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Abstract

Based on the concept of self-decomposability we extend some recent multidimensional
Lévy models by using multivariate subordination. Our aim is to construct multi-asset
market models in which the systemic risk instead of affecting all markets at the same
time presents some stochastic delay. In particular we derive new multidimensional
versions of the well known Variance Gamma and inverse Gaussian processes. To this
end, we extend some known approaches keeping their mathematical tractability, we
study the properties of the new processes, we derive closed form expressions for their
characteristic functions and, finally, we detail how new and efficient Monte Carlo
schemes can be implemented.

As second contribution of the work, we construct a new Lévy process, termed
the Variance Gamma++ process, to model the dynamic of assets in illiquid markets.
Such a process has the mathematical tractability of the Variance Gamma process
and is obtained relying upon the self-decomposability of the gamma law. We give a
full characterization of the Variance Gamma++ process in terms of its characteristic
triplet, characteristic function and transition probability density. These results
are instrumental to apply Fourier-based option pricing and maximum likelihood
techniques for the parameter estimation. Furthermore, we provide efficient path
simulation algorithms, both forward and backward in time. We also obtain an
efficient “integral-free” explicit pricing formula for European options.

Finally, we illustrate the applicability of our models in the context of gas, power
and emission markets focusing on their calibration, on the pricing of spread options
written on different underlying commodities and on the evaluation of exotic American
derivatives, giving an economical interpretation to the obtained results.
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Chapter 1

Introduction

The last fifty years have seen a remarkable develop of financial markets all over the
world. Nowadays, many companies are listed on exchange and all financial markets
are strictly related each other due to the globalization. Moreover, many strategic
fields, such as energy markets have been liberalized in many states leading to the
creation of new financial markets together with the rise of new business opportunities
and financial risks.

Over the years, in order to properly model those markets and to understand
their behaviour, many mathematicians have proposed several different approaches.
Undoubtedly, one of the most powerful and successful approach is the one which is
based on continuous time stochastic processes. The pioneer in this field was Bachelier
[8]: in his doctoral thesis he first introduced a mathematical model based on Brownian
motion and he used it for stock options valuation. Nevertheless Bachelier discussed
his thesis on the 29th March 1900, we have to wait more than seventy years to see
the birth of the modern mathematical finance when, in 1973, Fisher Black, Myron
Scholes and Robert Merton proposed a “new method to determine the value of
derivatives” that worth them the Nobel Prize in Economics in 1995. The dynamic
of the asset price S in the Black-Scholes model is given by a Geometric Brownian
motion:

dS(t) = µS(t)dt+ σS(t)dW (t), (1.1)
where µ ∈ R is the drift, σ ∈ R+ is the volatility and W = {W (t); t ≥ 0} is a standard
Brownian motion. Despite the success of Black-Scholes model, its assumptions are
too narrow and, for this reason, in the following years some of them were relaxed:
in particular, Merton [91] added jumps to the price dynamic whereas Heston [70]
proposed to substitute the constant volatility σ in the Black-Scholes model, with a
stochastic mean-reverting process of the CIR type and Bates [15] combined the two
approaches together creating a new model with stochastic volatility and jumps.

In addition, many different successful approaches based on the notion of Brownian
subordination were proposed, for instance, by Madan and Seneta [88] and Barndorff-
Nielsen and Shephard [13], whereas Dupire [51] introduced a so called local volatility
model. The guests of honour in all these approaches are Lévy processes in continuous
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Chapter 1. Introduction

time which, at a first glance, can be thought as a generalization of the Brownian
motion. Modelling techniques based on Lévy processes leads to richer models than
the classical one proposed by Black-Scholes, retaining both the mathematical and
numerical tractability.

All these modelling approaches combined with martingale theory and together
with numerical algorithms developed for path simulation and pricing purposes, allow
to properly evaluate several types of derivatives in different modelling framework, at
least in a univariate setting.

Nevertheless, in real world it is common to price derivative contract written on two
or more underlying assets and hence it would be desirable to scale the aforementioned
models to a multidimensional settings. Unfortunately, as opposed the extension of
the Black-Scholes model to a multivariate setting is easy, the generalization of models
based on more general Lévy processes is far from the triviality. In the latter case
two main issues come up: on one hand using Lévy processes, different dependence
structures can be considered: if, in Gaussian processes, all the dependence relations
between random variables are modelled by the covariance matrix (see the model
proposed by Heath et al. [69]), when we consider Lévy processes the dependence can
be modelled in several ways that cannot be caught only by the covariance matrix. On
the other hand, all numerical pricing and calibration techniques which are available
in the univariate setting must be adapted to the multidimensional framework. In
particular Monte Carlo methods might be revisited in order to generate random
variable with the introduced dependence structure and those methods based on
Fourier techniques and on the resolution of partial derivatives equations must be
adjusted and this might be a hard task.

Particular dependence structures can be obtained by using a copulas, namely
multivariate cumulative distribution functions for which the marginal probability
distribution of each variable is uniform on the interval [0, 1] (see Sklar [119]). As
summarized in Cherubini et al. [41], in finance copulas are applied to risk management,
portfolio optimization and to derivatives pricing. Moreover, Cont and Tankov [42]
shows how multivariate Lévy processes can be fully characterized by Lévy copulas
and this gives us a systematic method to construct multidimensional Lévy processes
with specified dependence. However, the latter approach leads to models that may
be mathematically intractable and somewhat hard to implement. Therefore, even
if this approach is very flexible from a mathematical point of view, it results to be
hard to apply in practical situations.

A simple multidimensional non Gaussian model with jumps can be obtained
by taking a multivariate Brownian motion and time change it with a univariate
subordinator as proposed by Eberlein [52] and Prause [102]. This approach is
easy to apply and leads to tractable models both from a theoretical and numerical
point of view but, unfortunately, it lacks of flexibility and the range of possible
dependence and patterns is quite limited. Nevertheless the just mentioned approach
can be improved as proposed by Semeraro [115], Luciano and Semeraro [87] and
Ballotta and Bonfiglioli [9]. The common idea of these papers is to model a general

2



multidimensional stochastic process Y = {(Y1(t), . . . , Yn(t)); t ≥ 0} in the following
way:

Y1(t) = X1 + a1Z(t),
. . .

Yn(t) = Xn + anZ(t),
(1.2)

where X = {(X1(t), . . . , Xn(t)); t ≥ 0} and Z = {Z(t); t ≥ 0} are independent
stochastic processes and aj j = 1, . . . , n are real numbers. Clearly the resulting
process Y has dependent components because of the presence of the common process
Z and, moreover, X and Z have a clear economic interpretation: X can be viewed
as the idiosyncratic risk whilst Z represents the systemic risk.

Even if in a process defined as in Equation (1.2) the systemic risk impacts on
all processes at the same time, in many situations, it is common to observe that,
sometimes, a sudden event happens is one market and it has an effect on the others
markets after a stochastic time delay: this type of interaction between markets is
sometimes referred as synaptic risk. Such an empirical feature is not captured in any
existing model in literature. Nevertheless, as shown by Cufaro Petroni and Sabino
[47], the stochastic delay can be modelled relying upon the probabilistic notion of
self-decomposability. A random variable X has a self-decomposable law if for all
a ∈ (0, 1) there exist two independent random variable Y (with the same law of X)
and Za such that:

X
d= aY + Za,

and we call Za the a-remainder.
The first goal of this thesis is to investigate if stochastic processes of the form

(1.2) can be enriched including a synaptic risk component. In particular, we develop
new multivariate versions of the well known Variance Gamma and Normal inverse
Gaussian processes including stochastic delay. We show how some multidimensional
pricing techniques can be used for option pricing and, moreover, we develop several
new Monte Carlo schemes to generate their paths. In particular we derive explicitly
the law of Za when X has a gamma or an inverse Gaussian law and we present new
numerical algorithms to efficiently sample from the distribution of Za without using
an acceptance rejection method. Moreover, we study the mathematical properties of
the multidimensional version of the Variance Gamma and Normal inverse Gaussian
with stochastic delay we introduce, we derive their characteristic functions at a
given time t and the expression of the linear correlation coefficient. Furthermore,
we calibrate the derived processes on real data from energy markets and we price
several derivative accordingly by using both Monte Carlo and Fourier techniques.
The models we present are easy to interpret from an economic point of view and are
both theoretically and numerically tractable: for these reasons they can be used for
derivatives pricing in industry, especially when the number of underlying assets is
not to large.
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Chapter 1. Introduction

As we stated before, the range of financial products that can be traded on
exchange is huge but, sometimes, the related traded volume is very low: in this
case the considered contingent claim is said to be illiquid. For example, the traded
volume of derivatives written on forex exchange or interest rate markets is huge
whilst other markets, such as electricity markets in many European country, tends
to be much less liquid. When a market is not liquid, the number of transaction is
small and, since the price is strictly linked to the number of closed trades, it is not
rare to observe time intervals in which the price of the asset remains constant. It
is extremely important to consider market liquidity when we deal with derivatives
pricing: indeed, if a market operator sells an option he must implement an hedging
strategy, such as a delta hedging. Of course, if the underlying asset is not liquid,
it follows that the hedging policy might result hard to implement or, sometimes,
impossible. The option seller has to consider the fact that the market might not be
liquid when he establishes the price of the option. For these reason, the second main
contribution of this work is the introduction of a new Lévy process, that we call the
Variance Gamma ++ (V G+ +) process which aims at modelling market illiquidity.
This goal can be achieved starting from the notion of self-decomposability we define a
new process by Brownian subordination, where the subordinator is the Lévy process
associated to the a-remainder of a gamma law, which is self-decomposable. We fully
characterize the V G+ + process in terms of its characteristic triplet, we derive its
transition probability density function, its characteristic function and we introduce a
new Monte Carlo scheme for its path simulations. An interesting result is that within
this modelling framework a closed pricing formula for vanilla options can be found: in
particular the value of an European call option can be expressed as the infinite sum
of call options, as it happens in the Merton [91] and Kou [80] models. Furthermore,
relying upon Lévy bridges techniques, we show how simulate the V G+ + process
backward in time and we show how this technique can be used to efficiently price
American style derivatives. Finally, we apply this model to European electricity
markets with different levels of liquidity and we investigate its performance. Relying
on the same approach we used to derive multidimensional versions of the Variance
Gamma model we show how the V G+ + model can be extended to a multi-asset
market.

In conclusion, the main contributions of this work are the following:

• Derive new multidimensional version of the Variance Gamma and Normal
inverse Gaussian process incorporating the stochastic delay.

• Introduce a new Lévy process, named V G+ + process, that can be successfully
used to model those markets with different levels of liquidity.

• Provide all those numerical techniques, such as Monte Carlo schemes, Fourier
pricing methods, closed formulas ones need to successfully use these models in
practice.
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Although we deeply investigated the above modelling framework, some limits
and open questions are present. We obtain the V G + + process subordinating a
Brownian motion with the Lévy process associated to the law of Za when X has a
gamma law. A similar process can be constructed if we consider the subordinated
Brownian motion where X has a inverse Gaussian law, which is self-decomposable
too. This could be a very interesting topic to investigate, but it is outside the scope
of this thesis.

The mathematical framework we proposed to derive multivariate versions of
the Variance Gamma and Normal inverse Gaussian process can be easily applied
to any dimension n ≥ 2. Nevertheless, in numerical applications we mainly focus
on bivariate processes. Indeed, as it will be clear from the sequel, the number of
parameters we need to model the market dramatically increases when we deal with
more that two underlying assets. The main problems arise in the calibration step:
the large number of parameters to be fitted makes the calibration hard to perform
and, sometimes, unstable. For this reason, the model we present can be successfully
applied only when the number of asset is not too large. We focus on a case with
three risky assets, but applications with more than three asset are not considered in
this work.

As we stated before, we apply the derived models to energy markets, in particular
to electricity and gas markets. Clearly the approach we proposed is very general
and can be adapted in many market contexts: we think that some other possible
real-world applications should be investigated, but we left them for a possible future
research.

This thesis is organized as follows. Chapter 2 discusses about infinitely divisible
laws, self-decomposability and Lévy processes: all these notions are fundamental to
deeply understand the presented subject. In Chapter 3 we introduce the V G + +
process, we study its mathematical properties and we show how to simulate its
trajectories backward and forward in time: moreover we derive a closed formula for
European call option pricing. In chapters 4 and 5 multidimensional versions of the
Variance Gamma and Normal inverse Gaussian process with stochastic delays are
introduced and efficiently simulations of its skeleton discussed. Chapter 6 presents
some well known methods for paths simulation and for option pricing, such as Monte
Carlo schemes and Fourier based methods. Furthermore, we detail how to simulate
the paths of all processes we introduced in previous chapters and we briefly discuss
how to price derivatives by solving partial integral differential equations. Chapter 7
shows some possible applications of the aforementioned models to electricity and gas
markets. We calibrate the models, we price derivatives and we discuss the obtained
results both from a mathematical and economic point of view. Chapter 8 concludes
whereas Appendices contain some technical results and useful observations.
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Chapter 2

Mathematical background

In this chapter we present the mathematical background one needs to deeply under-
stand the topics we face up in the next chapters. In particular, firstly we briefly show
how the notion of infinitely divisible and self-decomposable laws arise as natural
answers to different versions of the central limit problem. After that, we show how
infinitely divisible laws are connected to a particular class of stochastic processes
called Lévy processes and we discuss their properties and characterization. Besides
that, we give some examples of such processes and of their related Lévy bridges and,
finally, we show how the aforementioned processes can be used in finance to model
the price dynamic and to derive arbitrage free market models in continuous time.

2.1 The rise of infinitely divisible laws
The notion of infinitely divisible distribution is crucial to study Lévy processes and
was introduced for the first time by Finetti [56] in 1929. In many books the link
between Lévy processes and infinitely divisible law is highlighted: it turns out that
there is a correspondence between Lévy processes and infinitely divisible law (see
Cont and Tankov [42, Proposition 3.1]). In the study of infinitely divisible laws and
Lévy processes an important role in played by the so called Lévy measures. Many
times the definition of Lévy measures is given at the very beginning, but the origin
of such an important notion sometimes remains obscure. The goal of this section
is to quickly recall the underlying problem that leads to the definition of infinitely
divisible laws and that of Lévy measure: we do not presume to be neither rigorous
nor exhaustive and we refer the interested reader to Varadhan [122] and Breiman
[27] for a complete exposition of the topic.

In this chapter we assume that a probability space (Ω,F ,P) is given and we
remember that a random variable X : Ω → E is a measurable function from a set of
outcomes Ω to a measurable space E. In many applications it is assumed E = R
embedded with B (R). The notion of infinitely divisible law naturally arises when
one consider the following problem. Assume we have a sequence (kn)n≥1 such that
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Chapter 2. Mathematical background

kn monotonically increases to infinity kn ↑ ∞ as n → ∞ and consider the array of
independent random variables (Xn,j, 1 ≤ j ≤ kn) i.e. an object of the following form:

X1,1, . . . , X1,k1

X2,1, . . . , . . . , X2,k2

. . . ,
. . . , . . . , . . . , . . .

Xn,1, . . . , . . . , . . . , . . . , Xn,kn .

In each row the random variables we consider are independent whereas independence
through rows is not assumed. We wish to investigate the limit in distribution of the
following random variable:

Sn =
kn∑
j=1

Xn,j. (2.1)

This problem is the well known central limit problem (CLP) and reads as follow:
given an array of independent random variables (Xn,j, 1 ≤ j ≤ kn) find the family of
all the limit laws of the consecutive sums (2.1) and the corresponding convergence
conditions.

Example 2.1.1. Assume that (Xn,j, 1 ≤ j ≤ kn) are independent and identically
distributed random variables such that:

P (Xn,1 = 1) = pn = 1 − P (Xn,1 = 0) .

If limn→∞ npn = λ ∈ [0,∞) we have that Sn d→ S as n → ∞ where S has Poisson
distribution (see Breiman [27, Theorem 9.4]). We remember that a random variable
X is said to be distributed according to a Poisson law if:

P (X = n) = e−λλ
n

n! , n ∈ N. (2.2)

and we write X ∼ P (λ).

As additional condition to study the convergence of Sn, we suppose that all the
random variables (Xn,j, 1 ≤ j ≤ kn) are uniformly negligible (U.N.), namely that:

∀ϵ > 0, lim
n→∞

max
1≤j≤kn

P (|Xn,j| > ϵ) = 0. (2.3)

The U.N. condition is the minimum condition one needs to impose in order to study
the convergence of (2.1).

In Example 2.1.1 Sn is the sum of independent identically distributed random
variables and we have that Sn d→ S. It seems reasonable to expect that S can be
seen as “the sum of independent random variables”, and this motivates the following
definition.
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2.1. The rise of infinitely divisible laws

Definition 2.1.1. (Infinite divisible laws) A random variable X is said to have an
infinitely divisible law if for every k ≥ 1 there exist k independent and identically
distributed random variables X(k)

1 , . . . , X
(k)
k such that:

X
d= X

(k)
1 + · · · +X

(k)
k .

The following proposition shows how to construct a random variable with an
infinitely divisible law.

Proposition 2.1.1. (Breiman [27, Proposition 9.9]) Assume that (Xn,j, 1 ≤ j ≤ kn)
is an array of independent identically distributed random variables, kn ↑ ∞ and that
Sn is defined as in (2.1).

Sn
d→ S ⇐⇒ S has an infinitely divisible law.

The previous proposition states that if we have convergence in distribution of the
sum defined in Equation (2.1) the law of the random variable limit must be infinitely
divisible. The converse is also true: if a random variable S has an infinitely divisible
law, there exists an array of independent random variables (Xn,j, 1 ≤ j ≤ kn) such
that Sn d→ S, as n → ∞. Examples of infinite divisible laws are Dirac, Gaussian,
Poisson, gamma and Cauchy distribution.

So far we know that if the sum Sn converges to some limit random variable S, the
law of S is infinitely divisible. We now wish to investigate under which conditions Sn
converges. Therefore, the next goal is to find some sufficient conditions on the array
(Xn,j, 1 ≤ j ≤ kn) in order to have the convergence in distribution of the following
(more general) quantity:

kn∑
j=1

Xn,j − An
d→ S, (2.4)

where (An)n≥1 is a sequence of real numbers. In order to simplify the analysis of the
problem we define the following quantities:

an,j = E
[
Xn,j1{|Xn,j |≤1}

]
, X̃n,j = Xn,j − an,j,

˜Yn,j = X̃
[1]
n,j, Bn =

kn∑
j=1

an,j,

an = Bn − An,

where X [λ] for λ > 0 denotes the Poisson λ transform of the random variable X and
is defined as:

X [λ] =
N∑
j=1

Xj,

9



Chapter 2. Mathematical background

where N ∼ P (λ), (Xj, 1 ≤ j ≤ N) are N independent copies of X and each of them
is independent of N . It can be proven (Varadhan [122, Chapter 3.7]) that:

kn∑
j=1

Xn,j − An
d→ S, as n → ∞ ⇐⇒

kn∑
j=1

Ỹn,j − an
d→ S, as n → ∞.

This means that, if we are interested in the convergence in distribution of the right-
hand side to a given random variable S it is enough to study the convergence in
distribution of the left-hand side to S, where Ỹn,j and an have been defined above.
By Lévy continuity theorem (Breiman [27, Theorem 8.28]), in order to analyse the
behaviour of ∑kn

j=1 Xn,j − An as n → ∞ it is enough to study the limiting behaviour
of the characteristic function of ∑kn

j=1 Ỹn,j − an which has the following form1:

ϕ∑
j
Ỹn,j−an

(t) = exp


kn∑
j=1

∫ (
eitx − 1

)
dµ̃n,j(x) − iant

 , (2.5)

where µ̃n,j is the law associated to the random variable X̃n,j. Despite it seems we
have complicated the problem, it turns out that this problem is easier to study than
the original one. Looking at Equation (2.5), we can define the following positive
measure on B(R):

νn (A) =
kn∑
j=1

µ̃n,j(A), ∀A ∈ B(R). (2.6)

It is worth noting that νn (R) = kn, and hence νn is not a probability measure on
B(R). Moreover, we have that limn→∞ νn(R) = ∞.
A very technical result (Varadhan [122, Section 3.7]) shows that if

kn∑
j=1

Ỹn,j − an
d→ S,

then:

• ∃ 0 < C0 < ∞ such that ∑kn
j=1 E

[
X̃2
n,j1|X̃n,j |≤1

]
≤ C0, ∀n ∈ N.

• ∀δ > 0 ∃ 0 < Cδ < ∞ such that ∑kn
j=1 P

[
|X̃n,j| ≥ δ

]
≤ Cδ, ∀n ∈ N.

From these relations it easily follows that:

kn∑
j=1

E
[
X̃2
n,j1|X̃n,j |≤1

]
=

kn∑
j=1

∫
|x|≤1

x2dµ̃n,j(x) =
∫

|x|≤1
x2dνn(x) < C0 < ∞, ∀n ∈ N

1With a slight abuse of notation we indicate in the same way the characteristic function of a
random variable and that of its law.
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2.1. The rise of infinitely divisible laws

and
kn∑
j=1

P
[
|X̃n,j| > δ

]
=

kn∑
j=1

µ̃n,j ({x, x > δ})

= νn ({x, x > δ}) =
∫

|x|>δ
νn (dx) < Cδ < ∞, ∀n ∈ N.

The limiting Lévy measure ν is finite outside the origin and puts a infinite mass at
zero but, near the origin, it integrates x2. A measure with such properties is called
Lévy measure.

Definition 2.1.2. (Lévy measure) A positive measure ν defined on B(R) is said to
be a Lévy measure if:

• ∀δ > 0, ∃ 0 < Cδ < ∞ such that:∫
|x|>δ

ν (dx) < Cδ,

• ∃ 0 < C0 < ∞ such that: ∫
|x|≤1

x2dν(x) < C0.

The measures νn we introduced in Equation (2.6) are Lévy measures. The
characteristic function of ∑kn

j=1 Ỹn,j − an can be rewritten in the following way:

ϕ∑
j
Ỹn,j−an

(t) = exp
{∫ (

eitx − 1
)
dνn(x) − iant

}
(2.7)

and we want to investigate its behaviour when n → ∞. Since Lévy measure is
integrable outside of the origin whereas it integrates x2 around zero, it is useful to
introduce a truncation function θ : R → R such that:

|θ(x) − x| ≤ C|x3|,

for some 0 < C < ∞ and rewrite Equation (2.7) as:

ϕ∑
j
Ỹn,j−an

(t) = exp
{∫ (

eitx − 1 − itθ(x)
)
dνn(x) + ibnt

}
,

where bn =
∫
θ(x)dνn(x) − an.

The following theorem, states that the characteristic function of an infinitely
divisible law has a precise form and it depends on the Lévy measure.

Theorem 2.1.2. (Varadhan [122, Theorem 3.20]) For every admissible Lévy measure
ν, real number b and σ2 > 0,

ϕν,b,σ2(t) = exp
{∫ (

eitx − 1 − itθ(x)
)
dν(x) + ibt− σ2t2

2

}
, (2.8)

is the characteristic function of an infinitely divisible law.
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Chapter 2. Mathematical background

Moreover, it can be proven that such a representation is unique, in the sense that
if

ϕν1,b1,σ2
1
(t) = ϕν2,b2,σ2

2
(t), ∀t ∈ R,

then ν1 = ν2, σ2
1 = σ2

2 and b1 = b2 (see Varadhan [122, Corollary 3.22]). Therefore,
we can claim that, the triple (ν, σ2, b) somehow characterizes the distribution of an
infinite divisible random variable (we will see that a similar results holds for Lévy
processes we will discuss in Section 2.4).
The second issue we address consists in finding sufficient conditions for the convergence
of a series of random variables defined in (2.4). The answer is provided by the following
theorem.

Theorem 2.1.3. (Varadhan [122, Theorem 3.21]) A sequence of random variables
Xνn,bn,σ2

n
converges to a random variable X if and only if there exists a Lévy measure

ν, σ2 > 0 and b ∈ R such that X = Xν,b,σ2 and

(a) for all f ∈ Cb(R)2 for which there exists δ > 0 such that f(x) = 0 for all
|x| ≤ δ, we have:∫

f(x)dνn(x) →
∫
f(x)dν(x), as n → ∞.

(b) There exists x0 > 0 such that ν ({−x0} ∪ {x0}) = 0 and

lim
n→∞

{∫ x0

−x0
x2νn(dx) + σ2

n

}
=
{∫ x0

−x0
x2ν(dx) + σ2

}
.

(c) limn→∞ bn = b

Given an array of independent random variables (Xn,j, 1 ≤ j ≤ kn), kn ↑ ∞ such
that the uniform negligibility condition (2.3) holds, the previous results can be
summarized as shown in Figure 2.1.

We conclude that, in order to check the convergence in distribution of the quantity∑kn
j=1 Xn,j − An it is enought to study the simplified problem for ∑kn

j=1 Ỹn,j − an,
construct the triple (νn, 0, an) and look for the existence of (ν, 0, a) such that S =
Xν,0,a and conditions a), b) and c) hold.

An important subclass of infinitely divisible laws consists in the so called self-
decomposable laws which we are introduced in the next section.

2.2 Self-Decomposable laws
Important cases of the central limit problem arise when we specialize the sequence
(Xn,j, 1 ≤ j ≤ kn). The interested reader can refer to Cufaro Petroni [45] for a concise
primer on this topic or to Loeve [82] for a more detailed overview.

2Here Cb(R) denotes the space of bounded continuous functions on R.
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2.2. Self-Decomposable laws

∑kn
j=1 Xn,j − An

d→ S construct (νn, 0, an) , ∑kn
j=1 Ỹn,j − an

d→ S

∃ (ν, 0, a), s.t. S = Xν,0,a and a), b), c) hold.

S has an infinitely divisible law with triple (M, 0, a).

Figure 2.1. Summary of the results of Chapter 2.1.

Assume that there is a sequence (Xj)j≥1 of independent but in general not
identically distributed random variables and two sequences (an)n≥1 with an > 0 and
(bn)n≥1 with bn ∈ R such that for every k and n:

Xn,j = 1
an

(
Xj − bn

n

)
.

Going from row n to row n′ we just get a centereing and a rescaling of every Xj . The
consecutive sums Sn defined in (2.1) take the form of normed sums of independent
random variables:

Sn =
kn∑
j=1

Xn,j =
kn∑
j=1

1
an

(
Xj − bn

n

)
= 1
an

 kn∑
j=1

Xj − bn

 = S̃n − bn
an

, (2.9)

where we defined:
S̃n =

kn∑
j=1

Xj.

A second version of the central limit problem reads as follows: find the family of all
the limit laws of the normed sums (2.9) and the corresponding convergence conditions
(CLP2). In particular given a sequence of independent random variables (Xj)j≥1
find whether there exist sequences (an)n≥1 and (bn)n≥1 such that Xj/an satisfies the
U.N. condition (2.3) and such that we have convergence in distribution of (Sn)n≥1 to
some random variable S.

The answer to this problem is given in Loeve [82, Section 24]: before proceeding,
we give the following important definition.
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Chapter 2. Mathematical background

Definition 2.2.1. (Self-decomposable laws) The law of a random variable X is
said to be self-decomposable if for all a ∈ (0, 1) there exist two independent random
variables Y and Za such that Y has the same distribution of X and:

X
d= aY + Za.

We call Za the a-remainder.

Given a random variable X with law µ we denote by ϕX(u) for u ∈ R its
characteristic function defined as:

ϕX(u) = E
[
eiuX

]
=
∫
R
eiuxdµ(x).

In particular, if the law of a random variable X is self decomposable, we have the
following relation:

ϕX(u) = ϕX(au)ϕZa(u).
It can be shown that if a law is self-decomposable then it is infinitely divisible

(Loeve [82, p.335]) and, moreover, it can be proven that the law of the a-remainder
is infinitely divisible (Sato [112, Proposition 15.5]). The Gaussian, Student, inverse
Gaussian, gamma, exponential and Laplace laws are examples of self-decomposable
law. On the other hand the Poisson law is not self-decomposable but it is infinitely
divisible.

The just defined family of laws represents the answer to the second formulation
of the central limit problem CLP2: more precisely self-decomposable laws coincide
with the limit distributions of the normed sums defined in Equation (2.9).

As we observed, the law of a self-decomposable random variable is also infinitely
divisible, hence its characteristic function admits a representation given by the Lévy-
Khinchine formula (2.8). Furthermore, it can be proven that the law of a random
variable is self-decomposable if and only if its Lévy measure is absolutely continuous
and its density is:

dν(x) = k(x)
|x|

dx,

where the function k(x) is non negative, increasing on (−∞, 0) and decreasing on
(0,∞) (Sato [112, Theorem 15.10]).

Another version of the central limit problem can be considered if we suppose
that the random variables (Xj)j≥1 are not only independent but also identically
distributed. In this case the class of limiting distributions is given by stable laws: in
particular when Xj has finite variance their normed sums converge to a normal law
(see Cufaro Petroni [45] for additional details on this last version of the central limit
problem).

As we will see in Section 2.4, infinitely divisible laws are related to Lévy processes.
Before moving to deeply investigate Lévy processes we need some technical results
about random measures, Poisson processes and jump measures.
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2.3. Random measures, Poisson process and jump measures.

2.3 Random measures, Poisson process and jump
measures.

In this section we quickly recall all the notions we need to understand Lévy processes.
By following Cont and Tankov [42, Chapter 2-3], we do not aim to be neither
rigorous nor exhaustive, we just wrap up the main concepts and results one needs to
understand the topic of this work.

The notion of cadlag function3 is crucial to introduce Lévy processes.

Definition 2.3.1. (Cadlag function) A functon f : [0, T ] 7→ Rd is said to be cadlag
if it is right-continuous with left limits. For each t ∈ [0, T ] the limits:

f (t−) = lim
s→t−

f(s), f(t+) = lim
s→t+

f(s)

exist and f(t) = f(t+).

Of course a cadlag funcion can have discontinuities and we call the quantity:

∆f(t) = f(t) − f(t−)
a “jump” of f at t. It is worthing to observe that the set {t ∈ [0, T ] , f(t) ̸= f(t−)}
is finite or countable (Fristedt and Gray [58]) and that given an ϵ > 0 the number of
discontinuities larger than ϵ should be finite. We can conclude that a cadlag function
has a finite number of “large” jumps and a possible infinite but countable number of
small jumps. In the context of financial modelling jumps represent sudden market
events so the choice of right-continuity is natural. On the other hand, if we want to
model a discontinuous process whose values are predictable we should use a cadlad
process.

In order to proceed we recall the definition of Radon measure.

Definition 2.3.2. (Radon measure) Let E ⊂ Rd. A Radon measure on (E,B(E))
is a measure µ such that for every compact measurable set B ∈ B(E), µ(B) < ∞.

For example, the well known Lebesgue measure on B(R) is a Radon measure. The
notion of Radon measure is fundamental to deeply investigate Poisson processes and
Poisson measures we are going to introduce in the following section.

2.3.1 Poisson processes and Poisson measures
One of the simplest process we can define is the so called Poisson process. A random
variable Y is said to follow an exponential distribution with parameter λ > 0 its
probability density function has the form:

f(x;λ) = λe−λx
1{x≥0}(x).

3Cadlag is a french acronym for “continu à droite, limite à gauche” which means “right-continuous
with left limits”.
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Chapter 2. Mathematical background

An integer valued random variable N is said to follow a Poisson distribution of
parameter λ if

P (N = n) = e−λλ
n

n! , ∀n ∈ N.

The definition of Poisson process is then the following.

Definition 2.3.3. (Poisson process) Let (τi)i≥1 be a sequence of independent ex-
ponential random variables with parameter λ > 0 and Tn = ∑n

i=1 τi. The process
N = {N(t); t ≥ 0} defined by:

N(t) =
∑
n≥1

1{Tn≤t}, (2.10)

is called a Poisson process with intensity λ.

Some properties of the Poisson process are reported in Cont and Tankov [42,
Proposition 2.12]. In particular it can be proven that:

• For any t > 0, N(t) follows a Poisson distribution with parameter λt:

P (N(t) = n) = e−λt (λt)n
n! , ∀n ∈ N.

• The characteristic function of N(t) is given by:

E
[
eiuN(t)

]
= exp

{
λt
(
eiu − 1

)}
, ∀u ∈ R.

A possible trajectory of the process N is displayed if Figure 2.2 and, as it should
be clear from the definition of Poisson process, the jump we observe at stochastic
times Tn has size equal to one.

The process we just defined is a counting process: indeed it simply counts the
number of events Tn occurred before t: if T1, T2, . . . is the sequence of jumps times
of N , then N(t) is the number of jumps between 0 and t:

N(t) = # {i ≥ 1;Ti ∈ [0, t]} .

Similarly if s < t then:

N(t) −N(s) = # {i ≥ 1;Ti ∈ (s, t]} .

This counting procedure defines a measure M on [0,∞): for any measurable set
A ⊂ R+:

M (ω,A) = # {i ≥ 1;Ti(ω) ∈ A} (2.11)
Then, for ω ∈ Ω fixed, M (ω, ·) is a positive, integer valued measure. On the other
hand, observe that if M (·, A), sometimes denoted by M(A), for A ⊂ R+ fixed, is
a function from Ω → N and hence it is a random variable. The measure M (ω, ·)
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Figure 2.2. A possible path of the Poisson process with parameter λ = 40, for t ∈ [0, T ]
with T = 1.

depends on ω and hence it is a random measure. The intensity λ of the Poisson
process determines the average value of the random measure M , indeed:

E [M(A)] = λ |A| ,

where A denotes the Lebesgue measure of A.
M is called the random jump measure associated to the Poisson process N . The

Poisson process may be expressed in terms of the random measure M in the following
way:

N(t, ω) = M (ω, [0, t]) =
∫

[0,t]
M (ω, ds) ,

where N(t, ω) denotes the the realization of the random variable N(t) for ω ∈ Ω.
The random measure M can also be viewed as the “derivative” of the Poisson

process. Each trajectory t 7→ N(t, ω) of the Poisson process is an increasing step
function. Hence its derivative (in the sense of distributions) is a positive measure.
In fact it is the super position of Dirac masses locate at the random jump times and,
at least formally, we have:

d

dt
N (t, ω) = M(ω, [0, t]),

where:
M(ω, [0, t]) =

∑
i≥1,

Ti(ω)≤T

δTi(ω),

17



Chapter 2. Mathematical background

which coincides with (2.11). Roughly speaking we say that the derivative of the
trajectory of the process is zero everywhere except at Ti.

Therefore, we have seen that a Poisson process defines a counting measure on
measurable sets of R+, that the Poisson process itself can be defined as an integral
with respect its counting measure and, finally, that the counting measure M can be
seen as the superposition of Dirac measures located at random times Ti (ω).

The measure M defined in (2.11) defines a random counting measure on R+ such
that for any measurable set A ⊂ R+, E [M(A)] is given by λ times the Lebesgue
measure of A. We can replace R+ by E ⊂ Rd and the Lebesgue measure by a Radon
measure µ on E and we can define what is called the Poisson random measure.

Definition 2.3.4. (Poisson random measure) Let be (Ω,F ,P) be a probability space,
E ⊂ R and µ a given (positive) Radon measure µ on (E, E). A Poisson random
measure on E with intensity µ is an integer random measure:

M : Ω × E → N,
(ω,A) 7→ M (ω,A) ,

such that:

1. For (almost all) ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E: for
any bounded measurable set A ⊂ E, M(A) < ∞ is an integer valued random
variable.

2. For each measurable set A ⊂ E, M (·, A) = M(A) is a Poisson random vaiable
with parameter µ(A):

P (M(A) = k) = e−µ(A)µ(A)k
k! , ∀k ∈ N.

3. For disjoint measurable sets (Ai)1≤i≤n ∈ E , the random variables (M(Ai))1≤i≤n
are independent.

The existence of a Poisson random measure M for any Radon measure µ on
E ⊂ Rd is shown in Cont and Tankov [42, Proposition 2.14]. In that proof a direct
construction of M is given and we have that any Poisson random measure on E can
be represented as a counting measure associated to a random sequence of points in
E: in particular, there exists (Xn)n≥1 sequence of random variables such that:

∀A ∈ E , M(ω,A) =
∑
n≥1

1A (Xn(ω)) .

Thus, as before, M is the sum of Dirac masses located and the random points
(Xn)n≥1:

M =
∑
n≥1

δXn .
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2.3. Random measures, Poisson process and jump measures.

2.3.2 Jump processes from Poisson random measures
So far we have seen how a random measure is somehow induced by a Poisson process.
The converse can also be done. Consider, for example, a Poisson random measure M
on E = [0, T ] × Rd \ {0}: as we have shown above it can be described as a counting
measure associated to a random configuration of points (Tn, Yn) ∈ E.

M =
∑
n≥1

δ(Tn,Yn).

Intuitively, each point (Tn, Yn) corresponds to an observation made at time Tn and
described by a (non zero) random variable Yn (ω) ∈ Rd.
If we introduce the filtration (Ft)t≥0, the measure M is said to be a non-anticipating
Poisson random measure (or a Poisson random measure adapted to (Ft)t≥0) if:

• (Tn)n≥1 are stopping times, which means that the processes 1Tn≤t are adapted
to the filtration (Ft)t≥0.

• Yn is “revealed” at Tn: Yn is FTn-measurable.

For each ω ∈ Ω fixed, M(ω, ·) is a measure on E = [0, T ] × Rd \ {0} and hence we
can define the integral with respect to that measure that we call M(f): following
the usual procedure starting from a simple function f = ∑n

i=1 ci1Ai
where ci ≥ 0 and

Ai ⊂ E disjoint and measurable sets define:

M(f) =
n∑
i=1

ciM(Ai).

Clearly M(f) is a random variable, since M is a random measure, and its expected
value is given by:

E [M(f)] =
n∑
i=1

ciµ(Ai) = µ(f).

By proceeding for non negative function and then for general functions f we can
define M(f) := M(f+) −M(f−) and thus M(f) is a random variable with expected
value given by:

E [M(f)] = µ(f) =
∫

[0,T ]

∫
Rd
f(s, y)µ(dx× ds).

We can restrict the integal to [0, t] × Rd \ {0} and obtain the non anticipating
stochastic process:

X(t) =
∫ t

0

∫
Rd
f(s, y)M(ds, dy) =

∑
{n,Tn∈[0,t]}

f(Tn, Yn).

The second sum runs over the events (Tn, Yn) which have occurred before t. i.e.
Tn ≤ t. X = {X(t); t ∈ [0, T ]} is thus a jump process whose jumps happen at the
random times Tn and have amplitudes given by f (Tn, Yn).
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2.3.3 Marked point processes
As observed in the previous section, a Poisson random measure on [0, T ] × Rd can
be represented as a counting measure:

M (ω, ·) =
∑
n≥1

δ(Tn(ω),Yn(ω)) (2.12)

for some random sequence (Tn(ω), Yn(ω))n≥1 of points in [0, T ] × Rd.
Given a random sequence (Tn(ω), Yn(ω)) ∈ [0, T ] ×E where (Tn)n≥1 is a sequence of
random times describing the occurrence of some events Yn ∈ E, E ⊂ Rd observed
at time Tn, we can define M by (2.12). M is called an integer valued measure on
[0, T ] × E and the random sequence (Tn(ω), Yn(ω)) ∈ [0, T ] × E is called marked
point process.

Marked point processes do not have the independence properties of Poisson
random measures: moreover, M ([0, t] × A) is not a Poisson random variable. For
a function f : [0, T ] × E → Rd verifying

∫
[0,T ]×E |f(t, y)|µ (dt, dy) < ∞ one can

construct the integral of f with respect such measure and hence define the jump
process X = {X(t); t ≥ 0} as in the previous section. Such a process is a non
anticipating jump process with cadlag trajectories whose jumps are described by the
marked point process M .

Conversely, to each cadlag process X = {X(t); t ≥ 0} with values in Rd one can
associate a random measure JX on [0, T ]×Rd called the jump measure. X has at most
a countable number of jumps, i.e. the set {t ∈ [0, T ] ,∆X(t) = X(t) −X(t−) ̸= 0}
is countable. Its elements can be rearranged in a sequence (Tn)n≥1 which are
random jump times of X. At time Tn the process has a discontinuity of size
Yn = XTn −XTn− ∈ Rd \ {0}, hence (Tn, Yn)n≥1 defines a marked point process on
[0, T ] × Rd which contains all information about the jumps of the process X. The
associated random measure, denoted by JX , is called the jump measure of the process
X:

JX (ω, ·) =
∑
n≥1

δ(Tn(ω),Yn(ω)) =
∑

t∈[0,T ],∆X(t)̸=0
δ(t,∆X(t)).

In intuitive terms, for any measurable subset A ⊂ Rd, JX ([0, t] × A) can be defined
as the number of jumps of X occurring between 0 and t whose amplitude belongs to
A. The random measure JX contains all information about the discontinuities of the
process X: it tells us when the jumps occur and how big they are. All quantities
involving the jumps of X can be computed by integrating various functions against
JX . For example if f (x, y) = y2 then one obtains the sum of the squared of jumps
of X: ∫

[0,T ]×R
y2Jx(dtdy) =

∑
t∈[0,T ]

(∆X(t))2 .

Such expression may involve infinite sums and hence we must take care about its
convergence.
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2.4. Lévy Processes

For example, the jump measure of the Poisson process is given by:

JN =
∑
n≥1

δ(Tn,1),

JN ([0, t] × A) = # {i ≥ 1, Ti ∈ [0, T ]} .

At this point we have all the ingredients we need to introduce Lévy processes,
which is the topic of the next section.

2.4 Lévy Processes
Lévy processes are mathematical objects that find several applications in many fields
such as mathematical finance, physics and biology and they can be viewed as a
generalization of the more famous Brownian motion. In this section we focus on
the characterization of Lévy processes, we discuss their main properties and we give
some conditions under which a Lévy process is a martingale. This last topic is crucial
when want to use Lévy processes in mathematical finance where martingales play
a very important role, as we will explain in Section 2.8.1. A deep discussion of the
theory of Lévy processes can be found in Sato [112] and Applebaum [6], whereas
Cont and Tankov [42] focus on their applications to mathematical finance.

We now recall the definition of Lévy process and we show the connection between
Lévy processes and infinitely divisible laws.

Definition 2.4.1. (Lévy process) A cadlag stochastic process X = {X(t); t ≥ 0} on
(Ω,F ,P) with values in Rd such that X(0) = 0 is called Lévy process if it possesses
the following properties:

i) Independent increments: for every increasing sequence of times t0, . . . , tn, the
random variables X(t0), X(t1) −X(t0), . . . , X(tn) −X(tn−1) are independent.

ii) Stationary increments: the law of X(t+ h) −X(t) does not depend on t.

iii) Stochastic continuity: ∀ϵ, limh→0 P (|X(t+ h) −X(t)| ≥ ϵ) = 0.

If we sample a Lévy process at regular time intervals 0,∆, 2∆, . . . we obtain
a random walk: defining Sn (∆) = X(n∆) we can write Sn (∆) = ∑n−1

k=0 Yk where
Yk = X((k + 1) ∆)−X(k∆) are independent identically distributed random variables
whose distribution is the same of X(∆). Choosing n∆ = t, we see that for any t > 0
and any n ≥ 1, X(t) = Sn (∆) can be represented as a sum of independent identically
distributed random variables whose distribution is that of X(t/n): X(t) can be
“divided” into n independent identically distributed parts: then the distribution
of X(t) is infinitely divisible. Thus, if X is a Lévy process, for any t > 0 the
distribution of X(t) is infinitely divisible. This puts a constraint on the possible
choices of distributions for X(t): whereas the increments of a discrete-time random
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walk can have arbitrary distribution, the distribution of increments of a Lévy process
has to be infinitely divisible.

Conversely, given an infinitely divisible distribution F , it is easy to see that for
any n ≥ 1 by chopping it into n independent identically distributed components we
can construct a random walk model on a time grid with step size 1/n such that the
law of the position at time t = 1 is given by F . In the limit, this procedure can be
used to construct a continuous time Lévy process X = {X(t); t ≥ 0} such that the
law of X(1) is given by F . We have partially proved the following proposition which
converse implication is Sato [112, Corollary 11.6].

Proposition 2.4.1. (Cont and Tankov [42, Proposition 3.1]) Let X = {X(t); t ≥ 0}
be a Lévy process. Then for every t > 0, X(t) has an infinite divisible distribution.
Converseley, if F is an infinitely divisible distribution then there exists a Lévy process
X such that the distribution of X(1) is given by F .

We recall that the characteristic function for a generic random variable X with
values in Rd is defined as:

ϕX(u) = E
[
ei⟨u,X⟩

]
, u ∈ Rd,

where ⟨·, ·⟩ denotes the scalar product. For s < t by writing X(t + s) = X(s) +
(X(t+ s) −X(s)) and using the property of independence of increments, we obtain
that t 7→ ϕX(t)(u) is a multiplicative function:

ϕX(t+s)(u) = ϕX(t)(u)ϕX(s)(u),

since X(t+ s) −X(s) has the same law of X(t). Moreover, the stochastic continuity
of t 7→ X(t) implies in particular that X(s) d→ X(t) when s → t. Therefore, by Cont
and Tankov [42, Proposition 2.6], ϕX(s)(u) → ϕX(t)(u) when s → t so t 7→ ϕX(t)(u) is
a continuous function of t. Together with the multiplicative property 2.4 this implies
that t 7→ ϕX(t)(u) is an exponential function. Therefore, we can state the following
proposition.

Proposition 2.4.2. (Cont and Tankov [42, Proposition 3.2]) Let X = {X(t); t ≥ 0}
be a Lévy process on Rd. There exists a continuous function ψ : Rd 7→ R called the
characteristic exponent of X, such that:

ϕX(t)(u) := E
[
eiu·X(t)

]
= etψ(u), u ∈ Rd.

Given a random variable X : Ω → R with characteristic function ϕX(u) the
cumulant generating function ΨX is defined to be the logarithm of the characteristic
function. It is clear that if ψ(u) is the cumulant generating function of X(1):
ψ(u) = ΨX(1)(u) and that the cumulant generating function of X(t) varies linearly
in t:

ΨX(t)(u) = tΨX(1)(u) = tψ(u).
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The law of X(t) is therefore determinated by the knowledge of the law of X(1):
the only degree of freedom we have in specifying a Lévy processes is to specify the
distribution of X(t) for a single time (say, t = 1). Note that the converse is not true.
Namely if the characteristic function of the process X = {X(t); t ≥ 0} at time t is
associated to an infinitely divisible law does not imply in general that the process
X is a Lévy process. Nevertheless, there exists a Lévy process Y = {Y (t); t ≥ 0}
which can be different from X such that its characteristic function at time t coincides
with the one of the process X at the same time. An example is shown in Appendix A.

So far we have shown that there is a strong connection between Lévy processes
and infinitely divisible law. Since we have show that an infinitely divisible law is
fully characterized by a triple of the form (ν, b, σ2) it seems reasonable that a similar
triplet should play an important role in Lévy processes. Indeed, the Lévy measure
for Lévy processes can be defined as follow:

Definition 2.4.2. (Lévy measure) Let X = {X(t); t ≥ 0} be a Lévy process on Rd.
The measure ν on B

(
Rd
)

defined by:

ν (A) = E [# {t ∈ [0, 1] : ∆X(t) ̸= 0,∆X(t) ∈ A}] , A ∈ B
(
Rd
)
, (2.13)

where B
(
Rd
)

is the Borel σ-algebra on Rd, is called the Lévy measure of X: ν(A) is
the expected number, per unit of time, of jumps whose size belongs to A.

The definition of Lévy measure for Lévy processes together with the notion of
jumps measure we introduced above, allows us to state the following fundamental
theorem known as Lévy-Itô decomposition.

Theorem 2.4.3. (Lévy-Itô decomposition Cont and Tankov [42, Proposition 3.7])
Let X = {X(t); t ≥ 0} be a Lévy process on Rd and ν its Lévy measure, given by
(2.13).

• ν is a Radon measure on Rd \ {0} and verifies:∫
|x|≤1

|x|2ν (dx) < ∞,
∫

|x|≥1
ν (dx) < ∞.

• The jump measure of X, denoted by JX , is a Poisson random measure on
[0,∞) × Rd with intensity given by ν (dx) dt.

• There exist a vector γ and a d-dimensional Brownian motion W = {W (t); t ≥ 0}
with covariance matrix A such that:

X(t) = γt+W (t) + X̃(t) + lim
ϵ→0

X(t)ϵ, (2.14)
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where

X̃(t) =
∫

|x|≥1,s∈[0,t]
xJX (dx× ds) ,

Xϵ(t) =
∫ t

0

∫
ϵ<|x|<1

x (Jx(dx× ds) − ν(dx)ds)

The terms in in (2.14) are independent and the convergence of the last term is
almost sure and L2 uniformly in finite intervals.

The theorem states that any Lévy process is a combination of a Brownian motion
with drift γ, diffusion A and a possibly infinite sum of independent compound Poisson
processes and a positive measure ν that uniquely determine its distribution. The
triplet (A, ν, γ) is called Lévy triplet or characteristic triplet of the process X. The
condition

∫
|y|≥1 ν(dy) < ∞ means that X has a finite number of jumps with absolute

value larger that one. So the sum:

X̃(t) =
∑

0≤s≤t,
|∆X(s)|≥1

∆X(s),

contains almost surely a finite number of terms and X̃ is a compound Poisson process.
The sum:

X(t)ϵ =
∑

0≤s≤t,
ϵ≤|∆X(s)|<1

∆X(s) =
∫
ϵ≤|x|<1,s∈[0,t]

xJX(dx× ds),

is again a well-defined compound Poisson. However, ν might have a singularity at
zero: there can be infinitely many small jumps and their sum does not necessarily
converge. This prevents us from taking ϵ → 0 directly. In order to have convergence
we need to center the process and then we can apply a martingale convergence
argument to show convergence. Such a results has both theoretical and practical
consequence. First of all it tells us that any Lévy process can be approximated
with arbitrary precision by a jump-diffusion process, that is by the sum of Brownian
motion with drift and a compound Poisson process. Moreover, without additional
work we can obtain the expression of the characteristic function of a Lévy process at
time t in terms of its characteristic triplet (A, ν, γ).

Theorem 2.4.4. (Lévy-Khinchin representation Cont and Tankov [42, Theorem 3.1])
Let X = {X(t); t ≥ 0} be a Lévy process on Rd with characteristic triplet (A, ν, γ).
Then:

E
[
eiu·X(t)

]
= etψ(u), u ∈ Rd,

with ψ(u) = −1
2u · AuT + iγ · u+

∫
Rd

(
eiu·x − 1 − iu · x1|x|≤1

)
ν(dx).
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Example 2.4.1. (Lévy-Khinchin representation of a Poisson process) Let N =
{N(t); t ≥ 0} defined as in (2.10). Then its characteristic exponent ψ(u) is given by:

ψ(u) = λt
∫
R

(
eiux − 1

)
δ1(x),

where δ1(x) is the Dirac measure concentrated at x = 1.

2.4.1 Properties of the Lévy processes
A lot of properties of the paths of a Lévy process can be deduced in terms of its
characteristic triplet (A, ν, γ) (the interested reader can refer to Cont and Tankov
[42, Chapter 3] for an extensive discussion).

First of all we observe that the Lévy measures can be a finite measures or not. If
ν (R) < ∞ then the expected number of jumps for a unit time interval is finite: such
a process is said to be of finite activity. Finite activity processes are such that almost
all paths have only a finite number of jumps along finite time intervals. Conversely,
if ν (R) = ∞ then the expected number of jumps in a finite time interval is infinite
and the process is called of infinite activity. The following criterion characterizes
Lévy processes with piecewise constant trajectories.

Proposition 2.4.5. (Cont and Tankov [42, Proposition 3.8]) A Lévy process has
piecewise constant trajectories if and only if its characteristic triplet satisfies the
following conditions:

A = 0,
∫
Rd
ν(dx) < ∞, γ =

∫
|x|≤1

xν(dx).

or equivalently if its characteristic exponent is of the form:

ψ(u) =
∫
R

(
eiux − 1

)
ν(dx), with ν(R) < ∞.

We observe that the Poisson process satisfies this criterion and indeed its trajec-
tories are piecewise constant.

We recall that for a function f : [a, b] 7→ Rd the total variation is defined as:

TV (f) := sup
Π

{
n∑
i=1

|f(ti) − f(ti−1)|
}
,

where the supremum is taken over all finite partitions Π, a = t0 < t1 < · · · < tn−1 <
tn = b of the interval [a, b]. In particular, in one dimension every increasing or
decreasing function is of finite variation and every function of finite variation is a
difference of two increasing function. A Lévy process is said to be of finite variation
if its trajectories are functions of finite variation with probability one. The following
proposition characterizes the finite variation Lévy processes.
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Proposition 2.4.6. (Cont and Tankov [42, Proposition 3.9]) A Lévy process is of
finite variation if and only if its characteristic triplet (A, ν, γ) satisfies:

A = 0 and
∫

|x|≤1
|x|ν(dx) < ∞.

Increasing Lévy processes are also called subordinators because they can be used
as time changes for other Lévy processes and they are important building-blocks for
financial modelling. It can be shown that every Lévy process of finite variation can
be written as difference of two subordinators. Subordinators are fully characterized
by the following proposition.

Proposition 2.4.7. (Cont and Tankov [42, Proposition 3.10]) Let X = {X(t); t ≥ 0}
be a Lévy process on R. Then the following are equivalent.

i) X(t) ≥ 0 a.s. for some t > 0.

ii) X(t) ≥ 0 a.s. for all t > 0.

iii) Sample paths of X are almost surely non decreasing: s < t =⇒ X(s) ≤ X(t)
a.s.

iv) The characteristic triplet of X satisfies:

A = 0, ν ((−∞, 0]) = 0,∫ ∞

0
(x ∧ 1) ν(dx) < ∞, b ≥ 0,

that is X has no diffusion component, only positive jumps and positive drift.

The characteristic triplet (A, ν, γ) of a Lévy process is extremely useful also for
practical applications. In particular, the Lévy measure ν allows us to check the
existence of n-th moment of X(t). The n-th cumulant of X(t) is defined as:

cn(X(t)) = (−i)n∂
nΨX(t)(u)
∂un

∣∣∣∣∣
u=0

,

where ΨX(t)(u), u ∈ R is the cumulant generating function, which has been previously
defined as the logarithm of the characteristic function and it can be expressed in
terms of the Lévy measure of the process X. Such results are summarized in the
following proposition.

Proposition 2.4.8. (Cont and Tankov [42, Proposition 3.13]) Let X = {X(t); t ≥ 0}
be a Lévy process on R with characteristic triplet (A, ν, γ). The n-th absolute moment
of X(t), E [|X(t)|n] is finite for some t or, equivalently, for all t > 0 if and only if:∫

|x|≥1
|x|nν (dx) < ∞.
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In this case the moments of X(t) can be computed from its characteristic function by
differentiation. In particular, the form of cumulants of X(t) is especially simple:

E [X(t)] = t

(
γ +

∫
|x|≥1

xν(dx)
)
,

c2(X(t)) = V ar [X(t)] = t
(
A+

∫ ∞

−∞
x2ν (dx)

)
cn (X(t)) = t

∫ ∞

−∞
xnν (dx) , for n ≥ 3.

The knowledge of theoretical expression for the moments of a Lévy process X
at time t is useful from a numerical point of view to check the correctness and
the convergence of the algorithms that samples from a given distribution. Indeed
from the cumulants kn := cn(X) of a general random variable X one can obtain the
expression of the general moment µn = E [Xn], and compare their theoretical value
with the numerical one obtained from a generated sample. In particular it can be
shown that the n-th moment is an n-th degree polynomial in its first n cumulants.
For example we have that the first four moments can be represented in term of the
first four cumulants by:

µ1 = k1,

µ2 = k2 + k2
1,

µ3 = k3 + 3k2k1 + k3
1,

µ4 = k4 + 4k3k1 + 3k2
2 + 6k2k

2
1 + k4

1.

The knowledge of the theoretical moments in terms of the distribution parameters is
crucial if one need to apply a parameters estimation technique as the Generalized
Method of Moments proposed by Hansen [66].

2.4.2 Lévy processes and martingales
The notion of martingale in mathematical finance is essential. Indeed, as we will show
in Section 2.8.1, it is strictly related with the absence of arbitrage in a given market.
Several martingales can be constructed from Lévy processes using the independent
increments property. The following propositions show how to obtain a martingale
starting from a given Lévy process and how to check that a general Lévy process
actually satisfies the martingale condition.
Proposition 2.4.9. (Cont and Tankov [42, Proposition 3.17]) Let X = {X(t); t ≥ 0}
be a real-valued process with independent increments. Then:

1.
{

eiuX(t)

E[eiuX(t)] ; t ≥ 0
}

is a martingale for all u ∈ R.

2. If for some u ∈ R, E
[
euX(t)

]
< ∞ for all t ≥ 0 then

{
eiuX(t)

E[eiuX(t)] ; t ≥ 0
}

is a
martingale.
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3. If E [X(t)] < ∞ for all t ≥ 0 then M = {M(t); t ≥ 0} where M(t) = X(t) −
E [X(t)] is a martingale (and also a process with independent increments).

4. If V ar [X(t)] < ∞ for all t ≥ 0 then (M(t))2 − E [(M(t))2] is a martingale,
where M is the martingale defined above.

If X is a Lévy process, for all of the processes of this proposition to be martingales it
suffices that the corresponding moments be finite for one value of t. (see Sato [112,
Theorems 2.17, 25.3]).

In finance it is important to check if, given a Lévy process, its exponential is a
martingale since, in many cases, the price process is modelled as the exponential of
a given Lévy process in order to ensure its positivity.

Proposition 2.4.10. (Cont and Tankov [42, Proposition 3.18]) Let X = {X(t); t ≥ 0}
be a Lévy process on R with characteristic triplet (A, ν, γ).

• X is a martingale if and only if:∫
|x|≥1

|x|ν (dx) < ∞ and γ +
∫

|x|<1
xν(dx) = 0.

• {exp (X(t)) ; t ≥ 0} is a martingale if and only if:

∫
|x|≥1

exν (dx) < ∞ and A

2 + γ +
∫ ∞

−∞

(
ex − 1 − x1|x|≤1

)
ν(dx) = 0.

2.5 Examples of Lévy processes
In this section we introduce some Lévy processes that will be used in the sequel.
They are the Brownian motion, the gamma process, the inverse Guassian process and
the Compound Poisson process. Furthermore, the aforementioned Poisson process is
a Lévy process. For each of them we retrieve the characteristic triplet and we recall
their main properties. As in the previous section we refer to Cont and Tankov [42],
Sato [112] and Applebaum [6] for details.

2.5.1 The Brownian motion
The most famous Lévy process is clearly the Brownian motion. For an introduction
on Brownian motion with some applications to finance one can refer to Shreve [118]
or to Bjork [21]. The Brownian motion can be constructed as a limit of a symmetric
random walk and naturally inherits its properties.

Definition 2.5.1. (Brownian Motion) Let (Ω,F ,P) be a probability space. For each
ω ∈ Ω suppose there is a continuous function W (t) of t ≥ 0 that depends on ω and
satisfies:

28



2.5. Examples of Lévy processes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W
(t

)

Figure 2.3. A possible path of the standard Brownian motion with parameter µ = 0 and
σ = 1 for t ∈ [0, T ] with T = 1.

• W (0) = 0, a.s.

• For all 0 = t0 < t1 < · · · < tm the increments

W (t1) = W (t1) −W (t0),W (t2) −W (t1), . . . ,W (tm) −W (tm−1)

are independent.

• For all 0 ≤ s < t the increment ∆W = W (t) −W (s) ∼ N (0, t− s).

The trajectories of the Brownian motion are almost surely continuous but nowhere
differentiable. In particular its paths are cadlag and hence the Brownian Motion is
a Lévy process. Since the Lévy measure is null if and only if the random variable
has a normal distribution, it follows that the characteristic function at time t of a
Brownian motion with drift µ ∈ R and diffusion σ2 ∈ R+ assumes the simple form:

ϕW (t)(u) = exp
{
iµut+ σ2u2t

2

}
, u ∈ R.

A realization of the Brownian motion is shown in Figure 2.3, whereas its characteristic
triplet is given by (µ, σ2, ν) where ν(x) = 0. This is reasonable from an intuitive
point of view, because the trajectories of the Brownian motion are continuous and
hence no jumps can occurs.

Brownian motion is widely used in finance because it leads to tractable models
both from a mathematical and numerical point of view, also in a multivariate setting.
The progenitor of these models was proposed by Bachelier [8] who proposed to model
the stock price process S = {S(t); t ≥ 0} as:

S(t) = S(0) + µt+ σW (t),
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where µ ∈ R and σ > 0. The most famous model in finance is due to Black and
Scholes [23]: in this case the price dynamics is modelled using a Geometric Brownian
motion:

S(t) = S(0)e
(
µ− σ2

2

)
t+σW (t)

.

Observe that the Brownian motion appears to the exponential and thise guarantees
that the trajectories of the process are positive for all t ≥ 0. We will come back to
this modelling technique in Section 2.8.1. On the other hand, a multivariate model
for interest rates based on a n-dimensional Brownian motion was developed by Heath
et al. [69] and, in recent years, it found applications also in energy markets (see
Benth et al. [19]).

2.5.2 The gamma process
The gamma process is a Lévy process that can be constructed starting from the
gamma distribution whose law is infinitely divisible.

Definition 2.5.2. (Gamma distribution) Let X : Ω → R be a random variable.
We say that X has a gamma distribution if its probability density function has the
following form:

f(x) = β

Γ(α)x
α−1e−βx

1x>0, (2.15)

where α, β ∈ R+ and Γ is the gamma function at z > 0:

Γ(z) =
∫ ∞

0
yz−1e−zdy.

We write X ∼ Γ(α, β).

By using the properties of the conditional expectation it is easy to compute the
characteristic function of a random variable X with gamma law and use this results
to compute the characteristic function of the gamma process at time t. In particular,
given X ∼ Γ(α, β), its characteristic function ϕ(u) for u ∈ R is given by:

ϕ(u) =
(

β

β − iu

)α
. (2.16)

By observing the characteristic function (2.16) it follows that if G ∼ Γ (α, β) then
for all n ∈ N then

X
d= Y

(n)
1 + · · · + Y (n)

n ,

where Y (n)
i are independent random variables such that Y (n)

i ∼ Γ (α/n, β). It follows
that the gamma law is infinitely divisible. Moreover, as proved by Grigelionis [64]
the gamma law is also self-decomposable. The gamma process can be defined as
follows.
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Figure 2.4. A possible path of the Gamma process with parameter α = 100 and β = 5 for
t ∈ [0, T ] with T = 1.

Definition 2.5.3 (Gamma process). Let G = {G(t); t ≥ 0} be a stochastic process.
We say that X is a gamma process if for u < v ≤ s < t the increments G(v)−G(u) and
G(t)−G(s) are independent random variables such that G(v)−G(u) ∼ Γ(α(v−u), β)
and G(t) −G(s) ∼ Γ(α(t− s), β).

A possible path of the gamma process is reported in Figure 2.4: we observe
that its trajectories are increasing in time and indeed it turns out that the gamma
process is a subordinator. In particular the gamma process is the milestone in the
construction Variance Gamma model proposed by Madan and Seneta [88], which
finds many applications in financial modelling. The following proposition gives the
explicit expression of the characteristic triplet of the gamma process.

Proposition 2.5.1. For u ∈ R, The characteristic function of the gamma process at
time t ≥ 0 is given by:

ϕG(t)(u) = etψ(u), u ∈ R.

where ψ(u) is the characteristic exponent of G and it is given by:

ψ(u) = −1
2u

2σ2 + iγu+
∫
R

(
eiux − 1 − iux1|x|≤1

)
ν(dx), (2.17)

where:

γ = αt

β
(1 − e−β),

σ = 0,
ν(x) = αx−1e−βx

1x>0.
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Since σ2 = 0, γ ≥ 0 and ν((−∞, 0]) = 0 by Proposition 2.4.7 it follows that the
gamma process is a subordinator. By using the Lévy-Khinchine expression given
in Proposition 2.4.4, it can be shown that its characteristic function at t can be
expressed as:

ϕG(t)(u) = exp
{
t
(
ibu+

∫
R

(
eiux − 1

)
ν (dx)

)}
,

where b = γ −
∫

|x|≤1 |x|ν (dx). For the gamma process we have that:

b = γ −
∫ 1

0
xαtx−1e−βxdx = 0.

Using characteristic functions, it is easy to prove the summation an scaling
properties fo the gamma law.

• If X1 ∼ Γ (α1, β) and X2 ∼ Γ (α2, β) and assume they are independent random
variables, then:

X1 +X2 ∼ Γ (α1 + α2, β) .

• If X ∼ Γ (α, β), then for c > 0 we have that:

cX ∼ Γ
(
α,
β

c

)
.

In particular, these last two properties can be used to combine together gamma pro-
cesses obtaining a new gamma process with different parameters. This construction
is used in Chapter 4 to build a multidimensional gamma process.

2.5.3 The inverse Gaussian process
Another well known process is the so called inverse Gaussian (IG) process. Its
construction is based on the inverse Gaussian law which describes the distribution of
the time a Brownian motion with positive drift takes to reach a fixed positive level
(see Shreve [118]).

The characterization of the probability density function of an inverse Gaussian
law is not unique. For example, Cont and Tankov [42] proposed a parameters setting
in (µ, λ), that we denoted by IGT (µ, λ) where µ > 0 is the mean and λ > 0 is the
shape parameter. Within this setting the pdf of an Inverse Gaussian law is given by:

fZ (x;µ, λ) =
(

λ

2πx3

)1/2

exp
{

−λ (x− µ)2

2µ2x

}
1x>0, (2.18)

and its characteristic function is:

ϕZ (u) = exp
λµ

1 −
√

1 − 2iuµ2

λ

 . (2.19)
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Moreover let be X ∼ IGT (µ, λ) then we have that:

E [X] = µ, V ar [X] = µ3

λ
.

The original parameter setting of a inverse Gaussian law proposed by Barndorff-
Nielsen [11] is denoted with IGB (a, b), where a can is the scale parameter and b
represents the shape of the distribution. Its probability density function is given by:

fZ (x; a, b) = a√
2π

exp (ab)x−3/2 exp
(

−1
2
(
a2x−1 + b2x

))
1x>0, (2.20)

and the characteristic function has the following form:

ϕZ (u) = exp
{
−a

(√
−2iu+ b2 − b

)}
. (2.21)

If X ∼ IGB (a, b) then we have that:

E [X] = a

b
, V ar [X] = a

b3 .

Both parametrizations can be adopted and it is possible to switch from one the
other by observing that:

µ = a

b
, λ = a2. (2.22)

It can be shown that, as the gamma law, the inverse Gaussian law is infinitely
divisible and self-decomposable (see Halgreen [65]).

The IG process can be constructed in the same way we construct the gamma
process.
Definition 2.5.4 (Inverse Gaussian process). Let G = {G(t); t ≥ 0} be a stochastic
process. We say that X is a inverse Gaussian process if for u < v ≤ s < t the
increments G(v) −G(u) and G(t) −G(s) are independent random variables such that
G(v) −G(u) ∼ IGB(a(v − u), b) and G(t) −G(s) ∼ IGB(a(t− s), b).

A possible realization of the inverse Gaussian process is given in Figure 2.5. Again
we observe that the process shows increasing paths in time and indeed it turns out
that the IG process is a subordinator.

The following proposition fully characterizes the IG process in terms of its
characteristic function.
Proposition 2.5.2. (Barndorff-Nielsen [11]) Let X = X {X(t); t ≥ 0} be an IG
process. Then its Lévy triplet is given by:

γ = a

b
Φ
(√

2
2 b

)
, σ2 = 0

ν(x) = a√
2π
x−3/2 exp

{
−1

2b
2x
}
1(0,∞)(x),

where Φ(u) =
√
π

2 erf(u) =
∫ u

0 e
−x2

dx.
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Figure 2.5. A possible path of the inverse Gaussian process with parameter a = 5 and
b = 2 for t ∈ [0, T ] with T = 1.

As the gamma law, the inverse Gaussian law enjoys some summation and scaling
properties that can be used to combine together independent random variables with
inverse Gaussian law leading to a new random variable with the same law.

• Let be X ∼ IGB (a1, b) and Y ∼ IGB (a2, b) and let X and Y be independent.
Then:

cX ∼ IGB

(
ca1,

b

c

)
, X + Y ∼ IGB (a1 + a2, b) .

• Let be X ∼ IGT (µ0w1, λ0w
2
1) and Y ∼ IGT (µ0w2, λ0w

2
2) and let X and Y be

independent. Then:

cX ∼ IGT

(
cµ0w1, cλ0w

2
1

)
, X + Y ∼ IGT

(
µ0 (w1 + w2) , λ0 (w1 + w2)2

)
,

for any c > 0.

Such processes will be used in Chapter 5 to build a multivariate version of the inverse
Gaussian process.

2.5.4 The Compound Poisson process
Another widely used process in finance is the so called Compound Poisson process.
The compound Poisson process is simply a Poisson process defined in Section 2.3.1
which jump size is not equal to one but has a random size according some specified
distribution. We follow Cont and Tankov [42, Chapter 2.5.3]. The definition of the
Compound Poisson process is the following.
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Figure 2.6. A possible path of the Compound Poisson process with parameter λ = 10 and
normal jumps size with mean µJ = 0 and σJ = 4 for t ∈ [0, T ] with T = 1.

Definition 2.5.5. (Compound Poisson process) A compound Poisson process with
intensity λ > 0 and jump size distribution f is a stochastic process X = {X(t); t ≥ 0}
defined as:

X(t) =
N(t)∑
i=1

Yi,

where jump size Yi are independent identically distributed random variables with dis-
tribution f and N = {N(t); t ≥ 0} is a Poisson process with intensity λ independent
from (Yi)i≥1.

A possible realization of the compound Poisson process where jumps are dis-
tributed according to a normal distribution is shown in Figure 2.6.

It can be proven that X is a compound Poisson process if and only if it is a Lévy
process and its sample paths are piecewise constant functions (see Cont and Tankov
[42, Proposition 3.3]). Moreover the characteristic function of a compound Poisson
process has the simple form given by the following proposition.

Proposition 2.5.3. (Cont and Tankov [42, Proposition 3.4]) Let X = {X(t); t ≥ 0}
be a compound Poisson process on R. Its characteristic function has the following
representation:

E
[
eiuX(t)

]
= exp

{
tλ
∫
R

(
eiux − 1

)
f(dx)

}
, ∀u ∈ R,

where λ denotes the jump intensity and f the jump size distribution.

From this proposition we deduce that the Lévy measure of a compound process is
given by ν(x) = λtf(x) and hence the characteristic triplet of a Compound Poisson
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process is the following:

γ =
∫

|x|≤1
xν(dx), σ2 = 0, ν(x) = λtf(x).

In particular we observe that ν (R) < ∞ and hence the Compound Poisson process
is of finite activity.

2.6 Brownian Subordination
So far we presented some well know Lévy processes which are common in literature.
A natural arising question is the following: how can we construct new Lévy pro-
cesses? To this aime, several techniques are available. As observed before, given
a infinitely divisible law it is always possible to build the associated Lévy process
(Proposition 2.4.1). Another direct approach is to specify the Lévy triplet, since
each Lévy process is fully characterized by its triplet by the Lévy-Itô decomposition.
Is it possible to build a Lévy process from known ones? It is easy to prove that a
linear combination of Lévy processes is still a Lévy process (Cont and Tankov [42,
Theorem 4.1]). Otherwise, given a characteristic triplet (γ, σ2, ν) it is possible to
modify the triplet and, in particular, via exponential tilting, the Lévy measure in
order to get a new Lévy process (Cont and Tankov [42, Section 4.2.3]). Another
common way to obtain a new Lévy process from existing one is by subordinating
a Lévy process, which simply means to time change a Lévy process with another
increasing Lévy process, namely a subordinator. Throughout this work we use this
latter technique and hence it is usefull to recall some results. A more technical
discussion of this topic and of other possible ways to construct Lévy processes can
be found in Cont and Tankov [42, Chapter 4].

If G = {G(t); t ≥ 0} is a subordinator it means that it satisfies any of the
conditions of Proposition 2.4.7. Since G(t) is positive for all t ≥ 0 we can describe it
in terms of its Laplace transform rather that Fourier transform. Recall that if X is a
non negative real-valued random variable the its Laplace transform is defined as:

LX(u) = E
[
e−uX

]
=
∫ ∞

0
e−uxµX (dx) , for u ≥ 0.

Let the characteristic triplet of G be (0, ρ, b). Then the Laplace transform of G(t) is
given by:

E
[
euG(t)

]
= etl(u), ∀u ≥ 0, where l(u) = bu+

∫ ∞

0
(eux − 1) ρ (dx)

and we call l(u) the Laplace exponent of G. If we fix a probability space (Ω,F ,P)
and let X = {X(t); t ≥ 0} be a Lévy process on Rd the subordinated Lévy process
Y = {Y (t); t ≥ 0} for every ω ∈ Ω is defined follows:

Y (t, ω) = X(G(t, ω), ω), ∀t ≥ 0. (2.23)

36



2.6. Brownian Subordination

The following theorem ensures that Y is a Lévy process and shows how to compute
both its Lévy triplet and its characteristic function.
Theorem 2.6.1. (Cont and Tankov [42, Theorem 4.2]) Let X = {X(t); t ≥ 0} be a
Lévy process with characteristic exponent Ψ(u) and Lévy triplet (A, ν, γ). Consider a
subordinator G = {G(t); t ≥ 0} with Laplace exponent l(u) and triplet (0, ρ, b). Then
the subordinated process Y = {Y (t); t ≥ 0} defined as in (2.23) is a Lévy process. Its
characteristic function is given by:

E
[
eiuY (t)

]
= etl(Ψ(u)).

Moreover, the Lévy triplet
(
AY , νY , γY

)
of Y is given by:

AY = bA,

νY (B) = bν(B) +
∫ ∞

0
pXs (B)ρ(ds), ∀B ∈ B

(
Rd
)
,

γY = bγ +
∫ ∞

0
ρ(ds)

∫
|x|≤1

xpXs (dx),

where pXt is the probability distribution of X(t).
From a theoretical point of view, any Lévy processes can be subordinated.

Nevertheless, in mathematical finance it is customary to subordinate a Brownian
motion with drift and this operation is called Brownian subordination. Although the
representation via Brownian subordination is a nice property, which makes the model
easier to understand and adds tractability, it imposes some important limitations
on the form of the Lévy measure. The following theorem fully characterizes Lévy
measures of processes that can be represented as subordinated Brownian motion
with drift. Recall that a function f : [a, b] 7→ R is called completely monotonic if all
its derivatives exist and if:

(−1)k d
kf(u)
duk

> 0, ∀k ≥ 1.

Theorem 2.6.2. (Cont and Tankov [42, Theorem 4.3]) Let ν be a Lévy measure
on R and µ ∈ R. There exists a Lévy process X = {X(t); t ≥ 0} with Lévy measure
ν such that X(t) = µZ(t) +W (Z(t)) for some subordinator Z = {Z(t); t ≥ 0} and
some Brownian motion W = {W (t); t ≥ 0} independent from Z if and only if the
following conditions are satisfied.

1. ν is absolutely continuous with density ν(x).

2. ν(x)e−µx = ν(−x)eµx for all x.

3. ν(
√
u)e−µ

√
u is a completely monotonic function on (0,∞).

This theorem allows to describe the jump structure of a process that can be
represented as time changed Brownian motion with drift. In particular this theorem
states that by using Brownian subordination only a particular type of Lévy processes
can be obtained: for example the Lévy measures of such subordinate processes (if
µ = 0) are always symmetric.
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2.6.1 The Variance Gamma process
One of the most common Lévy processes based on Brownian subordination in financial
modelling is the Variance Gamma process introduced by Madan and Seneta [88].

Definition 2.6.1. (Variance Gamma process) Consider the gamma process G =
{G(t); t ≥ 0} as in Definition 2.5.3 and consider a Brownian motion W with drift
θ ∈ R and diffusion σ2 ∈ R+. The process X = {X(t); t ≥ 0} defined as:

X(t) = θG(t) + σW (G(t)), t ≥ 0, (2.24)

is called Variance Gamma process.

By using the properties of the conditional expectation the characteristic function
of the Variance Gamma model at time t can be easily computed and its form is given
by:

ϕX(t)(u) =
(

1 − i

β

(
uθ + iu2σ

2

2

))−αt

, u ∈ R. (2.25)

It is a well known fact that a Lévy process is of finite variation if and only if it can
be written as the difference of two subordinators. In particular, it can be verified
that the Variance Gamma process is of finite variation.

Proposition 2.6.3. A Variance Gamma process X can be written as the difference
of two independent gamma subordinators.

Proof.

ϕX(t)(u) =
 1

1 − i
β

(
θu+ iσ

2

2 u
2
)
αt =

 1
1 − i

β1
u

αt 1
1 + i

β2
u

αt

=
 1

1 − iu
(

1
β1

− 1
β2

)
+ u2 1

β1β2

αt .
We get:

θ

β
= 1
β1

− 1
β2
,

1
β1β2

= σ2

2β
and solving for β1 and β2 and considering only the positive solutions we get:

β1 =
√
θ2 + 2σ2β − θ

σ2 ,

β2 =
√
θ2 + 2σ2β + θ

σ2 .

Then we have that the characteristic function of the Variance Gamma process X
can be written as:
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ϕX(t)(u) =
 1

1 − i
β

(
θu+ iσ

2

2 u
2
)
αt =

 1
1 − i

β1
u

αt 1
1 + i

β2
u

αt

= ϕY (t)(u)ϕZ(t)(−u)

where Y (t) ∼ Γ(αt, β1) and Z(t) ∼ Γ(αt, β2) and Y (t) and Z(t) are independent.
Then X(t) is the difference of two independent random variable with gamma law.
We can conclude that the Variance Gamma process can be written as difference of
two independent gamma processes. ■

By using the previous result we can easily compute the Lévy measure of the
Variance Gamma process. By Cont and Tankov [42, Theorem 4.1] and Cont and
Tankov [42, Proposition 5.3], if two independent real values Lévy processes Y and Z
has Lévy triplet (γ1,Σ1, ν1) and (γ2,Σ2, ν2) respectively, then the process X = Y +Z
is a Lévy process and its Lévy measure ν is given by:

ν(B) = ν1(B) + ν2(B), ∀B ∈ B(R)

and moreover its diffusion component is given by:

Σ = Σ1 + Σ2.

It immediately follows that the Lévy measure of the Variance Gamma process X
is given by:

ν(x) = α

x
e

−
(

− θ
σ2 +

√
θ2+2σ2β

σ2

)
x
1{x>0}︸ ︷︷ ︸

ν1(x)

+ α

−x
e

−
(

θ
σ2 +

√
θ2+2σ2β

σ2

)
−x
1{x<0}︸ ︷︷ ︸

ν2(x)

.

If we define

A = θ

σ2 ,

B =
√
θ2 + 2σ2β

σ2 ,

we have that:

ν(x) = α

x
e−(B−A)x

1{x>0} + α

−x
e−(B+A)x

1{x<0} = α

|x|
eAx−B|x|.

If
∫

|x|≤1 |x|ν (x) < ∞ and b = 0 by Proposition 2.4.6 we obtain that the process X is
of finite variation and its characteristic function has the following form:

ϕX(t) (u) = exp
{
t
(
ibu+

∫
R

(
eiux − 1

)
ν (dx)

)}
,
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where b = γ −
∫

|x|≤1 xν(dx) (see Cont and Tankov [42, Corollary 3.1]). Since X is
the sum of two independent processes Y and Z defined as in the proof of Proposition
2.6.3 with characteristic triplet (γ1, 0, ν1) and (γ2, 0, ν2) where γ1 =

∫ 1
0 xν1 (dx) and

γ2 =
∫ 0

−1 xν2 (dx) respectively, and therefore b1 = b2 = 0, its characteristic function
can be written as:

ϕX(t)(u) = ϕY (t)(u)ϕZ(t)(u)

= exp
{
t
(
iu (b1 + b2) +

∫
R

(
eiux − 1

)
(ν1 (dx) + ν2 (dx))

)}
= exp

{
t
(∫

R

(
eiux − 1

)
ν (dx)

)}
.

(2.26)

it follows that b = 0 and hence γ =
∫

|x|≤1 |x|ν (x).
For the Variance Gamma process the probability density function of the process

at time t is known in a closed form. Following Brigo et al. [28], when the probability
density function is know it is easy to implement an efficient Maximum Likelihood
method to calibrate the Variance Gamma model on historical observations. Indeed,
even if at a first glance the expression 2.26 seems scaring, it can be numerically
computed in a very efficient way (see Amos [3]).

The probability density function of the Variance Gamma processX = {X(t); t ≥ 0}
at time t ≥ 0 is given by:

fX(t)(x) = Kαt− 1
2

(
|x|

√
2σ2β + θ2

σ2

)
exp (θx/σ2)√

2πσ2

βαt

Γ (αt)
(
2σ2β + θ2

) 1
4 − αt

2 2|x|αt−
1
2 .

Finally, a possible realization of the Variance Gamma process is shown in Figure 2.7.

2.6.2 The Normal Inverse Gaussian process
Another widely used Lévy process in mathematical finance base od Brownian subor-
dination is the Normal Inverse Gaussian process (NIG). Here we follow the original
costruction of the NIG process proposed by Barndorff-Nielsen [12], Barndorff-Nielsen
and Shephard [13] and hence we use the IGB parametrization, whereas another
approach is proposed by Cont and Tankov [42]. As the Variance Gamma process,
the Normal Inverse Gaussian process can be constructed by Brownian subordination
via an Inverse Gaussian process.

Definition 2.6.2. (Normal Inverse Gaussian Process) Consider an inverse Gaussian
process G = {G(t); t ≥ 0} such that G(t) ∼ IGB

(
δt,

√
α2 − β2

)
where δ > 0, and

α, β ∈ R. Consider a standard Brownian motion W independent of G. The process
X = {X(t); t ≥ 0} defined as:

X(t) = βZ(t) +W (Z(t)) , t ≥ 0,

is called Normal Inverse Gaussian process.
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Figure 2.7. A possible path of the Variance Gamma process with parameters θ = 0.04,
σ = 0.34 and α = β = 125 for t ∈ [0, T ] with T = 1.

One can easily show that the characteristic function of the Normal Inverse
Gaussian process at time t is given by:

ϕX(t)(u) = E
[
eiuX

]
= exp

{
δt
(√

α2 − β2 −
√
α2 − (β + iu)2

)}
.

As shown in Barndorff-Nielsen [12], relying upon some results about exponential
family distributions presented in Bar-Lev et al. [10], the Lévy triplet (γ, σ2, ν) is
given by:

γ = 2αδ
π

∫ 1

0
sinh (βx)K1 (αx) dx,

σ2 = 0,

ν (x) = αδ

π

exp (βx)K1 (α|x|)
|x|

,

where

Kλ = 1
2

∫ ∞

0
uλ−1 exp

(
−1

2z
(
u+ u−1

))
du.

Since σ2 = 0, we deduce that the Normal Inverse Gaussian process essentially moves
by jumps. Unlike the Variance Gamma process, as shown by Cont and Tankov [42],
the Normal Inverse Gaussian process is of infinite variation, whereas its probability
density function at time t ≥ 0 is given by:
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Figure 2.8. A possible path of the standard Brownian Bridge pinned at 0 at time T = 1.

fX(t)(x) =
αδtK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 (x− µ)2

eδt
√
α2−β2+β(x−µ).

2.7 Lévy Bridges
In this section we briefly discuss the concept of Lévy bridges. A bridge is a stochastic
process that is pinned to some fixed point at a fixed future time. For example, a
Brownian bridge is a continuous-time stochastic process B = {B(t); t ∈ [0, T ]} whose
probability distribution is the conditional probability distribution of a standard Brow-
nian motion W = {W (t); t ∈ [0, T ]} subject to the condition (when standardized)
that W (T ) = 0, so that the process is pinned at the origin at both t = 0 and t = T .
More precisely:

B = {W (t); t ∈ [0, T ],W (T ) = 0} .

A possible realization of the standard Brownian Bridge is shown in Figure 2.8 where
we have that W (0) = W (T ) = 0, by construction.

From a practical point of view, Lévy bridges techniques are commonly used in
finance to overcome some problems that arise when we consider derivatives which
payoff depends on the monitoring that an event occurs. For example suppose that
an agent buys an option and get a payoff at maturity T if and only if the underlying
asset hit the barrier value S̄ in [0, T ]. A Monte Carlo scheme can be implemented but,
if the monitoring of the barrier value is done continuously in time any discretization
of the path may lead to some pricing error which can also be surprisingly wide. A
Monte Carlo algorithm based on the Lévy bridge leads to a more accurate results
overcoming the problem (see Ribeiro and Webber [105] or Acworth et al. [2] for other
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2.7. Lévy Bridges

applications of the Lévy bridges). The interested reader may refer to Hoyle [71] for
an overview on this topic and to Fitzsimmons et al. [57] for a discussion in the more
general setting of Markov processes.

We only summarize the main results about discrete and continuous Lévy bridges
and we show how to derive the Poisson, the Brownian and the gamma bridges.
Following the idea proposed by Hu and Zhou [72] and Sabino [106], these results are
instrumental to simulate backward in time the V G+ + process we will introduce in
Chapter 3.

2.7.1 Bridges of Lévy processes with discrete law
Consider the process M = {M(t); t ∈ [0, T ]} and assume that the law of M(t) is
discrete for some t > 0 (and hence for all t ∈ [0, T ]). Consider the state space
of the process S = (ai)i≥1 where (ai)i≥1 is an increasing sequence of real numbers.
Let Qt : {ai} → [0, 1] the probability mass function of M(t). Then we have
that: P (M(t) = ai) = Qt(ai). Consider 0 ≤ s < t ≤ T and define by M

(k)
T ={

M
(k)
T (t); t ∈ [0, T ]

}
the Lévy bridge to the value ak at time T : this means that the

process M (k)
T at time T is almost surely equal to the value ak. Moreover we require

that: P (MT = ak) = QT (ak) > 0. By Bayes theorem we obtain that:

P
(
M

(k)
T (t) = aj|M (k)

T (s) = ai
)

= P (M(t) = aj,M(s) = ai,M(T ) = ak)

= P (M(t) = aj,M(T ) = ak|M(s) = ai)
P (M(T ) = ak|M(s) = ai)

= Qt−s (aj − ai)QT−t (ak − aj)
QT−s (ak − ai)

.

(2.27)

Equation (2.27) means that the probability that the process M assumes the value
aj at time t, given that M(s) = ai and M(T ) = ak, depends on the its independent
increments on [s, t], [t, T ] and [s, T ].

Observe that Equation (2.27) holds provided that we substitute the probability
mass function with the probability density function. In particular, consider the Lévy
process L = {L(t); t ∈ [0, T ]} and denote by ft(x) the density of L(t), for t ≥ 0.
Consider 0 ≤ s < t ≤ T and let L(z)

T =
{
L

(z)
T (t); t ∈ [0, T ]

}
be the Lévy bridge to the

value of z ∈ R at time T and LzT (s) = x. We require that 0 < fT (z) < ∞ and hence
we have that:

ft (y|x, z) = ft−s(y − x)fT−t(z − y)
fT−s(z − x) .

2.7.2 Examples
In this section we give some examples of Lévy bridges both in discrete and continuous
time focusing on the Poisson, Brownian and gamma bridges. Nevertheless, the
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Chapter 2. Mathematical background

procedure we follow is very general and can be adapted to determine the bridge of
any given Lévy process.

The Poisson bridge

Consider the Poisson process N = {N(t); t ∈ [s, T ]} defined on a probability space
(Ω,F ,P) such that N(t) ∼ P(λt). Consider 0 ≤ s < t < T and the Poisson bridge
process N (k) =

{
N

(k)
T (t); t ∈ [0, T ]

}
where N (k)

T (t) denotes the Poisson process N
pinned at a fix value k ∈ N at t = T , i.e. N(T ) = k. Moreover assume that N(s) = i,
for i ≤ k. Then, by straightforward computations, it follows that for i ≤ j ≤ k:

P
(
N

(k)
T (t) = j|N (k)

s = i
)

= P (N(t) = j|N(s) = i, N(T ) = k)

=
(
k − i

j − i

)(
t− s

T − s

)j−i (
1 − t− s

T − s

)(k−i)−(j−i)
.

and hence N (k)
T (t) is such that:

N
(k)
T (t) ∼ Bin

(
k − i,

t− s

T − s

)
,

where Bin(n, p) denotes the binomial distribution with parameters n ∈ N and
p ∈ [0, 1]. Therefore, assuming that N(T ) = k and N(s) = i, the value of the process
N at time t can be simulated by sampling from a Binomial law with parameters
n = k − i and p = t−s

T−s .

The Brownian bridge

Consider a Brownian motion defined on a probability space (Ω,F ,P) with its natural
filtration {Ft; t ≥ 0} and consider 0 < u < s < t. Assume also that W (u) = x,
W (t) = y: we want to recover the law of W (s). As shown in Glasserman [62] we
have that: W (s)

W (u)
W (t)

 ∼ N


0

0
0

 ,
s u s
u u u
s u t




Assume that W = {W (t); t ≥ 0} be a Brownian motion with drift µ ∈ R and
diffusion σ ∈ R+. From straightforward computations it follows that, for 0 < u <
s < t, the distribution of W (s), given W (u) = x and W (t) = y is normal with mean
and variance given by:

E [W (s)|W (u) = x,W (t) = y] = (t− s)x+ (s− u) y
t− u

, (2.28)

V ar [W (s)|W (u) = x,W (t) = y] = σ2 (s− u) (t− s)
(t− u) . (2.29)
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G(t) G(s) G(T )

z

y x

Figure 2.9. A gamma bridge at s with between G(t) and G(T ).

We can conclude that, if we want to simulate the Brownian bridge at time
s ∈ (u, t)) it is enough to sample from a normal distribution with mean and variance
given by Equations (2.28) and (2.29) respectively.

Gamma bridge

In this section we sketch how to construct a gamma bridge following Hoyle [71], Émery
and Yor [53]. The idea is the same of the previous section: considering a gamma
process G on [0, T ], t < s < T and assuming that we know the value of the process
at time t and T , the distribution of the process gamma process G at time s is given
by the following proposition.

Proposition 2.7.1. Consider a Gamma process G = {G(t); t ≥ 0} such that G(t) ∼
Γ (αt, β) and let be 0 ≤ t < s < T . Suppose that the value of the process G at times
t and T is given and that G(t) = gt and G(T ) = gt. Then:

G(s) −G(t)
G(T ) −G(t) ∼ B (α (s− t) , α (T − s))

where where B denotes the Beta distribution. Therefor we have that:

G(s) = gt + (gT − gt) β,

where β ∼ B (α (s− t) , α (T − s)).

Proof. Refer to Figure 2.9. We have that X, Y are independent and that Z = X +Y .
Observe that:

X ∼ Γ (α(s− t), β) ,
Y ∼ Γ (α(T − s), β) ,
Z ∼ Γ (α(T − t), β)

and recalling the expression of the probability density function of a gamma law given
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Figure 2.10. A possible path of the gamma Bridge pinned at 5 at time T = 1.

by 2.15, we get:

fX|Z(x|z) = fX(x)fY (z − x)
fZ(x)

= Γ (α(T − s) + α(s− t))
Γ (α(s− t)) Γ (α(T − s))x

α(s−t)−1 (z − x)α(T−s)−1

zα(T−s)+α(s−t)−1

= 1
B (α(s− t), α(T − s))

(
x

z

)α(s−t)−1 (
1 − x

z

)α(T−s)−1
z.

Recalling that

z = G(T ) −G(t), x = G(s) −G(t),

we have that:
G(s) −G(t)
G(T ) −G(t) ∼ B (α (s− t) , α (T − s))

and hence:
G(s) d= gt + (gT − gt) β.

■

A possible realization of the Gamma Bridge with gT = 5 and g(t) = 0 is shown
in Figure 2.10.

2.8 Basics of Financial modelling and Risk-Neutral
Pricing

In this section we recall fundamental concepts behind risk neutral pricing, absence of
arbitrage and equivalent martingale measures. We will follow Cont and Tankov [42,
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2.8. Basics of Financial modelling and Risk-Neutral Pricing

Chapter 8] and the interested reader can refer to Harrison and Kreps [67], Harrison
and Pliska [68] and Delbaen and Schachermayer [49] for a more technical exposition.

Consider a market whit d assets whose prices are modelled by a vector stochastic
process S = {S(t); t ≥ 0}:

S(t) = (S0(t), S1(t), . . . , Sd(t)) ,

which is supposed to be cadlag. S0(t) is a numeraire, a tradable economic entity
in terms of whose price the relative prices of all other tradables are expressed and
commonly is chooses to be: S0(t) = ert. We refer to the quantity Si(t)

S0(t) as the
discounted stock price.

A portfolio is a vector:
ϕ =

(
ϕ1, . . . , ϕd

)
,

describing the amount of each asset held by the investor. The (random) value of
such a portfolio at time t is given by:

Vϕ(t) =
d∑

k=1
ϕkSk(t).

A trading strategy consist of maintaining a dynamic portfolio ϕ = {ϕ(t); t ≥ 0} by
buying and selling assets at different dates. Let us denote the transaction dates by:
0 = T0 < T1 < · · · < Tn < Tn+1 = T . Between two transaction dates Ti and Ti+1
the portfolio remains unchanged and we will denote its composition by ϕ(t). The
porfoglio ϕ held at time t can be expressed as:

ϕ(t) = ϕ01t=0 +
n∑
i=0

ϕi1(Ti,Ti+1](t).

The transaction dates Ti can be fixed but, more realistically, they are not known in
advance and an investor will decide to buy or sell at Ti depending on the information
reveleated before Ti. Therefore, the transaction times Ti should be defined as
stopping times. Since the portfolio ϕi is based on the information available at Ti, ϕi
is FTi

-measurable.
In finance modelling arbitrages should be avoided. Loosely speaking, an arbitrage

is the possibility of having a sure gain with no risks exposition. We recall that a
porfolio is said to be self-financing if its value changes because the value of the stocks
changes but not because we take or inject money in the portfolio. Now we can define
what we mean by arbitage.

Definition 2.8.1. (Arbitrage) An arbitrage is a self-financing strategy ϕ which can
lead to a positive terminal gain, without the probability of intermediate loss:

P (∀t ∈ [0, T ] , Vϕ(t) ≥ 0) = 1, P (Vϕ(T ) > Vϕ(0)) ̸= 0.
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The probability measure P is used only to state which events are possible and
which are not. A direct consequence of the absence of arbitrage is the so called law
of one price: two self-financing strategies with the same terminal payoff must have
the same value at all times, otherwise the difference would generate an arbitrage.
Suppose we have a contingent claim i.e. a derivative whose future payoff depends
on the value of another “underlying” asset, with maturity T . Its value at T , called
payoff, is a FT -measurable random variable H : Ω 7→ R. A central problem in finance
is the valuation problem: how can we attribute a notion of value to each contingent
claim H? A procedure which attributes to each contingent claim H a value for
each time t is called pricing rule and it is denoted by ΠH(t). The goal is to define
a pricing rule that does not lead to arbitrage opportunities. It can be shown that
specifying an arbitrage-free pricing rule on (Ω,F ,Ft≥0,P) is equivalent to specify
a new measure Q under which the discounted trade assets are martingales. Q is
required to be equivalent to P in the sense of the following definition.

Definition 2.8.2. (Equivalent probability measures) Consider a measurable space
(Ω,F). Two measures P and Q are said to be equivalent if:

P (A) = 0 ⇐⇒ Q (A) = 0, ∀A ∈ F .

The following proposition provides us a powerful tool to compute the price of
any contingent claim.

Proposition 2.8.1. (Cont and Tankov [42, Proposition 9.1]) In a market described
by a probability measure P on scenarios, any arbitrage free pricing rule Π can be
represented as:

ΠH(t) = e−r(T−t)EQ [H|Ft] . (2.30)
where Q is a measure equivalent to P such that:

EQ
[
Si(T )
S0(T )

∣∣∣∣∣Ft

]
= Si(t)
S0(t)

.

The measure Q equivalent to P and such that the discounted prices Si(t)/S0(t)
are martingales is called equivalent martingale measure or, sometimes, rik neutral
measure.
The following theorem exploits the link between arbitrage-free market models and the
existence of an equivalent martingale measure (see Harrison and Kreps [67], Harrison
and Pliska [68] and Delbaen and Schachermayer [49] for details).

Theorem 2.8.2. (First Foundamental theorem of asset pricing) The market model
defined by (Ω,F ,Ft,P) and by the asset prices S = {S(t); t ∈ [0, T ]} is arbitrage-free
if and only if there exists a probability measure Q equivalent to P such that the
discounted assets are martingales with respect to Q.
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Another important theorem is related to the financial notion of market complete-
ness. Besides the idea of arbitrage, another important concept, originating by Black
and Scholes [23], is the notion of replication strategy for a contingent claim H i.e. a
strategy such that:

H = V (0) +
∫ T

0
ϕ(t)dS(t) +

∫ T

0
ϕ0(t)dS0(t), P − a.s.

where V (0) is the initial wellness. A market is said to be complete if any contingent
claim admits a replicating portfolio ϕ. In particular, ϕ = {ϕ(t), t ∈ [0, T ]} should be
of the form (2.8). In a complete market there is a only way to define the value of
the contingent claim: the value of any contingent claim is given by the initial capital
needed to set up a replicating strategy for H. We can state that, in complete markets,
contingent claims are redundant instruments since their value can be replicated at
any time t by a proper self-financing strategy. The following theorem is sometimes
know as second fundamental theorem of asset pricing (see Cont and Tankov [42]).

Theorem 2.8.3. (Second Foundamental Theorem of Asset Pricing) A market defined
by the stochastic process S = {S(t); t ∈ [0, T ]} on (Ω,F ,Ft,P) is complete if and
only if there exist a unique martingale measure Q equivalent to P.

While most stochastic models used in option pricing are arbitrage-free, only a
few of them are complete. Stochastic volatility models, exponential Lévy models,
Jump-diffusion models fall into the category of incomplete models. By contrast the
Black and Scholes model defines a complete market.

2.8.1 Modelling with exponential Lévy processes
In this section we briefly show how Lévy processes can be used to build financial
models in continuous time and how they can be used for derivatives evaluation.
The interested reader can refer to Cont and Tankov [42, Chapter 11] for a broad
discussion on this topic.

Consider an arbitrage-free market where asset prices are modelled by a stochastic
process S = {S(t); t ∈ [0, T ]} defined as in (2.8) and where Ft is the natural filtration
generated by the process S. In previous section we have seen that under the pricing
rule given by the measure Q the value ΠH(t) of an option with payoff H(T ) can be
computed by:

Πt(H(T )) = e−r(T−t)EQ [H(T )|Ft] .
Under the hypothesis of the Black and Scholes [23] model, using the Girsanov

theorem (see Shreve [118, Chapter 5]) it can be shown that under the risk-neutral
measure Q the asset prices has the following dynamics:

dS(t) = rS(t)dt+ σS(t)dW (t), t ∈ [0, T ] , S(0) = S0, a.s., (2.31)
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where r is the risk-free rate and σ is the diffusion. By using Itô’s Lemma we have
that the solution of (2.31) is given by:

S(t) = S(0) exp
{(

r − σ2

2

)
t+ σW (t)

}
.

This suggest us that the asset can be modelled by the exponential of a Brownian
motion B = {B(t); t ∈ [0, T ]} with drift by:

S(t) = S(0) exp {B(t)} , (2.32)

where B(t) = rt + σW (t) and where W = {W (t); t ∈ [0, T ]} denotes a standard
Brownian motion.
Following this approach we can replace the Brownian motion with drift by a Lévy
process X = X {X(t); t ∈ [0, T ]}. One way to make this is to make the substitution
in (2.32):

S(t) = S(0) exp {rt+X(t)} .
This model is commonly called exponential Lévy model. In order to guarantee that
the discounted price process is a martingale, by Proposition 2.4.10 we need to impose
some conditions on the Lévy triplet (γ, σ2, ν) of the chosen process X. In particular
we require that:

∫
|x|≥1

exν (dx) < ∞, (2.33)

σ2

2 + γ +
∫ ∞

−∞

(
ex − 1 − x1|x|≤1

)
ν(dx) = 0. (2.34)

X is then a martingale if E
[
eX(t)

]
= 1 for all t ∈ [0, T ]. Hence it is sufficient to

impose that the characteristic function of X computed at u = −i is equal to one.
Sometimes it is common to model del stock process S as:

S(t) = S(0)ert+ωt+X(t),

where ω is a parameter that must be chosen in order to guarantee that the discounted
stock price is a martingale (see Carr and Madan [37], Luciano and Schoutens [86]
and Madan and Seneta [88] among the others). The two modelling techniques are
equivalent and in this work we follow the latter approach. In the following section
we briefly show how the Lévy exponentiation can be used to model stock price using
the Variance Gamma process we introduced in Section 2.6.1.

2.8.2 The Variance Gamma model for asset prices
Considering the Variance Gamma process X = {X(t); t ∈ [0, T ]}, we model the risky
asset process S = {S(t); t ∈ [0, T ]} as:
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S(t) = S(0) exp {rt+ ωt+X(θ, σ, ν)} . (2.35)
Since the gamma subordinator G = {G(t); t ∈ [0, T ]} we used to construct the
Variance Gamma model can be interpreted as a business time, it is customary to
require that in mean the stochastic time runs as fast as the deterministic time t. In
more mathematical terms we require that:

E [G(t)] = t.

Since G(t) ∼ Γ (αt, β) then E [G(t)] = αt/β and hence we impose that α = β.
Moreover, we have that V ar [G(t)] = αt/β2 and defining ν = 1/α = 1/β we have
that V ar [G(1)] = ν and hence ν is the variance of the subordinator G at time t = 1.
θ ∈ R and σ > 0 are respectively the drift and the volatility of the subordinated
Brownian motion.
By imposing risk-neutrality condition (2.34) we get that:

ω = 1
ν

log
(

1 − σ2ν

2 − θν

)
.

A nice feature of the Variance Gamma model is that there exists a semi-analytical
option pricing formula for European call options. This is important from a numerical
point of view because closed formulas are frequently used for market calibration
purposes, in order to obtain efficient calibration procedures (see Cont and Tankov
[42, Chapter 13]).

For the sake of generality, assume that the gamma process G is such that
G(t) ∼ Γ (αt, β) and that the risky asset process S is modelled as in (2.35). Consider
now a European call option with maturity T which payoff is given by (S(T ) −K)+.
We compute the value of the call option with strike K at time t = 0, namely C(0, K),
using the risk-neutral pricing formula (2.30):

C(0, K) = e−rTEQ
[
(S(T ) −K)+

]
=
∫ ∞

0
c (g) βα

Γ (α)g
α−1e−βgdg, (2.36)

where:
c (g) = S(0)eθ σ2

2 g+ωTN (d1(g)) −Ke−rTN (d2 (g)) , (2.37)
and

d2(g) = log (S(0)/K + rT + θg + ωT )
σ

√
g

, d1(g) = d2(g) + σ
√
g,

N (x) =
∫ x

−∞

1√
2π
e− z2

2 dz.

This integral in Equation (2.36) can be computed numerically, for example using
a quadrature methods. Nevertheless, a more efficient semi-analytical formula can be
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deduced by using the confluent hypergeometric function of two variables, introduced
by Humbert [73], which is defined by:

Φ (α, β, γ, x, y) = Γ (γ)
Γ (α) Γ (γ − α)

∫ 1

0
uα−1 (1 − u)γ−α−1 (1 − ux)−β euydu. (2.38)

The integral (2.38) can be computed in a very efficient way and hence its valuation
is not a metter of concern. Defining the following quantities:

ã = log (S(0)/K) + (r + ω)T
σ

√
A, b̃ = θ + σ2

σ
√
A
,

c̃ = log (S(0)/K) + (r + ω)T
√
β

σ
, d̃ = θ

σ
√
β
.

we conclude that the price of the Call option at time t = 0 is given by:

C(0, K) = βαS(0)eωT
Aα

Ψ(ã, b̃;α) −Ke−rTΨ(c̃, d̃;α) (2.39)

It can be shown that the quantity Ψ(a, b; γ) can be expressed in terms of confluent
hypergeometric function Φ of two variables (2.38) and in terms of the Bessel Modified
function of the second type Kν(z) by the following relation:

Ψ (a, b; γ) = cγ+1/2 exp [sign (a) c] (1 + u)γ√
2πΓ (γ) γ

·Kγ+1/2 (c)

Φ
(
γ, 1 − γ, 1 + γ,

1 + u

2 ,−sign (a) c (1 + u)
)

− sign (a) c
γ+1/2 exp [sign (a) c] (1 + u)γ+1

√
2πΓ (γ) (1 + γ)

·Kγ−1/2 (c)

Φ
(

1 + γ, 1 − γ, 2 + γ,
1 + u

2 ,−sign (a) c (1 + u)
)

+ sign (a) c
γ+1/2 exp [sign (a) c] (1 + u)γ√

2πΓ (γ) γ
·Kγ−1/2 (c)

Φ
(
γ, 1 − γ, 1 + γ,

1 + u

2 ,−sign (a) c (1 + u)
)
,

where c = |a|
√

2 + b2 and u = b√
2+b2 .

After this smattering of theory, in the next sections we introduce new Lévy
processes and we apply them to asset pricing modelling.
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The V G + + process: a model for
illiquid markets

In this chapter we introduce a new Lévy process related to the Variance Gamma
process which inherits its mathematical tractability and financial interpretation. It
has only an additional parameter which measures the trading activity and therefore
the liquidity regime. We call such a new process Variance Gamma++ (V G+ +).

Models based on the Variance Gamma distribution are widely used in finance
since the introduction of the Variance Gamma process by Madan and Seneta [88].
Such a process presents many interesting properties: both characteristic function and
density are available in a closed form and, moreover, a closed formula for European
options is known. Finally, efficient methods for path simulations can be used in
order to simulate the process and hence to price exotic contingent claims. All these
properties together with the fact that the model overcomes some well known limits of
the model proposed by Black and Scholes [23], make it a good candidate for financial
markets modeling.

In contrast to the classical Black-Scholes market where real data description
is based on the standard Brownian diffusion-type processes, the Variance Gamma
assumes that dynamics of the price or of the returns depends on a time-changed
Brownian motion where the time-change is given by a gamma process. Such a
random time process, called subordinator, can be interpreted as trading activity, in
the sense that the price does not evolve in terms of the physical time but instead in
terms of the random transactions exchanged in the market.

This interpretation has be explored using different types of subordinator processes,
for instance Barndorff-Nielsen [12] takes the Inverse Gaussian process for the the
Brownian subordination and also the CGMY model, introduced in Carr et al. [38]
which generalizes the Variance Gamma, under some parameter constrains can be
seen a time-changed Brownian motion. All these models are pure jumps models with
infinite activity that differ from jump-diffusion models (see for instance Merton [91]
and Kou [80]) where the jumps are interpreted as sudden news in the market.

However, some real data exhibit characteristic periods of constant values especially
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in illiquid markets like some not so mature energy markets. In such cases, adopting
the financial interpretation that the subordinating process represents the trading
activity, the gamma process (and the other subordinators mentioned above) imply
that in any finite time-interval the number of trades cannot be zero because its
trajectory is strictly increasing. The Variance Gamma process essentially exhibits
an infinite number of jumps in any finite time interval and hence its trajectories
can not be constant over time (see Cont and Tankov [42, Lemma 2.1]). Market
liquidity is generally strictly related to the amount of registered transactions between
counterparts. Therefore, a zero variation of the price over the time period ∆t usually
appears when no market transactions occur.

The main idea is to replace the gamma process by another process related to it
which may be constant in time and keeps the right properties to still behave as a
subordinator. The new subordinator is then of finite activity and the probability of
having no transactions in a finite period of time will not be null.

To this end we use the well-know self-decomposabilty of the gamma law (see
Grigelionis [64]). We recall from the previous chapters that a random variable X is
said to have a self-decomposable law if for all a ∈ (0, 1) there exist two independent
random variables Y and Za such that X d= Y and:

X
d= aY + Za.

In the following we will refer to Za as the a-remainder of the sd law. It turns out
that the law of Za is infinitely divisible (see Sato [112, Proposition 15.5]) and one
can construct the associated Lévy process Z++

a = {Z++
a (t); t ≥ 0}.

Our approach consists in taking the subordinator Z++
a , from the a-remainder

of the gamma law to construct the new V G + + process X = {X(t); t ≥ 0} =
{W (Za(t)); t ≥ 0} where W = {W (t); t ≥ 0} is a Brownian motion with drift θ ∈ R
and diffusion coefficient σ > 0. If X represents the log-price process of a risky asset
denoting ∆X = X(t + ∆t) − X(t) the increment of the process X over the time
interval ∆t we show that P (∆X = 0) > 0 therefore we have non zero probability
to have no transactions in the time interval ∆t. In particular, we show that the
parameter a plays the role of an indicator of the trading activity. apply the V G+ +
process to model power future markets some of which are not very liquid.

Accordingly, we derive the Lévy measure, the transition density, the characteristic
function expressions in closed form. However, the new process has finite activity but
can also be written as the difference of two independent subordinators and keeps
the mathematical tractability of the Variance Gamma process. As a consequence,
we obtain a closed formula for the European call option pricing which is an infinite
weighted sum of call options under the Variance Gamma model, where the shape
parameter of the underlying gamma subordinator is an integer. Such a formula does
not require any numerical integration, but can be reduced to matrix multiplications
which are faster than numerical integration algorithms.
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3.1 Notation and preliminary remarks
In Section 2.5.2 we said that X has a Gamma distribution with parameters α > 0
and β > 0 if its law has a probability density function of the form (2.15). When
α = n ∈ N such a law coincides with the Erlang distribution denoted En(β), for
simplicity we drop n = 1 for the exponential distribution. A random variable X is
said to have a uniform distribution over [a, b] if its probability density function fX(x)
is of the form:

fX(x) = 1
b− a

1[a,b](x).

We write U([0, 1]) to denote the uniform distribution in [0, 1].

3.1.1 Preliminary remarks: the Z++
a process

Recall that X is said to have a sd law if for all a ∈ (0, 1) there exist a rv Y with the
same law of X and a rv Za independent of Y such that:

X
d= aY + Za.

As observed in the introduction, if we denote by ϕX (u) the chf of X and by ϕZa (u)
the chf of Za we have that:

ϕX (u) = ϕX (au)ϕZa (u) . (3.1)

As we stated before, it can be shown that the a-remainder Za of a self-decomposable
law is infinitely divisible. On the other hand, it is well-known that the gamma law is
sd (as was shown by Grigelionis [64]) and hence the law of its a-remainder Za is also
infinitely divisible. Therefore, by Proposition 2.4.1 there exists a Lévy process Z++

a

associated to this infinitely divisible law in the sense of the following definition.

Definition 3.1.1. We say that Za has a gamma++ law, and we write Za ∼
Γ++ (a, α, β), if Za is the a-remainder of a Γ(α, β) distribution.

We can compute the characteristic function of Za by observing that, ifX ∼ Γ (α, β)
its characteristic function is given by Equation (2.16), which inserted in equation
(3.1) gives:

ϕZa (u) =

(
β

β−iu

)α(
β

β−iua

)α =
(
β − iua

β − iu

)α
, u ∈ R.

Starting from the characteristic function we can retrieve the moment generating
function MZa(u) using the relation MZa (u) = ϕZa (−iu) and hence we can compute
all the moments of Za. In particular its mean the variance are given by:

E [Za] = (1 − a) α
β
, V ar [Za] =

(
1 − a2

) α
β2 .
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Based on the observations above and the findings of Sabino and Cufaro-Petroni
[108], in this section we construct the Lévy process Z++

a = {Z++
a (t); t ≥ 0} associated

to the law of the a-remainder of the gamma law, e.g. Z++
a (1) d= Za. To this end, we

recall the following known results (see Sabino and Cufaro-Petroni [108] for details
and proofs).

Definition 3.1.2. A discrete rv S is said to be Polya distributed, S ∼ B (α, p), with
parameters α > 0 and p ∈ (0, 1), if its probability mass function has the following
form:

P ({S = k}) =
(
α + k − 1

k

)
(1 − p)α pk, k = 0, 1, . . .

where: (
α

k

)
= α (α− 1) . . . (α− k + 1)

k! ,

(
α

0

)
= 1.

It is easy to check that if X ∼ Γ (α, β), then

Za
d=
{ ∑S

i=1 Xi, with S > 0
0, when S = 0 (3.2)

when Xi ∼ E(β/a) is a sequence of iid rv’s and S ∼ B (α, 1 − a). In particular
Za|S=s ∼ Γ(s, β/a), when s > 0.

Proposition 3.1.1. The pdf ga (x) of Za ∼ Γ++ (a, α, β) is given by:

ga (x) = aαδ0 (x) +
∑
n≥1

(
α + n− 1

n

)
aα (1 − a)n fn,β/a (x)1(0,∞) (x) dx (3.3)

where δ (x) is the Dirac function, fn,β/a (x) is pdf of an Erlang law with parameters
n and β/a which is given by:

fn,β/a (x) =
(
β

a

)n
xn−1e−β x/a

(n− 1)! 1[0,∞) (x) .

We remark that the of law of Za can be seen as a mixture of Erlang laws with
parameter β/a where the mixing distribution is a Polya distribution, plus a degenerate
law at x = 0.

From Equation (3.2) we can define the process Z++
a as follows:

Z++
a (t) d=

{ ∑S(t)
i=1 Xi, when S(t) > 0,

0, when S(t) = 0 , (3.4)

where Xi ∼ E(β/a) is a sequence of iid rv’s and S = {S(t); t ≥ 0} is a Polya process
such that for each t ≥ 0, S(t) ∼ B (αt, 1 − a). The construction is mathematically
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consistent since the Polya distribution is infinitely divisible and therefore the Polya
process is a Lévy process. The Lévy-Khintchine representation of the Polya process
S is given by:

ϕS(t)(u) = exp
{

−αt
∫ ∞

−∞

(
eiux − 1

) (1 − a)x
x

δk(x)dx
}
,

where δk(x) is the Dirac function at k ≥ 1.

We proceed then in the derivation of the characteristic Lévy triplet of the process
Z++
a . We rely on the the following proposition proven in Cufaro-Petroni and Sabino

[48] that relates the characteristic triplet of a sd law with that of its a-remainder.

Proposition 3.1.2. Consider a sd law with Lévy triplet (γ, σ, ν), where σ > 0 is
the diffusion and ν is the Lévy measure. Then for every a ∈ (0, 1) the law of its
a-remainder has Lévy triplet (γa, σa, νa):

γa = γ (1 − a) − a
∫
R
sign (x)

(
1|x|≤1/a − 1|x|≤1

)
|x| ν(x) dx,

σa = σ
√

1 − a2,

νa (x) = ν (x) − ν (x/a)
a

.

Proposition 3.1.3. Consider the process Z++
a , then

(i) The characteristic triplet (γa, σa, νa) of Z++
a is given by:

γa =
(
1 − e−β

)
− a

(
1 − e−β/a

)
,

σa = 0,

νa (x) = α

x

(
e−βx − e−βx/a

)
1(0,∞) (x) .

(ii) Z++
a has finite variation and, in particular, is a subordinator.

(iii) Z++
a has finite activity and therefore is a compound Poisson process with

intensity λ = α log (1/a) and the distribution of the jumps f (x) is given by:

f (x) =
∫ 1/a

1

1
y log (1/a) · βye−βxydy = e−βx − e− β

a
x

x log(1/a)

Proof. (i) As a direct consequence of Proposition 3.1.2.

σa = 0,

νa (x) = α

x
e−βx

1(x,∞) (x) − 1
a

(
a · α

x
e−βx/a

)
1(x,∞) (x) = α

x

(
e−βx − e−βx/a

)
1(x,∞) (x)

γa = α

β

((
1 − e−β

)
− a

(
1 − e−β/a

))
.
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(ii) By Cont and Tankov [42, Proposition 3.9] a Lévy process with characteristic
triplet (A, ν, γ) is of finite variation if and only if:

A = 0 and
∫

|x|≤1
|x|ν (dx) < ∞.

A = σa = 0 and the computation of the integral is straightforward:∫
|x|≤1

|x|νa (dx) =
∫ 1

0
αt
(
e−βx − e−βx/a

)
dx

= α

β

(
1 − e−β − a

(
1 − e−β/a

))
< ∞

By Cont and Tankov [42, Proposition 3.10] since σa = 0, νa ((−∞, 0]) = 0 and
b = γ −

∫ 1
0 xνa (x) it follows that Za is a subordinator.

(iii) As a direct consequence of Gradshteyn and Ryzhik [63, 3.434] we have:

νa (R) = α
∫ ∞

−∞

e−βx − e−βx/a

x
1(0,∞) (x) dx = α log

(1
a

)
< ∞,

hence, Z++
a has finite activity and is a compound Poisson process such that its

Lévy measure can be written as ν (x) = λh (x) where h(x) represents the pdf
of the jumps and λ is the intensity. Define Λ = log (1/a), it follows that:

νa (x) = Λα · 1
Λx

(
e−βx − e−β/ax

)
= Λα · 1

Λx

∫ 1/a

1
βxe−βxydy

= Λα
∫ 1/a

1

β

Λe
−βxydy = Λα

∫ 1/a

1

β

log(1/a)e
−βxydy

= Λα
∫ 1/a

1

βy

y · log(1/a)e
−βxydy

= Λα︸︷︷︸
λ

·
∫ 1/a

1

1
y log(1/a)fE (x|µ = βy) dy︸ ︷︷ ︸

h(x)

,

where fE (x|µ) is the pdf of an exponential distribution with parameter µ > 0
and that concludes the proof.

■

We remark that iii) in Proposition 3.1.3 states that the distribution of the jump
sizes can be seen as a mixture of an exponential law with stochastic rate given by βY
where Y is a rv whose pdf is given by gY (y) = 1

y log(1/a)1[1,1/a](y). The cumulative
distribution function of Y is given by:

FY (x) = 1
log(1/a)

∫ x

1

1
y
dy = log x

log(1/a) , 1 ≤ x ≤ 1/a,
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Moment T Algorithm 1 Algorithm 2

E(X) 5.6471 5.6468 5.6530
V ar(X) 19.9308 19.8998 19.9664

s(X) 1.3615 1.3594 1.3561
k(X) 5.7083 5.7019 5.7680

Table 3.1. Comparison of theoretical moments (T ) of the random variable Z++
a with the

numerical ones obtained using both proposed algorithms. We set a = 0.2,
α = 2.4 and β = 0.34 and we use 106 independent realizations.

and it is then easy to verify that

Y
d=
(1
a

)U
, U ∼ U([0, 1]),

which simplifies the simulation of the skeleton of the process Z++
a as illustrated in

Algorithm 1.

Algorithm 1 Simulation of Za (t).
1: Simulate n ∼ P (αt log (1/a))
2: Simulate n iid rv’s ui ∼ U([0, 1]) and set yi =

(
1
a

)ui

3: Simulate n iid rv’s Ji ∼ E(β yi).
4: Set Z++

a (t) = ∑n
i=0 Ji.

Alternatively, as shown in Sabino and Cufaro-Petroni [108] the skeleton of Z++
a

can be simulated as a stochastic sum of independent exponentially distributed rv’s
with parameter β/a where the number of terms is given by S(t) ∼ B (αt, 1 − a) as
summarized in Algorithm 2. Therefore, we derived two different equivalent algorithms

Algorithm 2 Simulation of Za (t).
1: Simulate s ∼ B (αt, 1 − a).
2: Set Z++

a (t) ∼ Es(β/a).

to simulate the process Z++
a . A possible realization of the process is shown in Figure

3.1. In Table 3.2 we summarize the performance of both Algorithms 1 and 2: we
can conclude that both procedures are equally efficient in time. In Table 3.1 we
compare the numerical mean, variance, skewness and kurtosis of a sample of 106

points obtained using both Algorithms 1 and 2 with the theoretical value: we can
conclude that both algoritms produces accurate results.
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Figure 3.1. A possible path of the Z++
a process with parameter α = 5.4, β = 0.34 and

a = 0.2 for t ∈ [0, T ] with T = 1.

Algorithm Computational time (s)

Algorithm 1 1.4439
Algorithm 2 1.2048

Table 3.2. Computational time to simulate Nsim = 106 realizations of Z++
a (t). The

resulting time is the average of 500 runs of both Algorithms.
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3.2 Variance Gamma++ process
In Section 3.1.1 we have shown that Z++

a is a subordinator and hence can be used to
time change a Brownian motion following the ideas of Section 2.6.

Definition 3.2.1. Consider a Brownian motion W = {W (t); t ≥ 0}, with drift
θ ∈ R, diffusion σ ∈ R+ independent of Z++

a . We call the process X = {X(t); t ≥ 0}
defined as

X(t) = θZ++
a (t) + σW

(
Z++
a (t)

)
, t ≥ 0 (3.5)

V G+ + process.

In the following we detail its properties.

Proposition 3.2.1. For u ∈ R, the chf of X at time t is given by:

ϕX(t) (u) = ϕZ++
a (t)

(
θu+ iu2σ

2

2

)
=
(
β − i (θu+ iu2σ2/2) a
β − i (θu+ iu2σ2/2)

)αt
. (3.6)

Proof. We have that the chf of Z++
a (t) is given by:

ϕZ++
a

(u) = exp
{
t log

(
β − iua

β − iu

)α}
, (3.7)

and hence:

E
[
eiuX(t)

]
= E

[
eiu(θZ

++
a (t)+σW (Za(t)))

]
= E

[
E
[
eiu(θZ

++
a (t)+σW (Za(t)))

∣∣∣∣Z++
a (t)

]]

= E
[
eiuθZ

++
a (t)− σ2

2 u2Z++
a (t)

]
= E

[
e
i

(
uθ+iσ2

2 u2
)
Z++

a (t)
]

= ϕZ++
a (t)

(
uθ + i

σ2

2 u
2
)

= exp

log
β − i

(
uθ + iσ

2

2 u
2
)
a

β − i
(
uθ + iσ

2

2 u
2
)
αt

 =
(
β − i (θu+ iu2σ2/2) a
β − i (θu+ iu2σ2/2)

)αt
.

that concludes the proof. ■

Proposition 3.2.2. The V G + + process can be written as difference of two in-
dependent processes Z++

ap
=
{
Z++
ap

(t); t ≥ 0
}

and Z++
an

=
{
Z++
an

(t); t ≥ 0
}

where
Z++
ap

(t) ∼ Γ++ (ap, αt, βp) and Z++
an

(t) ∼ Γ++ (an, αt, βn).

Proof. Given the definition of the chf of X(t), it results

ϕX(t)(u) = ϕZ++
a

(
uθ + iu2σ2

2

)
=

 1
1− i

β

(
uθ+ iu2σ2

2

)αt
 1

1− ia
β

(
uθ+ iu2σ2

2

)αt
= A

B
.
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Consider the term A:

A =
 1

1 − i
β

(
uθ + iu2σ2

2

)
αt =

 1
1 − iu

βp

αt 1
1 + iu

βn

αt ,
and its denominator

1 − iu
θ

β
− i2u2 σ

2

2β = 1 − iu

(
1
βp

− 1
βn

)
− iu2 1

βpβn
.

It turns out then:
θ

β
= 1
βp

− 1
βn
,

1
βpβn

= σ2

2β .

By solving the previous system of equations with respect to βp and βn and taking
only the positive solution we have that:

βn =
√
θ2 + 2σ2β + θ

σ2 , βp =
√
θ2 + 2σ2β − θ

σ2 .

Similarly, the term B can be decomposed as:

β̃n =

√
θ2 + 2σ2β/a+ θ

σ2 , β̃p =

√
θ2 + 2σ2β/a− θ

σ2 .

It follows that:

ϕX(t) =

(
1

1 − iu/βp

)αt ( 1
1 + iu/βn

)αt
(

1
1 − iu/β̃p

)αt ( 1
1 + iu/β̃n

)αt =


1 − iu

(
βp

β̃p

)
/βp

1 − iu

βp


αt

1 + iu

(
βn

β̃n

)
/βn

1 + iu

βn


αt

(3.8)
Because 0 < βp/β̃p < 1 we can define ap = βp/β̃p and an = βn/β̃n and we obtain:

ϕX(t)(u) =
(

1 − iuap/βp
1 − iu/βp

)αt (1 + iuan/βn
1 + iu/βn

)αt

which is the chf of the difference of two independent rv’s Z++
ap

(t) ∼ Γ++
ap

(αt, βp) and
Z++
an

(t) ∼ Γ++
an

(αt, βn). Therefore the process X can be expressed as difference of two
independent subordinators Z++

ap
=
{
Z++
ap

(t); t ≥ 0
}

and Z++
an

=
{
Z++
an

(t); t ≥ 0
}

. ■

As a simple consequence of Proposition 3.2.2 and Proposition 3.1.3 we have that
the Lévy measure of the V G+ + process X is given by:

ν (x) =
(
αx−1e−xβp − αx−1e−xβp/ap

)
1(0,∞)(x)

+
(
−αx−1exβn + αx−1exβn/an

)
1(−∞,0](x).

(3.9)
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The process X is of finite activity and therefore of finite variation.
Since the V G + + process is of finite activity and therefore it is a Compound

Poisson process. By Cont and Tankov [42, Proposition 3.5] we have that the Lévy
measure ν(dx) of a compound Poisson is of the form ν(dx) = λf(dx) where λ is the
intensity of the Poisson process and f(dx) is the jumps’ density. The Lévy measure
in Equation 3.9 can be rewritten as:

ν(dx) = α

[
log( 1

ap
) + log( 1

an
)
]

︸ ︷︷ ︸
λ

dx

x
[
log( 1

ap
) + log( 1

an
)
] [e−βpx − e−βpx/ap

x
1(0,∞) − eβnx − eβnx/an

x
1(−∞,0)

]
︸ ︷︷ ︸

f(dx)

.

Therefore, the V G+ + X process at time t is such that:

X(t) d=
N(t)∑
i=1

Yi,

where N(t) ∼ P(αt
[
log( 1

ap
) + log( 1

an
)
]
) and Yi are iid random variables with density

given by f(x). The V G++ process can be simulated as a compound Poisson process.
Sampling from the distribution of N(t) is straightforward whereas realizations of the
random variable Yi with pdf f(x) can be obtained by following the approach of point
iii) of Proposition 3.1.2 and by observing that:

P (Yi ≥ 0) = log(1/ap)
log(1/ap) + log(1/an) .

Algorithm 3 summarize how to simulate realizations of Yi.
We recall that the cumulant generating function ψY (u) and the cumulants of a

rv Y with chf ϕY (u) are defined, respectively, as:

ψY (0) = 0, ϕY (u) = eψY (u),

cn (X) = 1
in
∂nψX
∂un

(0) .

Proposition 3.2.3. The first four cumulants of the process X at time t ≥ 0 are
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Algorithm 3 Simulation of Y with pdf f(x).
1: Simulate w ∼ U ([0, 1]).
2: Simulate u ∼ U ([0, 1]).
3: Set p = log(1/ap)

log(1/ap )+log(1/an) .
4: if w ≤ p then
5: Set y = (1/ap)u.
6: Simulate J ∼ E (βpy).
7: Return Y = J .
8: else if w > p then
9: Set y = (1/an)u.

10: Simulate J ∼ E (βny).
11: Return Y = −J
12: end if

given by:

c1 (X(t)) = E [X(t)] = αt

(
1
βp

− 1
β̃p

− 1
βn

+ 1
β̃n

)
,

c2 (X(t)) = V ar [X(t)] = αt

(
1
β2
p

− 1
β̃2
p

+ 1
β2
n

− 1
β̃2
n

)
,

c3 (X(t)) = 2αt
(

1
β3
p

− 1
β̃3
p

− 1
β3
n

+ 1
β̃3
n

)
,

c4 (X(t)) = 6αt
(

1
β4
p

− 1
β̃4
p

+ 1
β4
n

− 1
β̃4
n

)
,

where βp, β̃p, βn, β̃n are defined in Proposition 3.2.2.

Proof. Using Cont and Tankov [42, Proposition 13.3] and Proposition 3.1.2, it results
that if the law of Y is sd the n-th cumulant of the a-remainder Za is:

cn (Za) = t
∫ ∞

−∞
xnνa (x) dx = (1 − an) cn (Y ) , (3.10)

where νa (x) is the Lévy measure of the process Za.
Moreover, it is easy to prove that for two independent rv’s X and Y with finite
cumulants of order n, taking U = X − Y , it holds:

cn(U) = cn(X) + (−1)ncn(Y ). (3.11)

Combining (3.10) and (3.11) and the fact that from Proposition 3.2.2 the V G+ +
process can be written as the difference of two independent subordinators Zap and
Zan it results

cn (X(t)) =
(
1 − anp

)
cn (G1(t)) + (−1)n (1 − ann) cn (G2(t)) ,
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3.2. Variance Gamma++ process

where G1 = {G1 (t) ; t ≥ 0} and G2 = {G2 (t) ; t ≥ 0} are Gamma processes with pa-
rameters (α, βp) and (α, βn) respectively. The proof is simply concluded recalling the
expression of the cumulants of the gamma laws Γ(αt, βp) and Γ(αt, βn), respectively:

cn (G1(t)) = (n− 1)!αt
βnp
,

cn (G2(t)) = (n− 1)!αt
βnn
.

■

Proposition 3.2.4. The pdf of the V G+ + process X = {X(t); t ≥ 0} at t ≥ 0 is
given by:

fX(t)(x) = aαtδ0 (x) +
∑
k≥1

(
αt+ k − 1

k

)
aαt (1 − a)k fV Gk,β/a (x) . (3.12)

where δ0(x) is the Dirac function and fV Gk,β/a (x) is the pdf of a Variance Gamma law
with parameters k ∈ N and β/a which is given by:

fV Gk,β/a (x) = Kk− 1
2

|x|

√
2σ2β/a+ θ2

σ2

 exp (θx/σ2)√
2πσ2

(β/a)k

Γ (k)
(
2σ2β + θ2

) 1
4 − k

2 2|x|k− 1
2 .

Proof. From Equation (3.6) we have that:

ϕX(t) (u) =
(
β − i (θu+ iu2σ2/2) a
β − i (θu+ iu2σ2/2)

)αt
=
 a

1 − (1 − a) β
β−ia(θu+iu2σ2/2)

αt

=
∞∑
k=0

(
αt+ k − 1

k

)
aαt (1 − a)k

(
β

β − ia (θu+ iu2σ2/2)

)k

= aαt +
∑
k≥1

(
αt+ k − 1

k

)
aαt (1 − a)k

(
β

β − ia (θu+ iu2σ2/2)

)k
.

(3.13)

One can notice that X (t) is a mixture of Variance Gamma rv’s where the weights
are given by a Polya distribution plus a degenerate distribution at x = 0. By taking
the inverse Fourier transform of (3.13) we get the pdf in (3.12).

■

Remark. For n ∈ N the modified Bessel function of the second kind Kn+ 1
2

(x) can be
written in terms of elementary functions (see Abramowitz and Stegun [1, pag. 443]):√

π

2xKn+ 1
2

(x) =
(
π

2x

)
e−x

n∑
k=0

(n+ k)!
k!Γ (n− k + 1) (2x)−k .

This fact is instrumental to obtain an efficient formula for the pricing of an European
call option when the evolution of the market is modelled by a Variance Gamma
process with t

ν
∈ N and, as we shall show, by a V G+ + process as well.
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Proposition 3.2.5. Consider the V G+ + process X and let S be a Polya process
such that S(t) ∼ B (αt, 1 − a). In addition let (Ik)k≥1 and (Jk)k≥1 be two independent
sequences of iid rv’s, with Ik ∼ E

(
β̃p
)
, Jk ∼ E

(
β̃n
)

where β̃n and β̃p are defined in
Equation (3.8). Finally take δk = Ik − Jk and define the process C = {C(t); t ≥ 0}
as:

C(t) =
S(t)∑
k=0

δk, C(t) = 0 when S(t) = 0.

Then:
X(t) d= C(t), t > 0.

Proof. First we prove that the V G+ + process at time t can written as a Polya sum
of independent rv’s. For u ∈ R, consider the chf ϕX(t) (u) at time t of the V G+ +
process given in (3.6) and define g(u) = i (θu+ iu2σ2/2). We have:

ϕX(t) (u) =
 1

β−g(u)
β−ag(u)

αt =
 a

aβ+β−βag(u)
β−ag(u)

αt =
 a

1 − (1 − a) β
β−ag(u)

αt

a=1−p=
 1 − p

1 − p 1
1− a

β
g(u)

αt =
(

1 − p

1 − pφ(u)

)αt
,

where:
φ(u) = 1

1 − a
β
g(u) = β/a

β/a− iuθ + u2σ2/2 .

Therefore, X(t) can be represented as a Polya sum of independent rv’s whose chf is
given by φ(u). We can write:

φ(u) = 1
1 − iuaθ

β
− i2u2σ2

2

and the denominator can be decomposed as:

1 − iuaθ

β
− i2u2σ2

2 =
(

1 − iu

β̃p

)(
1 + iu

β̃n

)
= 1 − iu

(
1
β̃p

− 1
β̃n

)
− i2u2 1

β̃pβ̃n
.

Taking:
1
β̃p

− 1
β̃n

= aθ

β
,

1
β̃pβ̃n

= 2β
aσ2 ,

solving with respect to β̃n and β̃p and considering only positive solutions we have:

β̃p =

√
θ2 + 2σ2 − β/a− θ2

σ2 , β̃n =

√
θ2 + 2σ2 − β/a+ θ2

σ2 .
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3.2. Variance Gamma++ process

Model name Z++
a process V G+ + process X

Model type
Finite variation
Finite activity
Subordinator

Finite variation
Finite activity

Parameters α > 0 shape, β > 0 rate and
a ∈ (0, 1) sd

α, β, a + θ drift and σ diffusion
of the Brownian motion

Lévy measure νa (x) = α
x

(
e−βx − e−βx/a

)
1(0,∞) (x)

ν (x) =
(
αx−1e−xβp − αx−1e−xβp/ap

)
1(0,∞)(x)

+
(

−αx−1exβn + αx−1exβn/an
)
1(−∞,0](x)

chf ϕZa(t) (u) =
(

β−iua
β−iu

)αt
ϕX(t) (u) =

(
β−i(θu+iu2σ2/2)a

β−i(θu+iu2σ2/2)

)αt

pdf

ga (x) = aαδ0 (x)

+
∑
n≥1

(α+ n− 1
n

)
aα (1 − a)n

· fn,β/a (x)1(0,∞) (x) dx

where fn,β/a (x) is the density of
an Erlang distribution.

fX(t)(x) = aαtδ0 (x)

+
∑
n≥1

(αt+ n− 1
n

)
aαt (1 − a)n

· fV G
n,β/a (x) dx

where fV G
n,β/a

(x) is the density of
a Variance Gamma distribution.

Cumulants

c1
(
Z++

a (t)
)

= αt
1 − a

β
,

c2
(
Z++

a (t)
)

= αt
1 − a2

β2 ,

c3
(
Z++

a (t)
)

= 2αt
1 − a3

β3 ,

c4
(
Z++

a (t)
)

= 6αt
1 − a4

β4 .

c1 (X(t)) = αt

(
1
βp

−
1
β̃p

−
1
βn

+
1
β̃n

)
,

c2 (X(t)) = αt

(
1
β2

p

−
1
β̃2

p

+
1
β2

n

−
1
β̃2

n

)
,

c3 (X(t)) = 2αt
(

1
β3

p

−
1
β̃3

p

−
1
β3

n

+
1
β̃3

n

)
,

c4 (X(t)) = 6αt
(

1
β4

p

−
1
β̃4

p

+
1
β4

n

−
1
β̃4

n

)
.

with β̃n, β̃p, βn, βp as in Proposition 3.2.2.

Table 3.3. Characterization of Z++
a and of the V G + + process.

Finally, φ(u) can be written as:

φ(u) = 1
1 − iu

β̃p

· 1
1 + iu

β̃n

,

which is the chf of the difference of two independent exponentially distributed rv’s
with parameters β̃p and β̃n respectively.
By computing the chf of C (t) it is easy to check that:

ϕC(t)(u) = ϕX(t)(u),

that means that X(t) d= C(t) which concludes the proof. ■

Finally, Table 3.3 summarizes the properties of the processes Z++
a and V G+ +.
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Chapter 3. The V G+ + process: a model for illiquid markets

3.2.1 An option pricing formula under V G+ + model
Following Cont and Tankov [42], we model the evolution of a risky asset by the
process F = {F (t); t ≥ 0} defined as

F (t) = F (0) ert+ωt+θZ
++
a (t)+σW(Z++

a (t)) = F (0) ert+ωt+X(t), (3.14)

where:
ω = log

(
β − (θ + σ2/2)
β − a (θ + σ2/2)

)α
,

to have non-arbitrage conditions.
The following proposition provides a closed formula for the price of a European

call option.

Proposition 3.2.6. Consider the market model of Equation (3.14) where X is a
V G+ + process, the price at time 0 of a European call option with strike price K
and maturity T is given by:

C (0, K) = C (0) aαT +
∑
n≥1

(
αT + n− 1

n

)
(1 − an) aαTCV G

n,β/a(0, K), (3.15)

where
C (0) = max

(
F (0)eωT − e−rTK, 0

)
and CV G

n,β/a(0, K) is the price of a call option with strike K and maturity T under the
Variance Gamma model with parameters n and β/a.

Proof. Consider X(T ) = θZ++
a (T ) + σW (Z++

a (T )) whose pdf fX(T )(x) is given by
Equation (3.12). The value of the call option at t = 0 is the discounted expected
value under the risk-neutral measure:

C (0, T ) = e−rTE
[
(F (T ) −K)+

]
= e−rT

∫ ∞

−∞

(
F (0)erT+ωT+x −K

)+
fX(T )(x)dx

= e−rT

∫ ∞

−∞

(
FS(0)erT+ωT+x −K

)+
aαT δ0 (x) dx

∫ ∞

−∞

(
F (0)erT+ωTx −K

)+
·

∑
n≥1

(
αT + n− 1

n

)
aαT (1 − a)n fV Gn,β/a (x)

 dx


= aαT
(
F (0)eωT − e−rTK

)+

︸ ︷︷ ︸
C(0)

+
∑
n≥1

(
αT + n− 1

n

)
aαT (1 − a)k

∫ ∞

−∞

(
F (0)erT+ωT+x −K

)+
fk,β/a(x)dx︸ ︷︷ ︸

CV G
n,β/a

(0,T )

where in the last step we used the monotone convergence theorem to interchange the
order of the integral and the summation. ■
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3.2. Variance Gamma++ process

Shape parameter domain Computational time (s)

N 7.61 · 10−7

R 3.02 · 10−3

Table 3.4. Computational time to price a European option if the shape parameter is a real
or a natural number.

Remark. The option price in Equation (3.15) can be computed in very efficient way
using the results about EPT -distributions discussed in Sexton and Hanzon [116]
and summarized in Appendix B.4. Indeed, when the shape parameter n ∈ N, the
computation of CV G

n,β/a (0, T ) is easier than when it is a real number. This fact directly
stems from what we observed in Remark 3.2, namely that the Bessel function Kn (x)
can be written as a sum of elementary functions when n ∈ N. The advantage is that
one does not need to compute any integral when we evaluate CV G

n,β/a (0, T ) because
this term can be simply obtained as matrix multiplications which are faster than
numerical integration.

Table 3.4 shows the comparison of the computational times required to price a call
option when the shape parameter is either an integer or a positive real number using
MATLAB on a PC with an Intel Core i5-10210U 2.11 GHz processor. Apparently,
the computation taking an integer shape parameter is four times faster.

3.2.2 V G+ + backward simulation
So far, we have presented algorithms for the simulation of the trajectories of the
V G+ + process forward in time over a given time grid t0, t1, . . . , td. On the other
hand, we are not restricted to generate the random points of the trajectory in
sequence, the only strict requirement is to generate points with the correct transition
density.

In this section we illustrate how to simulate the V G + + process backward in
time taking advantage of the notion of Lévy random bridges (see Hoyle [71] for
details) which are stochastic processes pinned to a fixed point at a fixed future
time. Applications of Lévy bridge-based techniques in finance are for instance,
the pricing with Monte Carlo (MC) methods of barrier options with continuous
monitoring to avoid the bias arising by the use of the Euler discretization scheme, or
the combination with Quasi-Monte Carlo methods (see for instance Caflisch et al.
[34] and Glasserman [62]).

Lévy bridges naturally lead to the construction of backward simulations as
described in Pellegrino and Sabino [100], Hu and Zhou [72] and Sabino [106]. In
principle, the computational cost of backward and forward strategies is the same,
however numerical analysis showed that in most cases the forward construction is
the faster solution (see Sabino [106]).

On the other hand, the path generation is only one component of the overall
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Chapter 3. The V G+ + process: a model for illiquid markets

pricing of derivative contracts with MC simulations. When the pricing of contracts
with complex American optionality is based on the Least Squares Monte Carlo
(LSMC) approach introduced by Longstaff and Schwartz [83], what matters in the
stochastic dynamic programming is the comparison between the intrinsic value and
the continuation value at a given time step t. If, for instance, we consider a F -factor
market model and we want to price an American option with LSMC, each step of
the Bellman backward recurrence requires to know the simulated prices or indices at
two consecutive times t and t+ ∆, nothing else. To this end, the forward generation
requires storing d × N × F numbers where d is the number of time steps and N
is the number of simulations, whereas the backward solution requires storing a far
lower number, 2 ×N × F . The forward construction may become computationally
unfeasible for contracts with long maturities in contrast, although sometimes slower,
the backward construction is more reliable because one could generate a far higher
number of trajectories that is often necessary for the computation of the Greek
letters.

In order to conceive a backward simulation scheme for the V G + + process
we start showing how to simulate the process Z++

a backward in time. Indeed, the
backward simulation of the V G+ + will then consists of applying the well-known
backward simulation of a Brownian motion on the stochastic grid generated by Z++

a .

Proposition 3.2.7 (Polya Bridge). Consider a process S = {S(t); t ≥ 0} such that
S (0) = 0 a.s. and S (t) ∼ B (αt, 1 − a). For 0 < t ≤ T , define the rv S(k)

tT , k ∈ N
with probability mass function:

P
(
S

(k)
tT = j

)
:= P (S (t) = j|S (T ) = k) .

It results:

P
(
S

(k)
tT = j

)
=
(
k

j

)
B (αt+ j, α (T − t) + k − j)

B (αt, α (T − t))

namely, S(k)
tT is distributed according to a beta-binomial law B (αt, α (T − t) , k) where

B (α, β) denotes the Beta function (see Abramowitz and Stegun [1]).

Proof. Knowing that S has independent and stationary increments, the proof is
verified as follows:

P
(
SktT = j

)
= P (S(t) = j, S(T ) = k)

P (S(T ) = k) = P (S(t) = j)P (S(T − t) = k − j)
P (S(T ) = k)

=
(

k

j

)
Γ (αt + j)

Γ (αt)
Γ (α(T − t) + k − j)

Γ (α(T − t))
Γ (αT )

Γ (αT + k)

=
(

k

j

)
B (αt + j, α(T − t) + k − j)

B (αt, α(T − t)) ,
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3.2. Variance Gamma++ process

where we used the relations:

(αt+ j − 1) (αt+ j − 2) . . . αt = Γ (αt+ j)
Γ (αt) ,

Γ (x) Γ (y)
Γ (x+ y) = B (x, y) .

■

Based on Proposition 3.2.2 we can show that the process Z++
a is a gamma process

G subordinated by a Polya process S. This simple fact provides us with an easy way
to simulate the process Z++

a .

Proposition 3.2.8. Consider a gamma process G = {G(t); t ≥ 0}, such that G (t) ∼
Γ (t, β/a), β > 0, a ∈ (0, 1), and a Polya process S = {S(t); t ≥ 0} such that
S (t) ∼ B (αt, 1 − a). Define the process Y = {Y (t); t ≥ 0} as:

Y (t) = G (S(t)) , t ≥ 0.

It results:
Z++
a (t) d= Y (t) , t ≥ 0,

where Z++
a is the Lévy process associated to the a-remainder of a gamma law with

parameters α and β, as defined in (3.4).

Proof. We compute the chf of Y (t) for u ∈ R.

E
[
eiuY (t)

]
= E

[
E
[
eiuG(S(t))

∣∣∣S(t)
]]

= E

( β

β − iua

)S(t)


= E

( β/a

β/a− iu

)S(t)
 .

(3.16)

From Equation (3.2) we have that

Z++
a (t) =

S(t)∑
n=0

En,

where En are iid rv’s with exponential law with parameter β/a. The chf of Z++
a (t)

is given by:

E
[
eiuZ

++
a (t)

]
= E

[
eiu
∑S(t)

n=0 En

]
= E

[
E
[
eiu
∑S(t)

n=0 En

∣∣∣∣S(t)
]]

= E

S(t)∏
n=0

E
[
eiuE1

] = E

S(t)∏
n=0

β/a

β/a− iu

 = E

( β/a

β/a− iu

)S(t)


which is the same as Equation (3.16), therefore we can conclude that Za(t) d=
Y (t). ■
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Chapter 3. The V G+ + process: a model for illiquid markets

Proposition 3.2.8 illustrates how to simulate the process Z++
a backward in time:

firstly, one simulates Polya process S backward in time, and secondly one simulates
the gamma process G backward in time on the stochastic time grid generated by S
(see Sabino [106] for the backward simulation of a gamma process).

Assume, indeed, that given Z++
a (0) = 0 the value of the process Z++

a at time T is
equal to zT , then Z++

a (t), t ∈ (0, T ) can be simulated by generating the Polya bridge
at time t in the first step and the gamma bridge at a random time S(t) ∈ (0, S(T ))
in the second step. This procedure is summarized in Algorithm 4.

Algorithm 4 Backward simulation of Za.
1: Generate sT ∼ B (αT, 1 − a).
2: Generate zT ∼ Γ (sT , b/a) and set Z++

a (T ) = zT .
3: Consider t ∈ (0, T ) and p ∼ Beta (αt, α (T − t)).
4: Simulate st ∼ Bin (sT , p).
5: Simulate β ∼ Beta (st, sT − st).
6: Set Z++

a (t) = zT β.

In a similar way, the backward simulation of the V G + + process can be ac-
complished implementing the backward simulation of the Brownian motion oven a
random grid given by the backward simulation of Z++

a as illustrated in Algorithm 5.

Algorithm 5 Backward simulation of X.
1: Set X(0) = 0 and Z++

a (0) = 0.
2: Simulate Z++

a (T ) and Z++
a (t) using Algorithm 4.

3: Simulate xT ∼ N (θZ++
a (T ), σ2Z++

a (T )).
4: Simulate xt ∼ N

(
xT

Z++
a (t)
Za(T ) ,

Za(t)(Z++
a (T )−Za(t))
Z++

a (T ) σ2
)

.
5: Set X(t) = xt.

Table 3.5 compares the theoretical mean, variance, skewness and kurtosis of X at
time T = 1 with the ones obtained by numerical forward and backward simulations,
where we used the following set of parameters: θ = 1.025, σ = 0.2, α = 5, β = 15,
a = 0.7, and 106 simulations.
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3.2. Variance Gamma++ process

Moment T F B

E(X) 0.10250 0.10234 0.10234
V ar(X) 0.01591 0.01584 0.01582

s(X) 1.73973 1.73637 1.73569
k(X) 7.11923 7.12693 7.09786

Table 3.5. Comparison of theoretical moments (T ) of the V G++ process with the numerical
ones obtained by forward (F ) and backward (B) simulations.
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Chapter 4

A Multivariate Variance Gamma
process with stochastic delay

In this chapter we use the notion of self-decomposability we introduced in Section
2.2 to build a multivariate version of the Variance Gamma process we introduced in
Section 2.6.1. During the last decades a lot of efforts have been done in financial
modeling to go beyond the Black and Scholes [23] framework. The Black-Scholes
(BS) formula is widely used by practitioners, but its limitations are well-known
and over the years several researchers - Merton [91], Madan and Seneta [88] and
Heston [70] among others - have proposed more sophisticated models to overcome
its shortcomings. On the other hand, their main focus was the single asset modeling
framework.

In a multi-asset market one has to take care of the modeling of the dependence
structure, which can easily become a challenging task. Mainly, one comes up against
three issues:

• How to extend a univariate model to a multivariate setting preserving mathe-
matical tractability?

• How to calibrate this model?

• Which techniques can be used for derivative pricing?

Beyond the Gaussian world, some choices have been proposed to model dependence
in the context of Lévy processes. Among others, Cont and Tankov [42], Cherubini
et al. [41], Panov and Samarin [95], Panov and Sirotkin [96] have discussed the use
of Lévy copulas or of Lévy series representations.

In this chapter, we address the three issues above in the context of multi-
dimensional processes using multivariate subordination. To this end, several ap-
proaches are available in the literature: for instance, Barndorff-Nielsen et al. [14]
have introduced multivariate subordination and have provided general results and
applications. In the same spirit, in a series of papers Semeraro [115], Luciano and
Semeraro [87], Ballotta and Bonfiglioli [9], Buchmann et al. [30, 33] have proposed
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2nd market

1st market

τ

σ

γσ + Zγ > σ

2nd market

1st market

τ

σ

γσ + Zγ < σ

Figure 4.1. Representation of possible realizations of stochastic delay between two events
at σ and τ .

models based on subordination to introduce dependence among Lévy processes. The
common idea of these papers is to define multivariate processes that are the sum of
an independent process and a common one. For example Ballotta and Bonfiglioli [9]
define a multivariate process Y = {Y (t); t ≥ 0} in the following way:

Y (t) = (Y1 (t) , . . . , Yn (t))T = (X1 (t) + a1Z (t) , . . . , Xn (t) + anZ (t))T , (4.1)

where Z = {Z (t) ; t ≥ 0}, Xj = {Xj (t) ; t ≥ 0}, j = 1, . . . , n are independent Lévy
processes. From a financial standpoint, the common process Z can be viewed as
a systemic risk, whereas the independent processes Xj can be considered as the
idiosyncratic components.

On the other hand, particularly in illiquid markets, it is not so rare to observe
that some news or shocks in a certain market do not have a simultaneous impact
on the other ones. One rather observes a sort of “delay in the propagation of the
information” across markets namely, a “delay in reacting to the given shock”. Here
we alert the reader observing that the concept of “delay” might be misleading. The
reader might be tempted to think that there is one driving market and other markets
follow the principal one with a certain stochastic dalay and that any single sudden
event has first an impact on the leading market and then all the effects propagate in
the other ones. This is not what we want to model. The idea is that there is not
a driving market but that all the markets are strictly connected: a general event
might appear in one of them and the effect spreads across the other markets with
stochastic delays. Maybe the word “asynchronous” instead of “delayed” markets
would be better, but it this case we would lose the idea on the back of delay in
propagation of the information. In particular, the idea of asynchronous markets is
not new: α-subordinators of the kind of the ones presented by Semeraro [115] allow
each asset to have its own business time, but the idea of “delay in the propagation
of the information” is missing.

In this case we capture this last feature by adding one parameter to the approaches
mentioned in Equation (4.1) and at the same time retaining mathematical tractability.
Our applications are relative to the energy markets nevertheless this technique can
be applied to other contexts for instance, to credit risk. Following the ideas of Cufaro
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Petroni and Sabino [46, 47], one can assume that a certain market shock occurs at a
random time σ and that has effect on a related market at time τ . Cufaro Petroni and
Sabino [47] describe this type of interaction as synaptic risk that can also be seen
in terms of random delays. With the additional condition that σ and τ follow the
same (marginal) distribution with different parameters, a natural way to introduce
dependence between these two stochastic times is to set:

τ = γσ + Zγ,

where γ > 0, Zγ ≥ 0 almost surely, and σ and Zγ are independent. It turns out that
the parameter γ is related to the linear correlation between σ and τ and Zγ plays
the role of a delay. Clearly if γ > 1, we have τ > σ almost surely, and this situation
is shown in the top picture of Figure 4.1. On the other hand, if 0 < γ < 1 it might
happen that τ < σ and in this case the interpretation is the following: the sudden
event first occurs in the latter market at time τ and then we observe its effect on the
former market at time σ > τ . This latter case is illustrated at the bottom picture of
Figure 4.1. For example, σ can represent the default event of a bank and τ is the
default of another related bank or company after a random time Zγ.

The modeling above is then strictly related to the mathematical concept of
self-decomposability, based on which, following the approach proposed by Sabino
and Petroni [109], we extend the multivariate Lévy models presented by Semeraro
[115], Luciano and Semeraro [87] and Ballotta and Bonfiglioli [9] in order to include
a “delay in the propagation of the impact” of the systemic risk component. It is
worthwhile mentioning that an alternative approach to obtain multivariate Lévy
processes can be found in Buchmann et al. [30], Michaelsen and Szimayer [94],
Michaelsen [93], Buchmann et al. [33] and Buchmann et al. [32] relying on the notion
of weak-subordination.

As far as the second, calibration issue is concerned, in Chapter 7 we show how
general techniques, such as Non-Linear-Least-Square (NLLS) or Generalized Method
of Moments (GMM), can be adopted in our framework, implementing a two-steps
method as the one presented by Ballotta and Bonfiglioli [9].

Moreover, we derive the characteristic functions (chf ’s) of the log-prices process,
namely the logarithm of the price process, in closed form therefore in Chapter 7 we
can tackle the third and last issue of the derivative pricing based on the Fourier
transform methods introduced in Hurd and Zhou [74], Pellegrino [97] and Caldana
and Fusai [35]. Finally, standard path generation schemes can be adapted to our
models, allowing a numerical pricing via Monte Carlo simulations.

All the results we present in this chapter and the related numerical experiments
of Chapter 7 can also be found in Gardini et al. [60].
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Chapter 4. A Multivariate Variance Gamma process with stochastic delay

4.1 Preliminaries - Self-decomposable subordina-
tors

In this section we show how to use the notion of self-decomposability we introduced
in Section 2.2 to build what we call self-decomposable subordinators. As mentioned
above, two random variables with self-decomposable law X

d= Y related by:

X
d= aY + Za,

can be viewed as two stochastic times delayed one respect the other by the parameter
a and the random variable Za independent of Y . As we observed in Section 2.8.1
subordinators can be viewed as business time: here the goal is to construct coupled
subordinators which runs one delayed with respect the other one, i.e. what we call
Self-decomposable subordinators.

If H is P-a.s. non-negative random variables with sd law we can build sd
subordinators as follows

Definition 4.1.1 (Self-decomposable subordinators). Let H̃1 and H̃2 be P-a.s. non-
negative rv with sd laws, where Z̃a is the a-remainder, and define H1 = {H1 (t) ; t ≥ 0}
and Za = {Za (t) ; t ≥ 0} as Lévy processes such that (H1 (1)) d=

(
H̃1
)

and Za (1) d=
Z̃a. A sd subordinator H = {H (t) ; t ≥ 0}, where H (t) = (H1 (t) , H2 (t)) is defined
as:

H2 (t) = aH1 (t) + Za (t) . (4.2)

Note that the process H2 defined in (4.2) is a Lévy process because it is a linear
combination of two Lévy processes (Cont and Tankov [42, Theorem 4.1]).

The construction proposed by Equation (4.2) has a clear financial interpretation.
Stochastic times processes H1, H2 “run together” with a stochastic delay, given by
the parameter a and by the term Za (t), one with respect to the other. In Figure
4.2 different paths of the process H are shown, varying the parameter a: for fixed t
the difference between H1 (t) and H2 (t) can be viewed as stochastic delay. Roughly
speaking one can observe if a → 1, then processes processes H1 and H2 are essentially
indistinguishable.

This construction provides us a powerful tool to model those markets in which,
whenever an event occurs in one of them, the effect on the other ones is not immediate
but it occurs with a certain time delay. Observe that the parameter a is the only
parameter we have to add to include this feature in our model and this do not leads
to a significant model complication.

The former construction can be extended to the case n > 2 as it will showed in
the sequel.
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4.2. Model extensions with Self-Decomposability
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Figure 4.2. Dependent subordinators H1 and H2 with different values of a.

4.2 Model extensions with Self-Decomposability
In this section we extend the models presented by Semeraro [115], Luciano and
Semeraro [87] and Ballotta and Bonfiglioli [9] using sd subordinators introduced in
Section 4.1 and we show how to build a bivariate versione of the Variance Gamma
model with stochastic delay.

4.2.1 Semeraro’s sd-VG model
The first model we extend using sd subordinators was proposed by Semeraro [115].

Definition 4.2.1 (sd-Semeraro Model). Let Ij = {Ij (t) ; t ≥ 0} j = 1, 2 be inde-
pendent sd subordinators, and H1, H2 be sd subordinators defined in Equation (4.2),
independent of Ij. Define the subordinator Gj = {Gj (t) ; t ≥ 0} as:

Gj (t) = Ij (t) + αjHj (t) , j = 1, 2, (4.3)
with αj ∈ R+. Let µj ∈ R, σj ∈ R+, Wj = {Wj (t) ; t ≥ 0} be standard independent
BM’s and let Gj as is (4.3). Define the subordinated BM with drift Y = {Yj (t) ; t ≥ 0}
as:

Yj (t) = µjGj (t) + σjWj (Gj (t)) , j = 1, 2. (4.4)

Observe that the “delay in time effect” appears at the level of subordinators Gj

and it is given by the process H . Moreover, it is easy to check that, since Ij and Hj

are assumed to be sd and independent the obtained subordinator Gj is sd.

It is worth noting that obtained process Y = {(Y1 (t) , Y2 (t)); t ≥ 0} is Lévy
because W1 and W2 are independent as observed in Barndorff-Nielsen et al. [14] and
in Buchmann et al. [31].
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Chapter 4. A Multivariate Variance Gamma process with stochastic delay

The joint chf of the process defined in (4.4) has a nice closed expression.

Proposition 4.2.1 (Characteristic Function). Let be u = (u1, u2) ∈ R2. The joint
chf ϕY (t) (u) of the process Y at time t ≥ 0 defined in (4.4) is given by:

ϕY (t) (u) =ϕI1(t)

(
u1µ1 + i

σ2
1u

2
1

2

)
ϕI2(t)

(
u2µ2 + i

σ2
2u

2
2

2

)
ϕZa(t)

(
u2µ2 + i

σ2
2u

2
2

2

)

ϕH1(t)

(
α1

(
u1µ1 + i

σ2
1u

2
1

2

)
+ aα2

(
u2µ2 + i

σ2
2u

2
2

2

))
.

(4.5)

Proof. Substituting the expression of Yj (t), conditioning with respect Gj (t) and
since Wj (t) are independent we get:

ϕY (t) (u) =E
[
ei⟨u,Y (t)⟩

]
= E

[
eiu1Y1(t)+iu2Y2(t)

]
=E

ei
(
u1µ1+i

σ2
1u2

1
2

)
G1(t)

e
i

(
u2µ2+i

σ2
2u2

2
2

)
G2(t)

 .
Using the definition of Gj (t) we have:

ϕY (t) (u) = E

ei
(
u1µ1+i

σ2
1u2

1
2

)
I1(t)

e
i

(
u2µ2+i

σ2
2u2

2
2

)
I2(t)

e
i

(
u2µ2+i

σ2
2u2

2
2

)
α2Za(t)

e
i

((
u1µ1+i

σ2
1u2

1
2

)
α1+

(
u2µ2+i

σ2
2u2

2
2

)
α2a

)
H1(t)


and, observing that Ij (t), H1 (t) and Za (t), are mutually independent the thesis
follows. ■

Note. Observe that the derived model is an extension of the one presented by
Semeraro [115]. By taking the limit for a → 1 in (4.5) we have that:

lim
a→1

ϕY (t) (u) =ϕI1(t)

(
u1µ1 + i

σ2
1u

2
1

2

)
ϕI2(t)

(
u2µ2 + i

σ2
2u

2
2

2

)

ϕH1(t)

(
α1

(
u1µ1 + i

σ2
1u

2
1

2

)
+ α2

(
u2µ2 + i

σ2
2u

2
2

2

))

and this coincides with the chf of the original model.
Starting from the explicit expression of the chf one can easily compute the linear

correlation coefficient at time t.
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4.2. Model extensions with Self-Decomposability

The correlation at time t ≥ 0 ρY1(t),Y2(t) is given by:

ρY1(t),Y2(t) = µ1µ2α1α2aV ar [H1 (t)]√
V ar [Y1 (t)]V ar [Y2 (t)]

. (4.6)

This simply follows from straightforward computations by observing that

cov (Y1 (t) , Y2 (t)) = E [Y1 (t)Y2 (t)] − E [Y1 (t)]E [Y2 (t)] ,

substituting the expressions of Yj (t) and Gj (t) and noting that

E [H1 (t)H2 (t)] = aV ar [H1 (t)] .

We observe that the value of correlation ρ is lower than the one obtained by
Semeraro [115]. This is obvious from an intuitive point of view: in the original model
the author modeled the systemic risk component using a common subordinator whilst
we use two processes, H1, H2. On the other hand, as observed before, if a → 1, then
H1 and H2 are indistinguishable and we retrieve the value of correlation ρ obtained
by Semeraro [115].

2D - sd Variance Gamma Semeraro

So far we analyzed the general model without assuming a particular form for the
law of any of the processes involved. Since gamma rv’s have sd law, then they are
suitable candidates for our construction. Assuming that H̃1, H̃2 has gamma law
(with a specific parameters choice) we extend Semeraro’s model for the Variance
Gamma process using sd-subordinators.
In Section 2.5.2 we introduced the gamma distribution and we have shown that
if X ∼ Γ (α, β), then cX ∼ Γ

(
α, β

c

)
and if X ∼ Γ (α1, β) and Y ∼ Γ (α2, β) are

independent, then X + Y ∼ Γ (α1 + α2, β). Now set in (4.4):

Ij ∼ Γ
(
Aj,

B

αj

)
, Hj ∼ Γ (A,B) , j = 1, 2

and noting that αjHj ∼ Γ
(
A, B

αj

)
we have

Gj ∼ Γ
(
Aj + A,

B

αj

)
, j = 1, 2.

Remembering that Aj, A,B, αj ∈ R+ we have the following conditions:
1

Aj + A
= αj
B
, j = 1, 2, (4.7)

0 < αj ≤ B

A
, j = 1, 2. (4.8)

Given the condition (4.7) and (4.8) we have that E [Gj] = 1 and hence E [Gj (t)] = t.
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Chapter 4. A Multivariate Variance Gamma process with stochastic delay

Note. If we request condition (4.7), we have that:

1 = α1
(A1 + A)

B
= α2

(A2 + A)
B

and so the parameter B is somehow redundant and we can assume B = 1.
We get the same conclusion observing that, in Equation (4.6), we fit only the

variance of H1 (t): for this reason assuming B = 1 is not restrictive.
As direct consequences of 4.2.1 and of the computation we did to obtain the

linear correlation coefficient of Equation (4.6) we get that the chf in 2D - sd Variance
Gamma case is given by:

ϕHj(t) (u) =
(

1 − i
u

B

)−tA
, j = 1, 2,

ϕIj(t) (u) =
(

1 − αji
u

B

)−tAj

, j = 1, 2,

ϕZa(t) (u) = ϕH1(t) (u)
ϕH1(t) (au) =

(
B − iu

B − iau

)−tA

(4.9)

and so chf ϕY (t) (u) in (4.5) can be computed. Furthermore the linear correlation
coefficient at time t ≥ 0 in 2D Variance-Gamma assumes the following simple
expression:

ρY1(t),Y2(t) = µ1µ2α1α2aA√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

.

4.2.2 Semeraro-Luciano’s sd-VG model
The model presented by Luciano and Semeraro [87], which was developed in order to
capture those correlation levels in log-returns that the model proposed by Semeraro
[115] is not able to get (see Wallmeier and Diethelm [124]), can be extended in a
similar way to what we showed in Section 4.2.1.

Definition 4.2.2 (sd-Luciano and Semeraro’s model). Let Ij = {Ij (t) ; t ≥ 0} , j =
1, 2, be sd subordinators and let H1 = {H1 (t) ; t ≥ 0} and H2 = {H2 (t) ; t ≥ 0} two
sd subordinators independent from Ij. Define the process Y = {Y (t) ; t ≥ 0} as
follows:

Y (t) =
(
µ1I1 (t) + σ1W1 (I1 (t)) + α1µ1H1 (t) + √

α1σ1W
ρ
1 (H1 (t))

µ2I2 (t) + σ2W2 (I2 (t)) + α2µ2H2 (t) + √
α2σ2U(t)

)
, (4.10)

where U(t) = W ρ
2 (aH1 (t))+W̃ (Za (t)), W = {(W1 (t) ,W2 (t)) ; t ≥ 0} is a standard

BM with independent components, W ρ = {(W ρ
1 (t) ,W ρ

2 (t)) ; t ≥ 0} is a standard
BM such that:

E [dW ρ
1 (t) dW ρ

2 (t)] = ρdt
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4.2. Model extensions with Self-Decomposability

and W̃ =
{
W̃ (t) ; t ≥ 0

}
is a BM independent from W and W ρ. Moreover W and

W ρ are independent.

Unlike the process derived in the previous section, it can be shown that, since
the covariance matrix of increments

cov (Y (t− s),Y (s))

is not null ∀s < t, then Y is not a Lévy process, even if their its components are.
Actually, it can be proven that the process Y is not a Markov process neither. The
proof of these claims is reported in Appendix C.

Nevertheless if in Equation 4.10 we consider U(t) =
√
aW ρ

2 (H1 (t)) + W̃ (Za (t))
the obtained process Ŷ is a Lévy process since it is easy to check that the independence
of the increments is preserved. Moreover, by following the same computations of the
following proposition we get that the characteristic functions of Ŷ and Y are the
same. This result is not surprising and agrees with Sato [112, Theorem 7.10]. Given
the characteristic function of a infinitely divisible law, there exists a Lévy process
such that its law at time t = 1 coincides with the given law. However, nothing
prevents the existence of another process which can be neither Lévy nor Markov such
that the characteristic function of the process at time t is associated to an infinitely
divisible law. The distribution of Ŷ and Y at a general time t ≥ 0 is the same but
the first process is not a Lévy process whilst the second one is. Another example of
these facts can be found in Appendix A.
Here too the chf of the process Y at time t ≥ 0 has a nice closed expression.

Proposition 4.2.2 (Characteristic Function). Let be u = (u1, u2) ∈ R2.The joint
chf ϕY (t) (u) of the process Y at time t ≥ 0 defined in (4.10) is given by:

ϕY (t) (u) =ϕI1(t)

(
u1µ1 + i

2σ
2
1u

2
1

)
ϕI2(t)

(
u2µ2 + i

2σ
2
2u

2
2

)
ϕH1(t)

(
i

2u
2
1α1σ

2
1 (1 − a) + uTµ + i

2uTaΣu
)
ϕZa(t)

(
u2µ2α2 + i

2u
2
2α2σ

2
2

)
,

where µ = [α1µ1, aα2µ2] and

Σ =
[

α1σ
2
1

√
α1α2σ1σ2ρ√

α1α2σ1σ2ρ α2σ
2
2

]
.

Proof. Rewrite Y (t) as:

Y (t) = Y I(t) + Y H(t),

where:
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Chapter 4. A Multivariate Variance Gamma process with stochastic delay

Y I (t) =
(
µ1I1 (t) + σ1W1 (I1 (t))
µ2I2 (t) + σ2W2 (I2 (t))

)
and:

Y H (t) =
(
α1µ1H1 (t) + √

α1σ1W
ρ
1 (H1 (t))

α2µ2H2 (t) + √
α2σ2

(
W ρ

2 (aH1 (t)) + W̃ (Za (t))
) ) .

The characteristic function is given by:

ϕY (t)ρ (u) =E
[
ei⟨u,Y (t)⟩

]
= E

[
ei⟨u,Y I(t)+Y H(t)⟩

]
=E

[
ei⟨u,Y I(t)⟩

]
E
[
ei⟨u,Y H(t)⟩

]
.

(4.11)

We now compute the two last term separately. Substituting the expression of Y I ,
conditioning respect Ij (t) , j = 1, 2 and remebering that W1 (t) and W2 (t) are
idependent we have:

E
[
ei⟨u,Y I(t)⟩

]
=E

[
ei(u1µ1+ i

2u
2
1σ

2
1)I1(t)

]
E
[
ei(u2µ2+ i

2u
2
2σ

2
2)I2(t)

]
=ϕI1(t)

(
u1µ1 + i

2σ
2
1u

2
1

)
ϕI2(t)

(
u2µ2 + i

2σ
2
2u

2
2

)
.

(4.12)

Following the same approach we can compute the second term, obtaining:

E
[
ei⟨u,Y H(t)⟩

]
=E

[
E
[
eiu1(α1µ1H1(t)+√

α1σ1W
ρ
1 (H1(t)))

eiu2(α2µ2aH1(t)+iu2
√
α2σ2W

ρ
2 (aH1(t)))|H1 (t)

]
E
[
eiu2α2µ2Za(t)+iu2

√
α2σ2W̃ (Za(t))|Za (t)

]]
.

Now we compute the inner expected values separately. The second inner expected
value is:

E
[
eiu2α2µ2Za(t)+iu2

√
α2σ2W̃ (Za(t))|Za (t)

]
= ei(u2α2+ i

2u
2
2α2σ2)Za(t).

For the second therm we have that, since H1 (t) is known:

E
[
eiu1α1µ1H1(t)+iu1

√
α1σ1W

ρ
1 (H1(t))+iu2α2µ2aH1(t)+iu2

√
α2σ2W

ρ
2 (aH1(t))|H1 (t)

]
= eiu1α1µ1H1(t)+iu2α2µ2aH1(t)E

[
eiu1

√
α1σ1W

ρ
1 (H1(t))+iu2

√
α2σ2W

ρ
2 (aH1(t))|H1 (t)

]
.

The only unknown terms is the expected value. We have that:
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E
[
eiu1

√
α1σ1W

ρ
1 (H1(t))+iu2

√
α2σ2W

ρ
2 (aH1(t))|H1 (t)

]
= e− 1

2u
2
1α1σ2

1(1−a)H1(t)e− 1
2auT aΣuH1(t),

where
Σ =

[
α1σ

2
1

√
α1α2σ1σ2ρ√

α1α2σ1σ2ρ α2σ
2
2

]
and u = (u1, u2). Setting µ = (α1µ1, aα2µ2) we can conclude that:

E
[
ei⟨u,Y H(t)⟩

]
=ϕZa(t)

(
u2α2 + i

2u
2
2α2σ2

)
ϕH1(t)

(
uTµ + i

2u
2
1α1σ

2
1 (1 − a) + i

2auTaΣu
)
.

(4.13)

Using (4.12) and (4.13) in (4.11) we have the thesis. ■

Following the technique proposed in the previous section one can show that the
correlation at time t ≥ 0, ρY1(t),Y2(t) is given by:

ρY1(t),Y2(t) =
a
(
µ1µ2α1α2V ar [H1 (t)] + ρσ1σ2

√
α1α2E [H1 (t)]

)
√
V ar [Y1 (t)]V ar [Y2 (t)]

. (4.14)

All considerations about correlation coefficient and chf we pointed out in Section

4.2.1 are still valid.

2D - sd Variance Gamma Luciano-Semeraro

Here too it’s possible to build a 2D-Variance Gamma process by choosing

Ij ∼ Γ
(
Aj,

B

αj

)
, Hj ∼ Γ (A,B) , j = 1, 2.

We have that:

Ij + αjHj ∼ Γ
(
Aj + A,

B

αj

)
, j = 1, 2.

and, imposing conditions (4.7) and (4.8), we have get E [Gj] = 1 and, consequently,
E [Gj (t)] = t for j = 1, 2. Following the same argument of Section 4.2.1, expressions
of linear correlation coefficient and the chf for the 2D Variance Gamma case can be
derived. It is easy to show that the linear correlation coefficient at time t ≥ 0 in 2D -
sd Variance Gamma case is given by:

ρY1(t),Y2(t) =
a
(
µ1µ2α1α2A+ ρAσ1σ2

√
α1α2

)
√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

.

The chf can be obtained by combining Equations 4.9 with Proposition 4.2.2.
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Chapter 4. A Multivariate Variance Gamma process with stochastic delay

4.2.3 Ballotta-Bonfiglioli’s sd-VG model
The construction technique of dependent Lévy processes proposed by Ballotta and
Bonfiglioli [9] is slightly different from what we have seen so far. The dependence
between processes is not introduced on subordinators, as in the previous case, but two
subordinated BM of the same type are added together. Some convolution conditions
on parameters guarantee that the resulting process is of the same type of the summed
ones. This model, as the previous ones, can be extended using sd subordinators.

Definition 4.2.3 (sd-Ballotta and Bonfiglioli’s model). Let H be a sd subordinator
as in (4.2) and define the process Y = {Y (t) ; t ≥ 0} as:

Y (t) = (Y1 (t) , Y2 (t)) = (X1 (t) + a1R1 (t) , X2 (t) + a2R2 (t)) , (4.15)

where:

• Xj = {Xj (t) ; t ≥ 0} is a subordinated BM with parameters (βj, γj, νj) , j =
1, 2, where βj ∈ R is the drift, γj ∈ R+ is the diffusion and νj ∈ R+ is the
variance of the subordinator. Let be Gj = {Gj (t) ; t ≥ 0} the subordinator of
Xj and let be G1 and G2 be independent. We define:

Xj (t) = βjGj (t) +Wj (Gj (t)) , j = 1, 2.

• Let R1 = {R1 (t) ; t ≥ 0} and R2 = {R2 (t) ; t ≥ 0} be given by:

R1 (t) = βR1H1 (t) + γR1W (H1 (t)) ,
R2 (t) = βR2H2 (t) + γR2

(
W (aH1 (t)) + W̃ (Za (t))

)
, (4.16)

where W = {W (t) ; t ≥ 0} and W̃ =
{
W̃ (t) ; t ≥ 0

}
are independent BM’s

and βRj
∈ R and γRj

∈ R+.

• Let be a1, a2 ∈ R.

The following Lemma will help to derive the chf of the process.

Lemma 4.2.3. Let be u = (u1, u2) ∈ R2. The chf of the process defined in (4.16) at
time t ≥ 0 is given by:

ϕR(t) (u) =ϕH1(t)

(
u1βR1 + u2βR2a+ i

2
(
u2

1γ
2
R1 + 2u1u2γR1γR2a+ u2

2aγ
2
R2

))
ϕZa(t)

(
u2βR2 + i

2u
2
2γ

2
R2

)
.
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Proof. Replacing the definition of R1 (t) and R2 (t) we get:

ϕR(t) (u) =E
[
eiu1R1(t)+iu2R2(t)

]
=E

[
eiu1βR1H1(t)+iu2aβR1H1(t)+iu2βR2Za(t)

E
[
eiu1γR1W (H1(t))+iu2γR2(W (aH1(t))+W̃ (Za(t)))|H1 (t) , Za (t)

]]
.

We compute now the inner expected value:

E
[
eiu1γR1W (H1(t))+iu2γR2(W (aH1(t))+W̃ (Za(t)))|H1 (t) , Za (t)

]
= E

[
eiu1γR1W (H1(t))+iu2γR2W (aH1(t))|H1 (t)

]
E
[
eiu2γR2W̃ (Za(t))|Za (t)

]
.

The second computation of the second expected value is immediate:

E
[
eiu2γR2W̃ (Za(t))|Za (t)

]
= e− 1

2u
2
2γ

2
R2
Za(t).

For the first term we have:

E
[
eiu1γR1W (H1(t))+iu2γR2W (aH1(t))|H1 (t)

]
= e

− 1
2

(
u2

1γ
2
R1

+2u1u2γR1γR2a+au2
2γ

2
R2

)
H1(t)

.

Observing that H1 (t) and Za (t) are independent the thesis follows. ■

The chf of the process defined in (4.15) is given by the following Proposition.

Proposition 4.2.4 (Characteristic Function). Let be u = (u1, u2) ∈ R2. The chf of
the process at time t ≥ 0 defined in (4.15) is given by:

ϕY (t) (u) =ϕG1(t)

(
β1u1 + i

2u
2
1γ

2
1

)
ϕG2(t)

(
β2u2 + i

2u
2
2γ

2
2

)
ϕR(t) (a ◦ u) ,

(4.17)

where a = (a1, a2) ∈ R2 and ◦ is the Hadamard product1.

Proof. Replacing the expression of Yj j = 1, 2 we have that:

E
[
e⟨u,Y (t)⟩

]
= E

[
eiu1X1(t)

]
E
[
eiu2X2(t)

]
ϕR(t) (a ◦ u) .

Observe that, conditioning to Gj (t), we have that:

E
[
eiujXj(t)

]
= E

[
ei(ujβj+ i

2u
2
jγ

2
j )Gj(t)

]
= ϕGj(t)

(
ujβj + i

2u
2
jγ

2
j

)
.

This observation jointly with Lemma 4.2.3 complete the proof. ■
1Given two matrices with the same dimension n × m the Hadarmard product of A ◦ B is a n × m

matrix such that (A ◦ B)i,j = Ai,j · Bi,j .
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Note. As in the previous models it is easy to verify that:

lim
a→1

βR1 ,βR2 →βZ
γR1 ,γR2 →γZ

ϕY (t) (u1, u2) = ϕG1(t)

(
β1u1 + i

2u
2
1γ

2
1

)

ϕG2(t)

(
β2u2 + i

2u
2
2γ

2
2

)
ϕZ(t)

(
βZ (a1u1 + a2u2) + i

2 (a1u1 + a2u2)2 γ2
Z

)
,

which is the chf obtained by Ballotta and Bonfiglioli [9]. It is worth noting that
the process R is not Lévy, since its increments are not independent: for this reason,
neither Y is a Lévy process (see Appendix C for details). Following the same
argument we used in Section 4.2.2, we can prove that Y is not even a Markov
process.

Even then, the correlation coefficient of the process Y can be obtained.

Proposition 4.2.5. The correlation coefficient at time t ≥ 0 of the process Y defined
in (4.15) is given by:

ρY1(t),Y2(t) = a1a2a (βR1βR2V ar [H1 (t)] + γR1γR2E [H1 (t)])√
V ar [Y1 (t)]

√
V ar [Y2 (t)]

. (4.18)

Proof. Computing the covariance between Y1 (t) and Y2 (t) we have that:

cov (Y1 (t) , Y2 (t)) = a1a2cov (R1 (t) , R2 (t)) . (4.19)

But, by direct computations, one can show that:

cov (R1 (t) , R2 (t)) = βR1βR2aV ar [H1 (t)] + γR1γR2aE [H1 (t)] . (4.20)

where we used the following property:

E [W (H1 (t))W (aH1 (t))] = aE [H1 (t)] .
Using (4.19) and (4.20) we have the thesis. ■

Convolution Conditions

It’s easy to show that, if Xj = {Xj(t); t ≥ 0} and Rj = {Rj(t); t ≥ 0} , j = 1, 2, are
subordinated BM ’s with subordinators from the same family, then Yj = {Yj(t); t ≥ 0}
is a subordinated process of the same type of Xj and Rj if the following Ballotta
and Bonfiglioli [9] style convolution conditions hold:

νR := νR1 = νR2 (4.21)

and {
αjµj = νRajβRj

j = 1, 2,
αjσ

2
j = νRa

2
jγ

2
Rj

j = 1, 2. (4.22)
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Relation (4.21) holds because Hj = {Hj (t) ; t ≥ 0} for j = 1, 2 have the same law
and so they have the same variance νR. It is easy to check that if Equations (4.22)
are satisfied, then:

µj = βj + ajβRj
, σ2

j = γ2
j + a2

jγ
2
Rj
, αj = νjνR/ (νj + νR) .

2D - sd Variance Gamma Ballotta-Bonfiglioli

We can construct a 2D - sd Variance Gamma using Gamma subordinators as follows.

• Let H1 (t) ∼ Γ
(
t
νR
, 1
νR

)
be a Gamma subordinator and set H2 (t) = aH1 (t) +

Za (t).

• Let Rj (t) be a subordinated BM (with drift βRj
and diffusion γRj

) obtained
using the Gamma subordinator Hj (t) ∼ Γ

(
t
νR
, 1
νR

)
, j = 1, 2.

• Let Xj (t) be a subordinated BM (with drift βj and diffusion γj) obtained
using a Gamma subordinator Gj (t) ∼ Γ

(
t
νj
, 1
νj

)
, j = 1, 2.

• Set Yj (t) = Xj (t) + ajRj (t)

We obtain that Y (t) ∼ V G (µj, σj, αj), j = 1, 2, where µj, σj, αj respect convolution
conditions (4.22).

The joint chf ϕY (t) (u1, u2) can be easly derived using (4.17) and remembering
the expression of the chf of a Γ (α, β) rv:

ϕ (u) =
(

1 − iu

β

)−α

.

Applying Proposition 4.2.5 one can derive the correlation coefficient of the 2D -
sd Variance Gamma process which has the following expression:

ρY1(t),Y2(t) = a1a2a (βR1βR2νR + γR1γR2)√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

.
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Chapter 5

A Multivariate NIG process with
stochastic delay

This chapter is the natural sequel of the previous one, but now our main focus
is on bivariate sd inverse Gaussian (IG) subordinators and on the construction
of bivariate dependent NIG processes. As we have done for the Variance Gamma
process with self-decomposable subordinations, we derive closed form formulas for the
linear correlation and the chf of the NIG processes. These results are instrumental
for the calibration and the pricing of derivative contracts whose valuation is often
accomplished via Monte Carlo simulations. To this end, we provide a novel and
efficient algorithm to generate the a-remainder of IG laws and therefore to simulate
the skeleton of Za, of the sd IG subordinators and of the bivariate NIG processes.
As already observed among others in Taufer and Leonenko [120], Sabino [107] and
Sabino and Petroni [109], the transition law between t and t+ ∆t of a Lévy-driven
Ornstein-Uhlenbeck (OU) process X = {X(t); t ≥ 0} having a certain stationary law
coincides with that of the a-remainder of such a law by setting a = e−λ∆t, where λ is
the mean-reversion rate of X(t). Hence, the simulation of the a-remainder of a IG
law is equivalent to the simulation of the skeleton of a IG-OU process, this last one
having been illustrated in Zhang and Zhang [125]. We show that our proposal is more
efficient than that of Zhang and Zhang [125], because it does not rely on acceptance-
rejection methods and therefore it also applicable to the stochastic volatility models
of Barndorff-Nielsen [11] and Andersson [5]. The only small difference it that since
Za is a Lévy process, its simulation requires the same a at all times t while instead
for a OU process, a = e−λ∆t depends on the time step ∆t.

5.1 Preliminaries
The NIG process is constructed via the subordination of a BM with an IG process.
As we observed in Section 2.5.3, there are different characterizations of the pdf of
an IG law: on the one hand, we denote the notation using the parameter-setting
(µ, λ), adopted for instance in Cont and Tankov [42], with IGT (µ, λ): within this
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setting µ > 0 is the mean and λ > 0 is the shape parameter. On the other hand, we
refer to the original notation in Barndorff-Nielsen [11] with IGB (a, b): in this case
a > 0 and b > 0 describe the scale and the shape of the distribution, respectively.
In Section 2.5.3 we gave some details on how to switch from one to the other. In
general, the IGB notation is convenient to analyze sums of IG rv’s, whereas IGT is
more convenient to work with expectations and chf.

5.1.1 Semeraro’s sd-NIG model
In this subsection we illustrate the steps required to extend the model proposed by
Semeraro [115] in order to cope with stochastic delay relying on the sd subordinators
defined in (4.2).

Let Ij = {Ij (t) ; t ≥ 0} , j = 1, 2 be independent subordinators, and H =
{(H1 (t) , H2 (t)); t ≥ 0} be the sd subordinator defined in (4.2), independent of Ij.
Define the subordinator G = {(G1 (t) , G2 (t)); t ≥ 0} as:

Gj (t) = Ij (t) + αjHj (t) , j = 1, 2, (5.1)
where αj ∈ R+. Let µj ∈ R, σj ∈ R+ and W = {(W1 (t) ,W2 (t)); t ≥ 0} a standard
BMwith independent components also independent of G: we define the subordinated
BM Y = {(Y1 (t) , Y2 (t)); t ≥ 0} as:

Yj (t) = µjGj (t) + σjWj (Gj (t)) , j = 1, 2. (5.2)

We remark that when a in (4.2) tends to 1 there is no time delay and the synap-
tic risk coincides with the systematic risk as in the original approach of Semeraro [115].

A bivariate NIG process with IG sd-subordinators can be defined starting from
(5.1) in the following way. Assume αj = γ2

j and let Ij (t) and Hj (t) be distributed
as follows:

Ij (t) ∼ IGT

(
Ajγjt

B
,A2

j t
2
)
,

Hj (t) ∼ IGT

(
At

B
,A2t2

)
,

(5.3)

and hence we get:

Gj (t) ∼ IGT

(
(Aj + Aγj) γjt

B
, (Aj + Aγj)2 t2

)
.

Since G (t) is a stochastic time, it is customary to require that E [Gj (t)] = t: this
condition can be easily fulfilled by imposing:

Aj + Aγj = B

γj
.
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Consequently, denoting with kj the variance of the subordinator Gj (t) at time t = 1,
we have that:

kj := V ar [Gj (1)] = 1
(Aj + Aγj)2 =

γ2
j

B2 .

As observed in Luciano and Semeraro [87], assuming B = 1 is not restrictive: hence
we can set kj = γ2

j and then kj = αj. After simple calculations, one can find that
the expression of the (instantaneous) linear correlation coefficient at time t of the
process Y = {(Y1 (t) , Y2 (t)) ; t ≥ 0} is:

ρ(Y1(t),Y2(t)) = µ1µ2α1α2aA√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

. (5.4)

Compared to the formula of the linear coefficient in Semeraro [115] the equation
above has an additional parameter a that tunes the stochastic delay.
Finally, the chf of Y at time t is given by the following proposition.

Proposition 5.1.1. Denote ϕ (u;µ, λ) the chf of a rv distributed according to a
IGT (µ, λ) law then the joint chf at time t of the process Y defined by Equation (5.2),
where Hj (t) and Ij (t) are distributed as in (5.3) for j = 1, 2, is:

ϕY (t) (u) =ϕI1(t)

(
u1µ1 + i

σ2
1u

2
1

2

)
ϕI2(t)

(
u2µ2 + i

σ2
2u

2
2

2

)
ϕZa(t)

(
u2µ2 + i

σ2
2u

2
2

2

)

ϕH1(t)

(
α1

(
u1µ1 + i

σ2
1u

2
1

2

)
+ aα2

(
u2µ2 + i

σ2
2u

2
2

2

))
,

(5.5)

where

ϕHj(t) (u) = ϕ
(
u;At,A2t2

)
, j = 1, 2,

ϕIj(t) (u) = ϕ
(
u;Ajtγj, A2

j t
2
)
, j = 1, 2,

ϕZa(t) (u) = ϕ (u;At,A2t2)
ϕ (au;At,A2t2) .

(5.6)

Proof. The proof follows the scheme we used to prove the Proposition 4.2.2.
Ij and H1 are IG processes and hence their chf ’s at time t can be computed

starting from the chf expression of an IG rv, which is reported in Section 2.5.3,
whereas Za (t) is the a-remainder of H1 (t) and then its chf can be easily computed
relying on the fact that:

ϕY (t)(u) = ϕY (t)(au)ϕZa(t)(u), u ∈ R.

The obtained chf ’s of Hj (t), Ij (t) and Za (t) are those of Equations (5.6).
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Let ϕY (t) (u) := E
[
eiu1Y1(t)+iu2Y2(t)

]
be the chf of the process Y defined in (5.2)

at time t: conditioning on G1 (t) and G2 (t) and recalling that W1 (t) and W2 (t) are
independent we get:

ϕY (t) (u) = E

ei
(
u1µ1+i

σ2
1u2

1
2

)
G1(t)

e
i

(
u2µ2+i

σ2
2u2

2
2

)
G2(t)

 .
Substitute in the previous equation the expression of Gj (t), given by (5.1), for
j = 1, 2: by the property of the expected value for the product of independent rv’s,
since Ij (t) , H1 (t) and Za (t) are mutually independent processes, we finally get the
result of the Equation (5.5). ■

5.1.2 Semeraro-Luciano’s sd-NIG model
In this subsection we extend the model of Luciano and Semeraro [87] and we
build bivariate NIG processes with stochastic delays relying on the sd subordinator
H = {(H1 (t) , H2 (t)) ; t ≥ 0} defined in (4.2). Unlike the previous model, we con-
sider a standard BM, W ρ = {(W ρ

1 (t) ,W ρ
2 (t)) ; t ≥ 0} with correlated margins in

order to obtain higher correlations in log-returns.

Let Ij = {Ij (t) ; t ≥ 0}), j = 1, 2, be independent subordinators and let H =
{(H1 (t) , H2 (t)) ; t ≥ 0} be a sd subordinator independent of Ij. We define the
process Y ρ = {(Y ρ

1 (t) , Y ρ
2 (t)) ; t ≥ 0} as:

Y ρ (t) =
(
µ1I1 (t) + σ1W1 (I1 (t)) + α1µ1H1 (t) + √

α1σ1W
ρ
1 (H1 (t))

µ2I2 (t) + σ2W2 (I2 (t)) + α2µ2H2 (t) + √
α2σ2U(t)

)
, (5.7)

where U(t) =
(
W ρ

2 (aH1 (t)) + W̃ (Za (t))
)
, W = {(W1 (t) ,W2 (t))} is standard a

BM with independent components, W ρ = {(W ρ
1 (t) ,W ρ

2 (t))} is standard a BM such
that E [dW ρ

1 (t) dW ρ
2 (t)] = ρdt and W̃ =

{
W̃ (t) ; t ≥ 0

}
is another standard BM

independent of W and W ρ.

A bivariate version of NIG process with sd-subordinators can be obtained letting
Hj (t) and Ij (t) for j = 1, 2 be distributed as in the previous section. Moreover, the
expression of the chf of the process Y ρ at time t is given by the following proposition.

By retracing the idea we used in the proof of Proposition 5.1.1, and recalling,
in addition, that for u ∈ R2 the chf φ (u) of a multivariate normal rv with mean
vector µ and covariance matrix Σ is given by:

φ (u) = exp
(
iµTu − 1

2uTΣu
)
,
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we can compute the joint characteristic function ϕY ρ(t) (u) of the multidimensional
process Y ρ = {(Y ρ

1 (t) , Y ρ
2 (t)) ; t ≥ 0} at time t defined in (5.7), which is given by:

ϕY (t)ρ (u) =ϕI1(t)

(
u1µ1 + i

2σ
2
1u

2
1

)
ϕI2(t)

(
u2µ2 + i

2σ
2
2u

2
2

)
ϕH1(t)

(
i

2u
2
1α1σ

2
1 (1 − a) + uTµ + i

2uTaΣu
)
ϕZa(t)

(
u2µ2α2 + i

2u
2
2α2σ

2
2

)
.

It is easy to show, by direct computation, that the linear correlation coefficient
at time t is given by:

ρY ρ(t) =
a
(
µ1µ2α1α2A+ ρAσ1σ2

√
α1α2

)
√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

. (5.8)

Once again, a can be seen as the parameter that activates stochastic delay.

5.1.3 Ballotta-Bonfiglioli’s sd-NIG model
The construction of bivariate Lévy processes proposed by Ballotta and Bonfiglioli
[9] is slightly different from that of Semeraro [115] and Luciano and Semeraro [87]
because the dependence is not introduced at the level of the subordinators but
rather directly on the subordinated processes. Nevertheless, we can also extend this
approach to include stochastic delay.

The construction of the bivariate process with stochastic delay proceeds as
follows. Let H = {(H1 (t) , H2 (t)) ; t ≥ 0} be the sd subordinator as in (4.2): define
subordinated BM R = {(R1 (t) , R2 (t)); t ≥ 0}, for j = 1, 2, with drift βRj

∈ R and
diffusion γRj

∈ R+, as:

R1 (t) = βR1H1 (t) + γR1W (H1 (t))
R2 (t) = βR2H2 (t) + γR2

(
W (aH1 (t)) + W̃ (Za (t))

)
, (5.9)

where W = {W (t) ; t ≥ 0} and W̃ =
{
W̃ (t) ; t ≥ 0

}
are standard independent

BM ’s. Consider W = {(W1(t),W2(t)); t ≥ 0} be a standard BM with independent
margins, G = {(G1(t), G2(t); t ≥ 0)} a subordinator independent of W and consider
X = {(X1 (t) , X2 (t)); t ≥ 0} be a subordinated BM with drift βj ∈ R and diffusion
γj ∈ R+, defined as follows:

Xj (t) = βjGj (t) + γjWj (Gj (t)) . (5.10)

Finally, combining the previous processes, we can define a new bivariate process
Y = {(Y1(t), Y2(t)); t ≥ 0} as:
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Y (t) = (Y1 (t) , Y2 (t)) = (X1 (t) + a1R1 (t) , X2 (t) + a2R2 (t)) , (5.11)

where aj ∈ R.

As detailed in Ballotta and Bonfiglioli [9] and Gardini et al. [60], for any chosen
distribution for the margin Yj (t), for example a NIG distribution, it is possible to
impose convolution conditions on Xj (t) and Rj (t) such that their linear combination
has the same given distribution of Yj (t). The following proposition shows how
to build a bivariate NIG process with stochastic delays and gives the closed form
expression for its chf.

Proposition 5.1.2. Consider an IG subordinator H = {(H1 (t) , H2 (t)) ; t ≥ 0}
such that H1 (t) ∼ IGT

(
t, t

2

νR

)
, H2 (t) defined in Equation (4.2) and Rj (t) given by

(5.9). Let then X be a subordinated BM, defined as in (5.10), via an IG process G

such that Gj (t) ∼ IGT

(
t, t

2

νj

)
, for j = 1, 2.

Then Yj (t) in (5.11) are distributed according to a NIG law and the joint chf of the
process Y at time t is

ϕY (t) (u1, u2) = ϕ

(
β1u1 + i

2u
2
1γ

2
1 ; t, t

2

ν1

)
ϕ

(
β2u2 + i

2u
2
2γ

2
2 ; t, t

2

ν2

)
ξ (a ◦ u) , (5.12)

where ϕ (u;µ, λ) is the chf of a IGT (µ, λ) distributed rv, a = (a1, a2), u = (u1, u2)
and ◦ is the Hadamard product. Finally ξ (u) is given by:

ξ (w) =ϕ
(
w1βR1 + w2βR2a+ i

2
(
w2

1γ
2
R1 + 2w1w2γR1γR2a+ w2

2aγ
2
R2

)
; t, t

2

νR

)
ϕ
(
w2βR2 + i

2w
2
2γ

2
R2 ; t, t2

νR

)
ϕ
(
w2aβR2 + i

2a
2w2

2γ
2
R2 ; t, t2

νR

) . (5.13)

Proof. Relying on properties of the IG distribution in Section 2.5.3 it is easy to check
that marginal distributions of the Y process at time t have a NIG law.

Since X1 (t), X2 (t) and R (t) = (R1(t), R2(t)) are mutually independent we have
that

ϕY (t) (u1, u2) = E
[
eiu1X1(t)

]
E
[
eiu2X2(t)

]
E
[
eiu1R1(t)+iu2R2(t)

]
. (5.14)

The computation consists of two steps: firstly we compute E
[
eiu1R1(t)+iu2R2(t)

]
which is the chf of the joint process R = {(R1 (t) , R2 (t)) ; t ≥ 0} at time t defined
in (5.9). This can be done by conditioning with respect H1 (t) and Za (t), relying
upon the independence of W (t) and W̃ (t) and recalling the expression of the chf
of a IGT

(
t, t

2

νR

)
rv, which is given in Section 2.5.3, and the chf of its a-remainder,

96



5.2. Simulation Algorithm

obtained by applying the usual relation between characteristic functions of self-
decomposable law which is given by (2.2). By direct computation we obtain that
the chf of R (t) has the form shown in Equation (5.13) valuated at w = a ◦ u.

Secondly, we observe that first two terms of the right hand side of the Equation
(5.14) are the chf ’s of subordinated BM ’s where subordinators are IG processes and
hence their expressions are given by:

E
[
eiujXj(t)

]
= ϕ

(
βjuj + i

2u
2
jγ

2
j ; t,

t2

νj

)
, (5.15)

where ϕ (u;µ, λ) denotes the chf of a rv with IGT (µ, λ) law. Combining Equations
(5.13), (5.14) and (5.15) we finally obtain (5.12). ■

The linear correlation coefficient of a bivariate sd-NIG process at time t can be
directly computed and it is given by:

ρY (t) = a1a2a (βR1βR2νR + γR1γR2)√
σ2

1 + µ2
1α1

√
σ2

2 + µ2
2α2

. (5.16)

As expected, if a = 1 we retrieve the original expression of correlation coefficient
obtained by Ballotta and Bonfiglioli [9].

5.2 Simulation Algorithm
Simulating the paths of the model dynamics defined in Section 5.1 can be accomplished
by simulating BM’s on a stochastic time grid generated by the relative IG sd
subordinators. These subordinators are only marginally IG, in order to get the
joint trajectories one has to simulate the skeleton of Za = {Za(t); t ≥ 0} in (4.2) and
therefore must have a way to obtain random samples distributed according to the
law of the a-remainder Za of an IG distribution.

The methodology that we propose in this section is based on the close relation
between sd laws and Lévy-driven OU processes. Following the naming convention
in Barndorff-Nielsen and Shephard [13] we say that a Lévy-driven OU process
X = {X (t) ; t ≥ 0} is a IG-OU process if its stationary law is an IGB distribution
with scale parameter δ and shape parameter γ. Now a well known result (see
for instance Cont and Tankov [42] or Sato [112]) is that a given one-dimensional
distribution D always is the stationary law of a suitable Lévy-driven OU process if
and only if D is sd. As shown by Halgreen [65] the IG law is sd and can be taken as
the stationary distribution of a fully-fledged OU process.

We recall that a Lévy-driven OU process is defined as,

X (t) = X (0) e−λt +
∫ t

0
e−λ(t−u)dL (u) , (5.17)
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where L = {L (t) ; t ≥ 0} is a Lévy process and λ > 0. In addition, as observed in
Barndorff-Nielsen and Shephard [13], X = {X(t); t ≥ 0} is stationary if and only if
the chf ϕX (u) of its marginal distribution is of the form

ϕX(u) = ϕX(ue−λt)χa(u, t),

where χa(u, t) is the chf of the second term of (5.17). On the other hand, due to the
definition of sd, the last equation means that χa(u, t) is the chf of the a-remainder
of the stationary law if one sets a = e−λt. We can then write

X(t) = X (0) e−λt + Ze−λt(t). (5.18)

Note that the parameter e−λt is now time-dependent and the law of Ze−λt(t) coincides
with that of Za(t) with a = e−λt only at a given time t, indeed Ze−λt(t) is not a
Lévy process. Nevertheless, in practice the simulation of the skeleton of a IG-OU
process relies on the generation of a rv that is distributed according to the law of
the a-remainder of the stationary distribution setting a = e−λt.

We improve the results of Zhang and Zhang [125] relative to IG-OU processes
and we derive an efficient algorithm to simulate the a-remainder of the IGB(δ, γ),
that is the building block for the generation of the trajectory of the process Za(t).

Theorem 5.2.1 (Zhang and Zhang [125]). The rv

Z∆
a =

∫ ∆

0
e−λ(∆−u)dL (u) , a = e−λ∆, ∆ > 0,

can be represented as

Z∆
a

d= W∆
0 +

Ñ∆∑
i=1

W∆
i ,

where W∆
0 ∼ IGB

(
δ
(
1 − e− 1

2λ∆
)
, γ
)
, Ñ∆ is a Poisson-distributed rv with parameter

δ
(
1 − e− 1

2λ∆
)
γ and W∆

i are independent rv’s with pdf:

fW∆ (w) = γ−1
√

2π
w− 3

2
(
e

1
2λ∆ − 1

)−1 (
e− 1

2γ
2w − e− 1

2γ
2weλ∆)

1{w>0} (w) . (5.19)

Assuming for simplicity ∆ = 1, we can then rely on Theorem 5.2.1 to conceive
the simulation procedure of two correlated IG rv’s with linear correlation coefficient
a and hence of the sd subordinators of (4.2) simply setting λ = − log a. We get:

Za
d= W0 +

Ñ∑
i=1

Wi,

where W0 ∼ IG
(
δ
(
1 − a

1
2
)
, γ
)

and Ñ ∼ Poisson
(
δ
(
1 − a

1
2
)
γ
)
.
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Obtaining random samples according to IG and Poisson laws is relatively easy,
whereas the simulation of Wi is non-standard and can be generated using the
acceptance-rejection algorithm proposed by Zhang and Zhang [125] observing that:

fW (w) ≤ c · Γ
(1

2 ,
1
2γ

2
)
,

where c = 1
2

(
1 + e

1
2λ
)

and Γ(α, β) denote the law of a gamma rv with shape α > 0
and rate β > 0.

Although Zhang and Zhang [125] illustrated a more accurate solution to reduce the
expected number of iterations before acceptance c, acceptance-rejection algorithms
might be slow and then sometimes inadequate for real time applications. This
situation is exacerbated if the software implementation relies on interpreted languages
like MATLAB, Python or R. In the following, we detail a simple and more efficient
way to draw a random variate from the pdf fW∆ (w) without relying on acceptance-
rejection methods.

Assuming once again ∆ = 1 and λ = − log a, equation (5.19) becomes:

fW (w) = γ−1
√

2π
w− 3

2
(
a− 1

2 − 1
)−1 (

e− 1
2γ

2w − e− 1
2γ

2 w
a

)
1{w>0} (w) .

We recall that a rv is distributed according to a Gamma law with shape α > 0 and
rate β > 0 if its pdf is:

f (x) = βα

Γ (α)x
α−1e−βx,

where Γ (z) =
∫∞

0 xz−1e−xdx is the Euler Gamma function. Knowing that Γ
(

1
2

)
=

√
π

and observing that:
∫ 1

a

1
e− γ2

2 wy
γ2

2 wdy = e− γ2
2 w − e− γ2

2
w
a ,

we can write:

fW (w) =
∫ 1

a

1

y− 1
2

2
(
a− 1

2 − 1
) ·

(
γ2

2 y
) 1

2 w− 1
2 e− γ2

2 yw

Γ
(

1
2

) dy

=
∫ 1

a

1
fY (y) · fΓ

(
w
∣∣∣∣α = 1

2 , β = γ2

2 y
)
dy.

This means that fW (w) is a mixture of a Gamma law Γ
(
α = 1

2 , β = γ2

2 y
)

and a law
whose pdf and cdf are respectively:
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fY (y) = y− 1
2

2
(
a− 1

2 − 1
)11≤y≤ 1

a

FY (y) = y
1
2 − 1

a− 1
2 − 1

11≤y≤ 1
a
.

The simulation of Za and of the rv Y distributed according to the law with cdf FY (y)
is straightforward as is summarized in Algorithms 6 and 7, respectively.

Algorithm 6 Simulation of Za
1: Simulate W0 ∼ IG (δ (1 −

√
a) , γ)

2: Simulate Ñ ∼ Poisson (δ (1 −
√
a) γ)

3: Simulate Wi, i = 1 . . . Ñ using Algorithm 7
4: Set Za = ∑Ñ

i=0 Wi

Algorithm 7 Simulation of Wi, Ñ

1: Simulate Ui ∼ U ([0, 1])
2: Compute Yi =

(
1 +

(
a− 1

2 − 1
)
Ui
)2

3: Simulate Wi from a Γ
(

1
2 ,

1
2γ

2Yi
)

In Table 5.1 we compare the theoretical values of the first five moments of Za
against those obtained by MC simulations using Algorithm 6. We observe that the
precision of the algorithms is high for different values of a ∈ (0, 1). In Figure 5.1 we
draw the probability density function of two correlated rv X, Y ∼ IGB (δ, γ) and
their scatter plot for two different values of a.

The proposed algorithm is approximately ten times faster than the one presented
by Zhang and Zhang [125], as one can see from results reported in Table 5.2. This
time complexity analysis was implemented on a PC having an Intel Core i5-10210U
2.11 GHz processor and all codes are written in MATLAB.

The simulation of the a-remainder of an IG law provides the generation of the
joint trajectories of the sd subordinator H = {(H1 (t) , H2 (t) ; t ≥ 0)} and therefore
those of the models presented in Section 5.1. The application of these MC schemes
will be shown in Chapter 7 .

Of course Algorithm 6 is instrumental in simulating trajectories of the IG-OU
process in (5.17): a possible realization of the process is shown in Figure 5.2.

In order to check that the improvement of the speed of the algorithm we proposed
is not due to any particular choice of the parameters, we compare Algorithm 6 with
the ones proposed by Zhang and Zhang [125]. In Figure 5.3 we run the algorithm
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5.2. Simulation Algorithm

E [Zn
a ] T N

E [Z1
a ] 3.00 3.00

E [Z2
a ] 10.47 10.48

E [Z3
a ] 42.17 42.26

E [Z4
a ] 194.72 195.49

E [Z5
a ] 1021.84 1029.41

(a) a = 0.1

E [Zn
a ] T N

E [Z1
a ] 1.67 1.67

E [Z2
a ] 3.89 3.89

E [Z3
a ] 11.91 11.90

E [Z4
a ] 45.58 45.46

E [Z5
a ] 209.90 208.97

(b) a = 0.5

E [Zn
a ] T N

E [Z1
a ] 1.00 1.00

E [Z2
a ] 1.76 1.76

E [Z3
a ] 4.56 4.59

E [Z4
a ] 15.77 15.89

E [Z5
a ] 67.94 68.66

(c) a = 0.7

E [Zn
a ] T N

E [Z1
a ] 0.33 0.33

E [Z2
a ] 0.39 0.40

E [Z3
a ] 0.85 0.86

E [Z4
a ] 2.66 2.68

E [Z5
a ] 10.71 10.72

(d) a = 0.9

Table 5.1. Moments comparison using Nsim = 106 for δ = 5 and γ = 1.5. T stands for
the values of the theoretical n-th moment, whereas N stands for the MC-based
estimations.

Figure 5.1. Correlated rv X and Y for δ = 5 and γ = 1.5 and their scatter plots for a = 0.5
and a = 0.9.
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Chapter 5. A Multivariate NIG process with stochastic delay

Algorithm Nsim 103 104 105 106

Algorithm 6 Time (s) 2.2 · 10−3 2.2 · 10−2 1.7 · 10−1 2.1 · 100

Zhang and Zhang [125] Time (s) 1.8 · 10−2 2.0 · 10−1 1.7 · 100 1.8 · 101

Table 5.2. Average computational time of one hundred runs of Algorithm 6, varying the
number of simulations, compared with the computational time of the original
one proposed by Zhang and Zhang [125].
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Figure 5.2. A possible realization of the IG-OU process with parameters δ = 2, γ = 0.5,
λ = 0.02 over the interval [0, T ], with T = 1.

102



5.2. Simulation Algorithm

0

5

10

15

20

25

30

35

00

R

40

5 5

0

5

10

15

20

25

30

35

0 0

R

40

a

0.5

1 5

0

5

10

15

20

25

30

35

00

R

40

a

0.5

51

Figure 5.3. Value of R for different choices of the parameters δ, γ and a.

several times fixing one of the three parameters involved, namely δ, γ and a and
varying the other ones. We compute the computational time ratio R as:

R = Time Algorithm Zhang
Time Algorithm 6 .

We observe that the algorithm we proposed is considerably faster than the original
one by Zhang and Zhang [125] for different reasonable choices of the parameters
(δ, γ, λ).

Finally, we remark that our path-generation procedure is also applicable to the
stochastic volatility models based on IG-OU processes proposed by Barndorff-Nielsen
[11] and extended by Andersson [5].

In the following section we details how to simulate the process H and the
corresponding subordinated Brownian motion.
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Chapter 6

Numerical Methods for option
pricing

In this chapter we collect all the numerical methods we need to sample from different
distributions, to simulate the skeleton of the processes we presented in previous
chapters and to price derivatives. All these techniques are widley used in literature
and the interested reader can refer to Glasserman [62] for an exhaustive discussion
about Monte Carlo methods in finance and to Seydel [117] for an overview on standard
techniques such as finite difference, finite elements and Monte Carlo schemes for
option pricing when the price dynamics is modeled using the Brownian motion. On
the other hand, Cont and Tankov [42] deals with numerical techniques in the more
general setting of Lévy processes whereas Devroye [50] provides a bunch of algorithms
to sample random numbers according to different kind of distribution.

6.1 Simulation of stochastic processes
In this section we show how we can simulate the paths of a given stochastic process
X = {X(t); t ≥ 0}. Roughly speaking, in order to generate possible realizations of a
given stochastic process one needs to be able to simulate pseudo-random numbers
according to a given distribution.

Almost all computers are able to simulate random variables with uniform distri-
bution on [0, 1] and, starting from an independent identically distributed random
samples of uniform random variables on [0, 1], it is possible to generate from a wide
range of laws. For instance we can sample independent realizations of X ∼ N (0, 1)
by using the Box-Muller algorithm (see Box and Muller [26] and Devroye [50]).

If one need to sample normally distributed correlated random variable X, Y with
correlation ρ one can consider X,Z ∼ N (0, 1) with X independent of Z and define:

Y = ρX +
√

1 − ρ2Z,

obtaining Y ∼ N (0, 1) and corr(X, Y ) = ρ. Observe that this technique is based on
the Cholesky decomposition (Quarteroni et al. [104]).
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Chapter 6. Numerical Methods for option pricing

On the other hand, using the scaling properties of the Gamma distribution
we discussed in Section 2.5.2, it is easy to show that to draw random samples of
X ∼ Γ (c, λ) it is enough being able to simulate from X ∼ Γ (a, 1). According
to Devroye [50] the cases a ≤ 1 and a > 1 should be considered separately. The
algorithm for a ≤ 1 (which is the most often case in applications) can be found
in Cont and Tankov [42, Algorithm 6.8], whereas we can sample from a Γ (a, 1)
with a > 1 using Cont and Tankov [42, Algorithm 6.9]. To sample from an inverse
Gaussian distribution IGT (µ, λ) the algorithm proposed by Michael, Schucany and
Hass can be adopted (see Cont and Tankov [42, Algorithm 6.9]).

Sample trajectories of the compound Poisson process can be obtained combining
together random sampling from the Poisson and from the uniform law (see Cont and
Tankov [42, Chapter 6]), whereas random samples from Poisson distributions can be
obtained by using Devroye [50, Lemma 3.1]. The derived algorithm is substantially
based on the generation of random independent samples from an exponential law:
this last task can be easily achieved by adopting the inversion method presented in
Devroye [50, Chapter 2].

6.1.1 Subordinate Brownian motion simulation
All the models we have presented in previous chapters are based on Brownian subordi-
nation. The simulation of a subordinated Brownian motionX = {W (S(t)); t ∈ [0, T ]}
on a fixed time grid 0 = t0 < t1 < · · · < tn = T where W is a Brownian motion with
drift µ and diffusion σ and S is a subordinator is done in two steps. First we simulate
the path of the subordinator S on the deterministic grid obtaining a “stochastic grid”
0 = St0 < St1 , . . . , < Stn and hence we simulate the Brownian motion on that grid.
This procedure is summarized in Algorithm 8 proposed by Cont and Tankov [42].

Algorithm 8 Simulation of a subordinated Brownian motion
1: Simulate the increments of the subordinator: ∆Si = Sti − Sti−1 , where S0 = 0.
2: Simulate n independent standard random variables N1, . . . , Nn. Set ∆Xi =
σNi

√
∆Si + µ∆Si.

3: The discretized trajectory is given by X(ti) = ∑i
k=1 ∆Xk.

When the increments ∆Si are distributed according to a gamma law we obtain
the Variance Gamma processes of Madan and Seneta [88], whereas when they are
distributed according an inverse Gaussian law we get the Normal Inverse Gaussian
process of Barndorff-Nielsen [11]. The aforementioned Algorithm can be adapted to
simulate the skeleton of the stochastic processes we introduced in previous chapters.

6.1.2 Simulation of self-decomposable subordinators
In order to simulate the paths of the bivariate versions of the sd Variance Gamma and
that of the sd NIG processes we must simulate the process H = {(H1(t), H2(t)); t ≥ 0}

106



6.1. Simulation of stochastic processes

which is defined according to Definition 4.1.1 as:

H2 (t) = aH1 (t) + Za (t) ,

where a ∈ (0, 1) and H1(t) ∼ Γ (αt, β) or H1(t) ∼ IGB (δt, γ). We also remember
that the increment of the process H1 over the time interval ∆t denoted by ∆H1
is such that ∆H1 ∼ Γ (α∆t, β) and ∆H1 ∼ IGB (δ∆t, γ) respectively. As mention
above, sampling algorithms from a gamma or an inverse Gaussian law are known
and the simulation of the a-remainder Za(t) can be achieved by using Algorithm 2
or Algorithm 6 if H1(t) is distributed according to a gamma or an inverse Gaussian
law respectively. This procedure is reported in Algorithm 9.

Algorithm 9 Simulation of H = {(H1(t), H2(t)); t ∈ [0, T ]}
Simulation of the process H on evenly spaced time grid 0 = t0 < t1 < . . . , < tn = T
with step ∆t.

1: Simulate the increments of the subordinator H1: ∆H1,i = H1,ti −H1,ti−1 , where
H1,t0 = 0.

2: Simulate the increments of the process Za: ∆Za,i = Zti − Zti−1 where Zt0 = 0.
3: Set ∆H2,i = a∆H1,i + ∆Za,i
4: The discretized trajectories are given by:

H1(ti) =
i∑

k=1
∆H1,k, H2(ti) =

i∑
k=1

∆H2,k.

6.1.3 Self-decomposable processes simulation
In this section we use the results of the previous section and that ones we derived in
Chapters 3, 4 and 5 to simulate the paths of the V G+ + process and that of the
bivariate Variance Gamma and NIG process with stochastic delay.

The simulation algorithm of the V G+ + process X is the simplest one to achieve.
A realization X can be obtained by using Algorithm 8 where the increment ∆Si
is that of the subordinating process Z++

a whose increments can be obtained by
Algorithm 1 or 2.

On the other hand, the simulation of the skeleton of the multivariate version of
the Variance Gamma and Normal Inverse Gaussian processes with stochastic delay
is trickier. First of all observe that, in order to properly simulate those processes we
need to simulate objects of the form:

X = {(W (t),W (at)); t ≥ 0} ,
Y = {(W ρ

1 (t),W ρ
2 (at)); t ≥ 0} ,

where the deterministic time t can be replaced by a general subordinator H =
{H(t); t ≥ 0}. The main problem with the simulation is neither process X nor Y are
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Lévy processes and hence we cannot use the property of the independent increments
to simulate the path of the process.

The procedure to simulate the skeleton of the process X is reported in Algorithm
10 whereas an equivalent numerical routine which relies upon the Brownian bridge
technique is shown in Algorithm 11.

Algorithm 10 Simulation X = {(W (t),W (at)) , t ∈ [0, T ]}
Simulation of X on an evenly spaced time grid Π1 = 0 = t0 < t1 < · · · < tn = T
with step ∆t.

1: Simulate 2n iid random variables ∆Wi, i = 1, . . . , 2n.
2: Create a second grid Π2 = aΠ1 = at0 < at1 < · · · < atn and merge it with Π1

obtaining Π.
3: Sort Π = s0 < s1 < · · · < s2n.
4: Set W (si) = ∑i

k=1 ∆Wi.
5: For all ti ∈ Πj find sk ∈ Π such that ti = sk, for j = 1, 2.
6: Set Xj(ti) = W (sk), for j = 1, 2.

Algorithm 11 Simulation X = {(W (t),W (at)) ; t ∈ [0, T ]} (alternative Algorithm)
Simulation of X on an evenly spaced time grid Π1 = 0 = t0 < t1 < · · · < tn = T
with step ∆t.

1: Simulate n iid random variables ∆Wi, i = 1, . . . , n.
2: Create a second grid Π2 = aΠ1 = at0 < at1 < · · · < atn.
3: Set X1(ti) = ∑i

k=1 ∆Wi.
4: For all sk ∈ Π2 find the time interval [tj, tj+1] in Π1 such that sk ∈ [tj, tj+1].
5: Construct a Brownian bridge W (si) at si, pinned at X1(tj) and X1(tj+1) between
tj and tj+1.

6: Set X2(ti) = W (sk).

Algorithms 12, 13 and 14 show how to simulate processes defined, respectively,
in Section 4.2.1, Section 4.2.2 and Section 4.2.3, i.e. when we use self-decomposable
subordinators H1 and H2 which are distributed according to a gamma law simulated
by using Algorithm 9. The same algorithms can be adapted to simulate the tra-
jectories of the 2D sd NIG process with by switching the gamma with the inverse
Gaussian distribution and the a-remainder of a gamma law with the ones of the
inverse Gaussian law.

In the following section we show how the aforementioned methods can be used
to price derivatives using the Monte Carlo method, relying upon the risk neutral
valuation formula we mentioned in Section 2.8.

108



6.2. Monte Carlo methods for option pricing

Algorithm 12 Simulation of 2D Semeraros’s sd Variance Gamma process
Simulation of a bivariate Variance Gamma Y = {(Y1(t), Y2(t)); t ∈ [0, T ]} in equis-
paced time grid 0 = t0 < t1 < · · · < tn = T with step ∆t.

1: Simulate n independent gamma variables ∆Ij,i ∼ Γ
(
∆t

(
1
αj

− A
)
, 1
αj

)
for j =

1, 2, and i = 1, . . . , n.
2: Simulate n independent gamma variables ∆H1,i ∼ Γ (∆t · A, 1).
3: Generate n independent ∆Za,i variables as a-remainder of a Gamma distribution

Γ (∆t · A, 1) using Algorithm 1.
4: Set ∆H2,i = a∆H1,i + ∆Za,i
5: Set ∆Gj,i = ∆Ij,i + αj∆Hj,i for j = 1, 2.
6: For j = 1, 2 simulate n iid N (0, 1) random variables Nj,1, . . . , Nj,n.

Set ∆Yj,i = σjNj,i

√
∆Gj,i + µj∆Gj,i for all i.

7: The discretized trajectories are Yj (ti) = ∑i
k=1 ∆Yj,k for j = 1, 2.

6.2 Monte Carlo methods for option pricing
Monte Carlo methods were first used by Enrico Fermi in 1930 to study neutron
diffusion. In 1940 Stanislaw Ulam developed the modern formulation of the Markov
Chain Monte Carlo method and John Von Neumann understood its importance. See
Metropolis [92] for a brief history on the origin of Monte Carlo method. Nowadays
Monte Carlo methods are very popular is many fields of science such as computational
biology, computer graphics, applied statistics, artificial intelligence and they find
applications even to law. In finance they are used for the evaluation of investment in
projects, insurance and risk analysis. Moreover, the Monte Carlo method is a must
for derivatives valuations, mainly when one deals with exotic contingent claims for
which closed formulas are not available and other methods based on the resolution
of the partial differential equation (PDE) or on the Fourier transform are hard to
apply.

In this section we briefly sketch how the Monte Carlo scheme can be used to
value contingent claims, without claiming to exhaust all possible aspects. We refer to
Seydel [117] and Glasserman [62] for a detailed analysis of the Monte Carlo methods
in Finance.

The martingale approach to option pricing we discussed in Section 2.8 shows
that the price of a given contingent claim H at time t = 0 can be computed by the
formula (2.30):

ΠH(0) = e−rTEQ [H(T )|F0] .
Therefore, in order to price derivatives it is sufficient to evaluate the expected value of
the random variable H(T ) under the risk-neutral measure Q: namely the evaluation
an integral is required. To this aim the Monte Carlo scheme can be adopted. If
we want to price an European call option which payoff at maturity T is given by
H(T ) = max (S(T ) −K, 0) then the valuation procedure is extremely simple and it
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Algorithm 13 Simulation of 2D Semeraro-Luciano’s sd Variance Gamma process
Simulation of a bivariate Variance Gamma Y = {(Y1(t), Y2(t)); t ∈ [0, T ]} on evenly
spaced time grid 0 = t0 < t1 < · · · < tn = T with step ∆t.

1: Simulate n independent gamma variables ∆Ij,i ∼ Γ
(
∆t

(
1
αj

− A
)
, 1
αj

)
for j = 1, 2

and i = 1, . . . , n.
2: Simulate n independent gamma variables ∆H1,i ∼ Γ (∆t · A, 1) for i = 1, . . . , n.
3: Generate n independent ∆Za,i variables as a-remineder of a gamma distribution

Γ (∆t · A, 1) for i = 1, . . . , n using Algorithm 1.
4: Set ∆H2,i = a∆H1,i + ∆Za,i
5: Simulate n iid N (0, 1) random variables Nj,1, . . . , Nj,n for j = 1, 2.
6: Set ∆YIj,i

= σ1Nj,i

√
∆Ij,i + µj∆Ij,i.

7: Set H1(ti) = ∑i
k=1 ∆H1,k and H2(ti) = ∑i

k=1 ∆H2,k.
8: Consider the partitions Π1 = H1(t0) < H1(t1) < · · · < H1(tn) and Π2 = aΠ1.

Merge Π1 and Π2 together obtaining the partition Π = h0 < h1 < · · · < h2n.
9: Simulate correlation Brownian motions W ρ

1 and W ρ
2 on partition Π.

10: For each H1(ti) ∈ Π1 find hk ∈ Π such that H1(ti) = hk and for each H2(ti) ∈ Π2
find sk ∈ Π such that H2(ti) = sk.

11: Set:

W ρ
1 (H1(ti)) = W ρ

1 (hk),
W ρ

2 (aH1(ti)) = W ρ
2 (sk).

12: Simulate a subordinated Brownian motion where the subordinator is Za using
Algorithm 8. W̃ (Za(ti)) represents the value of the subordinated Brownian
motion at time ti.

13: Set YH1 (ti) = α1µ1H1(ti) + √
α1σ1W

ρ
1 (H1(ti)).

14: Set YH2 (ti) = α2µ2H2(ti) + √
α2σ2

(
W ρ

2 (aH1(ti)) + W̃ (Za(ti))
)
.

15: Set YIj
(ti) = ∑i

k=1 ∆YIj ,k for j = 1, 2.
16: Set Yj (ti) = YIj

(ti) + YHj
(ti) for j = 1, 2.
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Algorithm 14 Simulation of 2D Ballotta-Bonfiglioli’s sd Variance Gamma process
Simulation of a bivariate Variance Gamma Y = {(Y1(t), Y2(t)); t ∈ [0, T ]} on evenly
spaced time grid 0 = t0 < t1 < · · · < tn = T with step ∆t.

1: Simulate a Variance Gamma process Xj (ti) with parameters (βj, γj, νj) j = 1, 2
using Algorithm 8.

2: Simulate n independent gamma variables ∆H1,i ∼ Γ
(

∆t
νR
, 1
νR

)
for i = 1, . . . , n.

3: Generate n independent ∆Za,i variables as a-remainder of a Gamma distribution
Γ
(

∆t
νR
, 1
νR

)
for i = 1, . . . , n.

4: Set ∆H2,i = a∆H1,i + ∆Za,i
5: Set H1(ti) = ∑i

k=1 ∆H1,k and H2(ti) = ∑i
k=1 ∆H2,k.

6: Simulate a subordinated Brownian motion where the subordinator is Za using
Algorithm 8. W̃ (Za(ti)) represents the value of the subordinated Brownian
motion at time ti.

7: Simulate the non Lévy process {(W (H1(t)),W (aH1(t))); t ≥ 0} using Algorithm
10.

8: Set R1(ti) = βR1H1(ti) + γR1W (H1(ti)).
9: Set R2(ti) = βR2H2(ti) + γR2

(
W (aH1(ti)) + W̃ (Za(ti)

)
.

10: Set Yj (ti) = Xj (ti) + ajRj (ti) for j = 1, 2.

is summarized in Algorithm 15. In particular it suffices to simulate a large number
of trajectories of the underlying price process at maturity T under the risk neutral
measure Q, compute the payoff H(T ) for all the realizations, take the mean and
discount it by the factor e−rT .

It is worth noting that Monte Carlo algorithm (whose order of convergence is
O
(
N−1/2

)
independently of the dimension of the problem where N is the number of

simulations) might underperform methods based on the Fourier transform and PDE
in terms of speed and order of convergence. Nevertheless, Monte Carlo algorithms
are flexible, easy to implement and allow to solve derivatives pricing problems which
cannot be solved using a PDE or Fourier approach. To this end, several methods
for option pricing based on the Monte Carlo technique have been developed over
the years. An interested read can refer to Seydel [117], Cont and Tankov [42] for a
general discussion and to Longstaff and Schwartz [83], Broadie and Glasserman [29],
Fu et al. [59], Tseng and Barz [121] and Boogert and de Jong [25] for American style
options pricing. Finally, applications of the Monte Carlo scheme for the evaluation
of barrier options can be found in Karatzas and Shreve [76] and Caflisch et al. [34].

6.3 Fourier Methods for option pricing
Contrary to the classical Black-Scholes model, in many exponential-Lévy models
there are no explicit formulas for European call option pricing, because the density
of the Lévy process is not known in closed form. Nevertheless, the characteristic
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Algorithm 15 Monte Carlo simulation for European options
1: Fix a number of simulation N large.
2: Simulate the underlying process S = {S(t), t ∈ [0, T ]} over the grid 0 = t0 <
t1 < · · · < tn = T N times and get the final results (Sk(T ))Nk=1.

3: Valuate the payoff function H at T and obtain:

(H(Sk(T )))Nk=1 = (max (Sk(T ) −K, 0))Nk=1

4: Given the value of S at t = 0, an unbiased estimate of the risk-neutral expectation
EQ [H] is given by:

ÊQ [H] = 1
N

N∑
k=1

H(Sk(T ))

5: The value H(0) of the European option at time t = 0 is given by:

H(0) = e−rT ÊQ [H] ,

function of Lévy models can be expressed in terms of elementary functions and
this has led to the developed of numerical methods based on the Fourier Transform.
An overview of the most used Fourier-based methods can be found in Schmelzle
[113], whereas a MATLAB implementation of many of Fourier methods can be found
in Kienitz and Wetterau [77]. The most famous pricing algorithms based on the
Fourier approach have been proposed by Carr and Madan [37], Attari [7], Lewis [81],
Lord et al. [84] and Fang and Oosterlee [55]. All these methods present strengths
and weaknesses and they have been compared in Schmelzle [113] and Kienitz and
Wetterau [77]. Even if they are mainly used for European options evaluations some
of them have been extended in order to be applicable also for American and exotic
option pricing (see for example Fang [54]).

In particular, the aforementioned methods can be efficiently applied when we
deal with financial derivatives written on a single underlying risky asset. If we scale
to a multi-asset market these methods become more complicated to use and hard
to be implemented. Nevertheless, aiming at pricing a spread option Hu and Zhou
[72] proposed an approach based on a double inversion of the Fourier transform
whereas Caldana and Fusai [35] derived an approximated formula for Spread option
pricing which requires only one Fourier inversion, leading to an easier numerical
implementation. Another algorithm for spread option pricing based on cosine
expansions have been proposed by Pellegrino and Sabino [99], whereas Pellegrino
and Sabino [98] have shown how a moment matching technique for its valuation can
be adopted.

In the next section we briefly focus only on two methods we used in our work,
namely the method proposed by Carr and Madan [37] and Caldana and Fusai [35].
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Moreover, for the sake of completeness, all the analysis we performed by using
the Carr-Madan method have been conducted by using the Lewis [81] procedure,
obtaining similar results.

6.3.1 One dimensional pricing with FFT
The first pricing algorithm based on the Fast Fourier Method introduced by Cooley
and Tukey [44] was proposed by Carr and Madan [37] and proceeds as follows.
Suppose we want to price an European call option CT (k) with strike price K, where
k = logK is the log-strike and T is the maturity. Let the risk-neutral density of the
log-price sT in T denoted by qT (note that this density could be unknown in closed
form), whereas q̃T (s) denotes the density of the prices S at T . Let the characteristic
function Φ of this density be:

ΦT (u) =
∫ ∞

−∞
eiusqT (s) ds, u ∈ R. (6.1)

Remember that ΦT (u) is assumed to have an analytically closed form, which is true
for many Lévy processes. The initial call value CT (k) can be related to risk-neutral
density qT (s) by:

CT (k) =
∫ ∞

0
e−rT (ST −K)+ q̃T (S) dS

=
∫ ∞

k
e−rT

(
es − ek

)
qT (s) ds. (6.2)

Observe that we can not compute the Fourier Transform of CT (k) because
limk→−∞ CT (k) is constant and so CT (k) is not integrable. Nevertheless, we can
choose α > 0 and define the “modified call option value” as cT (k) = eαkCT (k):
cT (k) → 0 for k → −∞ and so we can compute the Fourier transform in k.

ΨT (v) =
∫ ∞

−∞
eivkcT (k) dk (6.3)

Observe that one can compute CT (k) by inverting (6.3), obtaining:

CT (k) = e−αkcT (k)

= e−αk 1
2π

∫ ∞

−∞
e−ivkΨT (v) dv

= e−αk 1
π

∫ ∞

0
e−ivkΨT (v) dv. (6.4)

Therefore, if we are able to compute the last integral in Equation 6.4 we obtain
the option value. At this point, all we need is an expression for ΨT (v). In particular
we have that:
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ΨT (v) =
∫ ∞

−∞
eivkcT (k) dk

(6.2)=
∫ ∞

−∞
eivk

∫ ∞

k
eαke−rT

(
es − ek

)
qT (s) dsdk

=
∫ ∞

−∞
e−rT qT (s)

(∫ s

−∞

(
es+αk − e(1+α)k

)
eivkdk

)
ds,

where in the last equality we have switched the order of integration. The inner
integral can be split up in two parts which are computed separately. In particular
we get:

∫ s

−∞
es+αk+ivkdk =

∫ s

−∞
es+(α+iv)kdk = e(i+α+iv)s

α + iv
,∫ s

−∞
e(α+1+iv)kdk = e(1+α+iv)s

1 + α + iv
,

and hence we obtain that:

ΨT (v) =
∫ ∞

−∞
e−rT qT (s)

[
e(i+α+iv)s

α + iv
− e(1+α+iv)s

1 + α + iv

]
ds

=
∫ ∞

−∞
e−rT qT (s) es(1+α+iv) 1 + α + iv − α− iv

(α + iv) (1 + α + iv)ds

= e−rT

α2 + α− v2 + i (2α + 1) v

∫ ∞

−∞
qT (s) es(1+α+iv)ds.

Looking at the last integral of the previous equation we note that:∫ ∞

−∞
qT (s) es(1+α+iv) =

∫ ∞

−∞
qT (s) eis(−αi+v−i) (6.1)= ΦT (v − (α + 1) i) ,

which is the characteristic function of a Lévy processes which is assumed to be known
in closed form. To this end we have that:

ΨT (v) = e−rTΦT (v − (α + 1) i)
α2 + α− v2 + i (2α + 1) v . (6.5)

By substituting (6.5) in Equation (6.4) we obtain

CT (k) = e−αk 1
π

∫ ∞

0
e−ivkΨT (v) dv

(6.4)= e−αk 1
π

∫ ∞

0
e−ivk e−rTΦT (v − (α + 1) i)

α2 + α− v2 + i (2α + 1) vdv (6.6)

Solving this integral we get the required call Option price.
We finally remark that if α = 0 then the denominator vanishes if v = 0 this is the
reason why we need the a α > 0. The choice of α is discussed in Carr and Madan
[37].
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6.3.2 FFT algorithm
The FFT algorithm introduced by Cooley and Tukey [44] is a very efficient way to
compute the sum:

w (k) =
N∑
j=1

e−i 2π
N

(j−1)(k−1)x (j) , k = 1, . . . , N, (6.7)

where N is typically a power of 2, even if this hypothesis can be relaxed.
By taking Equation (6.4) and applying the trapezoid rule for quadratures we get:

CT (k) = e−αk 1
π

∫ ∞

0
e−ivkΨT (v) dv ≃ e−αk 1

π

N∑
j=1

e−ivjkΨT (vj) η, (6.8)

where vj = η (j − 1). Observe that we truncated the upper limit of the integral,
using N points with a step size of η. The upper limit of integration is then a = Nη.
The FFT algorithm can be used to efficiently evaluate integrals of the form (6.6) and
hence to price European call options.
More precisely, the FFT algorithm returns N values of k so we obtain N option
values, spanning from a minimum to a maximum value of the log-strike price, with a
step size of λ. In particular, the values of k are given by:

ku = −b+ λ (u− 1) , u = 1, . . . , N. (6.9)

Therefore, log-strikes k runs from −b to b where:

b = 1
2Nλ.

Observe that we discretize in two dimensions: in the first grid N points discretize
the integral in Equation (6.4), whilst in the second one N points discretize the space
of the log-strike price. Of course the meshes might have different step sizes, namely
η for the integral and λ for the log-strike, but number of points is equal to N for
both of them.
If we substitute (6.9) in Equation (6.8) we obtain:

CT (ku) ≃ e−αk 1
π

N∑
j=1

e−ivjkuΨT (vj) η

(6.9)= e−αku
1
π

N∑
j=1

e−ivj [−b+λ(u−1)]ΨT (vj) η

= e−αku
1
π

N∑
j=1

e−ivjλ(u−1)eibvj ΨT (vj) η, u = 1, . . . , N.
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Remembering that vj = η (j − 1) and substituting vj in the first exponent of the
previous equation we get:

CT (ku) ≃ e−αk 1
π

N∑
j=1

e−iηλ(j−1)(u−1)eibvj ΨT (vj) η, u = 1, . . . , N.

In order to apply the Fast Fourier Transform we must request that λη = 2π
N

and
hence we obtain:

CT (ku) ≃ e−αk 1
π

N∑
j=1

e−i 2π
N

(j−1)(u−1)eibvj ΨT (vj) η, u = 1, . . . , N.

Using Simpson’s rule weightings we get:

CT (ku) ≃ e−αk 1
π

N∑
j=1

e−i 2π
N

(j−1)(u−1)eibvj ΨT (vj)
η

3
[
3 + (−1)j − δj−1

]
, u = 1, . . . , N.

where δn is the Kronecker delta function which is equal to one if n = 0 and zero
otherwise. If we compare the last equation with Equation (6.7):

CT (ku) = e−αk 1
π

N∑
j=1

e−i 2π
N

(j−1)(u−1)eibvj ΨT (vj)
η

3
[
3 + (−1)j − δj−1

]
, u = 1, . . . , N.

w (k) =
N∑
j=1

e−i 2π
N

(j−1)(k−1)x (j) , k = 1, . . . , N.

we recognize that the value of the call option CT (ku) is obtained by computing the
FFT of the quantity:

x (j) = eibvj ΨT (vj)
η

3
[
3 + (−1)j − δj−1

]
.

6.3.3 An approximated formula for spread options
In this section we sketch the method proposed by Caldana and Fusai [35] to price a
spread option under the assumption that the log-price dynamics is modelled by a
stochastic process which characteristic function is known in closed form.

Based on a result given by Bjerksund and Stensland [20] the authors generalize the
well known Margrabe [89] formula for spread option pricing. Assume that a general
probability space (Ω,F ,P) is given and that Q is a risk-neutral measure equivalent
to P. Let S1 {S1 (t) ; t ≥ 0} and S2 = {S2 (t) ; t ≥ 0} be two stock processes: the
price of an European Spread-Option with maturity T is given by:
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CK (0) = e−rTEQ
[
(S1 (T ) − S2 (T ) −K)+

]
,

If we define the event A:

A =
{
ω ∈ Ω : S1 (T )

Sα2 (T ) >
ek

E (Sα2 (T ))

}
,

the value:

Ck,α
K (0) = e−rTEQ [(S1 (T ) − S2 (T ) −K)1A] ,

can be computed in a semi-explicit way and, moreover, Cα,k
K (0) is a very good

approximation for CK (0) for suitable choices of α and k.
Let u = (u1, u2)T ∈ R2 and Y = {Y (t); t ≥ 0}, where Y (t) = (logS1 (t) , logS2 (t))T
and consider the joint characteristic function:

ΦT (u) = ΦT (u1, u2) = EQ
[
eiu1 logS1(T )+iu2S2(T )

]
= E

[
ei⟨u

T ,Y (T )⟩
]
,

where ⟨·, ·⟩ denotes the scalar product. The following proposition shows how to
compute the price of spread option.

Proposition 6.3.1. (Caldana and Fusai [35, Proposition 1]) The approximate spread
option value Ck,α

K (0) is given in term of a Fourier inversion formula as:

Ck,α
K (0) =

(
e−δk−rT

π

∫ +∞

0
e−iγkΨT (γ; δ, α) dγ

)+

, (6.10)

where δ is the dumping factor and

ΨT (γ; δ, α) = ei(γ−iδ) log(ΦT (0,iα))

i (γ − iδ) [ΦT ((γ − iδ) − i,−α (γ − iδ)) −

ΦT (γ − iδ,−α (γ − iδ) − i) −KΦT (γ − iδ,−α (γ − iδ))] ,

and

α = F2 (0, T )
F2 (0, T ) +K

,

k = log (F2 (0, T ) +K) .

The quantity F2 (0, T ) appearing in the previous formulas can be computed in
the following way:

F2 (0, T ) = E [S2 (T )] = ΦT (0,−i) .
Therefore, we can conclude that the price of a spread option where the joint char-
acteristic function is known can be computed by solving (6.10). Observe that this
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algorithm only provides an approximated value of the spread option: nevertheless,
such an approximation is acceptable (see Caldana and Fusai [35]). Moreover, the
just presented algorithm is simpler to implement that the one proposed for example
by Hurd and Zhou [74] since it request a single Fourier Transform inversion.

6.4 A note on PDE methods for option pricing
In the Black and Scholes [23] model, where the dynamic of the underlying asset S
under the risk neutral measure Q is given by:

dS(t) = rS(t)dt+ σ(t, S)S(t)dW (t),
the value C(t, S(t)) of an European call option can be computed by solving the
following parabolic PDE:

∂C(t, S)
∂t

+ rS
∂C(t, S)
∂S

+ σ2(t, S)S2

2
∂2C(t, S)
∂S2 − rC(t, S) = 0, (6.11)

with the boundary condition C(T, S) = (S(T ) −K)+. Such a PDE can be solved in
many ways: following Salsa [111], by using a change of variables it can be reduced
tot he heat equation and hence it can be analytically solved. Alternatively, it can be
numerically solved using finite differences or finite elements as discussed in Seydel
[117].

Of course, as we have shown in Section 2.8 the value of the same European call
option can be computing by taking the discounted expectation of the payoff under
the risk-neutral measure Q:

C(t, S(t)) = e−r(T−t)EQ
[
(S(T ) −K)+

]
.

The connection between the partial differential equation approach and the martingale
one is given by the Feynman–Kac formula (see Shreve [118, Theorem 6.4.1] and Kac
[75]).

A similar result holds when the risk-neutral dynamics is given by an exponential
Lévy model or a jump-diffusion model (see Cont and Tankov [42, Chapter 12]).
The value of a European call option is given by C(t, S(t)) where C(t, S(t)) solves a
second-order partial intego-differential equation (PIDE):

∂C(t, S)
∂t

+ rS
∂C(t, S)
∂S

+ σ2(t, S)S2

2
∂2C(t, S)
∂S2 − rC(t, S)∫

R
ν(dy)

[
C(t, Sey) − C(t, S) − S (ey − 1) ∂C(t, S)

∂S

]
= 0,

(6.12)

with the usual boundary condition C(T, S) = (S(T ) −K)+. The new element is the
integral term in Equation 6.12, due to the presence of jumps. Its presence leads
to new theoretical and numerical issues making the PIDE harder to solve than the
usual PDE.
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Remark. PIDE of the type of (6.12) have been studied by Garroni and Menaldi [61]
and Bensoussan and Lions [17] whereas an overview of numerical methods (such as
multinomial trees, finite difference schemes and Galerkin methods) for its resolution
can be found in Cont and Tankov [42, Chapter 12]. Financial examples can be
found in the book Prigent [103], whereas an approach combining the Fast Fourier
Transform method and the operator splitting technique was proposed by Andersen
and Andreasen [4]. Mayer and Van Der Hoek [90] discussed the method of lines for
American options valuation, whilst Cont and Voltchkova [43] studied the application
of finite difference methods to finite and infinite activity Lévy models.

A PIDE of the form of (6.12) can be written for the V G+ + model discussed in
Chapter 3. If we impose the boundary condition for an European call option and
we solve the PIDE we obtain the price of the option which coincides with the one
we obtain by the formula of Proposition 3.2.6. Similarly to what has been done for
spread options in the standard Black-Scholes model, a PIDE can be written and
solved to determine the price of spread options within the models we presented in
Chapters 4 and 5. Their study and numerical resolution requires a detailed analysis
and this goes beyond the scope of this work. Nevertheless, this is a very interesting
topic and it might be the subject of a future inquire.

In the next chapter we use the process we introduced in Chapters, 3, 4 and 5 to
model real financial markets: in particular, we deal with calibration issue and we
use the algorithms we have presented in this chapter to properly evaluate different
contingent claims.
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Chapter 7

Numerical results and financial
applications to energy markets

In this chapter we use the processes we introduced so far and the relative numerical
techniques to model energy markets and to price different types of derivatives. In
particular we focus on European power and gas future markets and we highlight how
the stochastic processes we discussed so far are able to catch some empirical facts
that can be observed in this market context.

7.1 Why Lévy processes?
Since the down of mathematical finance Brownian motion has been a milestone in
modeling market prices dynamic. In the Black and Scholes [23] model the risky asset
process is modeled by using a geometric Brownian motion and this intuition leads to
several advantages: closed formulas for the valuation of many derivative contracts
are available and efficient algorithms for path simulations can be easily implemented.
Moreover, closed expression for greeks computation can be obtained.

Despite these advantages, the limits of Black-Scholes model are well known and
led in recent years to explore more general techniques aiming at describing market
dynamics in a more realistic way. Among the others proposed solutions, Lévy models
represents one of the most widely used and flexible tools in mathematical finance
both for risk-management and pricing purposes.

Everyone who deals with quantitative finance knows the main drawbacks of the
Black-Scholes approach: price trajectories are assumed to be continuous in time,
volatility is constant, log-returns are assumed to be normally distributed and hence
the probability of extrem events is small. All these limits are overcome by using Lévy
models which lead to a better description of market dynamics: see Cont and Tankov
[42, Chapter 1] for the details. As we observed in previous chapters, Lévy processes
are harder to handle that the classical Brownian motion both from a mathematical
and a numerical point of view. Nevertheless, if they can be successfully applied and
calibrated one can obtain a very good description of many stylized-facts observed in
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Figure 7.1. Daily spot electricity prices of different European countries.

the market.

7.2 Energy markets: some stylized facts
As many other financial markets, the European energy market is mainly divided in
two parts: the spot and the future market. The spot market is a public financial
market in which energy commodities, such as natural gas, electricity, emissions and
so on, are traded for immediate delivery. Loosely speaking, each European country
owns its local spot electricity market within which energy producer and consumers
agree to buy or sell electricity at some “equilibrium price”. The mechanism behind
the electricity energy market is complex and it is not the subject of this work1.
Although each country is characterized by its own spot electricity market, each of
them is not independent from the others. Power transmission from one country to
the other are frequent: for example the electricity produced in Germany can be
exported to France, and then to Italy leading to de facto interconnected markets.
Because of this dependence, it is customary to observe that a risen in the price level
of a given country, Germany for example, leads to a general rise of the electricity
prices in the whole Europe. For this reason the European spot electricity markets
show the same macro-behavior. For example, in October/November 2016 many
problems related to the some nuclear power plants in France let to a rise of electricity
prices not only in France but also in other countries such as Germany and Italy, as
it can be observed in Figure 7.1. Looking at this last Figure, it turns out that spot
prices in electricity markets are very peculiar: they clearly exhibit a mean-reverting
behavior, a seasonality component is present and spikes are frequent.

Over the years many approaches have been proposed to model these markets in
a univariate setting. In particular, Cartea and Figueroa [39] derive a mean-reverting

1A quick overview can be found here: https://www.epexspot.com/en/basicspowermarket
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Figure 7.2. Daily spot prices of German electricity, Natural Gas (TTF) and CO2 emissions.

model with jumps and a deterministic seasonality component, whereas Saifert and
Uhrig-Homburg [110] compare different modeling approaches. As in many other
markets, electricity derivatives such as call options, virtual power plants (VPP),
swing options and storages are traded and hence need to be priced: these issues are
tackled in Lucia and Schwartz [85], Cartea and Villaplana [40], Vehvilainen [123]
and Kluge [79], whereas specific algorithms for the pricing of VPP and storages
was derived by Tseng and Barz [121] and Boogert and de Jong [25] respectively.
When we scale to a multi-commodities market these modeling techniques become
harder to apply in practice and literature is not as richer as in the one dimensional
framework. Petroni and Sabino [101] showed how some standard models such as the
ones proposed by Black and Scholes [23], Schwartz and Smith [114] and Cartea and
Figueroa [39] can be extended to a multivariate context by adding dependent jumps
which are modeled using self-decomposability, whereas Kiesel and Kusterman [78]
proposed a structural model to properly catch the dependence between electricity
spot markets in the spirit of what is proposed by Carmona and Coulon [36]. Similar
dependencies arise also if we consider other commodities which are directly related
with the production of electricity, such as the natural gas and CO2 emissions, as can
be observed in Figure 7.2 where spot quotations of German electricity, natural gas
and CO2 emissions prices are reported.

Spot markets discussed so far contrast with futures markets, in which delivery is
due at a later date. Usually, when we deal with commodities such as electricity ad
gas the delivery of the commodity does not refer to a precise time in the future but
to predetermined time interval. For example, if two counterparts A and B stipulate
a future calendar contract on 2022 with future price of F this mean that they agree
to exchange energy for the whole year 2022 at the fixed price F . Of course, shorter
delivery periods such as quarters, months, weeks, weekend and even days are possible.
As in the spot markets, all countries own their related future market but the amount
of trades is different for each market. Empirically, it can be observed that mature
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Figure 7.3. Power French Calendar 2017 future price.

markets like German or Nordpool power markets are very liquid, whereas the markets
of the Mediterranean area including country such as Italy, Greece and Spain tend
to be less liquid than the aforementioned ones. We will come back on this point in
Section 7.6 when we will apply the V G+ + process to model illiquid markets.

The future energy market modelling reveals to be a challenging task, because one
has to deal with complex dependence structures and price behavior, which remind
what has been observed in the spot markets. A widely recognized approach for
their modeling is proposed by Benth and Saltyte-Benth [18] which show how the
framework introduced by Heath et al. [69] to model interest rates dynamic can be
easily adapted to power energy future market. Another possible approach would
be to model the underlying future dynamic using the multivariate version of the
model proposed by Black [22]. Nevertheless, energy future markets present a series of
empirical facts that cannot be modeled by using the standard Gaussian framework,
based on Brownian motions. As can be observed in Figure 7.3, sometimes jumps
in the price process occur and hence the Brownian motion seems not to be a good
candidate for financial modeling because of the continuity of its trajectories.

In statistical terms the presence of jumps in the price leads to the so called heavy
tails effect in the empirical distribution of returns: the tail of the distribution decays
slowly at infinity and very large moves have a significant probability of occurring.
This well-known fact leads to a poor representation of the distribution of the log-
returns by a normal distribution, as can be observed if we look at the QQ-plot in
Figure 7.4.

Finally we recall that one of the assumptions of the models proposed by Black
and Scholes [23] and Black [22] is that the volatility of the asset is constant over time.
However, if we compute the rolling volatility over the previous thirty days, we observe
that this assumption is not satisfied (see Figure 7.5): volatility is not constant at
all over time, but shows a mean-reverting behavior. All these observations, drive
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Figure 7.4. QQ-plot of the log-returns of the 2020 France forward calendar versus the
standard normal.

us to abandon the idea of modeling energy markets using the well know Gaussian
approach and to focus our attention on Lévy processes which overcome the limits of
the Gaussian framework introducing, on the other hand, some mathematical and
numerical issues.

As we stated in Chapter 2.1 a Lévy process has independent increments. This
is an important assumption that we need to check before start modeling financial
assets by using Lévy processes. As suggested by Brigo et al. [28], an easy method to
check the independence of the increment is to compute the so called autocorrelation
function of lag k (ACF): given a process X = {X(t); t ≥ 0}, roughly speaking, ACF
measures the correlation between X(t+ k) and X(t) for k ∈ N. Its definition is given
by:

ACF (k) = 1
(n− k)v̂

n−k∑
i=1

(xi − m̂) (xi+k − m̂) , k = 1, 2, . . .

where m̂ and v̂ are the sample mean and variance of the series we want to model
and x = (x1, . . . , xn) is a vector of realizations. The autocorrelation function of
log-returns of power France future calendar is displayed in Figure 7.6. As we can
observe, no evident dependence between the increments of log-returns is present and
hence a Lévy process might be a suitable choice to model the price dynamic.

As stated before, European spot energy markets exhibit a strong dependence
and this feature can be observed in energy future markets too (see Figure 7.7 and
Figure 7.8). As in the spot markets, the dependence is stronger if we look only at
power future prices and weaker if we include other commodities such as natural
gas and CO2 emissions, but in any case it must be considered within the modeling
framework.

Finally, looking at the options market on futures, we observe that the so called
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Figure 7.8. Future market prices of German power, natural gas (TTF) and CO2 emissions
with delivery date 2021.

implicit volatility is not constant varying the strike price K but a sort of volatility
smile effect is present, as it is shown in Figure 7.9. A large part of quantitative
finance in the previous years was focused on deriving models that can overcome this
problem: among the others we recall Madan and Seneta [88], Barndorff-Nielsen [12],
Heston [70], Dupire [51] and Bates [16]. Since many univariate Lévy models can
produce a volatility smile effect, we deduce that their multivariate versions might be
a good candidate to model future energy market.

In the next sections we focus on of forward markets modeling. The goal is to
answer to two main questions:

• Are 2D-sd Variance Gamma and Normal Inverse Gaussian models suitable for
power forward market modeling purposes?

• Since power forward markets are not always liquid, is the V G+ + process we
introduced a good candidate to model illiquid markets?

We will focus on 2D-sd Variance Gamma and Normal Inverse Gaussian processes,
we calibrate both models on different data-set, we price derivatives using Monte
Carlo and Fourier techniques we presented in Chaper 6 and we give an economic
interpretation to the obtained results. Moreover, we briefly discuss how those models
can be extended to model a market with more that two commodities: to this aim we
provide an example of calibration in a market with three commodities.

Furthermore, we compare the numerical techniques we derived in Chapter 3 to
price vanilla call options under the V G + + model and hence we show how the
V G+ + process can be successfully applied to properly catch market’s illiquidity.

127



Chapter 7. Numerical results and financial applications to energy markets

20 25 30 35 40 45 50 55 60 65

Strike Price [EUR/MWh]

0.2

0.25

0.3

0.35

0.4

0.45

 -
 I
m

p
lie

d
 V

o
la

ti
lit

y

Implied Volatility Smile

Figure 7.9. Volatility smile for European call options written on German power future
quotations.

7.3 2D-sd Variance Gamma Process
In Chapter 4 we derived the theoretical modeling framework and we showed how to
build correlated Lévy processes using sd gamma subordinators. In this section we
show concrete applications of the models presented in Section 4.2 to energy markets.
Similarly to what we have shown in Section 2.8.1 we model the dynamics of energy
forward contracts with exponential processes, whose components are Lévy processes,
based on dynamics of the type of Y = {Y (t) ; t ≥ 0} derived in Section 4.22. The
evolution of the forward price Fj(t), j = 1, 2 at time t is defined as

Fj (t) = Fj (0) eωjt+Yj(t), (7.1)

non-arbitrage conditions can be obtained setting

ωj = −φj (−i) , (7.2)

where φj (u) denotes the characteristic exponent of the process Yj.

We adopt the same two-steps calibration procedure of Luciano and Semeraro [87];
to this end, it is worthwhile noticing that the marginal distributions do not depend
on the parameters required to model the dependence structure. The vector of the
marginal parameters Θ∗ is obtained solving the following optimization problem

Θ∗ = arg min
Θ

n∑
i=1

(
CΘ
i (K,T ) − Ci

)2
, (7.3)

2Note that even if Y may not be a Lévy process, its components are Lévy process. For this
reason, even if F = {(F1(t), F2(t)); t ≥ 0} is not an exponential Lévy process, the dynamics of the
forward price Fj(t), j = 1, 2 is an exponential Lévy process.
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where Ci, i = 1, . . . , n are the values of n quoted vanilla products and CΘ
i (K,T ) , i =

1, . . . , n are the relative model prices. Once we have fitted Θ∗ we have to calibrate the
remaining parameters for the dependence structure. Generally derivatives written on
multiple underlying assets are not very liquid and market quotes are rarely available,
therefore the vector η∗ is estimated fitting the correlation matrix on historical data.
The expression of the theoretical correlation matrix has been derived in Section 4.2.

For the first step we have combined the NLLS approach with the FFT method
proposed by Carr and Madan [37] (the version proposed by Lewis [81] returns similar
results), whereas for the second one we have used the plain NLLS method for the
minimization of the distance between the theoretical and the observed correlation
coefficient.

As far as the path generation of the skeleton of the 2D-sd Variance Gamma
processes is concerned, the only non-standard step is the simulation of the process
Za = {Za (t) ; t ≥ 0}. On the other we recall that the a-remainder Za of a gamma
distribution Γ (α, λ) can be exactly simulated knowing that

Za =
S∑
j=1

Xj,

where

S ∼ B (α, 1 − a) Xj ∼ E (λ/a) X0 = 0 P − a.s.

Here B (α, p) denotes a Polya distribution with parameters α and p and E (λ) denotes
an exponential distribution with rate parameter λ.

Since we have derived the chf ’s of the log-process in closed form, in alternative to
the MC schemes we can adopt Fourier methods. Different Fourier based techniques
are available for the option pricing in a multivariate setting (see for example Hurd
and Zhou [74], Pellegrino [97] and Caldana and Fusai [35]). In this section we use
the method proposed by Caldana and Fusai [35] we presented in Section 6.3.3, which
gives a good approximation for spread-options prices and has the advantage to require
only one Fourier inversion.

The remaining part of the section is split into two parts: in the first one we apply
our models to the German and French power forward markets and in the second
part we focus on the German power forward market and to the TTF natural gas
forward market. In the first case we have selected markets that are strongly positively
correlated due to the configuration of European electricity network, whereas in the
second case, the correlation between markets is still positive, because natural gas
can be used to produce electricity, but it is not as high as in the first one. This gives
us the opportunity to test our models for different levels of correlations.
Moreover, as shown in Figure 7.10, due to the particular structure of European
electricity grid, power markets are very interconnected and usually react “in the
same way at the same time”, whereas the reaction of the power market to a shock
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Figure 7.10. German, French and natural gas TTF forward market.

in the natural gas market (and vice versa) is more likely to occur with a stochastic
delay. Based on these observations, we expect that the value of the parameter a will
be very close to one in the first example and will have a lower value in the second
one.

For the sake of concision we use the following notation:

• (SSD): sd-VG model presented in Section 4.2.1.

• (LSSD): sd-VG model presented in Section 4.2.2.

• (BBSD): sd-VG model presented in Section 4.2.3.

In our experiments we price spread options on future prices, denoted Fi (t) , i = 1, 2,
whose payoff is given by:

ΦT = (F1 (T ) − F2 (T ) −K)+ .

It is customary to reserve the name cross-border or spark-spread option if the futures
are relative to power or gas markets, respectively. In all our experiments we use the
MC technique with Nsim = 106 simulations and the Fourier-based method proposed
by Caldana and Fusai [35].

7.3.1 Application to the German and French power markets
In order to calibrate our models we need the quoted prices of the derivatives contracts
written on each of the two forward products and their joint historical time series.
The data-set3 we have relied upon is composed as follows:

3Data Source: www.eex.com.
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• Forward quotations from 25 April 2017 to 12 November 2018 of calendar 2019
power forward. A forward calendar 2019 contract is a contract between two
counterparts to buy or sell a specific volume of energy in MWh at fixed price
for all the hours of 2019. calendar power forward in German and France are
stated respectively with DEBY and F7BY.

• European call options on power forward 2019 quotations for both countries
with settlement date 12 November 2018. We used strikes in a range of
±10 [EUR/MWh] around the settlement price of the forward contract, i.e. we
exclude deep ITM and OTM options.

• We assume a risk-free rate r = 0.015.

• The estimated historical correlation between markets is ρmkt = 0.94.

From Table 7.17 we see that all models provide the same set of marginal pa-
rameters. In the lower box of Figure 7.13 we report the percentage error ϵi defined
as:

ϵi = CΘ
i (K,T ) − Ci

Ci
.

We can observe that this error is very small and our models are able to replicate
market prices for different values of the strike price K.

If we look at the fitted correlation the situation is slightly different. The SSD
model presented in Section 4.2.1 fits a correlation that is roughly zero, therefore
it is not recommendable for cross-border option pricing because it overestimates
the derivative price as shown in the upper picture in Figure 7.13. In contrast, the
correlation estimated selecting the LSSD is very close to the one observed in the
market, as we can see from Table 7.12; for this reason the LSSD model is appropriate
to price cross-border options. Moreover, the BBSD model derived in Section 4.2.3
provides an even better fit of market correlation and therefore we conclude that the
BBSD model is the best one for the valuation of cross-border options. An additional
comparison among the models is illustrated in the upper part of Figure 7.13: the
option prices returned by the BBSD model are the lowest ones due to the highest
value of fitted correlation.

Finally, we remark that, as we expected, the fitted value for the sd parameters a
is very close to one for all the three settings. This fact does not come as a surprise
because the German and French forward markets are so strictly interconnected that
whenever an event occurs in a market it has an immediate impact on the other
one. As already mentioned, if a → 1 we obtain the original models of Semeraro
[115], Luciano and Semeraro [87] and Ballotta and Bonfiglioli [9]. For this reason,
for cross-border options, there is not an essential difference between original models
and those presented in Section 4.2.
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Model µ1 µ2 σ1 σ2 α1 α2

SSD 0.40 0.61 0.31 0.32 0.02 0.02
LSSD 0.40 0.61 0.31 0.32 0.02 0.02
BBSD 0.40 0.61 0.31 0.32 0.02 0.02

Table 7.1. Fitted marginal parameters the German and French power markets.

Parameter Value

A 41.89
B 1.00
a 0.99

ρmod 0.05

Table 7.2. SSD

Parameter Value

A 42.31
B 1.00
ρ 1.00
a 0.99

ρmod 0.92

Table 7.3. LSSD

Parameter Value Parameter Value

β1 -0.00 βR2 0.85
β2 0.09 γR1 0.50
γ1 0.00 γR2 0.47
γ2 0.10 νR 0.02
ν1 1.01 a 0.99
ν2 0.14 ρmod 0.94
βR1 0.62

Table 7.4. BBSD
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Figure 7.11. Percentage errors and cross-border option prices.

7.3.2 Application to the German power and the TTF gas
markets

In this section we consider the German power forward market and the TTF gas
forward market. These two markets are not as positively correlated as two purely
power markets.
The data-set4 we relied upon consists of the following assumptions:

• Forward quotations from 1 July 2019 to 09 September 2019 relative to January
2020 for the power forward in Germany and the gas TTF forward.

• Call options relative to January 2020 for both power and gas with settlement
4Data Source: www.eex.com and www.theice.com
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date 9 September 2019. As done before, we use strikes prices K in a range of
±10 [EUR/MWh] around the settlement price of the forward contract, i.e. we
exclude deep ITM and OTM options.

• We assume a risk-free rate r = 0.015.

• The estimated historical correlation between log-returns is ρmkt = 0.54.

In the picture at the bottom of Figure 7.12 we can see that all the models provide
a good fit of the quoted market options because the error ϵ is very small. In Figure
7.12 the picture at the top shows that the SSD model overprices the spark-spread
option due to the fact that the estimated correlation is close to zero. In contrast,
both models LSSD and BBSD are able to capture the market correlation and return
a lower spread option price. From Table 7.9 we observe that the sd parameter a is
not as close to one as it was in the previous example.

This result can be explained by the fact that approximately 25% of electricity in
Germany is produced using natural gas, hence a certain downward or upward change
of the natural gas price will not immediately affect the power prices. Moreover, in
contrast to electricity, natural gas can be stored and players of gas markets can
subscribe swing contracts to protect against natural gas price movements. Of course,
if the natural gas price shock persists for some time it will impact electricity prices
as well.

Model µ1 µ2 σ1 σ2 α1 α2

SSD 0.46 0.24 0.43 0.33 0.08 0.05
LSSD 0.46 0.24 0.43 0.33 0.08 0.05
BBSD 0.46 0.24 0.43 0.33 0.08 0.05

Table 7.5. Fitted marginal parameters for the power and gas forward markets.

Parameter Value

A 12.36
B 1.00
a 0.99

ρmod 0.04

Table 7.6. SSD

Parameter Value

A 9.89
B 1.00
ρ 0.89
a 0.90

ρmod 0.57

Table 7.7. LSSD

Parameter Value Parameter Value

β1 0.13 βR2 0.29
β2 0.12 γR1 0.47
γ1 0.23 γR2 0.29
γ2 0.23 νR 0.11
ν1 0.28 a 0.90
ν2 0.12 ρmod 0.54
βR1 0.47

Table 7.8. BBSD
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Model a

SSD 0.99
LSSD 0.90
BBSD 0.90

Table 7.9. Values for the a parameter of the three models.

16 18 20 22 24 26 28

Strike [EUR/MWh]

-2%

-1.5%

-1%

-0.5%

0%

0.5%

R
e
la

ti
v
e
 E

rr
o
rs

(SSD)-TTF

(LSSD)-TTF

(BBSD)-TTF

(SSD)-DE

(LSSD)-DE

(BBSD)-DE

44 46 48 50 52 54 56 58 60 62 64

-0.2%

0%

0.2%

0.4%

0.6%

0.8%

TTF and German Call Pricing Relative Errors (FFT)

25 30 35 40 45

Strike [EUR/MWh]

0

2

4

6

8

10

P
ri
c
e
 [
E

U
R

/M
W

h
]

Spark-Spread Options (MC)

(SSD)

(LSSD)

(BBSD)

Figure 7.12. Percentage errors and spark-spread option prices.
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7.4 2D-sd Normal Inverse Gaussian process
In this section we use the 2D-sd Normal Inverse Gaussian processes we illustrated in
Chapter 5 to model power and gas forward markets. The modeling framework, the
calibration procedure and the pricing techniques are the same we adopted in Section
7.3. Moreover, we numerically check that the Monte Carlo and the Fourier methods
proposed by Caldana and Fusai [35] provide the same results.

As before, for the sake of concision we introduce the following notation:

• (SSD): sd-NIG model presented in Section 5.1.1.

• (LSSD): sd-NIG model presented in Section 5.1.2.

• (BBSD): sd-NIG model presented in Section 5.1.3.

7.4.1 Application to German and French power markets
In order to calibrate the proposed sd-NIG models we consider vanilla contracts
written on German and French power forward and the historical quotation of both
products. The data-set5 is:

• Forward quotations from 25 April 2017 to 12 November 2018 of Calendar 2019
power forward. Calendar power forward in Germany and France are stated
respectively with DEBY and F7BY.

• European call Options on power forward 2019 quotations for both coun-
tries with settlement date 12 November 2018. We used strikes in a range
of ±10 [EUR/MWh] around the settlement price of the forward contract.

• We assume a risk-free rate r = 0.015.

• The historical correlation observed between markets is ρmkt = 0.94.

We denote (Θ1,Θ2) parameters related to the French and German power forward
markets respectively. We define the error ϵi as

ϵi = CΘ
i (K,T ) − Ci

Ci
,

where CΘ
i (K,T ) is the value of the i-th Call option obtained by the model and Ci

is its market price: the picture at the bottom of Figure 7.13 shows that all models
provide a good fit for quoted market options because ϵ is negligible. In Figure 7.13
the picture at the top shows that the SSD model overprices cross-border options:
this is because the fitted model correlation is low, as shown by the value ρmod in
Table 7.11, so one should avoid using this model for pricing. For LSSD model

5Data Source: www.eex.com.
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the situation is better, but it is not really able to capture the prevailing market
correlation. Fortunately, the BBSD model can replicate the market correlation and
then can be used to price cross-border options. Fitted common parameters are shown
in Table 7.10, whereas the dependence parameters for SSD, LSSD and BBSD models
are shown in Tables 7.11, 7.12, 7.13, respectively. The value of a, is shown in Table
7.14. We observe that the parameter a is very close to one, as expected. As previously
observed in Section 7.3, this result has a very natural economic interpretation: the
European electricity network is strongly connected and a certain price signal in either
the German or French market is propagated without stochastic delay.

Finally, in Table 7.15 we compare values of cross-border options priced using
both the FFT method proposed by Caldana and Fusai [35] and the MC scheme that
we derived relying upon the results of Chapter 5 and 6. Option prices provided
by both algorithms are very close and this allows us to use indistinctly the FFT
or the MC method for spread option pricing. Nevertheless, if the valuation of an
exotic derivative is required, the Monte Carlo scheme becomes mandatory, since
other methods such as the Fourier transform or the partial differential approach
become inapplicable.

Model µ1 µ2 σ1 σ2 α1 α2

SSD 0.64 0.40 0.31 0.32 0.02 0.03
LSSD 0.64 0.40 0.31 0.32 0.02 0.03
BBSD 0.64 0.40 0.31 0.32 0.02 0.03

Table 7.10. Fitted marginal parameters for German and French power markets.

Parameter Value

A 40.15
B 1.00
a 0.99

ρmod 0.05

Table 7.11. SSD

Parameter Value

A 40.15
B 1.00
ρ 0.99
a 0.99

ρmod 0.88

Table 7.12. LSSD

Parameter Value Parameter Value

β1 -0.001 βR2 0.800
β2 0.013 γR1 0.448
γ1 0.002 γR2 0.50
γ2 0.103 νR 0.025
ν1 1.007 a 0.99
ν2 0.091 ρmod 0.94
βR1 0.554

Table 7.13. BBSD

Model a

SSD 0.99
LSSD 0.99
BBSD 0.99

Table 7.14. Values for the a parameter of the three models.
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Figure 7.13. Percentage errors and cross-border option prices.

K SSD LSSD BBSD
- FFT MC ∆ FFT MC ∆ FFT MC ∆

0.0 6.61 6.59 (0.02) 5.01 5.00 (0.01) 4.95 4.95 (0.00)
1.0 5.92 5.90 (0.02) 4.08 4.07 (0.01) 3.98 3.97 (0.01)
2.0 5.27 5.25 (0.02) 3.20 3.19 (0.01) 3.03 3.03 (0.00)
3.0 4.67 4.65 (0.02) 2.41 2.40 (0.01) 2.16 2.16 (0.00)
4.0 4.11 4.09 (0.02) 1.74 1.73 (0.01) 1.44 1.44 (0.00)
5.0 3.59 3.57 (0.02) 1.22 1.20 (0.02) 0.91 0.90 (0.01)
6.0 3.13 3.11 (0.02) 0.83 0.82 (0.01) 0.56 0.56 (0.00)
7.0 2.71 2.68 (0.03) 0.57 0.56 (0.01) 0.34 0.34 (0.00)
8.0 2.33 2.31 (0.02) 0.39 0.38 (0.01) 0.21 0.21 (0.00)
9.0 2.00 1.97 (0.03) 0.27 0.26 (0.01) 0.14 0.13 (0.01)
10.0 1.70 1.68 (0.02) 0.19 0.18 (0.01) 0.09 0.09 (0.00)
11.0 1.44 1.42 (0.02) 0.13 0.13 (0.00) 0.06 0.06 (0.00)
12.0 1.22 1.20 (0.02) 0.09 0.09 (0.00) 0.04 0.04 (0.00)

Table 7.15. Cross-border option prices comparison between the three sd-NIG models using
the FFT and Monte Carlo methods. ∆ is the difference between the computed
prices.
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Comparison between sd-VG and sd-NIG model - Power Markets

In this section we compare the prices of a cross-border option that we evaluate by
using both the sd-VG and sd-NIG processes. Of course, the dataset we used to
calibrate the two models is the same. The cross-border option prices we obtained
using the two models are reported in Table 7.16. In this case we adopted the Monte
Carlo technique but, in view of what we observed in the previous section, we get
similar conclusions if we adopt the Fourier approach.

It is worth observing that the obtained prices are very close if we use both the
sd-VG and the sd-NIG process, provided we focus only on SSD and BBSD models.
This is due to the fact that both the sd-VG and sd-NIG model catch the same level of
linear correlation at time T . The situation is a little bit different if we look at LSSD
model: as observed in Table 7.3, sd-VG model provides a correlation ρmod = 0.92,
which is very closed to the market one, whereas sd-NIG model provides a lower level
of correlation between log-returns ρmod = 0.88 of Table 7.12 and this leads to higher
cross-border option prices if we use the sd-NIG model. A similar analysis applied to
the results of Table 7.4 and Table 7.13 lead us concluding that both versions of the
BBSD model are appropriate for cross-border option pricing. Moreover, we point
out that a small change in the correlation might cause a big variation in the spread
option price.

K SSD LSSD BBSD

- sd-VG sd-NIG ∆ sd-VG sd-NIG ∆ sd-VG sd-NIG ∆

0.0 6.55 6.59 (-0.04) 4.94 5.00 (-0.07) 4.96 4.95 (0.01)
1.0 5.86 5.90 (-0.04) 3.97 4.07 (-0.10) 3.98 3.97 (0.01)
2.0 5.21 5.25 (-0.04) 3.04 3.19 (-0.15) 3.03 3.03 (-0.00)
3.0 4.61 4.65 (-0.04) 2.18 2.40 (-0.22) 2.13 2.16 (-0.03)
4.0 4.05 4.09 (-0.04) 1.45 1.73 (-0.28) 1.38 1.44 (-0.06)
5.0 3.54 3.57 (-0.04) 0.93 1.20 (-0.28) 0.85 0.90 (-0.06)
6.0 3.07 3.11 (-0.03) 0.59 0.82 (-0.23) 0.52 0.56 (-0.04)
7.0 2.65 2.68 (-0.03) 0.38 0.56 (-0.18) 0.32 0.34 (-0.02)
8.0 2.28 2.31 (-0.03) 0.25 0.38 (-0.13) 0.20 0.21 (-0.01)
9.0 1.95 1.97 (-0.03) 0.16 0.26 (-0.10) 0.13 0.13 (-0.00)
10.0 1.66 1.68 (-0.02) 0.11 0.18 (-0.07) 0.08 0.09 (-0.00)
11.0 1.40 1.42 (-0.02) 0.07 0.13 (-0.05) 0.05 0.06 (-0.00)
12.0 1.18 1.20 (-0.02) 0.05 0.09 (-0.04) 0.04 0.04 (-0.00)

Table 7.16. Cross-border option prices comparison between the three sd-VG and sd-NIG
models obtained using Monte Carlo simulations.
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7.4.2 Application to German Power market and NCG Gas
Market

In this section we present numerical results obtained applying our models to German
power forward market (DE) and to natural gas forward market (NCG). These two
markets are positively correlated, but the log-return correlation is lower than the
one between power futures. The data-set6 we relied upon is the following:

• Forward quotations from 1 July 2019 to 09 September 2019 relative to the
Month January 2020 for the Power Forward in Germany and the Gas NCG
Forward.

• Call Options on power forward NCG with settlement date 9 September 2019.
As done before, we use strike prices K in a range of ±10 [EUR/MWh] around
the settlement price of the forward contract.

• A risk-free rate r = 0.015.

• The historical correlation between log-returns is ρmkt = 0.54.

In the picture at the bottom of Figure 7.14 we observe that all models provide a good
fitting of quoted market options because the relative error ϵi is small. The picture
at the top of Figure 7.14 shows that the SSD model overprices the Spark-Spread
option due to the fact that fitted model correlation is close to zero, as shown by the
value ρmod in Table 7.18. In contrast, LSSD and BBSD models provide a lower price
and catch the right level of market correlation as shown in Tables 7.19,7.20. We
can conclude that both LSSD and BBSD models can be used to price Spark-Spread
options. Table 7.17 shows fitted common parameters whereas dependence parameters
for SSD, LSSD and BBSD models are shown in Tables 7.18, 7.19, 7.20: the value of
a, the sd parameter which aims to model the stochastic delay, is shown in Table 7.21.
The value is still close to one but it is smaller than that estimated for the power
forward markets. From the expressions of the linear correlation coefficient reported
in equations (5.4), (5.8) and (5.16) it is easy to see that a change in the value of a
has an impact on the value of the correlation coefficient and it is a fact that even a
small change in correlation has a high impact on the spread option price. On the
other hand, unlike electricity, natural gas can be stored and therefore the impact
on the power market can be moderated and delayed, for example, using storage
contracts or other types of OTC derivatives. If the gas price suddenly rises then it is
not rare to observe that the power price is not immediately effected.

6Data Source: www.eex.com and www.theice.com
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Model µ1 µ2 σ1 σ2 α1 α2

SSD 0.37 0.20 0.44 0.33 0.09 0.07
LSSD 0.37 0.20 0.44 0.33 0.09 0.07
BBSD 0.37 0.20 0.44 0.33 0.09 0.07

Table 7.17. Fitted marginal parameters for German and TTF future markets.

Parameter Value

A 11.27
B 1.00
a 0.99

ρmod 0.03

Table 7.18. SSD

Parameter Value

A 8.79
B 1.00
ρ 0.87
a 0.90

ρmod 0.54

Table 7.19. LSSD

Parameter Value Parameter Value

β1 0.11 βR2 0.23
β2 0.09 γR1 0.56
γ1 0.24 γR2 0.50
γ2 0.22 νR 0.13
ν1 0.28 a 0.89
ν2 0.15 ρmod 0.54
βR1 0.38

Table 7.20. BBSD

Model a

SSD 0.99
LSSD 0.90
BBSD 0.89

Table 7.21. Values for the a parameter of three models.
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Figure 7.14. Percentage errors and spark-spread option prices.
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Figure 7.15. Spark spread distribution at maturity obtained using sd-VG and sd-NIG
models. On the left the pdf of spark spread distributions, on the right its
QQ-plot.

Comparison between sd-VG and sd-NIG model - Power and Gas Markets

At this point a natural question arises: does the sd-NIG model and the sd-VG model
presented in Chapter 4 provide different prices for spark spread options? Of course,
the data-set we used for numerical tests is the same as the one we used in Section
7.3. In Figure 7.15 we compare the spark spread distributions obtained using both
sd-VG and sd-NIG models. Both the histogram and the QQ-plot show that the
spark spread distributions obtained using the sd-NIG or sd-VG model at maturity
T are very similar. Since the value of the considered spread options depends only on
the spark spread distribution at T we can conclude that both models lead to the
same derivative prices in the same way we have shown in Section 7.4.1. The results
in Table 7.22 confirm this fact. Note that, as in the power case, the SSD model is
not recommended to price a spread option since it is not able to catch the right level
of log-returns linear correlation we observe in the market.
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K SSD LSSD BBSD

- sd-VG sd-NIG ∆ sd-VG sd-NIG ∆ sd-VG sd-NIG ∆

25.0 9.15 9.19 (-0.04) 8.49 8.51 (-0.02) 8.51 8.52 (-0.00)
26.0 8.37 8.42 (-0.05) 7.66 7.67 (-0.02) 7.68 7.68 (-0.01)
27.0 7.63 7.68 (-0.05) 6.86 6.87 (-0.02) 6.88 6.89 (-0.01)
28.0 6.93 6.99 (-0.05) 6.10 6.12 (-0.01) 6.13 6.13 (-0.01)
29.0 6.27 6.33 (-0.06) 5.40 5.41 (-0.01) 5.43 5.43 (-0.01)
30.0 5.65 5.71 (-0.06) 4.75 4.76 (-0.01) 4.78 4.78 (-0.01)
31.0 5.07 5.13 (-0.06) 4.16 4.17 (-0.01) 4.18 4.19 (-0.00)
32.0 4.54 4.59 (-0.06) 3.62 3.63 (-0.01) 3.65 3.65 (-0.00)
33.0 4.05 4.10 (-0.06) 3.14 3.14 (-0.00) 3.17 3.17 (-0.00)
34.0 3.60 3.65 (-0.06) 2.71 2.71 (0.00) 2.74 2.74 (-0.00)
35.0 3.19 3.24 (-0.05) 2.34 2.34 (0.00) 2.36 2.36 (-0.00)
36.0 2.82 2.87 (-0.05) 2.01 2.01 (0.01) 2.03 2.03 (0.00)
37.0 2.49 2.54 (-0.05) 1.73 1.72 (0.01) 1.75 1.74 (0.00)
38.0 2.19 2.24 (-0.05) 1.48 1.47 (0.01) 1.50 1.50 (0.00)
39.0 1.93 1.97 (-0.05) 1.27 1.26 (0.01) 1.28 1.28 (0.00)
40.0 1.69 1.74 (-0.05) 1.08 1.07 (0.01) 1.10 1.10 (0.00)
41.0 1.48 1.53 (-0.04) 0.93 0.92 (0.01) 0.94 0.94 (-0.00)
42.0 1.30 1.34 (-0.04) 0.79 0.78 (0.01) 0.80 0.81 (-0.00)
43.0 1.14 1.18 (-0.04) 0.68 0.67 (0.01) 0.69 0.69 (-0.00)
44.0 0.99 1.03 (-0.04) 0.58 0.57 (0.01) 0.59 0.59 (-0.01)
45.0 0.87 0.91 (-0.04) 0.50 0.49 (0.00) 0.50 0.51 (-0.01)

Table 7.22. Spark spread option prices comparison between the three sd-VG and sd-NIG
models obtained using Monte Carlo simulations.
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7.5 Modeling, calibration and pricing for n ≥ 3
So far in this work, for the sake of simplicity, we have considered only the bivariate
case but a n-dimensional extension of the presented models is quite immediate. In
this section we outline how to extend our approach when the number of commodities
is larger than two and we provide a numerical experiment for n = 3.
To ease the notation we denote by X = {(X1(t), X2(t), . . . , , Xn(t)) ; t ≥ 0} a general
n-dimensional process and by X(t) its value at a fixed time t.

From a mathematical point of view, the procedure consists in defining the process
H as follows:

H1(t),
H2(t) = a1H1(t) + Za1(t),
. . .

Hn(t) = an−1H1(t) + Zan−1(t),

(7.4)

where a1, . . . , an−1 ∈ (0, 1) and Za1(t) . . . , Zan(t) and H1(t) are independent: there-
fore, we need n− 1 parameters aj, j = 1, . . . , n− 1. Based on the definition above,
the extension of the models presented in Chapters 4 and 5 is straightforward and it
is briefly discussed in the following subsections.

7.5.1 n-dimensional SSD
Consider a n-dimensional subordinator I with independent components, αj > 0, j =
1, . . . , n and H defined in Equation (7.4). The multivariate subordinator G is defined
as:

Gj(t) = Ij(t) + αjHj(t), j = 1, . . . , n.
Taking a n-dimensional Brownian Motion W with independent components we then
define the n-dimensional process Y as:

Yj(t) = µjGj(t) + σjW (Gj(t)), j = 1, . . . , n,
where µj ∈ R and σj > 0 for j = 1, . . . , n. I, H and W are assumed to be mutually
independent.

7.5.2 n-dimensional LSSD
As far as the extension to a n-dimensional sd-Semeraro-Luciano model is concerned,
we consider a multivariate subordinator I with independent components and the
process H defined in Equation (7.4). Then, we define Y as:
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Y (t) =



µ1I1 (t) + σ1W1 (I1 (t)) + α1µ1H1 (t) +√
α1σ1W

ρ
1 (H1 (t))

. . .
µjIj (t) + σjWj (Ij (t)) + αjµjHj (t)

+√
αjσj

(
W ρ
j (aj−1H1 (t)) + W̃1

(
Zaj−1 (t)

))
. . .
µnIn (t) + σnWn (In (t)) + αnµnHn (t)

+√
αnσn

(
W ρ
n (an−1H1 (t)) + W̃n−1

(
Zan−1 (t)

))


,

where aj ∈ (0, 1), µj ∈ R, σj > 0 and αj > 0 for j = 1, . . . , n. W and W̃
are Brownian motions with independent components, W ρ is a Brownian motion
with correlated components. I, H, W ,W ρ and W̃ are assumed to be mutually
independent.

7.5.3 n-dimensional BBSD
Following the same route, we can extend the BBSD to the case in which the market
present n ≥ 3 risky assets. Consider the process H defined in Equation (7.4) and
take R defined as:

R (t) =



R1(t) = βR1H1(t) + γR1W (H1(t))
. . .

Rj(t) = βRj
H2(t) + γRj

W (ajH1(t)) + W̃j

(
Zaj

(t)
)

. . .

Rn(t) = βRnHn(t) + γRnW (anH1(t)) + W̃n

(
Zan−1(t)

)

 ,

where aj ∈ (0, 1), βRj
∈ R and γRj

> 0 for j = 1, . . . , n. In addition, take two
independent processes, a one-dimensional Brownian motion W and an indepen-
dent multivariate Brownian motion W̃ with independent components. Consider
now a n-dimensional subordinator G with independent components, a standard
Brownian motion W with independent components, and independent of G, and
define the process X the subordinated n-dimensional Brownian motion with drift
β = (β1, . . . , βn) ∈ Rn and σ = (σ1, . . . , σn) ∈ Rn

+, by:

Xj(t) = βjGj(t) + σjWj(Gj(t)) j = 1, . . . , n.
Finally, we define the general n-variate process Y as follows:

Y = X + α ◦ R, Yj(t) = Xj(t) + αjRj(t), j = 1, . . . , n,

where ◦ denotes the Hadamard’s product and α ∈ Rn.
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7.5.4 Calibration
The two-steps calibration procedure adopted in Section 7.3 can be easily adapted for
n ≥ 3; of course, the fit of the marginal distributions is independent of the number
of underlying assets or commodities.

On the other hand, the estimation of correlation matrix can be accomplished
knowing the theoretical expression of correlation between Yj(t) and Yi(t) for all
i, j = 1, . . . , n. By direct computation or by deriving the chf function of the process
Y at time t, it can be shown that the correlation coefficient between Yj(t) and
Yi(t), i, j ∈ 1, . . . n for the BBSD model is given by:

ρYi(t),Yj(t) =
αiαj

(
βRi

βRj
ai−1aj−1V ar [H1 (t)] + γRi

γRj
min(ai−1, aj−1)E [H1 (t)]

)
√
V ar [Yi (t)]

√
V ar [Yj (t)]

,

with the convention a0 = 1.
Given the theoretical expression of the correlation matrix, one can use the NLLS

method or the GMM to find the set of parameters that minimize the distance between
the theoretical and the historical correlation matrices. This approach could be applied
to an arbitrary number of assets n, nevertheless, it is important to investigate how
stable is this methodology and how good is the fit when the dimension of the problem
increases. In the next section we illustrate this calibration procedure for n = 3,
limiting our analysis to the sd-VG BBSD model for sake of brevity.

7.5.5 A numerical application with n = 3
In this section we illustrate a financial application with three commodities using the
sd-VG BBSD model, we omit the application of the other two models for short. We
consider future prices of the power Germany F1(t), the natural gas TTF F2(t) and
the CO2 emissions F3(t). We use the same data set of the previous section with the
addition of European call options on CO2 and the relative forward quotations.
Following the usual two-steps calibration, we first fit the margins on vanilla quoted
options, we re-compute the European call options prices and quantify the error
against the corresponding market data. In Table 7.23 we report the mean absolute
percentage errors (MAPE) defined as:

MAPE = 100
n

n∑
i=1

∣∣∣∣∣Ci − CΘ
i (T,K)
Ci

∣∣∣∣∣
where n is the number of European call option, Ci is the market prices and CΘ

i (T,K)
is the model price. As mentioned, adding new commodities does not impact the
robustness of the calibration of the parameters of the marginal distribution and in
fact the MAPE is very low. In the second step, we fit the dependence parameters:
we observe that the fitted correlation matrix ρ̃ is very similar to the historical one, ρ,
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as reported in Table 7.24; of course the correlation between power and gas coincides
with that estimated in the n = 2 case. We can conclude that the fit is also reliable
when we deal with n = 3 commodities and the parameters can be used to price
spread options with a third leg. Derivatives contracts written on these commodities
are frequent in the energy sector and it is customary to reserve them the name of
clean-spark-spread options whose payoff is

ΦT = (F1 (T ) − F2 (T ) − F3 (T ) −K)+ ,

we omit this calculation for short.

Commodity Power Germany Natural Gas CO2

MAPE 0.08% 0.41% 0.27%

Table 7.23. MAPE of re-computed option prices against the corresponding market data.

ρ =

 1.00 0.54 0.59
0.54 1.00 0.68
0.59 0.68 1.00


Historical correlation matrix.

ρ̃ =

 1.00 0.54 0.59
0.54 1.00 0.67
0.59 0.67 1.00


Fitted correlation matrix.

Table 7.24. Comparison of the historical correlation matrix against the fitted one.

However, because the number of parameters rapidly increases as n increases, both
the quality and the robustness of the fit of the correlation will be affected if n is
large. This fact has been already observed and detailed in Ballotta and Bonfiglioli
[9] and Luciano and Semeraro [87] relatively to the original models. For this reasons,
we are inclined to conclude that all presented models should be applied only when
the number of assets is relatively small in order to avoid biased results in the option
pricing.
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7.6 V G + + model for illiquidity markets
In this section we show concrete applications of the V G + + model we presented
in Chapter 3 to energy markets. First, we price European call options using three
different approaches: the closed formula of Proposition 3.2.6, Monte Carlo (MC)
simulations, and the FFT method of Carr and Madan [37]. This is mandatory to be
sure that the algorithms we derived are stable and adapted to pricing purposes.

Secondly, we calibrate the V G+ + model on historical data focusing on power
future market quotations adopting the Maximum Likelihood Estimator (MLE) ap-
proach. Finally, we fit the model on quoted vanilla contracts using the standard
Non-Linear-Least-Squares (NLLS) technique and then we price non standard deriva-
tives with backward simulations.

7.6.1 Option pricing methods
In this subsection we compare the following three different methods for vanilla options
pricing:

• The closed formula derived in Section 3.2.1.

• The MC method relying upon the Algorithm 2 to simulate the process Z++
a .

• The FFT method of Carr and Madan [37] based on the chf of the V G + +
process given by Proposition 3.2.1.

In this first analysis we select the set of parameters reported in Table 7.25, nevertheless,
we carried out tests with different parameter sets getting similar results which we do
not report here for sake of brevity. We use the MC technique with 106 simulations and
we impose β = (1 − a)α in order to have E [Za(t)] = t. As far as the computation
with the closed formula (3.15) is concerned, we fix a cut-off rule for the computation
of the infinite sum, namely we truncate the sum as soon as its (n + 1)-th term
contributes less than 0.01% to the sum up n. Finally, we model the risky asset
process F = {F (t); t ≥ 0} as in Equation (3.14).

F0 r σ θ a α

100 0.01 0.2 -0.1436 0.5 10

Table 7.25. Set of parameters for the numerical experiment.

In Figure 7.16 we graphically compare the difference (error in the figures) of
the FFT and MC methods with respect to the closed formula of the European call
option varying the strike price K and the maturity T . The size of the error of the
FFT algorithm is approximately 10−3 and is smaller than that of the MC scheme
which is around 10−2. Indeed, due to its accuracy and efficiency, the FFT method is
preferable for standard contracts, whereas the MC approach is more appropriate for
the pricing of more exotic derivatives.
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Figure 7.16. Fourier and Monte Carlo methods error for different values of the maturity T
and of the strike price K.

7.6.2 Calibration
In this subsection we show how to calibrate the V G + + model on real market
observations and find the set of unknown parameters Θ = (θ, σ, α, a)7. The data-set
we rely upon is the following:

• Market quotations from 23 August 2017 to 12 November 2019 of the German,
Italian and Spanish power future Calendar 2020.

• Call options written on the German, Italian and Spanish power future Calen-
dar 2020 with settlement date 19 November 2019 and expiration date on 13
December 2019.

• The risk-free rate is assumed to be r = 0.015.

We perform the historical calibration with a MLE relying on the closed form of
the transition density of the V G+ + process given by Proposition 3.2.4 and then
numerically maximize the log-likelihood log L (Θ) with respect to Θ.

On the other hand, one could also adopt the Generalized Method of Moments
(GMM) and minimize “a distance” between theoretical moments and their empirical
analog, with respect to Θ. Therefore, the GMM method can be easily applied, by
using Proposition 3.2.3 recalling that the first cumulant is the mean, the second
one is the variance and that skewness s (X) and kurtosis k (X) can be derived from
higher order cumulants as follows:

s (X) = c3 (X)
c2 (X)3/2 , k (X) = c4 (X)

c2 (X)2 .

7Note that parameter β does not appear because we imposed b = (1 − a) α such that E [Z(t)] = t.
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The historical calibration is generally suitable for risk-management purposes,
while instead the calibration on option quotes must be considered in order to properly
price derivative contracts (see Cont and Tankov [42]).

If the market quotes n products8 {Ci}ni=1, the goal is then to find the set of
parameters Θ∗ which minimizes the usual quantity:

Θ∗ = arg min
Θ

n∑
i=1

(
Ci − CΘ

i (K,T )
)2
,

where Ci (Θ) is the price obtained by using the V G+ + model. The optimization
problem consists in a numerical Non-Linear-Least-Squared (NLLS) problem. In Table
7.26, Table 7.27 and Table 7.28 we report the parameters obtained per each country
with the historical calibration (MLE) and with the calibration of option quotes
(NLLS)9, whereas in Figure 7.18 we draw the cumulative distribution functions of
the V G+ + process at maturity T 10.

European power future markets are not always liquid and, in some cases, prices
tend to remain constant over time. As is shown in Figure 7.17 the power future
calendar 2020 is not very liquid, especially when the delivery is far out but its liquidity
increases as the delivery approaches. For these reasons, power future markets offers
a natural setting to test our model. Indeed, the value of the parameters a and
α can be interpreted as the liquidity activity of the market. Taking the change
∆X = X(t) − X(t − 1) of the log-price over the time interval ∆t, from Equation
(3.12) we observe that the probability that the increment equals zero over the time
interval ∆t is strictly larger than zero and, more precisely, it is given by

P (∆X = 0) = aα∆t,

since the density of the V G + + process has an atom in zero. This is the main
financial difference from the standard VG process which does imply that non-zero
trading activity takes place in every time interval. Nevertheless, our model inherits
the mathematical tractability of the standard VG process which is in any case
recovered when a tends to zero.

In financial markets the liquidity is strictly related to the amount of registered
transactions: if the number of trades is high, the prices fluctuate faster than when
a small number of contracts is exchanged. In the extreme case where no products
are traded the price remains constant over time, once again this feature cannot
be captured by Brownian subordination where the subordinator has infinite activ-
ity. Therefore, illiquid markets are characterized by high values of the probability
P (∆X = 0). We remark once again that since the transition density of the Variance
Gamma process is atom-less, such a process always presents a non zero increment
over the time period ∆t and hence their paths cannot be constant over time.

8Usually, European Call or Put options are quoted and liquid for many markets whereas more
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Figure 7.17. Prices of the German, Italian and Spanish power forward Calendar 2020 and
respective number of trades.

The results reported in Table 7.26, Table 7.27 and Table 7.28 are coherent with
some empirical facts observed in power markets: first of all, future products are
more liquid than the corresponding options: this is clear if we compare the values of
P (∆X = 0) obtained calibrating the model on historical forward quotations (MLE)
with the ones we get when we calibrate it on European option prices (NLLS).
Moreover, as a matter of fact, the German power future market is more liquid than
the Italian and Spanish ones, as it can be observed in Figure 7.17: the number
of trades in German future power markets is significantly higher than the one we
observe in the other markets. This empirical evidence is coherent with the value of
P (∆X = 0) we estimate for the three markets: such a probability is smaller in the
German power market than in the other ones. Finally, the Spanish power future
market is the most illiquid one, as it can be deduced observing the number of trades
in Figure 7.17: consequently, the values of P (∆X = 0) in Table 7.28 are significantly
higher than the ones reported in Table 7.26 and Table 7.27.

7.6.3 Pricing of exotic derivatives
Once that the V G+ + model is calibrated on quoted derivatives, it is possible to
price illiquid contingent claims in a consistent way. For illustrative purposes we
price American put options written on the Italian power future calendar with the
Least-Square Monte Carlo introduced by Longstaff and Schwartz [83] combined with

complex derivatives are traded over the counter (OTC).
9For brevity we focus on the MLE method and do not use the GMM.

10Note that the density has a non-zero mass at point x = 0.
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Method σ θ a α P (∆X = 0)

MLE 0.16 0.18 0.46 1255.7 0.02
NLLS 0.20 0.0.39 0.54 650.71 0.21

Table 7.26. Set of parameters Θ for the Italian power future market.

Method σ θ a α P (∆X = 0)

MLE 0.24 0.02 0.27 872.83 0.01
NLLS 0.28 0.91 0.52 1044.43 0.06

Table 7.27. Set of parameters Θ for the German power future market.

Method σ θ a α P (∆X = 0)

MLE 0.09 0.05 0.38 6430.06 0.08
NLLS 0.13 0.83 0.49 616.35 0.18

Table 7.28. Set of parameters Θ for the Spanish power future market.

the backward simulations described in Section 3.2.2 and for completeness, with the
sequential (forward) simulation approach. The results are reported in Figure 7.19,
where we fix the strike price K = 56 and the maturity T = 0.26 years and we
set different values of the process F at time t = 0. As observed, for example, in
Seydel [117], the value of the American put options is never lower than the payoff
and, as expected, the sequential simulation and the backward simulation return
indistinguishable results. This result is not surprising, since the interpretation of
the index set I = {t ≥ 0} of the stochastic process X as time is just a convention:
the mathematical object X = {X(t); t ∈ I} is well defined even if the index set I
has not an order relation. A simple question then arises: is there any advantage in
using backward simulations instead of the standard forward approach? Backward
simulations are not necessarily faster than forward simulations as observed in Sabino
[106]: nevertheless, the backward recursion of the stochastic optimization at each
time step tj requires the path simulations at time tj and tj+1 only, which is perfectly
consistent with backward approach in contrast, with the forward strategy one has to
store the entire set of paths. For example, using the standard forward simulation
approach to price an American contract with maturity one year, daily early exercise
and 106 simulations, 2.52 · 108 values need to be stored instead of 2 · 106 values
which are necessary with the backward simulations strategy. This gives a remarkable
computational advantage especially if the contract has a large maturity or if one
deals with the pricing of more complex derivatives such as gas storages (Boogert and
de Jong [24]) or virtual power plants (Tseng and Barz [121]), for which additional
discretization grids are needed.
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Figure 7.18. Fitted cumulative distribution functions of the V G + + process obtained
at maturity T using MLE and NLLS methods on Italian power forward
quotations.

In order to point out differences between the Variance Gamma and the V G+ +
processes we apply them to the same market framework: to this aim, we consider
the pricing of Lookback call options with MC simulations. We stress out once again
that the transition density of the V G + + process has an atom at zero and then
the changing ∆X in the log-price over the time interval ∆t can be zero with strictly
positive probability: this is equivalent to say that no trades have been exchanged
over that time interval. On the other hand, in the Variance Gamma model a zero
trading activity is not possible over any finite time interval ∆t. This difference
between the two models has an impact on derivative valuation. Indeed, from a
financial perspective, whenever an agent sells derivatives, a hedging strategy has to
be implemented. If the underlying asset is not liquid, such a hedging strategy, a
delta-hedging for example, might be expensive and hard to implement.

Indeed, if an option seller decides to adopt the delta-hedging strategy it may
happen that the underlying asset is not available therefore, the strategy can not be
implemented at all. On the other hand, if the underlying asset is exchanged but the
bid-ask spread is extremely wide, the hedging strategy results to be highly expansive.
For these reasons, the price of options in illiquid markets should be higher than that
of the same contingent claim traded in a liquid market: the price of the contingent
claim must take into account the cost of the “impracticable” hedging strategy.

In Figure 7.20 we show the price of Lookback call options on the maximum in
the Spanish future market, which is the most illiquid one between the markets we
analyzed. It is worth noting that the value of the option computed with the Variance
Gamma model is lower than the one we obtain using the V G+ + model. As stated
before, unlike the Variance Gamma model, the V G+ + considers the possibility that
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Figure 7.19. Price of the American put option with different values of starting point F (0)
using Least-Square Monte Carlo with forward and backward simulations.

the market becomes illiquid leading to possible difficulties in the implementation
of an adequate hedging strategy. Accordingly, when the market is illiquid, in order
to mitigate his risk exposure, the only thing that the option seller can do is to
increase the option value. We finally observe that the price differences in Figure 7.20
might not seem remarkable: indeed, even if the Spanish future market has the 8% of
probability of not being liquid on a given day, such a level of liquidity guarantees to
the option seller to secure himself against derivative price fluctuations.

We conclude that, when we consider illiquid markets, the V G + + model is a
better choice because it allows the option seller to include in the option price a sort
of “cost of market illiquidity”, which somehow mitigates the risk of not having a
proper hedging strategy.

7.6.4 A Multivariate framework for the V G+ + process
At this point, it should be clear that one of the most challenging tasks in financial
modelling is the extension of continuous time Lévy models from a univariate to
a multivariate framework. As we stated befeor, in a Gaussian setting, as the one
proposed by Black and Scholes [23] or Heath et al. [69], the extension is easy since the
whole dependence structure is caught by the covariance matrix. Multi-asset versions
of commonly used Lévy models have been proposed by Buchmann et al. [30, 32, 33],
Michaelsen and Szimayer [94] and Michaelsen [93], Semeraro [115], Luciano and
Semeraro [87] and Ballotta and Bonfiglioli [9] among the others.

As observed by Sabino and Cufaro-Petroni [108], the scaling and summation
properties of the Gamma laws also hold for their a-remainder’s, namely:
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• If Za ∼ Γ++ (a, α, β) for every c > 0 it results:

cZa ∼ Γ++
(
a, α,

β

c

)
. (7.5)

• If Za,i ∼ Γ++ (a, αi, β), i = 1, . . . , n and are independent then:
n∑
i=1

Za,i ∼ Γ++
(
a,

n∑
i=1

αi, β

)
. (7.6)

For this reason, the same construction proposed by Semeraro [115], Luciano and
Semeraro [87] and Ballotta and Bonfiglioli [9] can be used to build a multivariate
subordinator H = {(H1 (t) , . . . , Hn (t)) ; t ≥ 0} whose marginal distributions have
a Γ++ law with suitable parameters. The construction is the following: consider
independent Xi = {Xi (t) ; t ≥ 0} for i = 1, . . . , n with Xi(t) ∼ Γ++

(
a, αit,

β
ci

)
and

consider Z++
a defined in Section 3.1.1. We define the process H as:

Hi(t) = Xi(t) + ciZ
++
a (t), i = 1, . . . , n.

where ci > 0 for all i = 1, . . . , n. Using properties (7.5) and (7.6) it is easy to
check that Hi (t) ∼ Γ++

(
a, (αi + α) t, β

ci

)
. All the components of the process H are

dependent, because of the presence of the common process Z++
a . H is a multivariate

subordinator and it can be used to derive multidimensional versions of the V G+ +
process: this topic will be the subject of future investigations.
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Chapter 8

Conclusions and further inquiries

In this work we have shown how the probabilistic notion of self-decomposability can
be used in finance both to build multivariate versions of the well known Variance
Gamma and Normal inverse Gaussian processes with stochastic delay and to construct
the process we called V G+ + which is particularly useful to model illiquid markets.

All the models we have obtained are easy to handle both from a mathematical
and numerical point of view: we deeply investigated their mathematical properties
and we pointed out which processes are Markovian or Lévy and which are not.
In particular, the characteristic functions and the linear correlation coefficients of
the multidimensional Variance Gamma and Normal Inverse Gaussian process with
stochastic delay have been derived in a closed form. The knowledge of the expression
of the characteristic function allowed us to adopt numerical algorithms based on the
Fourier transform for spead option pricing, whereas the closed form expression of the
linear correlation coefficient at time t is crucial to calibrate the dependence structure
of the multidimensional process on real market data.

In addition, for the V G+ + process we have derived a closed form expression for
the price of an European call option. In particular, we have shown how the price of
an European call option can be obtained as an infinite sum of call options under the
Variance Gamma model where the shape parameter of the underlying subordinating
gamma process is an integer. The evaluation of this formula can be easily done
numerically and its computation is extremely fast, since it requires only matrices
multiplications and no integral computations.

As we observed, in real financial applications Monte Carlo algorithms are fre-
quently used, since closed formula for complex contingent claims evaluation are
usually not available: for these reason, a remarkable part of the thesis consist in the
derivation of efficient numerical schemes for the path simulations of the processes we
have introduced. Such results can be used to evaluate derivative contracts following
the Monte Carlo approach.

In particular, another significant contribution of this work is the derivation of an
efficient algorithm to sample from the distribution of the so called a-remainder Za
when the law of the random variable is inverse Gaussian. Such an algorithm is faster
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Figure 8.1. Number of Covid-19 cases divided by the mean of the whole considered period.

than the one are presented in literature since it does not relies upon an acceptance
rejection algorithm and it can also be used to simulate so called Ornstein-Uhlenbeck
backward driven Lévy process with inverse Gaussian stationary distribution.

Another new contribution of the thesis is the backward in time V G+ + process
simulation, which is accomplished by using Lévy bridges techniques: this result
reveals to be particularly useful if one needs to prices complex American derivatives:
adopting the backward simulation approach a large amount of RAM can be saved,
especially when the maturity is far.

In the last part of this work, we have applied all the derived models to energy
markets comparing the results and giving them an economic interpretation. In
particular, we have calibrated the models on real financial data and we used several
numerical techniques to price different type of contracts. Unfortunately, it turns
out that the multidimensional version of the Variance Gamma and of the Normal
Inverse Gaussian processes are easy to calibrate only if the number of the considered
underlying asset is small: indeed, if the number of the considered risky asset grows, the
number of the parameters rapidly increases and hence the fitting of the dependence
structure may be difficult to achieve. Nevertheless, it is hard to find derivatives
contracts written on more than three underlying assets and, for this reason, our
models can be used is many practical situations.

In addition, we point out that the modelling framework we introduced by using the
so called stochatic delay is very general and can be used beyond financial applications
to model all those physical systems which present a delay in time one with respect
to the other ones. A possible application of this approach could be the modelling
of the waves of an pandemic disease across different areas of the world as it has
been observed, for example, for the Covid-19 pandemic. As we can observe in
Figure 8.1, when infection cases increase in one country and, after a stochastic
time, they start increasing also in other countries. We think that the application of

156



Chapter 8. Conclusions and further inquiries

the proposed approach to build an epidemiological mathematical model based on
stochastic differential equations might be investigated.

Focusing on financial applications, even if we applied our processes to model
energy markets, it is worth observing that such a framework can also be used, for
example, in equity derivatives, with an arbitrary number of stocks, or in credit risk to
model a chain of defaults caused by a market shock that propagates with a stochastic
delay. Moreover, a multidimensional application of the Variance Gamma++ process
could be the object of a future inquire. Finally, a topic deserving further investigation
is the possibility to apply the procedure adopted to construct the Variance Gamma++
process to the inverse Gaussian law, whose law is a self-decomposable as well, and
accordingly study its mathematical properties and potential financial applications.
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Appendix A

A non Lévy process

In this section we show that if the characteristic function ϕX(t)(u), u ∈ R of a given
process X at time t is associated to an infinitely divisible law it is not guaranteed
that X is a Lévy process. In other words, the fact that ϕX(t)(u) is associated to an
infinitely divisible distribution is only a necessary condition to state that X is a Lévy
process. On the other hand, the law of a Lévy process at time t is infinitely divisible.
Moreover, if given an infinitely divisible law there exists a Lévy process associated
to the given law. These results are summarized in Sato [112, Theorem 7.10].

For example, consider the following processes:

X = {(W (t),W (at)); t ≥ 0} ,
Z =

{
(
√

1 − aW1(t) +
√
aW2(t),

√
aW2(t)); t ≥ 0

}
where a ∈ (0, 1) and W1 = {W1(t); t ≥ 0} and W2 = {W2(t); t ≥ 0} are independent
Brownian motions. The increments of the process X are not independent and hence

it is not a Lévy process. If we take M =
[√

1 − a
√
a

0
√
a

]
and W = [W1,W2] we can

write Z = MW T and hence by Cont and Tankov [42, Theorem 4.1] it is a Lévy
process. If we compute the characteristic function at time t of both processes X and
Z we get that:

ϕX(t)(u) = ϕZ(t)(u) = e− t
2 uΣuT

, ∀t ≥ 0,

where u = [u1, u2] and Σ =
[
1 a
a a

]
. We have proven the following Proposition.

Proposition A.0.1. Let W = {W (t); t ≥ 0}, W1 = {W1(t); t ≥ 0} and W2 =
{W2(t); t ≥ 0} be mutually independent standard Brownian motions and a ∈ (0, 1).
Consider the two processes X = {X(t); t ≥ 0} and Z = {Z(t); t ≥ 0} defined as
follows:

X(t) = (W (t),W (at)) , (A.1)
Z(t) =

(√
1 − aW1(t) +

√
aW2(t),

√
aW2(t)

)
. (A.2)
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Then X(t) d= Z(t) for all t ≥ 0.

Proof. Let be t ≥ 0 fixed and u ∈ R2. Compute the characteristic function of X
and Z at time t.

ϕX(t)(u) = E
[
eiu1W (t)+iu2W (at)

]
= E

[
eiu1(W (t)−W (at)+W (at))+iu2W (at)

]
= E

[
eiu1(W (t)−W (at))+i(u1+u2)W (at)

]
= E

[
eiu1(W (t)−W (at))

]
E
[
ei(u1+u2)W (at)

]
= e− 1

2u
2
1(t−at)e− 1

2 (u1+u2)2at

= exp
{

−1
2 (1 − a)u2

1t
}

exp
{

−1
2(u1 + u2)2at

}
.

ϕZ(t) (u) = E
[
ei

√
1−au1W1(t)+iu1

√
aW2(t)+iu2

√
aW2(t)

]
= E

[
ei

√
1−au1W1(t)

]
E
[
ei(u1+u2)

√
aW2(t)

]
= exp

{
−1

2 (1 − a)u2
1t
}

exp
{

−1
2 (u1 + u2)2 at

}
By Lévy continuity theorem we can conclude that since the characteristic functions
coincide for all t ≥ 0 the two random variables have the same distribution. ■

Hence we can conclude that the condition that requires that the law of a process
X at time t is infinitely divisible is only a necessary but not a sufficient condition to
guarantees that X is a Lévy process.

Clearly the two considered processes are different and hence their paths are
not the same as it can be observed in Figure A.1. Indeed, process X shows two
components that seems to be delayed one with respect the other one, whereas the
trajectory of process Z seems not to show any particular delay. Proposition A.0.1
shows how to construct the Lévy process Z.
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Appendix B

Variance Erlang distribution:
derivation and option pricing

In this Appendix we report some results about Exponential Polynomial Trigonometric
(EPT) distributions we used in the article. For a complete discussion about this
topic refer to Sexton and Hanzon [116].

B.1 2-EPT distributions
The class of EPT functions f : [0,∞) → R is given by:

f (x) = ℜ
(

K∑
k=1

pk (x) eµkx

)

where ℜ (z) denotes the real part of a complex number z ∈ C, pk (x) is polynomial
with complex coefficients for each k = 1, . . . , K and µk ∈ C for k = 1, 2, . . . , K. And
EPT function defined on the positive real line can be represented in the following
form:

f (x) = ceAxb, x ≥ 0
where A is a n× n matrix, c is 1 × n vector and b is a n× 1 vector. We consider
probability density functions which can be written as two separate EPT functions:

f (x) =
cNe

ANxbN , x ≥ 0
cP e

AP xbP , x > 0.

B.2 Variance Gamma as 2-EPT function
Variance Gamma density can be views as an 2-EPT function. The density of a
random variable X with Variance Gamma law is given by:

165



Appendix B. Variance Erlang distribution: derivation and option pricing

fX (x;C,G,M) = (GM)C√
πΓ (C) exp

(
(G−M)x

2

)(
|x|

G+M

)C− 1
2

KC− 1
2

(
(G+M) |x|

2

)
where Kν(z) denotes the modified Bessel function of the second kind and C,G,M ∈
R+. For u ∈ R, its characteristic function is given by the following formula:

ϕX (u) =
(

GM

GM + (M −G) iu+ u2

)C
If C ∈ N, using Abramowitz and Stegun [1, pag. 443] which is:√

π

2xKn+ 1
2

(x) =
(
π

2x

)
e−x

n∑
k=0

(
n+ 1

2 , k
)

(2z)−k

where (
n+ 1

2 , k
)

= (n+ k)!
k!Γ (n− k + 1) ,

and defining z := (G+M)|x|
2 we have that:

fX(x) = (GM)C√
πΓ (c) exp

(
(G−M)x

2

)(
|x|

G+M

)C− 1
2

KC− 1
2

(
(G+M) |x|

2

)

= (GM)C√
πΓ (c) exp

(
(G−M)x

2

)(
|x|

G+M

)C− 1
2
√

2z
π

√
π

z
KC− 1

2
(z)

= (GM)C√
πΓ (c) exp

(
(G−M)x

2

)(
|x|

G+M

)C− 1
2
√

2z
π

π

z
e−z

C−1∑
k=0

(
C − 1 − 1

2 , k
)

(2z)−k

= (GM)C

(C − 1)! exp
(

(G−M)x
2 − (G+M) |x|

2

)
C−1∑
k=0

(
C − 1 − 1

2 , k
)

|x|C−1 (G+M)−k−C

= exp
(

(G−M)x
2 − (G+M) |x|

2

)
(GM)C

(C − 1)!

C−1∑
k=0

(C − 1 + k)! (G+M)−C−k |x|C−1−k

(C − 1 − k)!k!︸ ︷︷ ︸
p(x)

.

We can split the density around the origin, obtaining:

fX (x) =
exp (Gx) (MG)C

(C−1)!
∑C−1
s=0

(2(C−1)−s)!(G+M)−2C+1+s|x|s
s!(C−1−s)! x ≤ 0

exp (−Mx) (MG)C

(C−1)!
∑C−1
s=0

(2(C−1)−s)!(G+M)−2C+1+s|x|s
s!(C−1−s)! x > 0.

(B.1)

Observe that the polynomial part of (B.1) are identical for all x and this implies
that cN = cP and bN = bP . Set:

c = (c0, . . . , cS−1) , c ∈ R1×C

cs = (MG)C

(C − 1)!
(2 (C − 1) − s)! (G+M)−2C+1+s

(C − 1 − s)! , s ∈ (0, . . . , C − 1) .
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Similarly b = (1, 0, . . . , 0)T is a C × 1 column vector whereas a is given by:

a =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0


and finally we get that p (x) = ce−axb. This leads us to write:

fX (x;C,G,M) =
ceGxe−axb x ≤ 0

ce−Mxeaxb x > 0.

fX (x;C,G,M) =
ce(GI−a)xb x ≤ 0

ce(−MI+a)xb x > 0.

Define AN = GI − a and AP = −MI + a, therefore:

fX (x;C,G,M) =
ceANxb x ≤ 0

ceAP xb x > 0.

B.3 The price process
We model the risky underlying asset F as:

F (t) = F (0)erT+ωT+X(T ), F (0) = F0

where T ≥ 0, r is the risk-free rate and ω is such that the discounted prices are
martingales. In order to work under the risk-neutral measure Q we must require
that:

EQ
[
eωTX(T )

]
= 1

and this leads to:
ω = C log

((
1 − 1

M

)(
1 + 1

G

))
.

If we add the constrain CT ∈ N, we observe that ω is defined only if M > 1.
Moreover, if CT ∈ N a closed formula for a Call option with maturity T can be
derived (In the original article you have τ = T − t, which is the time to maturity,
instead of T : here we considered t = 0 and hence τ and T coincides).
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B.4 A closed formula for Call option pricing
Consider a Call option with strike price K and maturity T . The value of the
underlying asset at t = 0 is F (0) and we consider a constant risk free rate r ≥ 0.
Define:

d = log
(
F (0)
K

)
+ (r + ω)T.

The price of the Call option C(0, K), where X(T ) has a infinitely divisible distribution
with 2-EPT density distribution with realizations (AN , bN , cN ,AP , bP , cP ), is given
by:

• If d > 0:

C(0, K) = F (0)eωT
(
cN (AN + I)−1

)
bP − cN (AN + I)−1 e−(AN +I)dbN

− cP (Ap + I)−1 bP −Ke−rT
(
1 − cNA−1

N e−ANdbN
)

• If d ≤ 0:

C(0, K) = −F (0)eωTcP (AP + I)−1 e−(Ap+I)dbp +Ke−rTcPA−1
P e−ApdbP .

In contrast to many option pricing formulas available in finance, observe that no
integrals appear: the computation of C (0, K) requires only linear algebra techniques
which are usually faster than numerical integration procedures.

B.5 From C,G,M to α, β, σ, θ

Usually in literature, the parametrization of the Variance Gamma process is given
in term of α, β, σ and θ, whereas in the previous section the 2-EPT version of the
Variance Gamma as function of C,G and M . Since these equivalent parametrization
may be a source of confusion, in this section we show how to easily switch from
one to the other. For the sake of completeness, we recall how the Variance Gamma
process is defined.

Definition B.5.1. Consider the gamma process G = {G(t); t ≥ 0} such that G(t) ∼
Γ (αt, β) and consider a Brownian motion W with drift θ ∈ R and diffusion σ ∈ R+.
The process X = {X(t); t ≥ 0} defined as:

X(t) = θG(t) + σW (G(t)) t ≥ 0, (B.2)

is called Variance Gamma process.
Its characteristic function is given by:

ϕX(t)(u) =
(

1 − i

β

(
uθ + iu2σ

2

2

))−αt

. (B.3)
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Observe that Equation (B.3), can be rewritten as:

ϕX(t) =
(

1 − 1
β

(
uθ + i

σ2

2 u
2
))−αT

=
(

2 β
σ2

2 β
σ2 − iu 2θ

σ2 + u2

)αT
,

that has to be compared to:

ϕX(t)(u) =
(

GM

GM + (M −G) iu+ u2

)C
,

and hence,

GM = 2 β
σ2 ,

M −G = −2 θ
σ2 .

Finally we obtain:

G = 1
σ2

(
θ +

√
θ2 + βσ2

)
,

M =
√
θ2 + βσ2

σ2 − θ

σ2 .
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Appendix C

Markovian and non Markovian
processes

In this Appendix we clarify better we clarify better which processes introduced in
Chapter 4 are Lévy and which are not. Moreover we show that some of the process
we introduced are not even Markov processes.

In the proof of Proposition 4.2.2, we write Y (t) as:

Y (t) = Y I (t) + Y H (t) ,

where:
Y I (t) =

(
µ1I1 (t) + σ1W1 (I1 (t))
µ2I2 (t) + σ2W2 (I2 (t))

)
and:

Y H (t) =
(
α1µ1H1 (t) + √

α1σ1W
ρ
1 (H1 (t))

α2µ2H2 (t) + √
α2σ2

(
W ρ

2 (aH1 (t)) + W̃ (Za (t))
) ) .

The first term Y I (t) is a Lévy process because is based on a linear combination of
independent Lévy processes, on the other hand Y H (t) can be split into two terms:
Y H (t) = Y 1

H (t) + Y 2
H (t).

Y 1
H (t) =

(
α1µ1H1 (t)
α2µ2H2 (t) + W̃ (Za (t))

)
.

Y 2
H (t) =

( √
α1σ1W

ρ
1 (H1 (t))√

α2σ2W
ρ
2 (aH1 (t))

)
.

In the following, we take for simplicity α1 = α2 = 1 and σ1 = σ2 = 1. Y 1
H (t) is

once again a Lévy process because it is a linear combination of independent Lévy
processes, in contrast, we show that Y 2

H (t) is neither a Lévy process nor a Markov
process. Take B1 and B2, two independent Brownian motions and B = {W ρ

1 (t) =
B1(t),W ρ

1 (t) = ρB1(t) +
√

1 − ρ2B2(t), t ≥ 0}, then

Y 2
H (t) =

(
B1 (H1 (t))
ρB1 (aH1 (t)) +

√
1 − ρ2 B2 (aH1 (t))

)
.
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Appendix C. Markovian and non Markovian processes

We follow the same route as in the first point-to-point reply to the referee, where we
proved that the increment of the process are correlated, once again we take the cross
term. For s < t, 0 < a < 1, we have

E [(B1(aH1(t)) −B1 (aH1(s)) B1 (H1(s))] =
E [B1(aH1(t))B1 (H1(s))] − E [(B1(aH1(t)) B1 (H1(s))] =

E [min (B1(aH1(t)), B1 (H1(s)))] − a s ̸= 0 (C.1)

therefore the process Y 2
H is not Lévy and hence Y neither. In order to check if

the process Y 2
H (t) is a Markov process, it suffices to focus on the process T =

{T1(t) = B1(H1(t)), T2(t) = ρB1(aH1(t))}. Denote with F = {F(t), t ≥ 0} the
natural filtration of T, then if T a Markov process, for s < t and for any Borel
function g, it must hold

E [g(T1(t), T2(t)|F(s)] = E [g(T1(t), T2(t)|T (s)] . (C.2)

However, that cannot be true because aH1(t) can be smaller than H(s), therefore
the process cannot be independent of the past before s. We also detail the apparent
contradiction that ϕY 2

H(t)(u) = ϕY 2
H(1)(u)t although Y 2

H is not a Lévy process, once
again, it suffices to focus on the process T. The chf of T(t) is

ϕT(t)(u) = E
[
ei u1 B1(H1(t))+i u2 ρB1(aH1(t))

]
(C.3)

= E
[
E
[
ei u1(B1(H1(t))−B1(aH1(t)))+i u1 B1(aH1(t))+i u2 ρB1(aH1(t))|H1(t)

]]
= E

[
e− H1(t)

2 (u2
1(1−a)+a(u1+ρ u2)2)

]
= E

[
e− H1(t)

2 (u2
1+a ρ2 u2

2+2 aρ u1 u2)
]

and apparently ϕT(t)(u) = ϕT(1)(u)t. However, according to Sato [112, Theorem 7.10],
such a condition is only a necessary condition and does not imply that T is a Lévy
process but rather that there exist a Lévy T̃ whose marginal chf at time t coincides
with (C.4). Indeed, consider T̃ = {T̃1(t) = Z1(H1(t)), T̃2(t) = ρ

√
aZ2(H1(t))} where

Z1(t), Z2(t) are two correlated Brownian motions with correlation
√
a. Now take

Z1(t) = B̃1(t) and Z2(t) =
√
aB̃1(t) +

√
a(1 − a)B̃2(t), where B̃1(t) and B̃2(t) are

two independent Brownian motions. Then T̃ is a Lévy process whose chf at time t is

ϕT̃(t)(u) = E
[
ei u1 B̃1(H1(t))+i u2 ρ aB̃1(H1(t))+i u2ρ

√
a(1−a)H1(t)

]
(C.4)

= E
[
e− H1(t)

2 (u2
1+a2 ρ2 u2

2+2 aρ u1u2+u2
2ρ

2 a−a2 ρ2 u2
2)
]

= E
[
e− H1(t)

2 (u2
1+a ρ2 u2

2+2 aρ u1 u2)
]

which coincides with that of T(t), therefore the two random vectors T(t) and T̃(t)
share the same law although the two processes are different. Summarizing, we can
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conclude that the process Y is not a Markov process and therefore not a Lévy process.
In addition, in contrast to the original models where the idiosyncratic component
affects all the marginal processes at the same time, our models encompass what in
Cufaro Petroni and Sabino [46, 47] is defined as synaptic risk that can be also seen
in terms of random delays or interaction between the dependent (self-decomposable)
subordinators.

Following the same ideas we used above, it can be proven that the process Y we
defined in Section 4.2.3 is neither a Markov nor a Lévy process even if its marginal
are Lévy processes.
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