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Abstract: Simulation models of the ship propulsion system play an increasingly important role, for
instance in controller design and condition monitoring. However, creation of such simulation models
requires significant time and effort. In this paper, the application of deterministic identification
techniques on a DC-electric ship drive train is explored as an alternative for data-driven identification
techniques that require extensive measured data sets collected over long periods of ship operation.
First, a nonlinear and a linear simulation model that represent the dynamic behavior of the propulsion
plant are developed, and the main parameters to be identified are defined. Then, a set of experiments
on a model scale boat in the bollard pull condition are conducted using an ad hoc experimental setup
and data acquisition system. Subsequently, various types of identification techniques are applied,
aiming to determine the unknown model parameters. Eventually, a comparison is made between
experimental and simulated results, using the different sets of the estimated parameters. The value
of the demonstrated approaches lies in the fast determination of unknown system parameters. These
parameters can be used in simulation models, which in turn can be used for various purposes such
as system controller development and tuning. Furthermore, periodic determination of system param-
eters can support condition monitoring to detect faults or degradation of the system. The latter point
directly deals with the condition-based maintenance issue; in fact, monitoring the propulsion plant
parameters over time could allow for better management (and timing) of maintenance. Although
the developed ideas are far from ready to be used on the full-scale, the authors believe that the
methodologies are promising enough to be developed further towards a full-scale application.

Keywords: marine propulsion system; parameter identification; data-driven ship propulsion model;
condition-based maintenance; digital twin

1. Introduction

Simulation models of the ship propulsion system play an increasingly important role,
for instance in controller design [1,2] and condition monitoring [3]. The drawback of using
simulation models, however, is that the required parameters are often unknown or very
uncertain. Therefore, building a simulation model and determination or estimation of its
parameters can be a time-consuming task, which often requires significant experience (see
for recent examples [4–6]). After building and verifying the model, its validity can some-
times be quantified, at least for a specific domain of applications [7]. Periodic re-validation
is not commonly reported, while it is known that many of the physical parameters that
play a role in the performance of the ship propulsion plant are time-variant. Examples of
time-variant factors are fouling of the hull and propeller, turbocharger contamination, and
so on.

A comprehensive description of identification techniques is given by Ljung [8]. Since
the 1990s artificial neural network techniques have been widely used to identify electric
motor parameters [9–11] as well as linear and nonlinear least-squares algorithms [12,13].
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Despite the abundant literature on identification techniques, publication of their appli-
cation to determine marine propulsion plant parameters is not widespread. A noteworthy
exception is the research effort that has been put into the identification of parameters of a
dynamic thruster performance model for remotely operated underwater vehicles, which
attempts to capture the dynamic response of propeller thrust and torque to the applied
electric motor torque [14–25]. The following observations are made regarding these papers:

• They do not all adhere to general accepted ship propulsion theory and notation. In
various papers the system parameters are lumped together such that direct comparison
between different cases becomes difficult, and in the opinion of the authors of this
paper, the physical viewpoint is easily lost;

• Various papers account for the axial and/or rotational acceleration of the water flow-
ing through the propeller disc. The assumptions and modeling approach, however,
differ. Although the effect of flow dynamics on propulsion performance is very in-
teresting, this effect is not included in this paper and does not seem to lead to poor
agreement between simulation and measurement;

• None of the papers includes a differential equation for motor current, which is in-
cluded in this paper to ensure that all relevant electric parameters are captured in
the model.

• Examples are given of the use of various input signals for identification purposes, such
as the triangular wave, square wave, and single sinusoidal wave. In this paper the use
of multiple sinusoidal waves and band-limited white noise as input signals will be
treated as well, aiming to ensure good agreement between model and measurement
over a wide frequency domain.

Data-driven modeling approaches such as those reported by Coraddu et.al. [26]
might offer benefit in the sense that by making use of large amounts of historical data in
combination with advanced algorithms, a ”superfit” model can be generated. Drawbacks
of using such a black box approach are the amount of required data, the time over which the
data are to be collected, and the lack of insight on the physical behavior of the underlying
system.

Although the data-driven approaches based on huge datasets will, without doubt,
play an important role in the future, in this paper multiple identification techniques are
proposed to obtain the propulsion system parameters, based on short (but information-
rich) controlled performance tests, and are tested on model scale. The potential benefit of
application of these approaches on full scale is that they can be used to, in a relatively short
time span (possibly in real time), quantify system performance during sea acceptance trials,
after periodic maintenance or following a system upgrade. Comparison of this fingerprint
with sister ships or with previous fingerprints could potentially be used to understand
the state of decay of components giving a significant contribution to a condition-based
approach to ship maintenance operations [27].

To demonstrate the idea, a model scale ship available at Delft University of Technology
(DUT) and Genoa University (UNIGE) is used. First, the non-linear system model of its
propulsion plant including electric DC-motor, gearbox, and propeller is derived and
subsequently linearized. Both models contain the same unknown parameters. Note that
this paper focuses on bollard pull conditions, although the ideas can be extended to free
sailing conditions as well.

Subsequently, multiple identification methods are explained and applied, making
use of data collected during various types of experiments. The resulting parameter sets
are implemented in the non-linear and linear simulation models, and their behavior is
validated in both time and frequency domains.

At the end of the paper, a possible path is given for the development of full-scale ship
propulsion ”fingerprinting” techniques through system performance tests. Such a path in-
cludes simulation-based research and both model-scale and full-scale experimental research.
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2. Ship Drive Train and Its Mathematical Model

The ship propulsion simulation model is based on a model scale ship called ”Tito
Neri”, which is shown in Figure 1. A detailed picture of its azimuthing thrusters is shown
in Figure 2, and its main particulars are given in Table 1. A schematic representation of
one of its two drive trains is given in Figure 3. It consists of a DC motor that drives an
azimuthing thruster with a ducted fixed pitch propeller. Although not shown in the figure,
the upper shaft is supported by a shaft bearing.

Figure 1. Tito Neri overview.

Figure 2. Tito Neri azimuthing thrusters from astern.

Figure 3. Schematic representation of Tito Neri drive train.
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Table 1. Main particulars of Tito Neri.

Loa 0.97 [m]

Boa 0.32 [m]

draft forward/aft 0.10/0.13 [m]

displacement ∆ with/without battery 15.4/13.5 [kg]

upper bevel gear teeth ratio 13:39 [-]

total gear reduction ratio igb,13 3 [-]

Propeller diameter D 0.065 [m]

The system behavior is governed by two differential equations that interact with each
other. One is related to the (faster) electrical circuit, and the other related to the (slower)
mechanical part of the drive train. The differential equation commonly used to model an
electric DC motor circuit is given by

La
dia

dt
= Ua − Keωem − Raia (1)

in which La is the inductance, ia the current, Ua the supply voltage, Ke the motor coefficient,
ωem the motor speed (in rad/s), and Ra the resistance.

The reduction ratio between motor shaft and intermediate vertical shaft igb,12 between
intermediate vertical shaft and propeller shaft igb,23 and the resulting total reduction ratio
igb,13 are defined by

igb,12 =
ωem

ωint
, igb,23 =

ωint
ωp

, igb,13 = igb,12 igb,23

The differential equation for electric motor speed, assuming constant friction torque
on all three shafts, is given by

Ip
dωem

dt
= Mb,em −M f −

Mp

igb,13
(2)

in which brake motor torque Mb,em is given by

Mb,em = Keia (3)

and in which the total polar moment of inertia is given by

Ip = Ip,1 +
Ip,2

i2gb,12
+

Ip,3

i2gb,13

and in which the total friction is given by:

M f = M f ,1 +
M f ,2

igb,12
+

M f ,3

igb,13

The propeller torque Mp and thrust T are modeled following Carlton [28], making
use of the torque and thrust coefficients KQ and KT at advance ratio J = 0:

Mp =
Q
ηR

=
KQ,J=0 ρ ω2

emD5

ηR4π2 i2gb,13
(4)
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in which Q is the open water propeller torque, ηR is the relative rotative efficiency, ρ is the
water density, and D is the propeller diameter. Although not further used in this paper,
propeller thrust T and bollard pull force FBP are modeled by

T =
KT,J=0 ρ ω2

emD4

4π2i2gb,13
(5)

and
FBP = kpT(1− t) (6)

in which kp is the number of operating propellers, and (1− t) corrects for thrust deduction.
To summarize, the following system of differential equations describes the nonlinear

system dynamics: {
La

dia
dt = Ua − Keωem − Raia

Ip
dωem

dt = Keia −M f −
Mp

igb,13

(7)

in which Mp is given by Equation (4). The unknown parameters of this model are induc-
tance La, resistance Ra, motor coefficient Ke, polar moment of inertia Ip, friction torque M f ,
propeller torque coefficient KQ,J=0, and relative rotative efficiency ηR. However, KQ,J=0
and ηR are observationally equivalent, meaning that (with the sensors in this experimental
setup) they cannot be distinguished from each other. Therefore, propeller torque coefficient
and relative rotative efficiency are combined into a single combined unknown parameter
KQ,J=0

ηR
, leaving a total of six unknown parameters.

Note that the unknown parameters KT,J=0 and (1− t) are not further considered in
this paper due to difficulties in measuring the small thrust force during the experiment.

2.1. Linearized Propulsion System Model and Step-Responses

In this section the ship propulsion system model (7) is linearized, and its analytical
step responses are given. Later these will be shown to be useful tools for the identification
of the unknown parameters.

The linearization process of the ship propulsion plant in free sailing mode is described
in detail in [29,30], although in both papers no electric circuit including DC-motor was
included. Note that in the main text of this paper only the main results are given, and details
of the notation and the full derivations are available in Appendix A–C. The normalized
and linearized versions of (7) are given by

τem
di∗a
dt

=
Ua,0

Raia,0
δU∗a −

Keωem,0

Raia,0
δω∗ − δi∗a (8)

τω
dω∗

dt
= δi∗a − 2ηtrm,0δω∗ (9)

in which the delta-asterisk notation indicates normalized difference as follows:

δi∗a =
δia

ia,0
=

ia − ia,0

ia,0

such that for example a value of δU∗a = 0.05 means a +5% perturbation from the nominal
value Ua,0. The two integration constants are defined as

τem =
La

Ra
, τω =

Ipωem,0

Mb,em,0
=

Ipωem,0

Keia,0
(10)

The transmission efficiency ηtrm,0 is related to the friction torque M f by

ηtrm,0 =
Mb,em,0 −M f

Mb,em,0
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When Equations (8) and (9) are put in state space notation, this results in the following
linear system: [

di∗a
dt

dω∗
dt

]
=

[
− 1

τem
− 1

τem

Keωem,0
Raia,0

1
τω

− 2ηtrm,0
τω

][
δi∗a
δω∗

]
+

[
1

τem

Ua,0
Raia,0

0

]
δU∗a (11)

The benefit of this notation is that it can easily be programmed and analyzed in
software like MATLAB. Alternatively, the Laplace transfer function can be used. As
derived in Appendix B, the two transfer functions from the supply voltage δU∗a to the two
state variables electric current δi∗a and rotation speed δω∗ are

δi∗a (s)
δU∗a (s)

=
(τω,es + 1) Ua,0

Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(12)

δω∗(s)
δU∗a (s)

=

1
2ηtrm,0

Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(13)

in which τω,e =
τω

2ηtrm,0
. The transfer function for current is recognizable as a summation of

a bandpass system and a (lowpass) second-order system, while the transfer function for
motor speed is (only) a second-order lowpass system.

Analytic expressions for the two poles s1 and s2, the single zero z1, and the two
DC-gains of the transfer functions are derived in Appendix B.

As derived in Appendix C the approximate response of motor speed to a unit step in
supply voltage is given by

δω∗(t) ≈ K
(
1− es2t) (14)

in which K =
Ua,0

Keω0+2ηtrm,0Raia,0
. The response of current to a unit step in supply voltage is

δi∗a (t) ≈ KLP
(
1− es2t)+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t
)

(15)

with KLP =
Ua,02ηtrm

Keω0+2ηtrm,0Raia,0
and KBP =

Ua,0
Laia,0

.

3. Applied Identification Techniques

Once both the non-linear and the linearized plant models have been formulated,
measurement data can be used to determine the unknown model parameters by making
use of parameter identification techniques.

Many different identification techniques can be used, such as for instance the various
possibilities that are included in the ”system identification” toolbox of MATLAB. A possi-
bility is to search for an optimal parameter vector θ by minimizing the (weighed) sum of
squared errors given by the cost function Vt:

Vt(θ) =
1
N

N

∑
t=1

e(t, θ)TW(θ)e(t, θ) (16)

where the error e is the difference between the vectors of measurement and simulation,
containing all output signals that are to be taken into account:

e(t) = y(t)measured − y(t)model (17)
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Another approach, which prevents usage of all time samples in the minimization
algorithm and which ensures a balanced representation of system behavior throughout the
frequency domain, is to define the cost function Vω directly in the frequency domain:

Vω(θ) =
1
N

N

∑
ω=1

e(ω, θ)TW(θ)e(ω, θ) (18)

in which the error is defined as the Euclidean norm of the error in the complex frequency response:

e = ||Y(ω)

X(ω)
− G(θ, ω)|| (19)

in which Y(ω)
X(ω)

indicates the measured frequency response data (FRD), model and G(θ, ω)

indicates the modeled frequency response.
Within the two main groups “time domain approach” and “frequency domain ap-

proach”, there are various possible refinements and alternatives. For an in-depth review,
reference is made to Ljung [8].

The “goodness of fit” of a model with a given parameter set can be expressed in various
ways. The quality metrics ”FitPercent” and mean squared error “MSE” are used here:

FitPercent = 100
(

1− ||ymeasured − ymodel ||
||ymeasured − ymeasured||

)
(20)

MSE =
1
N

N

∑
t=1

eT(t)e(t) (21)

Equivalent versions of quality metrics can be defined for the goodness of fit in the
frequency domain.

From the following non-exhaustive list of possible identification techniques, in this
paper three different parameter identification procedures (1, 4, and 5) are applied to the
“Tito Neri” drive train in the bollard pull condition:

1. a time domain identification approach based on multiple steady operating points and
a step response;

2. a time domain approach, aiming at minimization of cost function (16) by fitting the
linear model (11);

3. a time domain approach as 2, but now fitting the non-linear model defined by (7)
and (4);

4. a frequency domain identification approach based on experimental FRD generated
by processing the experimental time domain data obtained with multiple single
frequency input voltage signals with a correlation algorithm;

5. a discrete transfer function estimation based on the Welch method combined with a
modified periodogram method [31].

Note that the frequency domain approaches 4 and 5 only differ in the way that they
generate the experimental FRD. The subsequent parameter identification procedure is the
same and aims to minimize cost function (18). 2 and 3 are not taken into account in the
present work since they are investigated in open literature.

3.1. Time Domain Identification: 1

In this first method, for the sake of computational simplicity, the procedure to obtain
parameters is split into two parts, assuming that the parameters do not change during the
experimental time.
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First, the stationary condition dωe
dt = 0 and dia

dt = 0 is considered to reduce the number
of unknowns, and a least-squares algorithm is applied. Starting from Equation (7) it is
possible to obtain {

0 = Keia −M f −
Mp

igb,13

0 = Ua − Keωem − Raia
(22)

These equations are rearranged in matrix notation as follows, separating known from
unknown variables: (

1 −ia 0 c
0 ωem ia 0

)
M f
Ke
Ra

KQ,j=0
ηR

 =

(
0

Ua

)
(23)

where c is obtained from Equation (4):

c =
ρω2

emD5

4π2i3gb,13
(24)

In this way the system consists of two equations and four unknown variables (M f , Ke,

Ra, and
KQ,j=0

ηR
), such that ∞2 solutions exist. However, if measurements at n different

steady state operating points are available, n quadruplets have to satisfy the system of
Equation (23), resulting in the following over-determined system:

1 −ia,1 0 c1
... ... ... ...
1 −ia,n 0 cn
0 ωem,1 ia,1 0
... ... ... ...
0 ωem,n ia,n 0




M f
Ke
Ra

KQ,j=0
ηR

 =

(
0

Ua

)
(25)

The last can be written in general form, as follows:

Ax = b (26)

The system (25) cannot be solved in principle since it is overdetermined. Although an
exact solution does not exist, an approximate solution to (25) can be determined by means
of, for instance, a (weighed) least-squares approach; in our case we used unweighted least
squares. The final goal, according to notation reported in (26), is to evaluate the vector x
that minimizes the squared l2norm of the residual, naming A, x, b, the coefficient matrix,
the unknown vector, and the constant terms vector, respectively. The quantity S(x) to be
minimized is written as follows, in matrix notation:

S(x) = ||b− Ax||2 (27)

Differentiating the above equation, and setting to zero the solution, it is possible to
obtain the Normal Equation:

AT Ax = AT(b) (28)

If AT A is non-singular, the solution is given by solving the linear algebraic system (28).

Once M f , Ke, Ra, and
KQ,j=0

ηR
are known, the second part of the procedure is deter-

ministic. By using Equation (10), it is possible to evaluate the inertia Ip and the motor
inductance La :

La = τemRa

Ip = τω
Keia

ωem,0

(29)
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To obtain the two parameters, knowledge of the time constants τem and τω is necessary,
and the step response of both current and motor speed reported in Appendix C is used.
From Equation (14) and fixing whichever time, t∗ (authors suggest to use the t∗ when the
response is at 63.2 %), since parameters are time independent, it is possible to obtain s2, as
follows:

s2 ≈
1
t∗

ln
(

1− δω∗(t∗)
K

)
(30)

Substituting the value of s2 into Equation (A34) and remembering the difference
between τω,e and τω gives

τω ≈
−C
s2

ηtrm,0 (31)

The evaluation of τω, as it can be intuitive from the last equations, it is an approximate solution.
The electric time-constant τem is more challenging to estimate. As reported in Ap-

pendix C the step response of current could be obtained as a summation of two terms. The
first term is represented by a low-pass filter in its simplified form and the second by a
bandpass filter as reported in Equation (15). The total response is known from the experi-
ment, and all terms describing the low-pass filter are known at this stage; so, numerically,
it is possible to obtain the shape of the bandpass filter response over time. A specific time
called t∗ should be fixed, and at that time the value of δi∗a,BP(t

∗) can be obtained. After
some adjustment the following relation is obtained:

δi∗a,BP(t
∗)− Ua,0

τemRaia,0

(
1

− c
τω,e

+ 1
τem

)(
e−

c
τω,e t∗ − e−

1
τem t∗

)
= 0 (32)

From the previous equation, it is not possible to obtain a solution in closed form for
τem, and numerical methods must be used (i.e., bisection methods or Newton–Raphson
method). Eventually, using Equation (29) La can be obtained.

3.2. Frequency Domain Approach Using Sinusoidal Input Voltage Signals 4

The idea of the this method is to generate a sinusoidal voltage of a specific frequency
and amplitude, to superimpose it on a constant voltage value Ua,0, and to apply the
resulting signal as a voltage input to the system, while recording the response of current ia
and electric motor speed ωem. Based on the input and response at each frequency, the gain
and phase of the transfer functions of the system are estimated with a correlation-based
single-frequency approach [8,32], in line with Figure 4. Since this method does not deliver
the unknown parameters of the model directly, it is called a non-parametric identification
method. The non-parametric frequency response data (FRD) model can however be used
as a basis to determine the parameters of the model.

Model 

scale ship

Signal 

generator

Signal 

logging

ia

ωem
Amplifier

User input

via GUI

UaUa,set

Figure 4. Block diagram of experimental setup.

In more detail the basis of the method is to generate two harmonic signals:

x(t) = X sin(ωt)

and the out-of-phase signal

x′(t) = X sin(ωt + π/2) = X cos(ωt)
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of which the first signal is used to excite the system. The response of the system is

y(t) = Y sin(ωt + ϕ) + n(t)

in which n(t) is a noise signal which is assumed uncorrelated with input and output signals.
Both input signals x(t) and x′(t), in combination with the output y(t), are used to

determine the cross-correlations and auto-correlation according to

Rxy =
1
T

T∫
0

X sin(ωt) Y sin(ωt + ϕ)dt + Rxn =
XY
2

cos ϕ + Rxn (33)

Rx′y =
1
T

T∫
0

X cos(ωt)Y sin(ωt + ϕ)dt + Rx′n =
XY
2

sin ϕ + Rx′n (34)

Rxx =
1
T

T∫
0

X sin(ωt)X sin(ωt)dt =
X2

2
(35)

where X is the amplitude of the input signal (in this case the amplitude of voltage δU∗a ),
and Y is the amplitude of the output signal under consideration (in this case the amplitude
of motor current δi∗a or motor speed δω∗em). Rxn is the cross-correlation between input and
noise, which reduces to zero with increasing measurement time. Division of Equation (33)
by Equation (35) delivers the in phase (real) component of the frequency response:

Rxy

Rxx
=

Y
X

cos ϕ (36)

while division of Equation (34) by Equation (35) gives the out-of-phase (imaginary) part of
the response:

Rx′y

Rxx
=

Y
X

sin ϕ (37)

Based on the real and imaginary components the gain and phase of the transfer
function are calculated by

Y
X

=

√(
Rxy

Rxx

)2
+

(Rx′y

Rxx

)2

(38)

ϕ = arctan
(Rx′y

Rxy

)
(39)

By using this approach, the gain and phase can be determined experimentally for mul-
tiple appropriately spaced frequencies, resulting in a non-parametric frequency-response
data (FRD) model. The results of the procedure are presented in Table 2. Subsequently,
the procedure to derive the unknown system parameters from the obtained FRD model is
based on minimization of the cost function (18).

The main advantage of the correlation method to determine an FRD model is the
inherent high noise immunity.
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Table 2. Experimental FRD based on single sinusoidal testing, followed by processing with the
correlation approach.

ω [rad/s] 0.3 1 5 10 20 100 500 1000 5000

| δi∗
δU∗a
| [-] 0.71 0.79 1.62 2.31 2.94 3.08 2.99 2.90 2.11

∠ δi∗
δU∗a

[deg] 8.6 19.4 37.7 31.3 19.6 3.5 −4.5 −8.8 −26.8

| δω∗

δU∗a
| [-] 1.24 1.18 1.05 0.81 0.54 0.12 0.02 0.01 0.00

∠ δω∗

δU∗a
[deg] −2.2 −7.0 −26.2 −45.4 −64.3 −95.5 −144.9 146.3 20.7

3.3. Noise Input Testing: 5

An FRD model of a system can also be determined from the measured system response
to a random input signal. This approach is often practical for processes that cannot be taken
off-line for dedicated testing, but due to their nature do contain measurable random input
disturbances. In this paper, a sequence of random supply voltage will be superimposed
on the nominal supply voltage. The method is based on the relation between the transfer
function H(jω), power spectral density of the input Sxx(jω), and cross-spectral density
Sxy(jω) [8,31]:

H(jω) =
Sxy(jω)

Sxx(jω)
(40)

The estimation of both the input power spectral density Sxx and the cross-spectral
density Sxy requires sufficient length of data, and can be improved by application of
suitable “windowing” and “smoothing”, which can be done by averaging the spectrum
derived from multiple segments of the total time-trace. Secondly, it is possible to increase
the number of portions of a given time-trace by allowing a specific percentage of overlap
between the parts.

For this method to work well, it is essential to ensure that the input signal is persistently
exciting, which indicates that the signal power is sufficiently large for all frequencies
of interest.

When using this method, the coherency γ usually is presented side by side with the
estimated transfer function. It expresses the correlation between the input and output
signal of the system with a value between 0 and 1, where 0 means no correlation and
1 means full correlation, thereby giving an idea of the quality of the estimated transfer
function at different frequencies. Note that operations such as windowing, smoothing, and
quantization of signals due to A-D conversion in the measurement system and noise in the
measurement influence the coherency negatively.

4. Experimental Campaign
4.1. Setup and Experimental Matrix

The schematic experimental setup used is shown in Figure 4. The signal generator is
operated via a customized graphical user interface and delivers the required voltage signal
Ua,set to the amplifier, which in turn feeds the electric motor of the model scale ship with
the supply voltage Ua. Two sensors are installed: a current sensor just before the electric
motor and a 15 pulse encoder mounted on the motor shaft. The two sensor signals ia and
ωem, together with the voltages Ua,set and Ua, are recorded with a data acquisition system.
Although not discussed in detail in this paper, the transfer function of the amplifier itself
could be determined experimentally, showing that the amplifier only causes a small drop
in voltage (<1%), and a small phase lag (<2°) over the frequency range of interest.

Several experiments with varying sequences of voltage Ua,set have been done. The
sampling rate of the data acquisition system was established based on the goals and
duration of the specific experiment.

Trials were performed with the following input voltage signals: one staircase, nine
sinusoidal waves with the different amplitudes and frequencies, a band-limited white noise
input signal, and at the end a mix of the previous signals. Each identification technique



J. Mar. Sci. Eng. 2021, 9, 268 12 of 26

uses data from a specific (set of) experiments. The final “mixed” test is used for validation
purposes, as reported in Table 3.

Table 3. Experimental test matrix.

Test Identification Validation

Staircase yes (1) yes (4)

9 x Sinusoidal yes (4) yes (1,4,5)

White noise yes (5)

Mix of signals yes (1,4)

4.2. Inspection of Current and Motor Speed Signals

Initial measurements of the current revealed some unexpected behavior. The current
signal showed a considerable amount of noise, and the reason was investigated. In partic-
ular, specific higher-order frequencies appeared when inspecting the FFT of the current
signal. It was hypothesized that these higher-order frequencies, which are not captured by
the linear or non-linear system model, could be caused by unmodeled system behavior. Ex-
amples could be, for instance, the gear-meshing frequency, shaft misalignment, unbalance
in the shafting system, propeller blade passing frequencies, or cogging of the electric motor
due to a discrete number of permanent magnets and the gaps in between them.

To obtain insight into the cause of the higher-order frequencies, an order tracking
of current in the motor speed range from 220 to 1995 rpm was carried out, as shown
in Figures 5 and 6. The figures reveal that although many harmonic frequencies were
present in the current signal, the 6th and 12th harmonics of motor speed were particularly
dominant. A similarly strong 6th and 12th harmonic were found when carrying out the
test with disconnected gearwheels. Manual rotation of the motor shaft revealed a strong
cogging effect at 6 times the motor shaft rate. Based on this it is concluded that the root
cause of the higher-order frequencies lies in the interaction between rotor and stator of the
electric motor.

Filtering has been considered to reduce the visually disturbing effect of cogging-
related harmonics from the plotted current signal. However, by filtering additional phase
lag would be introduced, which would result in less steep current increase following a step
in voltage, and it could reduce the amplitude of the current signal following a sinusoidal
voltage input. In the end, it was decided to show the unfiltered current measurements.

Figure 5. Order waterfall plot.
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Figure 6. FFT waterfall plot.

In addition, the motor speed signal showed unexpected behavior, which appeared to
be caused by the sensor. A sketch of the encoder disk used in the experiments is shown in
Figure 7. It is a round disk with 15 holes, which causes 15 pulses per revolution, generated
by a photosensitive sensor. The motor speed is derived from the time interval between
two upcoming flanks of the pulses. The resulting motor speed signal as shown in Figure 8
shows a repeating sequence of 15 motor speed values, indicating that the angle ∆Ψi,j
between the holes varied slightly around 360/15 = 24 °. No further corrections have been
made to the signal, which explains the relatively ”noisy” motor speed signal presented in
the following sections.

Dyi-j

Figure 7. Encoder disk.
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Figure 8. Magnification of motor speed time history.
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5. Results and Discussion

In this section, the results obtained with the different identification techniques are
reported. Both the identification and validation analyses are carried out in both time and
frequency domains.

In Table 4 the steady-state operating points recorded during the staircase experiment
are reported. The time domain approach (1) uses all the five operating points to deter-
mine four out of the total of six unknown parameters. To determine the remaining two
parameters La and Ip the transient response from operating point C to D is used.

The other identification approaches focus on operating point C. The reason to choose
this point is that it corresponds to around 75% of the maximum supply voltage, which is a
reasonable value thinking about the design of a full-scale propulsion plant.

Table 4. Evaluated operating points.

Operating Points

A B C D E Unit

Ua,0 3.91 4.91 5.89 6.88 7.87 [V]

ωem,0 117 163 215 255 295 [rad/s]

ia,0 1.00 1.13 1.29 1.44 1.62 [A]

First, the resulting parameter sets of the different approaches are reported in Table
5 to appreciate the difference in terms of numerical value. The parameters derived from
the spectral approach (5) are not reported as will be explained later. The table shows
that the parameters obtained with the methods were of the same order of magnitude, but
differences up to ≈ 100% were present. The effect of the different sets of parameters on the
simulated system behavior is shown in the validation graphs.

Table 5. Identified parameters.

METHOD I IV Unit

La 4.87 × 10−4 6.03 × 10−4 [H]

Ke 1.37 × 10−2 1.83 × 10−2 [Nm/A]

Ra 2.31 1.51 [Ω]

Ip 1.72 × 10−5 3.18 × 10−5 [kg m2]

M f 1.23 × 10−2 1.70 × 10−2 [Nm]

KQ,J=0
ηR

1.02 × 10−1 1.36 × 10−1 [-]

5.1. Results Time Domain Analysis (1)

The time domain identification method was used to derive the parameters from the
staircase experiment. The supply voltage Ua during this experiment is shown in Figure 9,
while the measured motor speed and current are shown in Figures 10 and 11.

Following the procedure outlined earlier, the five steady-state operating points during
the staircase experiment were determined, and the parameters M f , Ke, Ra, and KQ,J=0/ηR
were derived by the least-squares method. Subsequently, the transient response of motor
speed and current, following the voltage step from C to D, was used to determine the
parameters Ip and La.

The resulting set of parameters was implemented in the non-linear simulation model,
and by using the staircase voltage signal as input, the model and its parameters are verified.
The result is shown as the dashed red line in Figures 10 and 11. The motor speed matched
the experimental data well: the stationary value errors were within 3% at all voltage
levels. Close inspection of the transient responses showed that these were also captured
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well. The simulated current signal had to be compared with very noisy experimental data,
as explained earlier. Nevertheless, the static values seemed to be predicted well. Close
inspection of the transient response shows that the simulation model could catch the timing
and the initial steep slope of the current, but it was not able to represent the peak values in
the current. It is concluded that this is either due to the limitations of the mathematical
model, which might be too simple to describe the real physical phenomena, or due to the
quality of the measured current signal.
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Figure 9. Voltage time history of the staircase test.
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Figures 10 and 11 also show the results of the correlation approach, in continuous black
line. However, since the staircase experiment was not used to determine the parameters
using the correlation approach, this can be seen as validation of that method.

Figure 10 shows that the correlation approach predicted the motor speed behavior
nearby the linearization point well, although the error between simulated and experimental
data increased moving further away from the nominal operating point that was used in
the sine experiments. Figure 11 shows that, compared to the time domain approach, the
correlation approach was better able to predict the transient, although this method was
also not able to catch the maximum current value.

To have an independent validation for the time-domain method, an experiment based
on a mix of different input voltages, as shown in Figure 12, was used. Figure 13 shows
that the parameter sets found by both methods led to similar dynamic behavior as the
experiment, although a constant bias of around 50 rpm between simulated and sampled
time histories was present. Figure 14 shows that the two parameter sets, in general, gave
good correlation with the experiment, but both were unable to capture the maximum
amplitudes of the current, which was particularly evident in the “sine wave” part from t =
10–13 s.
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Figure 14. Current time history.

5.2. Results of Frequency Domain Analysis (4 and 5)

The single frequency testing method was applied in the nominal operating point C
that is defined in Table 4. The results of the nine experiments are plotted as asterisks data
points in the Bode plots shown in Figures 15 and 16. The data points at 1000 and 5000 rad/s
were discarded, as closer inspection of the time signals showed that the signal-to-noise
ratio was too low to lead to meaningful results.

Based on the data points, the procedure as outlined above was followed, leading to the
estimated parameters as listed in Table 5. The following values were iteratively determined
from the experimental data points: s1 = −2500 rad/s, s2 = −9 rad/s, z1 = −2 rad/s,
δω∗
δU∗a

(s→ 0) = 1.24, δi∗a
δU∗a

(s→ 0) = 0.71. Note that the locations of the poles and zero were
read from the dB versions of the Bode plots.
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Figure 15. Bode plot of δω∗
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.



J. Mar. Sci. Eng. 2021, 9, 268 18 of 26

10
-1

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

g
a
in

 [
-]

Random input

Experiment

Cross corr

Time domain

10
-1

10
0

10
1

10
2

10
3

10
4

frequency [rad/s]

-200

-100

0

100

200

p
h
a
s
e
 [
d
e
g
]

Figure 16. Bode plot of δi∗
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.

To verify whether the estimation procedure was followed correctly, the found parame-
ters were implemented in the transfer functions (12) and (13), which are plotted as solid
lines in Figures 15 and 16. The agreement in trend and absolute numbers indicates that the
procedure was followed correctly and that the linearized model can capture the reality well
in the operating point under consideration. Validation in the time domain of the parameter
set obtained with this method is reported in the previous section.

The shape of the transfer function for motor speed shows that up to 2 rad/s the
response remained flat but then quickly dropped off due to the inertia of the drive train.
The transfer function for current showed a flat response up to 1 rad/s and then started to
rise due to the zero in the transfer function. Around 20 rad/s, it flattened out due to the
inertia of the drive train. Somewhere after 1000 rad/s it dropped off, due to the electric
pole, indicating that the current cannot follow the voltage variations anymore.

Figure 15 also shows the transfer function based on the parameter set derived with the
time-domain approach. The response to low frequencies was good, but the drop in gain
started slightly too early, which aligns with the low estimate of Ip in Table 5. In Figure 16 a
substantial deviation from the data points is visible at frequencies higher than 10 rad/s,
although the shape is clearly recognizable.

Finally, Figures 15 and 16 also show the results from approach 5. Between 0.4 and
400 rad/s the method resulted in a non-parametric frequency response that aligned well
with the asterisk data points. In hindsight, the duration of the experiment should have
been extended up to 1–2 min or even longer, instead of 30 s. A more extended trial would
allow the estimation of the transfer function up to lower frequencies and would allow for
further averaging over multiple data blocks to smooth out irregularities in the results. At
frequencies above 400 rad/s, the signal-to-noise ratio dropped leading to bumps in the
estimated frequency response.

Although the parameter estimation based on noise injection could be used to assess
the unknown parameters from the frequency response, this is not performed here but is left
for a further study on the potential of spectral methods for ship drive train identification.

6. Future Outlook

Application of the identification procedures on-board a real ship is expected to make
the analytic derivations more complex because the system will, in that case, include
other/additional components such as, for instance, a diesel engine and engine speed
governor. This introduces at least one extra state equation due to the integral term in
the PI(D) governor. An additional state, due the longitudinal equation of motion, and
additional parameters would be added if the approach would be extended to free sailing
instead of bollard pull conditions. The effect of such additions on the ability to determine
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parameters needs to be investigated in the future. On the positive side, it has to be noted
that in reality it is not likely that all ship drive-train parameters are unknown, which helps
to determine estimates of other unknown or more uncertain parameters. More work is
required to investigate what parameter estimation procedure would be required for a real
ship and drive train.

In the authors’ opinion, in the future the presented algorithms could potentially be
part of a condition-based maintenance system. By monitoring parameter variations of
a propulsion drive train in real time, it could be possible to detect the degradation (or
malfunction) of the machinery, and perhaps even to identify the root cause. For instance, an
increase in friction coefficient M f could mean wear in the bearings, an increase in KQ could
mean that the propeller needs to be cleaned, etc. Another possible use of the presented
techniques is to assess the correspondence between the design values with the real one,
in fact, during the shipbuilding progress some change, or unexpected modification, can
modify the original design values.

7. Conclusions and Recommendations

In this paper different parameter identification techniques were discussed and applied
to experimentally determine the unknown parameters of a model scale ship drive train in
bollard pull conditions.

A set of dedicated experiments was conducted using different DC voltage signals. In
all tests the current was affected by a strong noise due to motor cogging. It is therefore
recommended to use an electric motor with less strong cogging effect for future experiments.
Moreover, the 15 holes encoder was found to give a low-quality motor speed measurement
and should be improved.

Three different approaches to determine the unknown DC-electric propulsion plant
parameters are discussed including their merits and weaknesses. For now, all three ap-
proaches remain candidates to be part of a (real-time) full-scale parameter identification
system, which is one of the primary goals.

Two obtained parameter sets have been implemented in a simulation model, and the
results were validated against independent measurements, both in the frequency and in
the time domains. The time domain results obtained by implementing both parameter sets
in the model compared well against the measurements, although differences were present.

In order to move towards firm conclusions about the value of the applied parameter
estimation methods for condition monitoring, it is recommended to consider the sensitivity
and uncertainty related to the approaches. This recommendation is supported by the
relatively large differences between the parameter sets as determined in this paper, and the
relatively small differences in time domain response.
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Nomenclature

Boa ship breadth [m]
C constant
c constant
D propeller diameter [m]
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e general exponent
FBP bollar pull force [N]
Ip moment of inertia [kgm2]
ia motor current [A]
igb gearbox ratio [-]
J advance ratio [-]
K constant
KQ torque coefficient [-]
KT thrust coefficient [-]
Ke motor speed constant [V/rad/s ]
Ke motor back EMF constant [Nm/A]
kp propeller number [-]
Loa ship length [m]
La motor inductance [H]
Mb,em motor torque [Nm]
M f friction torque [Nm]
Mp delivered torque [Nm]
Q open water torque [Nm]
Ra motor resistance [Ω]
s1 first pole [-]
s2 second pole [-]
T propeller thrust [N]
t time [s]
t thrust deduction factor [-]
Ua voltage supply [V]
∆ ship displacement [kg]
ζ ratio of time constants [-]
ηR relative rotative efficiency [-]
ηtrm shaftline efficiency [-]
ρ water density [kg/m3]
τem electric time constant [s]
τω mechanical time constant [s]
τω,e effective mechanical time constant [s]
ωem motor speed [rad/s]
ωp propeller speed [rad/s]
ω frequency [rad/s]

Subscripts and Superscripts

0 nominal
∗ normalized
δ small increment

Appendix A Normalisation and Linearisation

Assume a variable that is the product of powers of other variables:

Z = c YeX (A1)

where c is a constant multiplier and e is a constant exponent. In an equilibrium point the
variable Z equals

Z0 = c Ye
0 X0 (A2)
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Normalisation of Equation (A1) by Equation (A2) results in

Z
Z0

=

(
Y
Y0

)e X
X0

(A3)

If, by definition,

X∗ =
X
X0

, Y∗ =
Y
Y0

, Z∗ =
Z
Z0

(A4)

then
Z∗ = Y∗eX∗ (A5)

Now that the constant value c has been removed by the normalization, the next step is
to remove the non-linearity from Equation (A5). Differentiation of Equation (A3) by using
the chain rule gives

dZ
Z0

=

(
Y
Y0

)e dX
X0

+ e
(

Y
Y0

)e−1 X
X0

dY
Y0

(A6)

Near equilibrium dX, dY and dZ become small increments δX, δY and δZ. Division of
X = X0 + δX by X0 delivers X

X0
= 1 + δX

X0
and likewise Y

Y0
= 1 + δY

Y0
. Substitution of this in

Equation (A6) gives

δZ
Z0

=

(
1 +

δY
Y0

)e δX
X0

+e
(

1 +
δY
Y0

)e−1(
1 +

δX
X0

)
δY
Y0

(A7)

Taylor series expansion of Equation (A7) and neglecting the second and higher order
terms leaves

δZ
Z0

=
δX
X0

+ e
δY
Y0

(A8)

which by introduction of the shorthand notation for differential increment:

δZ∗ =
δZ
Z0

=
Z
Z0
− 1 (A9)

this can be written as
δZ∗ = δX∗ + e δY∗ (A10)

The latter equation relates the relative change in output Z to the relative change in
inputs X and Y, where the constant e, which was present as an exponent in the original
Equation (A2), has changed to a constant multiplication factor. Secondly the multiplication
of X and Y has turned into a summation. For further background on the linearization
process, reference is made to Dorf and Bishop [33] and Franklin et al. [34].

The demonstrated concepts of normalization and linearization are the basis for the
following section where they will be applied in the linearization of the system model.

Appendix B Derivation of Linearized System Model

The electrical circuit of the DC motor is modeled by

La
dia

dt
= Ua − Keωem − Raia (A11)

All three right hand side terms vary around equilibrium:

Ua = Ua,0 + δUa, ωem = ωem,0 + δωem, ia = ia,0 + δia
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In static conditions the right hand side of Equation (A11) equals zero:

0 = Ua,0 − Keωem,0 − Raia,0 (A12)

This means that only the small increments are of importance:

La
dia

dt
= δU∗a − Keδω∗em − Raδi∗a (A13)

Division of all terms of Equation (A13) by nominal supply voltage minus the nominal
emf (Ua,0 − Keωem,0) or alternatively by its equivalent Raia,0 gives

La

Raia,0

dia

dt
=

1
Raia,0

Ua,0

Ua,0
δUa −

Ke

Raia,0

ωem,0

ωem,0
δωem −

Ra

Raia,0
δia (A14)

This can be shortened to

τem
di∗a
dt

=
Ua,0

Raia,0
δU∗a −

Keωem,0

Raia,0
δω∗ − δi∗a (A15)

in which the subscript em is intentionally dropped from δω∗em because δω∗em = δω∗p
and where

τem =
La

Ra
(A16)

The shaft dynamics including constant friction term are described by

Ip
dωem

dt
= Mb,em −M f −

Mp

igb,13
(A17)

in which shaft inertia is assumed constant implying that change of mass of water, entrained
by the propeller, is neglected. The brake motor torque is related to current by

Mb,em = Ke ia (A18)

The non-constant torque terms of Equation (A17) vary around equilibrium:

Mb,em = Mb,em,0 + δMb,em = Ke(ia,0 + δia)

and
Mp = Mp,0 + δMp

such that:

Ip
dωem

dt
= Ke(ia,0 + δia)−M f −

Mp,0

igb,13
−

δMp

igb,13
(A19)

In steady nominal condition the driving torque and the load-torque are equal:

0 = Keia,0 −M f −
Mp,0

igb,13
(A20)

Subtracting Equation (A20) from Equation (A19) shows that only the small increments
are of importance:

Ip
dωem

dt
= Keδia −

δMp

igb,13

Normalizing all terms with nominal motor torque gives

Ipωem,0

Keia,0

dω∗

dt
= δi∗a −

Mp,0

Mb,em,0igb,13
δM∗p (A21)
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in which the subscript em is intentionally dropped. The integration constant is defined as

τω =
Ipωem,0

Mb,em,0
=

Ipωem,0

Ke ia,0
(A22)

After noting that the multiplier in the second term of the right hand side of Equation (A21)
can be written as

Mp,0

igb,13Mb,em,0
= ηtrm,0 (A23)

and implementing
δM∗p = 2δω∗

the normalised linearised differential equation for shaft rotation is given by

τω
dω∗

dt
= δi∗a − 2ηtrm,0δω∗ (A24)

Introduction of the Laplace operator into Equation (A24) and re-arranging gives(
τω

2ηtrm,0
s + 1

)
δω∗ =

1
2ηtrm,0

δi∗a (A25)

which can be shortened by introduction of the effective time-constant:

τω,e =
τω

2ηtrm,0
(A26)

such that
(τω,es + 1)δω∗ =

1
2ηtrm,0

δi∗a (A27)

Similarly, introduction of the Laplace operator in the differential equation for current
Equation (A15) and reordering gives

δi∗a =

(
Ua,0

Raia,0

)
(τems + 1)

δU∗a −

(
Keωem,0

Raia,0

)
(τems + 1)

δω∗ (A28)

Substitution of Equation (A28) into Equation (A27) and reordering gives the transfer
function from supply voltage to rotation speed:

δω∗

δU∗a
=

1
2ηtrm,0

Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(A29)

In a similar way substitution of Equation (A27)) into Equation (A28) and reordering
gives the transfer function from supply voltage to current:

δi∗a
δU∗a

=
(τω,es + 1) Ua,0

Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(A30)

The characteristic equation of the two transfer functions Equations (A29) and (A30) is
given by

τemτω,es2 + (τem + τω,e)s + 1 +
1

2ηtrm,0

Keωem,0

Raia,0
(A31)

If we define
C = 1 +

1
2ηtrm,0

Keωem,0

Raia,0
(A32)
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and
ζ =

τem

τω,e

then the characteristic equation can be written as

ζτω,es2 + (1 + ζ)s +
C

τω,e

The two exact roots of Equation (A31) can now be determined by the ABC formula:

s12 =
−(1 + ζ)±

√
(1 + ζ)2 − 4Cζ

2ζτω,e

which can be written as

s12 =

−(1 + ζ)± (1 + ζ)

√
1− 4Cζ

(1+ζ)2

2ζτω,e

The electrical time constant is much smaller than the effective time constant for the
shaft; therefore, ζ � 1. Application of Taylor expansion for the square root operation and
leaving out second order terms gives

s12 ≈
−(1 + ζ)± (1 + ζ)

(
1− 2Cζ 1

(1+ζ)2 . . .
)

2ζτω,e

Another Taylor expansion for the inverse square operation gives

s12 ≈
−(1 + ζ)± (1 + ζ)(1− 2Cζ(1− 2ζ . . .) . . .)

2ζτω,e

Further simplification gives the two approximate poles as

s1 ≈
−1

ζτω,e
=
−1
τem

(A33)

and
s2 ≈

−C
τω,e

(A34)

Besides the two system poles, transfer function (A30) has a single zero which lies at

z1 =
−1
τω,e

(A35)

The DC-gain of transfer function (A29) is given by

δω∗

δU∗a
(s→ 0) =

Ua,0

2ηtrm,0Raia,0 + Keωem,0
(A36)

The DC-gain of transfer function (A30) is given by

δi∗a
δU∗a

(s→ 0) =
2ηtrm,0Ua,0

2ηtrm,0Raia,0 + Keωem,0
(A37)
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Appendix C Step Response of Motor Speed and Current

The exact response of motor speed to a unit step in voltage is given by

δω∗(t) = K
(

1 +
s1

s2 − s1
es2t − s2

s2 − s1
es1t
)

(A38)

in which K =
Ua,0

Keω0+2ηtrm,0Raia,0
. However, because |s1| >> |s2|, the step-response can be

approximated by a first order system response:

δω∗(t) ≈ K
(
1− es2t) (A39)

The derivation of the step response of current starts with Equation (A30), which can
be written as the summation of an overdamped second order lowpass (LP) system and a
second order bandpass (BP) system:

G(s) = GLP(s) + GBP(s) (A40)

The step response of the lowpass system is given by

δi∗a,LP(t) = KLP

(
1 +

s1

s2 − s1
es2t − s2

s2 − s1
es1t
)

(A41)

with KLP =
Ua,02ηtrm

Keω0+2ηtrm,0Raia,0
. Again, because |s1| >> |s2|, this can be approximated by a

first order system response:
δi∗a,LP(t) ≈ KLP

(
1− es2t) (A42)

The step response of the bandpass part of the system is given by

δi∗a,BP(t) = KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t
)

(A43)

where KBP =
Ua,0

Laia,0
. The total response of current to a unit step in voltage is the sum of

Equations (A41) and (A43):

δi∗a (t) = KLP

(
1 +

s1

s2 − s1
es2t − s2

s2 − s1
es1t
)
+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t
)

(A44)

or including the simplification:

δi∗a (t) ≈ KLP
(
1− es2t)+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t
)

(A45)
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