, and k satisfy (14).

Proposition 1. Given a feasible sub-instance ki,j , with k ≥ 2, the number of pairs (v, ℎ) that define two feasible
sub-instances ℎi,v and k−ℎv+1,j is less than or equal to (j − i − k + 2)(k − 1). Moreover, each of such pairs satisfies the
following conditions:

v ∈ [i, j − 1], (15a)
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Algorithm 2: Recursive-Solver
Input : A feasible sub-instance ([i, j],D, K, k), and matrix B.
Output : The values 'ki,j , 

k
i,j , and P̄

k
i,j .

Internal Data : '′ ∈ ℝ0+ ,  ′ ∈ ℤ0+ , and set Q.
Internal Functions : 'rp,q , 

r
p,q , P̄

r
p,q , ∀ p, q, r ∶ i ≤ p ≤ q ≤ j, r ∈ [1, k] (global scope).

1 // Returns the solution to processed subproblems
2 if 'ki,j <∞ then
3 return 'ki,j , 

k
i,j , P̄

k
i,j ;

4 // Recursion base case
5 if k == 1 then
6 '1i,j ← �(�i,j );
7 1i,j ← (j − i + 1)2;
8 P̄ 1i,j ← [i, j];

9 else
10 // Recursion step case
11 '′ ←∞;  ′ ← 1;
12 foreach v ∈ [i, j − 1] do
13 foreach ℎ satisfying (15b) do
14 'ℎi,v, 

ℎ
i,v, P̄

ℎ
i,v ← Recursive-Solver(([i, v],D, K, ℎ),B);

15 'k−ℎv+1,j , 
k−ℎ
v+1,j , P̄

k−ℎ
v+1,j ← Recursive-Solver(([v + 1, j],D, K, k − ℎ),B);

16 if
'ℎi,v+'

k−ℎ
v+1,j

ℎi,v+
k−ℎ
v+1,j

< '′

′ then

17 '′ ← 'ℎi,v + '
k−ℎ
v+1,j ;

18  ′ ← ℎi,v + 
k−ℎ
v+1,j ;

19 Q ← P̄ ℎi,v ∪ P̄
k−ℎ
v+1,j ;

20 'ki,j ← '′;
21 ki,j ←  ′;
22 P̄ ki,j ← Q;

23 return 'ki,j , 
k
i,j , P̄

k
i,j ;

ℎ ∈ �ki,j,v ∶= [max{k − i + 1 −N + v, 1, k −K + 1 + min{N − j, 1}, k − j + v},

min{k −K +N − j + v, k − 1, K − min{i − 1, 1} − 1, v − i + 1}]. (15b)

Proof. Since ki,j is feasible, then k ∈ �i,j , and k ≤ j − i + 1. Hence, there exists a pair (v, ℎ) such that i ≤ v ≤ j − 1
for ℎ ∈ [1, k − 1]. Moreover, each of such pair (v, ℎ) must satisfy the properties ℎ ≤ v − i + 1 and k − ℎ ≤ j − v,
because both ℎi,v and k−ℎv+1,j are feasible, i.e., ℎ ∈ �i,v and k − ℎ ∈ �v+1,j . Thus, k − j + v ≤ ℎ ≤ v − i + 1, and the
number of pairs (v, ℎ) is no greater than (j − i − k + 2)(k − 1). Concerning conditions (15), observe that i ≤ v and
v + 1 ≤ j hold for ℎi,v and k−ℎv+1,j if and only if i ≤ v ≤ j − 1. This proves (15a). By applying (14) to ℎi,v and k−ℎv+1,j ,
we obtain:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℎ ≥ max{K −N + v − i + 1, 1}
ℎ ≤ min{K − min{i − 1, 1} − 1, v − i + 1}
k − ℎ ≥ K −N + j − v
k − ℎ ≥ 1
k − ℎ ≤ K − 1 − min{N − j, 1}
k − ℎ ≤ j − v.

It is easy to see that this set of conditions leads to its compact form (15b).

We introduce now some notation that will allow to compactly express the cost of partitioning a feasible sub-instance
ki,j = ℎi,v ∪ k−ℎv+1,j of  as P ki,v = P ℎi,v ∪ P

k−ℎ
v+1,j , with (v, ℎ) satisfying (15). This notation will prove useful to outline
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Algorithm 3: Heuristic-Partitioner
Input : Instance  = ([1, N],D, K), matrix B.
Output : zK1,N , P̄

K
1,N

Internal Functions : 'ki,j , 
k
i,j , P̄

k
i,j , i ∈ [1, N], j ∈ [i,N], k ∈ [1, K] (global scope).

1 'ki,j ←∞ for i = 1,… , N − 1, j = 2,… , N , k = 1,… , N ; // Initialization
2 'K1,N , 

K
1,N , P̄

K
1,N ← Recursive-Solver(,B); // Main

3 return 'K1,N ∕ 
K
1,N , P̄

K
1,N ;

the new heuristic for the ASDP shown in Algorithm 2. Specifically, given a partition P ki,j for 
k
i,j , we denote

'(P ki,j) ∶=
∑

�∈P ki,j

�(�),

(P ki,j) ∶=
∑

�∈P ki,j

|�|2,

and we rewrite z(P ki,j) as

z(P ki,j) =
'(P ki,j)

(P ki,j)
.

We also denote by

'ki,j ∶= '(P̄
k
i,j), and 

k
i,j ∶= (P̄

k
i,j),

the values of '(⋅) and (⋅) when computed in the (locally) optimal partition P̄ ki,j , that is, the one obtained with the
recursive splitting described at the beginning of this section. Finally, we denote Λki,j as the set of the costs associated
with each solution to ki,j obtained as P̄

ℎ
i,v ∪ P̄

k−ℎ
v+1,j , with (v, ℎ) satisfying (15):

Λki,j =

⎧

⎪

⎨

⎪

⎩

{

Ωk,ℎi,j,v ∶ (v, ℎ) satisfies (15)
}

if k ≥ 2
{

'1i,j
1i,j

}

if k = 1
(16)

with

Ωk,ℎi,j,v =
'ℎi,v + '

k−ℎ
v+1,j

ℎi,v + 
k−ℎ
v+1,j

. (17)

Observe that, by definition, 'ki,j and 
k
i,j are such that

minΛki,j =
'ki,j
ki,j

. (18)

In light of this notation, we can now discuss the new heuristic for the ASDP, called Recursive-Solver, whose
pseudo-code is provided in Algorithm 2. Recursive-Solver exploits (16)–(18) to compute the partition P̄ ki,j for the
instance ki,j . The input instance  is then solved by means of theHeuristic-Partitioner whose pseudo-code is provided
in Algorithm 3. Heuristic-Partitioner makes use of Algorithm 2 to compute zK1,N and P̄K1,N . We observe that both
Recursive-Solver and Heuristic-Partitioner treat 'ki,j , '

k
i,j , and P̄

k
i,j as tensors in order to store the solutions to the sub-
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instances of  already processed. In particular, Heuristic-Partitioner first initializes 'ki,j , for all i, j ∈  , i ≤ j, k ∈
[1, K], at line 1, then it solves  = K1,N by calling Recursive-Solver(K1,N ,B) at line 2, and finally returns the computed
values of zK1,N and P̄K1,N . We observe that 'ki,j , 

k
i,j , and P̄

k
i,j have global scope so that their values can be directly

accessed. Recursive-Solver first sets 'ki,j = ∞ for all i, j ∈  , i ≤ j, k ∈ [1, K]. The same operation is done also
for ki,j and P̄

k
i,j . This convention is used to indicate that the feasible sub-instance 

k
i,j is yet to be solved, or infeasible.

As suggested by its name, Recursive-Solver computes recursively the values 'ki,j , 
k
i,j , and P̄

k
i,j in correspondence to

a given input feasible sub-instance ki,j of . In particular, the algorithm traverses the recursion tree backwards from
base cases, by considering sub-instances with a progressively larger number of shots and scenes. When called on a
sub-instance ki,j , k ≥ 2, Recursive-Solver computes Ωk,ℎi,j,v for each pair (v, ℎ) satisfying (15), by recursively calling
itself on ℎi,v and ℎi,v, so as to determine min{Λki,j}. When the recursion unfolds, the same sub-instances may arise
multiple times while splitting distinct ki,j . In this case, Recursive-Solver reuses the solution to already processed sub-
instances, thus diminishing the computation load. By entering in the merit of its pseudo-code, we can see that lines
2–3 check whether 'ki,j is assigned a finite value: in the positive case, the sub-instance ki,j has already been solved,
and its computed solution can be immediately returned. Lines 4–8 compute the only possible solution of 1i,j . Lines
9-22 tackle the problem of solving ki,j when k ≥ 2 by computing all the elements of Λki,j and saving the one with
the minimal cost. In particular, at each iteration of the doubly nested for cycle, lines 14 and 15 solve each pair of
sub-instances ℎi,v and k−ℎv+1,j with (v, ℎ) satisfying (15). Their solutions are combined into Ωk,ℎi,j,v with (17) (see line
16). If Ωk,ℎi,j,v improves the estimate of 'ki,j ∕ 

k
i,j given by '′ ∕  ′, lines 17 and 18 assign the values 'ℎi,v + '

k−ℎ
v+1,j and

ℎi,v + 
k−ℎ
v+1,j to '

′ and  ′, respectively, so that '′ ∕  ′ = ('ℎi,v + '
k−ℎ
v+1,j) ∕ (

ℎ
i,v + 

k−ℎ
v+1,j). Moreover, line 19 saves the

associated partition P̄ ℎi,v ∪ P
k−ℎ
v+1,j by assigning it to the local variable Q. At the end of the algorithm, zki,j is the value

given by equation (18), associated with the partition P̄ ki,j . At line 23, the algorithm finally returns 'ki,j , 
k
i,j , and the

computed partition P̄ ki,j . The computational complexity of Algorithm 3 is dominated by line 2. Therefore, to derive
the computational complexity of Algorithm 3, it is sufficient to characterize the one of Algorithm 2.

Proposition 2. The computational complexity of Recursive-Solver(K1,N ) is O(min{N −K,K}2N3).

Proof. Since each admissible sub-instance is solved once, the computed solutions to already processed sub-instances
can be recalled inO(1), and both the base case k = 1 and the recombination of subproblems with k > 1 also takeO(1).
Hence, to prove the statement of the proposition, it is sufficient to count the number of feasible sub-instances that may
arise when tackling each feasible sub-instance ki,j . It is easy to see that this number is

O
⎛

⎜

⎜

⎝

N
∑

i=1

N
∑

j=i

∑

k∈�i,j

|Λki,j|
⎞

⎟

⎟

⎠

. (19)

By Proposition 1, (19) is equal to

O
⎛

⎜

⎜

⎝

N
∑

i=1

N
∑

j=i

∑

k∈�i,j

(j − i − k + 2)(k − 1)
⎞

⎟

⎟

⎠

By observing that |�i,j| ∼ O(min{N −K,K}), and by recalling that
∑N
q=1 q =

N(N+1)
2 and

∑N
q=1 q

2 = N(N+1)(2N+1)
6 ,

we get

O
(

max{min{N −K,K}2N3,min{N −K,K}3N2}
)

. (20)

Because K ≤ N , (20) further reduces to

O(min{N −K,K}2N3)

which concludes the proof.
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4. Computational experiments
In this section, we analyze the performance of the novel heuristic algorithm with respect to Rotman et al.’s al-

gorithm. The experiments reported in this section were motivated by the main goal of evaluating the performance
improvement introduced by Heuristic-Partitioner with respect to Rotman et al.’s algorithm. The extensive set of appli-
cation instances that we employed for this purpose contains some of the most relevant datasets used in the literature
of scene detection. Among them, we included the Open Video Scene Detection Dataset (OVSD), that is the reference
dataset used by Rotman et al. [17]. In order to generate the input data of the ASDP, i.e., the distance matrices associated
with each test video, we reimplemented the relevant stages of Rotman et al.’s scene detection pipeline: shot detection
[4], middle frame selection, and visual features extraction with an Inception-v3 neural network [21] pre-trained on the
ImageNet dataset. We restrained the attention to the visual features of the shots, since integrating audio features intro-
duces an additional computational burden which is out of the scope of this work. In fact, our aim in reimplementing
Rotman et al.’s pipeline is to provide a common ground for a comparative analysis of the novel heuristic with Rotman
et al.’s algorithm on application cases. In Subsection 4.1, we discuss the details of the algorithms’ implementations.
In Subsection 4.2, we describe the datasets included in the set of instances used for the experimental tests. Finally, in
Subsection 4.3, we empirically evaluate the efficacy of the implementation of Heuristic-Partitioner (hereafter denoted
as HP for the sake of notation) against two different implementations of Rotman et al.’s algorithm.

4.1. Implementation
We implemented all of the algorithms in Python 3.7 and carried out the experiments on a 64-bit Windows 10

PC equipped with a 3.6 GHz Intel Core i7-3820 CPU and 24 gigabytes of RAM. We implemented Rotman et al.’s
algorithm accordingly to the information provided in [17]. Our first implementation, denoted as RT, makes use of
the tensors C , X, A, and T of size |[1, N] × [1, K] × [1, N2]|, with Cki (e), X

k
i (e), A

k
i (e), and T

k
i (e) as entries for

i ∈ [1, N], k ∈ [1, K], and e ∈ [1, N2]. Since not all the triplets (i, k, e) are feasible, as detailed in Section 2, tensors
allocate memory space inefficiently. Therefore, in the second implementation of the algorithm, denoted as RH, we
used hash-maps to allocate memory space just for feasible entries and save them once computed. While the memory
usage of RH is more convenient, solving each feasible sub-instance of the ASDP requires dynamically allocating new
entries in the hash-maps. In contrast, RT does not suffer from this issue, since it performs the needed allocations at
once, before starting to solve the instance at hand. However, frequent transfer from and to the processor cache, due to
possibly far entries in the table, may require additional computational time. We experimentally study the difference
in the two implementations in the next subsection. Finally, we observe that the choice of very large values for K may
cause a high number of recursion calls, which in turn translates into a nonnegligible computational overhead. A way
around this phenomenon (which is out of the scope of the present work) consists of implementing Recursive-Solver in
a bottom-up fashion.

It is important to observe that, forK ≃ N ∕ 2, the asymptotic complexity of HP is equivalent to the one of Rotman
et al.’s algorithm, i.e.,O(KN4). This is however the worst case scenario. In fact, in practical applications, the instances
of the ASDP are typically characterized by a number of scenes K at least one order of magnitude smaller thanN . We
also observe that the tensor data structures encoding 'ki,j , 

l
i,j , and P̄

k
i,j allow to set the space complexity of Recursive-

Solver to O(KN2). Rotman et al.’s algorithm implements Cki (e), X
k
i (e), and A

k
i (e) as tensors as well. However, as

i ∼ O(N), k ∼ O(K), and e ∼ O(N2), the space complexity of Rotman et al.’s algorithm is O(KN3). We will see in
Section 4 that such space complexity de facto poses limitations on the size of the instances that Rotman et al.’s algorithm
is able to process. However, since not all the values of e are feasible, not all the entries of the tensors are used for saving
computed values. Hence, the space efficiency can be improved by using hash-tables instead of tensors, at the expense
of degrading the computational performance, due to the fact that the dynamic memory allocations needed to store new
entries. Yet, since the required tensors are three-dimensional, the accessed entries are not necessarily adjacent, and
transfers from and to the processor cache might occur frequently. These implementation issues are experimentally
addressed in Subsection 4.3.

In order to enrich the computational assessments, we implemented a further algorithm, hereinafter referred to as
Additive-Heuristic-Partitioner (AHP), by slightly modifying HP so as to obtain the partition P ∈  that minimizes
the additive cost function

H(P ) =
∑

�∈P
�(�), (21)
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proposed by Rotman et al. [15]. In order to perform a proper comparison with HP, RT, and RH, we evaluated the
partition P that minimizesH(P ) with the cost function z(P ). Because Rotman et al. considered the weighting factors
in their original formulation of the additive cost function as optional, we neglect them in (21). The pseudo-code of
AHP can be derived by Algorithm 2 by disregarding the computation of i,j,k for each feasible i,j,k, and by comparing
the sum of �ℎi,v and �

k−ℎ
v+1,j with �

′ in line 16.
The implementation of the algorithms used in this article can be downloaded at the link “https://github.com/ORre

searcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem”.

4.2. Datasets
The datasets used for performance evaluation are the OVSD, the Rai, and the BBC datasets. The OVSD dataset,

the one used by Rotman et al. [17, 18], was created from 21 Creative Commons licensed videos freely available for
download and use. This set of videos contains short and full-length movies including animation, documentary, drama,
crime, comedy, and sci-fi. Their ground-truth scene division was obtained from the director script and from the work of
several independent human annotators. The Rai dataset contains a collection of ten videos, mainly documentaries and
talk shows, taken from the Rai Scuola video archive, notably used by Baraldi et al. [2] to evalutate their scene detection
algorithm. The BBC dataset, introduced by Baraldi et al. [3], is based on the BBC documentary series “Planet Earth”
which consists of eleven episodes, each about 50 minutes long.

Due to hardware limitations, we did not consider some of the videos in their entirety, by restricting them to a
subsets of their shots. Despite the reduction, our hardware did not satisfy the memory demands of RT and RH for
some instances. Hence, we first merged the three datasets into a single one, and then split it into two set of instances
I1 and I2: the former could be tackled by HP, RT, RH, and AHP, while the latter could be solved in its entirety only
by HP and AHP.

The OVSD dataset can be found at “https://www.research.ibm.com/haifa/projects/imt/video/Video_DataSetTabl
e.shtml”, while the Rai and the BBC datasets, proposed by Baraldi et al., can be downloaded at “http://imagelab.ing
.unimore.it”. The distance matrices associated with the OVSD, the Rai and the BBC datasets, obtained by using the
reimplementation of the first stages of Rotman et al.’s scene detection pipeline, are available at “https://github.com/O
Rresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem”.

4.3. Performance evaluation
In Figure 4, we report a box-and-whiskers plot that compares the computational times (in seconds) achieved by

HP, RT, and RH on the instances in I1. We can observe the significantly higher computational efficiency of HP with
respect to RT and RH. Moreover, the plot shows the statistical equivalence between the computational times of RT
and RH, yet highlighting the slightly better performance of the former implementation of Rotman et al.’s algorithm.
In Table 1, we report the numerical values of the computational times and the cost function values achieved by the
aforementioned three algorithms and AHP on the instances in I1. In the column named ΔHP ,R, Table 1 shows the
improvement introduced by HP with respect to the minimum between the times achieved by RH and RT. Specifically,
for each instance, if t0 is the time achieved by HP, and t1 is the minimum of the times achieved by RH and RT, the value
reported for ΔHP ,R is equal to 1 − t0∕t1. Such value provides a measure of the ratio between the times achieved by
HP and Rotman et al.’s algorithm. The average value of ΔHP ,R is 0.9024, providing an experimental evidence to the
sensible improvement introduced byHP.We also observe that the novel heuristic outperforms Rotman et al.’s algorithm
in terms of cost function values in any instance of I1. The second-to-last column of Table 1 is called “RT/RH” since RT
and RH produce identical results, and they only differ in the computational requirements. In Table 2 we instead report
the performances achieved by HP and AHP on the instances in I2. We remark that, as anticipated in Subsection 4.2,
we could not produce the Rotman et al.’s algorithm results on I2 since our hardware was not able to satisfy the memory
requirements of RT and RH on such instances. Tables 1 and 2 show that AHP obtains the worst results for the cost
function value associated with each instance in I1 and I2, respectively, while achieving a slightly better computational
efficiency with respect to HP. In fact, we observe that although the computational complexity of AHP and HP is the
same, the several floating-point operations performed by HP to compute the surrogate cost function values may be a
critical factor in burdening the actual running time of the algorithm.

Finally, Table 3 reports the Differential Edit Distance (DED) [20] scores obtained by the considered algorithm
implementations on the instances in I1 and I2. DED is a state-of-art performance index used to evaluate the differences
between a procedurally generated partition into scenes with respect to a ground-truth partition. In this way, the DED
score achieved by an algorithm on a specific instance allows to assess the capability of such algorithm to generate an
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Figure 4: Box-and-whiskers plot of the CPU times (expressed in seconds) obtained by HP, RT, and RH when solving the
instances I1.

accurate partition for that instance. For each instance, Table 3 highlights the best scores in bold. HP achieves the best
DED score on 37 instances over the 50 instances in I1 and I2; among such instances, HP obtains the same best DED
score as RT and RH on “Rai03”.

5. Conclusions
Detecting scenes in the context of video processing has a central role in the management, storing and content

retrieval of videos. The literature proposes diffent strategies to cope with this task, one of these consisting of modeling
scene detection in terms of a combinatorial optimization problem, called the Automatic Scene Detection Problem
(ASDP), in which the shots of a given video must be partitioned into scenes so as to optimize a measure related to
the similarity between the given shots [17]. The proxy nature of the objective function of the ASDP together with the
need to run scene detection over very large repositories containing thousands or even million videos justified, in recent
times, the development of heuristics able to approximate the optimal solution to the problem as fast as possible [17]. In
this article we built upon the results from the literature on the ASDP in order to design a new heuristic, called HP, able
to outperform the current state-of-the-art both in terms of speed and quality of the provided solution. The empirical
derivation of the objective function of the ASDP leaves room for further refinements in terms of modeling of scene
detection and motivates the development of improved heuristics for the problem. Investigating these issues will be the
subject of future research efforts.
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Instance N K Time (sec) ΔHP ,R Cost function

HP RT RH AHP HP RT/RH AHP

1000 Days (cut) 204 15 224.4706 4582.7344 5194.4145 157.1406 0.9510 17.8101 18.0011 18.1444
Big Buck Bunny 146 15 75.2031 1166.9219 1017.8210 53.2500 0.9261 17.4070 17.5365 17.7059
Boy Who Never Slept (cut) 193 15 188.1875 3659.8351 3978.9020 132.9844 0.9486 16.9341 17.0847 17.3552
CH7 (cut) 276 10 237.4844 9382.3037 11597.1574 169.0313 0.9747 18.1246 18.2108 18.3013
Cosmos Laundromat - First Cycle 113 7 5.6406 151.6250 69.5630 4.2656 0.9189 18.6779 18.7730 19.0047
Elephants Dream 142 9 22.0000 557.1406 393.8910 15.9375 0.9441 19.5336 19.5726 19.7780
Fires Beneath Water (cut) 143 15 71.6719 1078.0625 915.5120 49.6563 0.9217 17.7851 17.8617 17.9191
Honey (cut) 303 10 306.0000 13718.0156 18240.5745 219.8125 0.9777 16.8148 16.9349 17.0337
Jathia’s Wager 181 15 150.9688 2819.5215 2931.1050 106.6250 0.9465 15.9359 15.9810 16.5766
La Chute d’une Plume 83 11 6.3750 81.7500 44.2190 4.7031 0.8558 17.1318 17.2601 17.7979
Lord Meia (cut) 103 15 23.9687 281.1562 183.5780 17.0937 0.8694 14.5889 14.6457 15.2260
Meridian 66 9 2.0000 25.1250 10.8210 1.5156 0.8152 13.8457 13.9322 14.1778
Oceania (cut) 114 20 60.3438 586.1250 381.3300 40.5469 0.8418 11.9540 12.0666 12.4388
Pentagon (cut) 263 20 903.0781 17905.1563 26797.1501 630.6249 0.9496 15.8659 16.1754 16.3271
Route 66 (cut) 279 15 593.2500 16456.9688 25337.4979 417.2969 0.9640 18.0811 18.3828 18.5722
Seven Dead Men (cut) 111 20 53.8906 524.6663 336.2300 37.0781 0.8397 12.7635 12.9786 13.0114
Sintel 154 8 21.4687 645.2187 443.4400 15.6563 0.9516 20.0329 20.1280 20.2041
Sita Sings the Blues (cut) 275 10 229.3125 9284.6361 11842.6030 166.3750 0.9753 17.2451 17.4384 18.0076
Star Wreck (cut) 237 15 354.0781 8504.5689 11263.1990 253.0312 0.9584 17.7036 17.8282 17.9676
Tears of Steel 158 11 51.4219 1111.9531 990.4980 35.3594 0.9481 19.0229 19.1953 19.3423
Valkaama (cut) 275 18 828.1875 19198.9734 28776.2360 584.2969 0.9569 15.9854 16.2155 16.4283
Rai01 114 7 5.7812 160.7656 77.1719 4.4062 0.9251 18.3110 18.3741 18.5637
Rai02 57 12 2.2500 20.0469 8.0625 1.6562 0.7209 15.2982 15.3541 15.4367
Rai03 107 16 31.3906 359.2500 246.0781 21.8437 0.8724 15.9594 16.0769 16.2140
Rai04 143 22 153.3125 1654.1719 1354.4062 103.4844 0.8868 15.9356 15.9678 16.0353
Rai05 66 13 4.2344 39.7500 18.0781 3.0937 0.7658 10.0023 10.2182 10.8087
Rai06 59 5 0.2969 6.6719 1.0000 0.2656 0.7031 18.1266 18.3261 18.6579
Rai07 116 9 11.6250 247.0313 171.0781 8.6406 0.9320 18.5597 18.6649 18.7498
Rai08 205 12 137.5938 3632.6094 3975.9375 98.0000 0.9621 19.6558 19.6984 19.8605
Rai09 106 14 22.9375 300.0469 206.0312 16.5156 0.8887 11.6464 11.8385 12.0166
Rai10 100 16 24.5938 272.6094 174.6875 17.5469 0.8592 10.5562 10.7233 11.4987
BBC08 242 29 1412.6875 19016.8960 24232.4531 979.7500 0.9257 14.6778 14.7678 15.0144

Table 1
Results obtained by HP, RT, RH, and AHP when solving the instances in I1.

References
[1] Ariki, Y., Kumano, M., Tsukada, K., 2003. Highlight scene extraction in real time from baseball live video, in: Proceedings of the 5th ACM

SIGMM international workshop on Multimedia information retrieval, pp. 209–214.
[2] Baraldi, L., Grana, C., Cucchiara, R., 2015a. Analysis and re-use of videos in educational digital libraries with automatic scene detection, in:

Proceedings of the Italian Research Conference on Digital Libraries, pp. 155–164.
[3] Baraldi, L., Grana, C., Cucchiara, R., 2015b. A deep siamese network for scene detection in broadcast videos, in: Proceedings of the 23rd

ACM international conference on Multimedia, pp. 1199–1202.
[4] Baraldi, L., Grana, C., Cucchiara, R., 2015c. Shot and scene detection via hierarchical clustering for re-using broadcast video, in: International

Conference on Computer Analysis of Images and Patterns, pp. 801–811.
[5] Baraldi, L., Grana, C., Cucchiara, R., 2016. Recognizing and presenting the storytelling video structure with deep multimodal networks. IEEE

Transactions on Multimedia 19, 955–968.
[6] Choroś, K., 2009. Video Shot Selection and Content-Based Scene Detection for Automatic Classification of TV Sports News. Springer Berlin

Heidelberg, Berlin, Heidelberg. pp. 73–80.
[7] Del Fabro, M., Böszörmenyi, L., 2010. Video scene detection based on recurring motion patterns, in: Proceedings of the Second International

Conferences on Advances in Multimedia, IEEE. pp. 113–118.
[8] Del Fabro, M., Böszörmenyi, L., 2013. State-of-the-art and future challenges in video scene detection: A survey. Multimedia systems 19,

427–454.
[9] Feng, Y., Ren, R., Jose, J., 2008. Rule-based scene boundary detection for semantic video segmentation, in: Proceedings of the 5th International

Conference on Visual Information Engineering (VIE), IET Digital Library. pp. 667–672.
[10] Han, B., Wu, W., 2011. Video scene segmentation using a novel boundary evaluation criterion and dynamic programming, in: Proceedings

of the IEEE International Conference on Multimedia and Expo, pp. 1–6.
[11] Kurihara, K., Imai, A., Seiyama, N., Shimizu, T., Sato, S., Yamada, I., Kumano, T., Tako, R., Miyazaki, T., Ichiki, M., Takagi, T., Sumiyoshi,

H., 2019. Automatic generation of audio descriptions for sports programs. SMPTE Motion Imaging Journal 128, 41–47.
[12] Liang, Y., Liu, W., Liu, K., Ma, H., 2018. Automatic generation of textual advertisement for video advertising, in: Proceedings of the IEEE

Fourth International Conference on Multimedia Big Data (BigMM), pp. 1–5.
[13] Panda, R., Kuanar, S.K., Chowdhury, A.S., 2017. Nyström approximated temporally constrained multisimilarity spectral clustering approach

D. Catanzaro et al.: Preprint submitted to Elsevier Page 17 of 18



A New Heuristic for the Automatic Scene Detection Problem

Instance N K Time (sec) Cost function

HP AHP HP AHP
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Results obtained by HP and AHP when solving the instances in I2.
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Instance HP RT/RH AHP

1000 Days 0.3860 - 0.4742
1000 Days (cut) 0.3627 0.3529 0.4069
Big Buck Bunny 0.4110 0.3973 0.4247
BBC01 0.3777 - 0.4105
BBC02 0.4319 - 0.4084
BBC03 0.3495 - 0.3738
BBC04 0.4534 - 0.4230
BBC05 0.4725 - 0.4656
BBC06 0.4506 - 0.4269
BBC07 0.3752 - 0.4463
BBC08 0.4380 0.4339 0.4421
BBC09 0.3994 - 0.4511
BBC10 0.4017 - 0.4682
BBC11 0.3831 - 0.4676
Boy Who Never Slept 0.3973 - 0.4587
Boy Who Never Slept (cut) 0.2953 0.4249 0.4508
CH7 (cut) 0.1522 0.1775 0.1993
Cosmos Laundromat - First Cycle 0.3540 0.4159 0.5044
Elephants Dream 0.3592 0.3732 0.4225
Fires Beneath Water 0.4106 - 0.4246
Fires Beneath Water (cut) 0.3916 0.4196 0.4196
Honey 0.4378 - 0.6270
Honey (cut) 0.2838 0.3465 0.4158
Jathia’s Wager 0.3757 0.3812 0.4254
La Chute d’une Plume 0.5663 0.6386 0.6627
Lord Meia 0.4031 - 0.5231
Lord Meia (cut) 0.4757 0.5243 0.5728
Meridian 0.4242 0.5000 0.5303
Oceania 0.3692 - 0.4516
Oceania (cut) 0.2807 0.3421 0.3772
Pentagon 0.3964 - 0.4865
Pentagon (cut) 0.4259 0.4867 0.5285
Rai01 0.4825 0.4912 0.4474
Rai02 0.5000 0.4828 0.4828
Rai03 0.1869 0.1869 0.2617
Rai04 0.5503 0.6040 0.6040
Rai05 0.7714 0.7143 0.7714
Rai06 0.1186 0.1864 0.3051
Rai07 0.3621 0.3966 0.3707
Rai08 0.3659 0.3415 0.3951
Rai09 0.2736 0.2453 0.1981
Rai10 0.2745 0.3333 0.5784
Route 66 (cut) 0.3692 0.4444 0.4731
Seven Dead Men 0.3598 - 0.4024
Seven Dead Men (cut) 0.2883 0.3423 0.3604
Sintel 0.4156 0.4351 0.4675
Sita Sings the Blues (cut) 0.2836 0.2800 0.3055
Star Wreck (cut) 0.3882 0.3966 0.4430
Tears of Steel 0.4051 0.4620 0.4747
Valkaama (cut) 0.1600 0.2400 0.2727

Table 3
DED scores achieved by HP, RT and RH, and AHP on the instances in I1 and I2.
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