
Constructing fast approximate eigenspaces with

application to the fast graph Fourier transforms

Cristian Rusu
University Politehnica of Bucharest, Romania

cristian.rusu@upb.ro

Lorenzo Rosasco
LCSL, Universitá di Genova

Massachusetts Institute of Technology and Istituto Italiano di Tecnologia

Abstract

We investigate numerically efficient approximations of eigenspaces as-
sociated to symmetric and general matrices. The eigenspaces are factored
into a fixed number of fundamental components that can be efficiently ma-
nipulated (we consider extended orthogonal Givens or scaling and shear
transformations). The number of these components controls the trade-
off between approximation accuracy and the computational complexity of
projecting on the eigenspaces. We write minimization problems for the
single fundamental components and provide closed-form solutions. Then
we propose algorithms that iterative update all these components until
convergence. We show results on random matrices and an application on
the approximation of graph Fourier transforms for directed and undirected
graphs.

1 Introduction

Matrix decomposition techniques [Stewart, 2000], and specifically eigenvalue
decompositions [Golub and van der Vorst, 2000], are widely used in numerical
linear algebra, scientific computing, machine learning, quantum computing and
other scientific fields.

In general, given no assumptions on the structure of an eigenspace, the
eigenvector matrix of a given linear operator of size n × n exhibits no advan-
tageous numerical properties and therefore they require O(n2) operations when
performing matrix-vector multiplications. In this paper, we want to perform
an approximate eigenvalue decomposition so that we accurately represent the
original eigenspace with a new one that also exhibits favorable numerical com-
plexity, for example, it requires only O(n log n) operations when performing
matrix-vector multiplication with a generic vector. In such cases, a trade-off
between the accuracy of the approximation and its numerical complexity exists.

1

ar
X

iv
:2

00
2.

09
72

3v
3

 [
cs

.L
G

]
 1

8
M

ay
 2

02
1

Several previous works, such as [Lee et al., 2008] and [Kondor et al., 2014], have
already introduced these ideas in the machine learning community with consid-
erable success. Such approximations are particularly useful in situations where,
once computed, the eigenspace is repeatedly used in matrix-vector calculations
in downstream applications.

Eigendecomposition algorithms developed in the matrix computations liter-
ature are different for symmetric and unsymmetric matrices. In the symmetric
case, the eigenspace is always full (non-defective), real-valued and furthermore,
orthonormal [Golub and van Loan, 1996][Chapter 8]. We approximate these
eigenspaces by using extended Givens transformations (which are themselves
orthonormal and include as a particular case the well-known Givens, sometimes
also called Jacobi, rotations [Givens, 1958]). In this case, given the spectrum or
an estimation of it, we can provide a locally optimal iterative algorithm similar
to Jacobi diagonalization for symmetric matrices [Jacobi, 1846]. The general,
unsymmetric, case [Golub and van Loan, 1996][Chapter 7] is much more chal-
lenging as the given matrix might not even be diagonalizable and furthermore,
even when it is, the factorization has to be done over the complex-valued field
in general. As the eigenvector matrix is generally unstructured, in this case,
we rely on a given number of scaling and shear transformations to approximate
it [Rusu, 2018]. We formulate optimization problems for each of these basic
components and show how to locally, optimally solve them with an iterative
algorithm and closed-form solutions.

For both proposed algorithms, we show experimental results on the approx-
imation of random unstructured symmetric matrices and then show an appli-
cation to the construction of fast graph Fourier transforms on synthetic and
real-world directed and undirected graphs.

2 Prior approaches

The literature has always distinguished between eigendecompositions of sym-
metric and unsymmetric matrices and we will do the same.

In the symmetric case, the diagonalization is done with orthonormal ma-
trices, which are well understood in terms of their decomposition with Givens
rotations or Householder reflectors (the QR algorithm, see Chapters 5.1 and
5.2 of [Golub and van Loan, 1996]). The starting point for some approaches in
the literature is the Jacobi diagonalization process for symmetric matrices [Ja-
cobi, 1846] which is an iterative procedure that uses Givens rotations to bring
the symmetric matrix to a strongly diagonally dominant one. A truncated Ja-
cobi procedure is used in [Le Magoarou et al., 2018] to compute fast graph
Fourier transforms for undirected graphs (as undirected implies symmetry in
the adjacency and Laplacian matrices). Other methods deal directly with the
orthonormal eigenspace. For example, Treelets [Lee et al., 2008] and multireso-
lution [Kondor et al., 2014] structures use Givens rotations in a structured way
to decompose the orthonormal components into hierarchies or multiple differ-
ent scales, respectively. Another approach is to exploit manifold optimization

2

techniques to find approximate factorizations of orthonormal matrices with few
Givens rotations either by greedy coordinate descent [Shalit and Chechik, 2014]
or by `1–style optimization [Frerix and Bruna, 2019]. Recently, an approach
that combines rotations and reflections was proposed with an application to
fast principal component analysis (PCA) projections [Rusu and Rosasco, 2019].
While this latter work needs to precompute the orthonormal eigenspace, in this
paper we show how to perform the same factorization given the dataset.

In the unsymmetric case, we rely on sparse structured components. For
example, the incomplete LU [Meijerink and Vorst, 1977], the randomized LU
[Shabat et al., 2018] factorizations, the additive low-rank plus multiresolution
decomposition [Mudrakarta et al., 2019], and approximate Gaussian elimination
[Kyng and Sachdeva, 2016] all rely on structured sparse matrices to construct
efficient approximations of a given unstructured matrix.

In this paper, we use structured matrices to construct numerically efficient
approximations of eigenspaces. We describe the fundamental building blocks
of our factorizations and provide exact optimization problems with closed-form
solutions to optimally, locally update these blocks efficiently.

3 Problem setup and formulation

3.1 The symmetric case

Given a symmetric matrix S ∈ Rn×n the main result that we use is its eigenvalue
factorization as

S = Udiag(s)UT , UUT = UTU = I, s ∈ Rn, (1)

where we assume w.l.o.g. that the entries of s, which are the real-valued eigenval-
ues of S, are in descending algebraic order and U is the real-valued orthonormal
eigenspace. Based on (1), we consider the problem

minimize
s̄, Ū

‖S− Ūdiag(̄s)ŪT ‖2F subject to Ū∈Gg, (2)

where Gg a set of orthonormal matrices such that matrix-vector multiplication
with any matrix from this set is O(g), instead of the classic O(n2). Let us now
consider a particular set Gg. Based on all the 2× 2 orthonormal matrices

G̃ ∈
{[

c s
−s c

]
,

[
c s
s −c

]}
, c2 + s2 = 1, (3)

we have the extended orthonormal Givens transformations [Rusu and Thomp-
son, 2017, Rusu and Rosasco, 2019], which for simplicity we call a G-transform:

Gij =

Ii−1

∗ ∗
Ij−i−1

∗ ∗
In−j

 ∈ Rn×n, (4)

3

where the non-zero entries located at rows/columns i and j, denoted as “*”,
are the two possible options in (3). The matrices in (3) are basic building
blocks of the orthonormal group because every orthonormal matrix U ∈ Rn×n

can be diagonalized (and the diagonal entries are {±1}) using n(n−1)
2 Givens

rotations (the matrix (4) with the first, unsymmetric, component in (3)) by
the QR decomposition of U, see Chapter 5.2.5 of [Golub and van Loan, 1996].
Then, in this paper, any Ū ∈ Gg has the following structure

Ū =

g∏
k=1

Gikjk = Gigjg . . .Gi2j2Gi1j1 , (5)

where all matrices Gikjk are G-transforms (4). The number g � n2 is given and
fixed. With this structure, matrix-vector multiplication Ūx takes 6g operations
while storing Ū takes approximately 2g log2 n+gC bits, where C is the number
of bits required for a double precision floating-point representation. Similar
structures to (5) have been previously proposed by [Lee et al., 2008], [Kondor
et al., 2014], and [Frerix and Bruna, 2019], but they all consider only Givens
rotations, and no reflectors.

3.2 The unsymmetric case

Given a general diagonalizable C ∈ Rn×n the main result that we use is its
eigenvalue factorization as

C = Tdiag(c)T−1, c ∈ Cn, (6)

where c contains the complex-valued eigenvalues and T has the complex-valued
eigenvectors. Based on (6), we consider the problem

minimize
c̄, T̄

‖C−T̄diag(c̄)T̄−1‖2F subject to T̄∈Tm, (7)

where Tm a set of general matrices such that matrix-vector multiplication with
any matrix from this set or its inverse is O(m), instead of O(n2). Let us now
consider a particular set Tm. Based on 2× 2 scaling and shear transformations

T̃ ∈
{[
a 0
0 1

]
,

[
1 a
0 1

]
,

[
1 0
a 1

]}
, a ∈ R, (8)

and, similarly to (4), we define the T-transform:

Tij =

Ii−1

∗ ∗
Ij−i−1

∗ ∗
In−j

 ∈ Rn×n, (9)

where the non-zero entries are the three possible options in (8). For the shear
transformations we necessarily have j > i while for the the scaling transfor-
mations we abuse notation and impose i = j, i.e., Tii = Ti in (9) is the

4

identity matrix except for the ith diagonal element that is a. The matrices in
(9) are building blocks of every diagonalizable C ∈ Rn×n because, by Gaussian
elimination (see Chapter 3.2.1 of [Golub and van Loan, 1996]), n2 − n shear
transformations (9) diagonalize C and then n scaling transformations (9) ex-
actly represent the resulting diagonal. We choose these three specific matrix
as the optimization in (7) takes place over the variable T̄ and its inverse and
these matrices have trivial inverses. Then, in this paper, any T̄ ∈ Tm has the
following structure

T̄ =

m∏
k=1

Tikjk = Timjm . . .Ti2j2Ti1j1 , (10)

where all matrices Tikjk are T-transforms (9). Their number m � n2 is given
and fixed. We assume that the factorization contains m1 scalings and m2 shears
(m1 + m2 = m). With this structure, matrix-vector multiplication T̄x takes
m1+2m2 operations while storing T̄ takes approximatelymC+(m1+2m2) log2 n
bits, where C is the number of bits required for a double precision floating-point
representation.

There are two important differences when compared to G-transforms. Nei-
ther the scaling nor the shears are orthogonal but they are more efficient: two
computations and one degree of freedom per transform (as compared to the
G-transform where we have 6 operations and one degree of freedom). There-
fore, for the same computational cost, we expect T-transforms to provide more
accurate approximations. The two types of transforms are connected since any
2 × 2 orthonormal transformation can be written as a product of three shears
and scalings by the lifting scheme [Daubechies and Sweldens, 1998].

4 Proposed factorizations and algorithms

In this section we propose approximate solutions to the optimization problems
(1) and (6). Therefore, we distinguish between the symmetric and unsymmetric
cases. Furthermore, we analyze separately the initialization and iterative pro-
cedures that improve the approximation for each of the two problems. Both
(2) and (6) echo the fast circulant matrix-vector multiplication which is possi-
ble because every circulant matrix of size n × n has a factorization as FHΣF,
Chapter 4.8 of [Golub and van Loan, 1996], where F is the Fourier matrix and
Σ = diag(σ), σ ∈ Cn. The idea is to replace the Fourier matrix with a new
learned matrix (Ū as (5) or T̄ as (10)), with similar computational properties
to the Fourier [Cooley and Tukey, 1965].

4.1 Approximation of symmetric matrices

Based on the eigenvalue decomposition, the idea is to approximate U in (1)
with a fast approximation Ū (5). The approximation of S would therefore be

S̄ = Ūdiag(̄s)Ū
T

. Multiplications with S can be viewed as a sequence of fast

5

multiplications by ŪT , diag(s) and finally Ū. Matrix-vector multiplication with
a diagonal matrix is fast, n operations, so therefore our goal is to construct Ū
such that it also has advantageous numerical properties (for example, compu-
tations take less than 2n2 operations). Therefore, based on (5), we propose an
approximation as

S̄ =

(
g∏

k=1

Gikjk

)
diag(̄s)

 1∏
k=g

GT
ikjk

 , s̄ ∈ Rn, (11)

where s̄ are the estimated eigenvalues of S. These can be the actual eigenvalues
of S if they are known, or else they can be randomly initialized or set to the
diagonal elements of S – in the latter case, we should ensure entries of s̄ are
distinct for reasons that will be clear later in this section. To find the best
approximation S̄ of S we can compute the best approximation to the spectrum
by the following lemma.

Lemma 1 Let S and orthogonal Ū be fixed, then s̄? the arg min of the expres-
sion ‖S− Ūdiag(̄s)ŪT ‖2F is given by

s̄? = diag(ŪTSŪ). (12)

The complexity of computing s̄? is O(gn).
Let us now move to approximate the orthogonal eigenspace of S. Given an

approximation as (11) where all G-transforms t = k + 1, . . . , g were initialized,
we now study the problem of initializing Gikjk such that we minimize

‖S− S̄‖2F = ‖S(k) −Gikjkdiag(̄s)GT
ikjk
‖2F , (13)

where we have defined the symmetric matrix

S(k) =

(
k+1∏
t=g

Gitjt

)
S

(
g∏

t=k+1

GT
itjt

)
. (14)

Theorem 1 (Optimal initialization of each G-transform) Let S, s̄ be
fixed and all components Gitjt 6= In for t = k + 1, . . . , g while Gitjt = In
for t = 1, . . . , k − 1, then the optimal kth component Gi?kj

?
k

= arg min ‖S(k) −
Gikjkdiag(̄s)GT

ikjk
‖2F has its non-trivial values given by G̃k = VT

k with S
(k)
{i?k,j

?
k}

=

VkDkVT
k for the optimal coordinates

(i?k, j
?
k) = arg max

(i,j), j>i

Aij with Aij = γij(s̄jj − s̄ii), (15)

where we have denoted the quantity

γij=
1

2

(
S
(k)
ii −S

(k)
jj +

√(
S
(k)
ii −S

(k)
jj

)2
+4
(
S
(k)
ij

)2)
, (16)

and the 2× 2 symmetric S
(k)
{ik,jk} =

[
S
(k)
ikik

S
(k)
ikjk

S
(k)
jkik

S
(k)
jkjk

]
.

6

Theorem 1 provides an efficient way to find the optimal G-transform that
minimizes (13): both the indices and the transform values. Starting from k = g
we can continue down to k = 1 and initialize in this fashion all g G-transforms
in (5). Also, notice that the unified approach we propose (allowing for both
the rotation and the reflection) simplifies the results, i.e., we are not looking
to optimize an angle of rotation but we get the optimal local solution by an
eigenvalue decomposition (the solution to a two-sided 2×2 Procrustes problem).
The computational cost of (15) is dominated by the sweep of the indices (O(n2)
operations).

Remark 1 (Connection to the Jacobi method) The Jacobi method, see
Chapter 8.4 of [Golub and van Loan, 1996], used to diagonalize symmetric ma-
trices, only uses Givens rotations and selects indices (ik, jk) that correspond
to the off-diagonal element of S(k) with the highest magnitude, i.e., we have

(15) with A = |S(k)
ij |. The Jacobi algorithm is not concerned with the number

of Givens rotations used to diagonalize and indeed, in general, more than n2

rotations are used (see Chapter 8.4.3 of [Golub and van Loan, 1996] for a de-
tailed discussion on how the number of rotations relates to the converge of the
method). Furthermore, the Jacobi method uses only Givens rotations (while we
have a richer structure for Gikjk given in (3)) and it does not explicitly have an
objective function as (2), i.e., there is no reference matrix to be reconstructed
in the sense of minimizing a Frobenius norm (the Jacobi method minimizes
the squared sum of the off-diagonal entries of the approximation). Also, the
Jacobi method does not need an estimate of the eigenvalues s̄. If we now ig-
nore the eigenvalue information, we can consider Aij = γij in (15). When

S
(k)
ij � |S

(k)
ii − S

(k)
jj | we have that Aij ≈ |S(k)

ij |, just as in the Jacobi method,

while when S
(k)
ij � |S(k)

ii − S
(k)
jj | we have Aij ≈ S

(k)
ii − S

(k)
jj . Therefore, the

calculated score approximates the Jacobi approach when off-diagonal elements
are large but the selection criterium for the indices is different as the iterative
process makes progress and the working matrix becomes diagonally dominant.
Finally, we note that Aij = 0 whenever s̄ii = s̄jj , i 6= j which agrees with
theoretical convergence results on the Jacobi method that hold when assuming
distinct eigenvalues [Henrici, 1958].

The proposed approach is also significantly different from other previous
approaches. As opposed to the approach in [Kondor et al., 2014], by maximizing
(15) we find the indices of the optimal 2×2 transform without actually explicitly
having to compute it. This saves up computational time (the A are easy to
compute: only 10 operations) and also leads to better approximation (as we
also consider the reflector simultaneously with the Givens rotation in (3)). The
approach in [Frerix and Bruna, 2019] uses again only Givens rotations to perform
coordinate descent on the orthonormal manifold using a particular basis for the
tangent space such that the exponential map is a Givens rotation. Noting

that

[
c s
−s c

]
has the same structure as

[
c s
s −c

] [
0 1
1 0

]
, i.e., the reflection

can be seen as a coordinate swap followed by a rotation, we can interpret our

7

approach as a simultaneous dual tangent space descent. Unfortunately, efforts
to integrate this view with manifold optimization, in general, seem difficult at
this stage as many difficulties arise: for example, the logarithmic map of the
reflector is complex-valued and therefore it is not clear how to choose a basis for
the tangent space corresponding to the reflector. As rotations and reflections
are disconnected components the unified approach used in this paper may work
only for the objective function and constraints we consider (due to the existence
of the Procrustes solutions based on eigendecompositions).

Given an approximation as (11) where all G-transforms were initialized, we
now study the problem of improving each individual Gikjk iteratively. We want
to optimize each G-transform Gikjk sequentially such that we minimize

‖S− S̄‖2F = ‖A(k) −GikjkB(k)GT
ikjk
‖2F , (17)

where, due to the invariance of the Frobenius norm to multiplications by Gij

and its transpose, we have defined the symmetric matrices

A(k) =

(
1∏

t=k−1

GT
itjt

)
S

(
k−1∏
t=1

Gitjt

)
, (18)

B(k) =

(
g∏

t=k+1

Gitjt

)
diag(̄s)

(
k+1∏
t=g

GT
itjt

)
. (19)

Notice that Theorem 1 covered only the case when B(k) is a diagonal matrix.
Next we state a general result that holds for the minimization of (17) and any
A(k) and B(k).

Theorem 2 (Optimal update of each G-transform) Let A(k) and B(k) be
any symmetric n × n matrices, then the minimizer of the quantity in (17) has
its non-trivial values given by

x(fk) =

[
c?i?kj?k
s?i?kj?k

]
= −(R(fk) + λ(fk)I2)−1g(fk), (20)

where λ(fk) = min {λi}, where M(fk)vi = λiN
(fk)vi, for the optimal coordi-

nates
(f?k , i

?
k, j

?
k) = arg min

fk∈{1,2}, jk>ik

B
(fk)
ikjk

, (21)

where B
(fk)
ikjk

= (x(fk))TR(fk)x(fk) + 2(x(fk))Tg(fk) + ‖w‖22. The new index fk

runs through the two options (rotation and reflector) in (3). The matrices R(fk)

of size 2× 2, the vectors g(fk) of length 2 and w of length n2, and the matrices
M(fk) and N(fk) all of size 4× 4 depend only on the entries in A(k), B(k) and
are given explicitly in the supplementary materials.

8

Unlike with the initialization procedure, Theorem 2 shows that considering
both the rotation and the reflector simultaneously does not lead to a unified
optimization problem. Indeed, the index fk runs through both transformations
from (3). Still, solving the second problem, for fk = 2, brings an extra com-
putational load that is negligible as it shares most calculations with the first
problem, for fk = 1.

The iterative process is computationally expensive as it covers all O(n2)
unique pairs of indices (ik, jk) while the calculation of (20) is itself non-trivial
and requires O(n3) operations (substantially more expensive than the initial-
ization (16)). If the running time is an important constraint, we can run the
iterative process just as a “polishing step”: keep the indices of the G-transforms
fixed all the time and update only the values of the transformations G̃?

k.

4.2 Approximation of unsymmetric matrices

Similarly to the symmetric case, based now on the eigenvalue decomposition
(6), the idea is to approximate T with a numerically efficient approximation T̄.

The approximation of C would therefore be C̄ = T̄diag(c̄)T̄
−1

. Multiplications
with C̄ can be viewed as a sequence of fast multiplications by T̄−1, diag(c̄)
and finally T̄. Again, matrix-vector multiplication with a diagonal is fast and
therefore the computational burden depends on the numerical properties of T̄
and its inverse. By using scaling and shear transformations (8) in the direct
transformation T̄ the numerical properties transfer also to its inverse T̄−1 since
inverses of scalings and shears are themselves scalings and shears, respectively.
Therefore, based on (10), we propose an approximation as

C̄=

(
m∏

k=1

Tikjk

)
diag(c̄)

(
1∏

k=m

T−1ikjk

)
, c̄ ∈ Rn, (22)

where c̄ are the estimated eigenvalues of C, which we constraint to be real-
valued. Just like in the symmetric case, there are several ways to set c̄: ran-
domly, the diagonal values of C or the true eigenvalues, if they are known. To
find the best approximation C̄ of C we can compute the best approximation to
the spectrum by the following lemma.

Lemma 2 Let C and T̄ be fixed, then c̄? the arg min of the expression ‖C −
T̄diag(c̄)T̄−1‖2F is given by

c̄? = (T̄−T ∗ T̄)−1vec(C), (23)

where ∗ is the Khatri-Rao product.

The computational complexity of getting c̄? is O(n4), we solve a least squares
problem of size n2 × n where the columns of T̄−T ∗ T̄ are Kronecker products.
Alternatively, we can approximately solve the problem by some iterative method
which exploits the Kronecker product structure to efficiently perform matrix-
vector multiplications.

9

Let us now move to approximate the eigenspace of T. Given an approxi-
mation as (22) where all T-transforms t = 1, . . . , k − 1 were initialized, we now
study the problem of initializing Tikjk such that we minimize

‖C− C̄‖2F = ‖C−TikjkB(k)T−1ikjk
‖2F , (24)

where we have defined the symmetric matrix

B(k) =

(
k−1∏
t=1

Titjt

)
diag(c̄)

(
1∏

t=k−1

T−1itjt

)
. (25)

Theorem 3 (Optimal initialization of each T-transform) Let C and c̄
be fixed, let all components Titjt 6= In for t = 1, . . . , k − 1 while Titjt = In
for t = k + 1, . . . ,m, then the optimal kth component T?

i?kj
?
k

that minimizes the

quantity in (24) is given by

(f?k , i
?
k, j

?
k , a

?
k) = arg min

fk∈{1,2,3}, jk>ik

C
(fk)
ikjk

(ak), (26)

where the quantities C
(fk)
ikjk

(ak), for an index fk that runs through all three op-
tions in (8), are rational functions in ak and are given explicitly in the supple-
mentary materials.

Given an approximation as (22) where all T-transforms were initialized, we
now study the problem of improving each individual Tikjk iteratively. Therefore,
we want to optimize each T-transform Tikjk sequentially such that we minimize

‖C− C̄‖2F =‖C−A(k)TikjkB(k)T−1ikjk
(A(k))−1‖2F , (27)

where we have defined the matrix

A(k) =

m∏
t=k+1

Titjt . (28)

Theorem 4 (Optimal update of each T-transform) Let A(k) and B(k) be
any n × n matrices, then the optimal kth component T?

i?kj
?
k

that minimizes the

quantity in (27) is given by

(f?k , i
?
k, j

?
k , a

?
k) = arg min

fk∈{1,2,3}, jk>ik

D
(fk)
ikjk

(ak), (29)

where the quantities D
(fk)
ikjk

(ak), for an index fk that runs through all three op-
tions in (8), are rational functions in ak and are given explicitly in the supple-
mentary materials.

Although the initialization and iterative steps look very similar, (26) and
(29), they are significantly different from a computational perspective. While

10

Algorithm 1 Approximate eigenspaces factorization.

Input: The symmetric S or general C, the size of the approximation g or m,
the update rule for the eigenvalues in {‘original’, ‘update’} and the stopping
criterion ε (default taken to be ε = 10−2).
Output: The linear transformation Ū and spectrum s̄ or linear transforma-
tion T̄ and spectrum c̄, the approximate solutions to (2) or (7), respectively.
Setup: Gikjk = In×n, k= 1, . . . , g and compute all scores Aij from to (15)
or Tikjk = In×n, k = 1, . . . ,m and compute all scores Cij from to (26); if
the update rule for the spectrum is ‘update’ and the true spectrum is not
available then s̄ = diag(S) or, c̄ = diag(C), respectively.

Initialization: for k = g down to 1 initialize each G-transform Gikjk using
Theorem 1 in the symmetric case or for k = 1 to g initialize each T-transform
Tikjk using Theorem 3 in the general case.
Iterations:
• for k = 1 to g update each G-transform Gikjk (with all others fixed)
according to Theorem 2 or for k = 1 to m update each T-transform Tikjk

(with all others fixed) according to Theorem 4.
• if rule is ‘update’ calculate the new spectrum s̄ according to Lemma 1 or
calculate the spectrum c̄ according to Lemma 2.
• i ← i + 1 and εi = ‖S − Ūdiag(̄s)ŪT ‖2F or εi = ‖C − T̄diag(c̄)T̄−1‖2F .
|εi−1 − εi| < ε, if i > 1.

a particular C
(fk)
ikjk

(ak) is computed in constant time O(1), for each of the

D (fk)(ak)s we have quadratic complexity O(n2).
Similarly to the symmetric case, we now have a locally optimal way of choos-

ing and updating our T-transforms. Also, the update step is again significantly
more computationally expensive than the initialization and more are more ex-
pensive than the results for the symmetric case. The basic difficulty stems from
the fact that we are dealing now with building blocks that are not orthogonal
and therefore are not invariant in the Frobenius norm. The exact initialization
of T-transforms takes O(n3) while the update takes O(n4) operations. Due to
this high computational cost, simplification can be brought to the algorithm: for
example, in the update steps we no longer search over every index pair (ik, jk)
but we keep these indices fixed and just calculate the locally optimal coefficient
of the transformation ak. We call this step a polishing step and it reduces the
computational complexity of updating the T-transforms to O(n3).

We now make two remarks regarding the proposed decomposition for general
matrices.

Remark 2 (Using T-transforms for the symmetric case) The ideas of
this section can also be applied to the symmetric case. Consider an approxima-

11

tion analogous to (11) based on T-transforms as

¯̄S =

(
m∏

k=1

Tikjk

)(
1∏

k=m

TT
ikjk

)
= T̄T̄T . (30)

If the factorization in (11) is based on the eigendecomposition of symmetric
matrices, this one is similar to a Cholesky factorization. With this structure we
reach minimization problems similar to (27) that have similar solutions to (67)
following the same development as in (63), for brevity we omit these formulas.
The obvious disadvantage of this approach is that we do not explicitly preserve
the eigen-information of the original matrix: we lose control over the spectrum
of the approximation and the T-transform do not approximate explicitly the
eigenspace. Still, there are some advantages: i) T-transforms (2 operations
per degree of freedom) are more efficient than G-transforms (6 operations per
degree of freedom) and therefore we expect to get better approximation accuracy
for the same numerical complexity or vice-versa, lower computational complexity
for the same representation accuracy; and ii) direct and inverse matrix-vector

multiplications with ¯̄S are still efficient, e.g., take at most 4g operations instead
of 12g + n with S̄.

An alternative construction is to keep the eigendecomposition but use real-
valued approximate eigenvalues and use T-transforms to approximate the or-
thonormal eigenspace

¯̄S =

(
m∏

k=1

Tikjk

)
diag(̄s)

(
1∏

k=m

T−1ikjk

)
= T̄diag(̄s)T̄−1. (31)

We lose the orthogonality of the eigenspace but we expect this representation to
be more accurate just because, as already discussed, T-transforms have better
numerical properties as compared to G-transforms. As every matrix in (3) can
be written as four transformations from (8) (two shears and two scalings by
[Daubechies and Sweldens, 1998]), we can use the approximation of S from (11)
as an initialization to the factorization in (31) with m = 4g.

Remark 3 (An approximate Schur decomposition for S) Notice that in
(2), instead of the diagonal containing s̄ we can use for example an upper (or
lower) triangular matrix which is also sparse, say O(g) off-diagonal elements.
The computational complexity of using such an approximation (directly or in-
versely) would still be O(g) while we expect the approximation accuracy to be
better, lower overall ‖S − S̄‖2F due to the extra degrees in freedom in the new
triangular factor. This factorization would be similar to the Schur decomposi-
tion C = VJV−1, where J is upper triangular and V is orthonormal (but all
real-valued). This is in contrast with the eigenvalues decomposition of C which
is done over the complex values, in general.

4.3 The proposed algorithm

0https://epfl-lts2.github.io/gspbox-html

12

¼ ½ 1 2 3
0

1

2

3

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

¼ ½ 1 2 3
0

5

10

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

¼ ½ 1 2 3
0

5

10

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)
¼ ½ 1 2 3

0

2

4

6

8

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

¼ ½ 1 2 3
0

50

100

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

¼ ½ 1 2 3
6

8

10

12

14

16

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

Figure 1: Approximation accuracy (mean and std) for Laplacians of randomly
generated graphs as a function of the number of transformations g going as
αn log2 n. All graphs are randomly generated using the default settings of the
GSP box: community graphs (left), Erdos-Renyi random graphs with the prob-
ability of a connection between two nodes p = 0.3 (center) and a sensor graphs
(right). Given n the number of nodes in the graph, results are shown for n = 512
(dotted), n = 256 (dashed) and n = 128 (solid) and all methods update also
the spectrum of the estimation. Top row shows undirected graphs while bottom
row show directed graph (created from undirected graphs, direction of the edge
between the nodes is decided randomly with probability 0.5) results. Results
are averaged over 100 realizations.

Given that we now have optimal ways to initialize (Theorems 1 and 3) and
update G and T transforms (Theorems 2 and 4), we are ready the describe
the full proposed procedure, in Algorithm 1. For brevity, we describe a single
procedure for both the symmetric and general matrices. Whenever we allow for
spectrum updates of s̄ or c̄ we explicitly mention so.

As previously discussed, every step of the algorithm is locally optimal and
can only decrease the objective functions we consider. Thus, convergence to
a stationary point is guaranteed. Compared to previous methods, there are
two characteristics that we would like to highlight at this point: i) in the sym-
metric case, we use simultaneously both rotations and reflections to construct
our approximation; and ii) for each sub-problem we define we can provide a
closed-form solution based either on singular and eigenvalue decompositions or
least squares. Also, because the proposed method relies on the calculation of
scores that span indices i and j it is naturally parallelizable and is amenable to
randomized linear algebra techniques.

Proofs of the lemmas and theorems from this section are collected in the
supplementary materials.

13

Minnesota HumanProtein Email Facebook
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

‖U
−

Ū
‖ F

/
√
n

Figure 2: Comparison of
the proposed approach
(black squares) against
previously proposed
methods from the litera-
ture: Jacobi (red circles)
from [Le Magoarou et al.,
2018], greedy Givens
(green diamonds) from
[Kondor et al., 2014] and
L1 (blue triangles) from
[Frerix and Bruna, 2019].
The comparison is based
on Fig. 6 from [Frerix
and Bruna, 2019] and
we keep their measure of
accuracy between U and
Ū.

0.1 ¼ ½ 1
0

2

4

6

8

10

12

14

16

α

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

Minnesota

HumanProtein

Email

Facebook

Figure 3: For the pro-
posed method, we show
average estimation accu-
racy for the overall Lapla-
cian L, not just the
eigenspace U, for the
graphs in Figure 2 as a
function of the number of
G-transforms g going as
αn log2 n. In all cases the
proposed method also up-
dates the spectrum of the
approximation, i.e., L̄ =
Ūdiag(λ̄)ŪT . The initial
estimated eigenvalues are
assumed to be the diago-
nal of L.

0.256 0.512 1.024 2.048 3.072

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Number of transformations

‖
L
−

L̄
‖
2 F
/
‖
L
‖
2 F
(%

)

approx. directly U

approx. directly weighted U

proposed approx.

proposed approx. spectrum update

Figure 4: Given ran-
dom undirected Erdos-
Renyi graphs on size
n = 1024 with Lapla-
cian L = Udiag(λ)UT we
show the average approx-
imation accuracy when
we are approximating U
directly, i.e., the eigende-
composition is explicitly
given, or we are approxi-
mating L directly. When
the eigendecomposition is
available we approximate
U and U

√
diag(λ) (a

weighted eigenspace) us-
ing [Rusu and Rosasco,
2019].

5 Experimental results

In this section, we describe numerical experimental results with the proposed
algorithms and compare them to previous work. Following previous methods
[Le Magoarou et al., 2018, Frerix and Bruna, 2019], we measure the quality of the
approximation using the Frobenius norm objective functions of the optimization
problems we consider. Source code for Algorithm 1 is available online1. In all the
experiments we use ‘update’ for the spectrum estimation and only polishing in
the iterative part of the algorithm (keep indices found in the initialization fixed
and optimize only the values of the transforms - monotonicity in the objective
function is still preserved).

We show an application to the calculation of the fast graph Fourier trans-
forms. Given a graph with n vertices we compute its n×n Laplacian L = D−A
where D is the diagonal degree matrix and A is the n × n adjacency matrix,
i.e., Aij = 1 if a directed edge exists between nodes i and j and Aij = 0 oth-
erwise. Given the eigenvalue decomposition of the Laplacian, L = UΛU−1 we
call U the graph Fourier transformation of the graph. Our goal is now to build

1https://github.com/cristian-rusu-research/FAST-EIGENSPACE-APPROXIMATIONS

14

approximations of U which enjoy the same numerical complexity as the classic
time-domain Fourier transformation, i.e., O(n log n). We distinguish between
undirected and directed graphs. With undirected graphs, the adjacency matrix
A is symmetric and therefore the Laplacian is symmetric positive semidefinite
allowing for an eigendecomposition with an orthonormal basis U as L = UΛUT .
In this case, we use G-transforms to approximate the eigenspace. For directed
graphs, the Laplacian does not have an orthonormal structure and therefore we
use the more general T-transforms in the factorization. In Figure 1 we show
approximation results for different types of graphs of different sizes (number of
vertices n).

In Figure 2 we compared the proposed method against the previous state
of the art for the computation of fast graph Fourier transforms. The results
are shown for four graphs: Minnesota graph from [Defferrard et al., 2015] with
n = 2642 and 3304 edges, HumanProtein graph from [Rual et al., 2005] with
n = 3133 and 6726 edges, Email graph from [Guimerà et al., 2004] with n = 1133
and 5451 edges and the Facebook graph from [Leskovec and Mcauley, 2012]
with n = 2888 and 2981 edges. Our proposed method performs best in all these
situations.

In this paper, we assume we do not have information about the eigenspace
of L, but have access to L itself. Previous work [Rusu and Rosasco, 2019, Frerix
and Bruna, 2019] considered the possibility of performing first the eigendecom-
position and then working directly with the eigenspace U. For the same graphs,
we show in Figure 3 the evolution of the accuracy of the overall Laplacian L
as a function of the number of basic transformations in their factorization. We
emphasize again that this metric is different from the one used in Figure 2 on
the accuracy of the eigenspace U.

In Figure 4 we analyze the approximation accuracy of estimating the Lapla-
cian L for random undirected Erdos-Renyi graphs with n = 1024 and compare
it against the approach in [Rusu and Rosasco, 2019] which needs directly the
eigenspace U. We show that our proposed method, especially with the updated
spectrum, is the most appropriate to build an accurate approximation of L.

The supplementary materials have further numerical experiments, compar-
isons, and measurements of the running time of the fast transformations (not
just number of operations).

6 Conclusions

In this paper, we have described algorithms for the efficient approximate com-
putation of eigenspaces which can be efficiently manipulated. We show an appli-
cation to the computation of the fast graph Fourier transform (both for directed
and undirected graphs) and compare against previous approaches from the lit-
erature, which we outperform. An open problem, that we cannot address at this
time, is the setup of an appropriate theoretical framework where the proposed
factorizations and algorithms can be analyzed and their limitations understood.

15

Acknowledgments

This material is based upon work supported by the Center for Brains, Minds and
Machines (CBMM), funded by NSF STC award CCF-1231216, and the Italian
Institute of Technology. Part of this work has been carried out at the Machine
Learning Genoa (MaLGa) center, Università di Genova (IT) L. Rosasco acknowl-
edges the financial support of the European Research Council (grant SLING
819789), the AFOSR projects FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-
0007 (European Office of Aerospace Research and Development), and the EU
H2020-MSCA-RISE project NoMADS - DLV-777826. C. Rusu is supported by
the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project
number PN-III-P1-1.1-TE-2019-1843, within PNCDI III.

16

Supplementary materials

Eigenvalues of 2× 2 symmetric matrices

Given the symmetric 2 × 2 matrix S{i,j} =

[
Sii Sij

Sij Sjj

]
its two eigenvalues are

given by

λ1,2 =
1

2

(
Sii + Sjj ±

√
(Sii − Sjj)2 + 4S2

ij

)
. (32)

Proof of Lemma 1

The result follows directly by using the invariance of the Frobenius norm under
orthogonal transformations:

‖S− Ūdiag(̄s)ŪT ‖2F = ‖ŪTSŪ− diag(̄s)‖2F . (33)

Then, because the Frobenius norm is entry-wise we have the minimizer s̄? =
diag(ŪTSŪ).

Proof of Theorem 1

Given that we have initial values for all components Gitjt for t = g, . . . , k + 1
(while Gitjt = In for t = 1, . . . , k−1) and we now want to also initialize the kth

component such that we minimize objective function of (2). That expression
can be written as

‖S− S̄‖2F = ‖S− Ūdiag(̄s)ŪT ‖2F

=

∥∥∥∥∥S−
g∏

t=k

Gitjtdiag(̄s)

k∏
t=g

GT
itjt

∥∥∥∥∥
2

F

=

∥∥∥∥∥
k+1∏
t=g

GT
itjtS

g∏
t=k+1

GT
itjt−Gikjkdiag(̄s)GT

ikjk

∥∥∥∥∥
2

F

=‖S(k) −Gikjkdiag(̄s)GT
ikjk
‖2F

=‖S(k)‖2F + ‖s̄‖22 − 2tr(Z(k))− 2Aikjk

=‖s‖22 + ‖s̄‖22 − 2tr(Z(k))− 2Aikjk ,

(34)

where we have defined the cost

Aikjk =tr(G̃kS
(k)
{ik,jk}G̃

T
k diag(̄s{ik,jk}))− Z

(k)
ikik
−Z(k)

jkjk
. (35)

For convenience, we defined the 2× 2 symmetric matrices

S
(k)
{ik,jk} =

[
S
(k)
ikik

S
(k)
ikjk

S
(k)
jkik

S
(k)
jkjk

]
, (36)

17

diag(̄s{ik,jk}) = diag(
[
s̄ikik s̄jkjk

]
), (37)

and Z(k) = diag(̄s)S(k) ∈ Rn×n. In the development of (34) we have used
the trace definition of the Frobenius norm ‖X‖2F = tr(XTX), the fact that
the Frobenius norm is invariant to orthonormal transformation (in particular
G-transformation) ‖GikjkX‖2F = ‖GT

ikjk
X‖2F = ‖X‖2F and that Gikjk operates

only on rows and columns ik and jk.
The problem of maximizing the quantity in (35) is known as the two-side or-
thonormal Procrustes problem [Schonemann, 1968] whose solution in our case
is given by

G̃k = VT
k where S

(k)
{ik,jk} = VkDkVT

k . (38)

We will use that VkVT
k = VT

k Vk = I. We assume that in the eigenvalue

decomposition of S
(k)
ikjk

where the diagonal matrix Dk = diag(dk) contains the
eigenvalues in algebraic descending order. The same ordering is also assumed in
s̄. Therefore, by the rearrangement inequality, see Section 10.2, Theorem 368
of [Hardy et al., 1952], and with jk > ik the trace quantity is maximized and it
reduces to

tr(VT
k S

(k)
{ik,jk}Vkdiag(̄s{ik,jk}))

=tr(VT
k VkDkV

T
k Vkdiag(̄s{ik,jk}))

=tr(Dkdiag(̄s{ik,jk}))

=tr(diag(dk)diag(̄s{ik,jk}))

=
[
s̄ikik s̄jkjk

]T
dk.

(39)

Therefore, the overall cost (35) reduces to

Aikjk =
[
s̄ikik s̄jkjk

]T
dk − Z(k)

ikik
− Z(k)

jkjk

=
[
s̄ikik s̄jkjk

]T (
dk −

[
S
(k)
ikik

S
(k)
jkjk

])

=
[
s̄ikik s̄jkjk

]T[−γikjk
γikjk

]
=γikjk(s̄jkjk − s̄ikik),

(40)

where we have denoted

γikjk =
S
(k)
ikik
− S(k)

jkjk

2

1 +

√√√√1 +

(
2S

(k)
ikjk

S
(k)
ikik
− S(k)

jkjk

)2
 , (41)

and we noticed that Z
(k)
ikik

= s̄ikikS
(k)
ikik

and Z
(k)
jkjk

= s̄jkjkS
(k)
jkjk

. The eigenvalues

of S
(k)
{ikik} in dk are computed by the formulas in (32). Therefore, the minimizer

of (34) is
(i?k, j

?
k) = arg max

(i,j), j>i

Aij and G̃?
k = VT

k . (42)

18

Proof of Theorem 2

With the definitions (18) and (19), the objective function (17) can be expressed
to

‖A(k)−GikjkB(k)GT
ikjk
‖2F

=‖A(k)‖2F + ‖B(k)‖2F − 2tr(Z(k))− 2Bikjk

=‖s‖22 + ‖s̄‖22 − 2tr(Z(k))− 2Bikjk ,

(43)

with the cost that is

Bikjk =−2(Z
(k)
ikik

+ Z
(k)
jkjk

)+ V
(k)
ikik

+ V
(k)
jkjk

+ 2V
(k)
ikjk

+ tr(A
(k)
{ik,jk}G̃kB

(k)
{ik,jk}G̃

T
k)

+ 2tr(G̃kB
(k)
[ik,jk]

A
(k)T

[ik,jk]
),

(44)

where we have defined A
(k)
{ik,jk} =

[
A

(k)
ikik

A
(k)
ikjk

A
(k)
jkik

A
(k)
jkjk

]
, B

(k)
{ik,jk} =

[
B

(k)
ikik

B
(k)
ikjk

B
(k)
jkik

B
(k)
jkjk

]
,

A
(k)
[ik,jk]

and B
(k)
[ik,jk]

are both matrices of size 2× (n− 2) composed of only rows

ik and jk, but with the columns ik and jk eliminated from both, from A(k) and
B(k) respectively. Finally, we have used

Z(k) = A(k)B(k), V(k) = A(k) �B(k), (45)

the operation � denotes the entry-wise matrix-matrix product.
The quantity in (44) seems difficult to minimize, in the sense that a solution
based on an eigenvalue decomposition, such as in (38), does not seems possible.
This is because the cost contains a term (the first trace, similar to the one in
(35)) whose maximum is given as the solution to the two-side orthonormal Pro-

crustes problem [Schonemann, 1968] by eigenvalue decompositions of A
(k)
{ik,jk}

and B
(k)
{ik,jk} but also another term (the second trace) whose maximum is given

as the solution to the one-sided orthogonal Procrustes problem by the singular

value decomposition of another quantity, B
(k)
[ik,jk]

A
(k)T

[ik,jk]
. The computational

simplification in (35) is possible because one of the matrices is diagonal and
therefore the second trace term does not appear in the cost. It is for this reason
that we have to analyze separately the initialization and iteratively procedures.
To find the minimizer of (17), both in terms of the indices and the values of the

19

orthonormal Gikjk , take the following

‖A(k) −GikjkB(k)GT
ikjk
‖2F

=‖A(k)Gikjk −GikjkB(k)‖2F
=‖vec(A(k)Gikjk)− vec(GikjkB(k))‖22
=‖(I⊗A(k))vec(Gikjk)− (B(k) ⊗ I)vec(Gikjk)‖22
=‖((I⊗A(k))− (B(k) ⊗ I))vec(Gikjk)‖22

=

∥∥∥∥∥∥
∑

t∈{1,...,n}\{ik,jk}

(
et ⊗A

(k)
:,t −B

(k)
:,t ⊗ et

)
+P

[
cikjk
sikjk

]∥∥∥∥∥∥
2

2

=

∥∥∥∥w + P

[
cikjk
sikjk

]∥∥∥∥2
2

,

(46)

where (A(k)):,t and (B(k)):,t are the tth columns of A(k) and B(k), respectively.
We have introduced the matrix

P∈
{[

p1+p2 p3−p4

]
,
[
p1−p2 p3+p4

]}
∈Rn2×2, (47)

with p1 = eik ⊗ (A(k)):,ik − (B(k)):,ik ⊗ eik , p2 = ejk ⊗ (A(k)):,jk − (B(k)):,jk ⊗
ejk , p3 = ejk⊗(A(k)):,ik−(B(k)):,jk⊗eik and p4 = eik⊗(A(k)):,jk−(B(k)):,ik⊗
ejk where {ei}ni=1 are the standard basis vectors for Rn and ⊗ is the Kronecker
product. For ease, we also define P(1) and P(2), the two options for P. We have
these two variants for P due to the dual structure of (3). Unlike the previous
section, where the dual structure enabled the initialization by an eigenvalue de-
composition, here we actually need to solve two different, but related, problems.
In the development of (46) we have used again the invariance of norms to or-
thonormal transformations and the fact that the Frobenius norm is element-wise
‖X‖2F = ‖vec(X)‖2F and that vec(ABC) = (CT ⊗A)vec(B). The rest of the
section is dedicated to finding the minimizer of (46) in a numerically efficient
manner.
Therefore, the minimization of (46) is equivalent to a constrained least squares
problem that can be solved efficiently using the singular value decomposition,
see Chapter 12.1 of [Golub and van Loan, 1996] and [Gander et al., 1989]. We
have to solve the problem twice, for P(1) and P(2) in (47), and keep the best
result. The vector w and the matrix P are never explicitly constructed, but we
build the products

R = PTP ∈ R2×2 and g = PTw ∈ R2×1, (48)

For these, we have the explicit formulas

• for R(1) = P(1)TP(1) we have: R
(1)
11 = W

(k)
Aik

+ W
(k)
Ajk

+ W
(k)
Bik

+ W
(k)
Bjk
−

2V
(k)
ikik
− 2V

(k)
jkjk
− 4V

(k)
ikjk

, R
(1)
12 = R

(1)
21 = 2(A

(k)
ikjk

B
(k)
ikik
− A

(k)
ikik

B
(k)
ikjk

+

A
(k)
jkjk

B
(k)
ikjk
− AikjkBjkjk) and R

(1)
22 = W

(k)
Aik

+ W
(k)
Ajk

+ W
(k)
Bik

+ W
(k)
Bjk
−

2A
(k)
ikik

B
(k)
jkjk
− 2A

(k)
jkjk

B
(k)
ikik

+ 4V
(k)
ikjk

;

20

• for g(1) = P(1)Tw we have: g
(1)
1 = 2(V

(k)
ikik

+V
(k)
jkjk

+ 2V
(k)
ikjk
−Z(k)

ikik
−Z(k)

jkjk
)

and g
(1)
2 = 2(A

(k)
ikjk

B
(k)
jkjk

+A
(k)
ikik

B
(k)
ikjk
−A(k)

jkjk
B

(k)
ikjk
−A(k)

ikjk
B

(k)
ikik
−Z(k)

ikjk
+

Z
(k)
jkik

);

• for R(2) = P(2)TP(2) we have: R
(2)
11 = W

(k)
Aik

+ W
(k)
Ajk

+ W
(k)
Bik

+ W
(k)
Bjk
−

2V
(k)
ikik
− 2V

(k)
jkjk

+ 4V
(k)
ikjk

, R
(2)
12 = R

(2)
21 = 2(A

(k)
ikjk

B
(k)
jkjk
− A

(k)
ikik

B
(k)
ikjk

+

A
(k)
jkjk

B
(k)
ikjk
− A

(k)
ikjk

B
(k)
ikik

) and R
(2)
22 = W

(k)
Aik

+ W
(k)
Ajk

+ W
(k)
Bik

+ W
(k)
Bjk
−

2A
(k)
ikik

B
(k)
jkjk
− 2A

(k)
jkjk

B
(k)
ikik
− 4V

(k)
ikjk

;

• for g(2) = P(2)Tw we have: g
(2)
1 = 2(V

(k)
ikik
− V (k)

jkjk
− Z(k)

ikik
+ Z

(k)
jkjk

) and

g
(2)
2 = 2(A

(k)
ikjk

B
(k)
jkjk

+A
(k)
ikik

B
(k)
ikjk

+A
(k)
jkjk

B
(k)
ikjk

+A
(k)
ikjk

B
(k)
ikik
−Z(k)

ikjk
−Z(k)

jkik
).

Here we have also introduces the quantities:

W
(k)
Ai =‖A(k)

:,i ‖
2
2, W

(k)
Bi =‖B(k)

:,i ‖
2
2, i = 1, . . . , n, (49)

that compute to the squared `2 norms of the columns of A(k) and B(k), respec-
tively. With this setup, the minimizer of (46) with some fixed indices ik and jk
is

x(fk) =

[
c?ikjk
s?ikjk

]
= −(R(fk) + λ(fk)I2)−1g(fk), (50)

where λ(fk) is chosen such that the solution x(fk) has unit `2 norm according to
[Gander et al., 1989], the regularization parameter is computed by

λ(fk) = min {λi}, where M(fk)vi = λiN
(fk)vi, (51)

i.e., the λi are the generalized real-valued eigenvalues of the 4 × 4 matrices

M =

[
(R(fk))2 − g(fk)(g(fk))T 02

02 I2

]
and N =

[
2R(fk) −I2

I2 02

]
. Therefore, using

(50), the overall minimizer of (43) is found by searching for the indices

(f?k , i
?
k, j

?
k) = arg min

fk∈{1,2}, jk>ik

B
(fk)
ikjk

, (52)

where B
(fk)
ikjk

= (x(fk))TR(fk)x(fk) + 2(x(fk))Tg(fk) + ‖w‖22, and then

G̃?
k =

[
c?i?kj?k

s?i?kj?k
−s?i?kj?k c?i?kj?k

]
, if f?k = 1,[

c?i?kj?k
s?i?kj?k

s?i?kj?k
−c?i?kj?k

]
, if f?k = 2.

(53)

The quantities R(fk), g(fk) are already computed and ‖w‖22 =
∑

i 6={ik,jk}(W
(k)
Ai +

W
(k)
Bi)−

∑
i 6={ik,jk}

∑
j 6={ik,jk} 2V

(k)
ij .

21

Proof of Lemma 2

The result follows by using the trace product formula:

‖C− T̄diag(c̄)T̄−1‖2F =‖vec(C)−(T̄−T⊗T̄)diag(c̄)‖2F
=‖vec(C)− (T̄−T ∗ T̄)c̄‖2F ,

(54)

Then, this is a simple least-squares problem in c̄ where ∗ is the Khatri-Rao
product, the Kronecker products between the corresponding columns of T̄−T

and T̄.

Proof of Theorem 3

Consider the scenario where we have initial values for all components Titjt for
t = 1, . . . , k − 1 (while Titjt = In for t = k + 1, . . . ,m) and we want to also
initialize the kth component such that we minimize the quantity∥∥∥∥∥C−

k∏
t=1

Titjtdiag(c̄)

1∏
t=k

T−1itjt

∥∥∥∥∥
2

F

=‖C−TikjkB(k)T−1ikjk
‖2F

=‖C‖2F + ‖B(k)‖2F − 2tr(CTB(k)) + C
(fk)
ikjk

(ak),

(55)

with the matrix

B(k) =

(
k−1∏
t=1

Titjt

)
diag(c̄)

(
1∏

t=k−1

T−1itjt

)
, (56)

where we have defined the cost values as

C
(1)
ikjk

(ak) = (ak − 1)2N
(k)
ik

+ (a−1k − 1)2M
(k)
ik

− a−2k (ak − 1)2(a2k + 1)L
(k)
ik
− 2(ak − 1)V

(k)
ikik

− 2(a−1k − 1)H
(k)
ikik

+ 2a−1k (ak − 1)2J
(k)
ikik

,

(57)

C
(2)
ikjk

(ak) = a2k(N
(k)
jk
− L(k)

jk
+M

(k)
ik
− L(k)

ik
)

+ a2k(B
(k)
jkjk
−B(k)

ikik
− akB(k)

jkik
)2

− 2akV
(k)
ikjk

+ 2akH
(k)
jkik

+ 2a2kB
(k)
jkik

(Cikjk −B
(k)
ikjk

),

(58)

C
(3)
ikjk

(ak) = a2k(N
(k)
ik
− L(k)

jk
+M

(k)
jk
− L(k)

ik
)

+ a2k(B
(k)
ikik
−B(k)

jkjk
− akB(k)

ikjk
)2

− 2akV
(k)
jkik

+ 2akH
(k)
ikjk

+ 2a2kB
(k)
ikjk

(Cjkik −B
(k)
jkik

),

(59)

22

and we have used the quantities:

V(k) = (C−B(k))B(k)T , H(k) = (C−B(k))TB(k),

J(k) =(C−B(k))�B(k), Lik = (B
(k)
ikik

)2,

Nik = ‖B(k)
ik,:
‖22, Mik = ‖B(k)

:,ik
‖22.

(60)

The goal is to search for

(f?k , i
?
k, j

?
k , a

?
k) = arg min

fk∈{1,2,3}, jk>ik

C
(fk)
ikjk

(ak). (61)

Because all three C
(k)
ikjk

(ak) are polynomials in ak of degree four and five their
minimization therefore reduces to finding the roots of their derivatives and eval-
uating the values at those points searching for the minimum value.
We have used the following explicit inverse formulas:[

1 0
a 1

]−1
=

[
1 0
−a 1

]
and

[
1 a
0 1

]−1
=

[
1 −a
0 1

]
. (62)

Proof of Theorem 4

The expression (27) can be developed to

‖C−A(k)TikjkB(k)T−1ikjk
D(k)‖2F

=‖vec(C)− (D(k)TT−Tikjk
⊗A(k)Tikjk)vec(B(k))‖2F

=‖vec(C)− (D(k)T⊗A(k))(T−Tikjk
⊗Tikjk)vec(B(k))‖2F

=‖vec(C)− [vec(B(k))T ⊗ (D(k)T ⊗A(k))]

vec(T−Tikjk
⊗Tikjk)‖2F

=‖w −Px‖2F = wTw + D
(fk)
ikjk

(ak),

(63)

where we have used twice the fact that (A⊗C)(B⊗D) = (AB⊗CD), twice
that vec(ABC) = (CT⊗A)vec(B) and x ∈ R2 is a function only of ak. We have

defined w = vec(C) −
∑

i

∑
j B

(k)
ji (D

(k)
i,: ⊗A

(k)
:,j). But this large vector of size

n2 and other large matrices (Kronecker products of size n2) are never explicitly
constructed but the objective function is minimized by exploiting the structures
(9) and (8). The cost values for the scaling and the two shears respectively are

D
(1)
ikjk

(ak) =(ak − 1)2R
(1)
11 + a−2k (1− ak)2R

(1)
22

− 2a−1k (ak − 1)2R
(1)
12

− 2(ak − 1)g
(1)
1 − 2a−1k (1− ak)g

(1)
2 ,

(64)

D
(fk)
ikjk

(ak) =a4kR
(fk)
22 + 2a3kR

(fk)
12 + a2k(R

(fk)
11

+ 2g
(fk)
2) + 2akg

(fk)
1 , fk ∈ {2, 3}.

(65)

23

For completeness, we give the explicit formulas for all the quantities in (64) and
(65)

• for fk = 1 we have:

R
(1)
11 = H

(k)
ikik

∑
i 6=ik

B
(k)
iki

∑
j 6=ik

B
(k)
ikj
V

(k)
ji , R

(1)
22 = V

(k)
ikik

∑
i 6=ik

B
(k)
iik

∑
j 6=ik

B
(k)
jik
H

(k)
ij ,

R
(1)
12 =

∑
i 6=ik

B
(k)
iki
V

(k)
iik

∑
j 6=ik

B
(k)
jik
H

(k)
ikj

,

g
(1)
1 =

∑
t6=ik

B
(k)
ikt

∑
i

(
D

(k)
ti J

(k)
iki
−V (k)

ti

∑
j B

(k)
ji H

(k)
ikj

)
,

g
(1)
2 =

∑
t6=ik

B
(k)
tik

∑
i

(
D

(k)
iki
J
(k)
ti −V

(k)
iki

∑
j B

(k)
ji H

(k)
jt

)
;

• for fk = 2 we have:

R
(2)
11 =

∑
i

∑
j B

(k)
jki
B

(k)
jkj
V

(k)
ij H

(k)
jk−ik+1,jk−ik+1+

B
(k)
iik
B

(k)
jik
V

(k)
jkjk

H
(k)
ij − 2B

(k)
jki
B

(k)
jik
V

(k)
jki

H
(k)
jk−ik+1,j ,

R
(2)
22 = (B

(k)
jkik

)2V
(k)
jkjk

H
(k)
jk−ik+1,jk−ik+1,

R
(2)
12 = B

(k)
jkik

(∑
iB

(k)
iik
V

(k)
jkjk

H
(k)
i,jk−ik+1 − B

(k)
jki
V

(k)
ijk

Hjk−ik+1,jk−ik+1

)
,

g
(2)
1 =

∑
t

∑
i

(∑
j B

(k)
ji

(
B

(k)
jkt
V

(k)
ti Hjk−ik+1,j

−B(k)
tik
V

(k)
jki

Htj

)
+B

(k)
tik
D

(k)
jki
J
(k)
ti −B

(k)
jkt
D

(k)
ti J

(k)
jk−ik+1,i

)
,

g
(2)
2 =B

(k)
jkik

∑
i

(
D

(k)
jki
J
(k)
jk−ik+1,i−

∑
jB

(k)
ji V

(k)
jki

H
(k)
jk−ik+1,j

)
;

• for fk = 3 we have:

R
(3)
11 =

∑
i

∑
j B

(k)
iki
B

(k)
ikj
V

(k)
ij H

(k)
jkjk

+B
(k)
ijk
B

(k)
jjk
V

(k)
ikik

H
(k)
ij −2B

(k)
iki
B

(k)
jjk
V

(k)
iki

H
(k)
jkj

,

R
(2)
22 = (B

(k)
ikjk

)2V
(k)
ikik

H
(k)
jkjk

, R
(2)
12 = B

(k)
ikjk

(∑
iB

(k)
ijk
V

(k)
ikik

H
(k)
ijk
−B(k)

iki
V

(k)
iik

Hjkjk

)
,

g
(2)
1 =

∑
t

∑
i

(∑
j B

(k)
ji

(
B

(k)
ikt
V

(k)
ti Hjkj

−B(k)
tjk
V

(k)
iki

Htj

)
+B

(k)
tjk
D

(k)
iki
J
(k)
ti −B

(k)
ikt
D

(k)
ti J

(k)
jki

)
,

g
(2)
2 = B

(k)
ikjk

∑
i

(
D

(k)
iki
J
(k)
jki
−
∑

j B
(k)
ji V

(k)
iki

H
(k)
jkj

)
,

and we have used the quantities:

V(k) =D(k)D(k)T,H(k) =A(k)TA(k),J(k) =A(k)TC. (66)

Similarly to the initialization step, the goal is to search for

(f?k , i
?
k, j

?
k , a

?
k) = arg min

fk∈{1,2,3}, jk>ik

D
(fk)
ikjk

(ak). (67)

Again, all three D
(k)
ikjk

(ak) are polynomials in ak of degree four and five their
minimization therefore reduces to finding the roots of their derivatives and eval-
uating the values at those points searching for the minimum value.

Additional experimental results

In Figure 5, we show the accuracy of the approximation for randomly generated
symmetric (both positive definite and indefinite), and general matrices. Details

24

¼ ½ 1 2 3
0

20

40

60

80

100

α

‖S
−

S̄
‖2 F

/‖
S
‖
2 F
(%

)

¼ ½ 1 2 3
0

20

40

60

80

100

α
‖S

−
S̄
‖2 F

/‖
S
‖
2 F
(%

)

¼ ½ 1 2 3
50

60

70

80

90

100

α

‖
C
−

C̄
‖
2 F
/
‖C

‖2 F
(%

)

Figure 5: In red, approximation accuracy (mean and std) of the proposed
method for randomly generated matrices as a function of the number of transfor-
mations g or m going as αn log2 n. Given a matrix X with entries i.i.d. standard
Gaussian we have results for: symmetric indefinite S = X + XT (left), symmet-
ric positive semidefinite S = XXT (central) and unsymmetric C = X (right).
Results are shown for n = 512 (dotted), n = 256 (dashed) and n = 128 (solid)
and all methods update also the spectrum of the estimation. Note that the
achieved accuracy is better for the positive definite case. In black, for compari-
son, the results of r-rank approximations: for the symmetric case r = 3αn log2 n
while for the unsymmetric case r = αn log2 n (for these values we match the
numerical complexity of the transformations Ū and T̄, we count 2rn operations
for matrix-vector multiplication with the r-rank matrix). Results are averaged
over 100 realizations.

0.1 1/4 1/2 1
0

200

400

600

800

α

S
p

e
e

d
u

p

Minnesota graph

Speedup FLOPS

Speedup vs BLAS

0.1 1/4 1/2 1
0

200

400

600

800

1000

α

S
p

e
e

d
u

p

HumanProtein graph

Speedup FLOPS

Speedup vs BLAS

0.1 1/4 1/2 1
0

100

200

300

400

α

S
p

e
e

d
u

p

Email graph

Speedup FLOPS

Speedup vs BLAS

0.1 1/4 1/2 1
0

200

400

600

800

1000

α

S
p

e
e

d
u

p

Facebook graph

Speedup FLOPS

Speedup vs BLAS

Figure 6: Average speedup achieved for matrix-vector multiplication between
the full eigenspaces versus their approximations using Algorithm 1 for the
graphs from Figure 2. We show the FLOP count (count of the number of
operations: 6αn log2 n for the G-transformations and 2αn log2 n for the T-
transformations) as compared to regular matrix-vector multiplication (2n2) and
the actual matrix-vector multiplication runtime as compated to the LAPACK,
Level 2 BLAS, implementation (SGEMV). Application of the butterflies is im-
plemented in the C programming language (scripting languages such as Matlab
perform very poorly if all g or m basic transformations are applied sequen-
tially). No parallelism is used in any of these experiments. Code runs on a
2.3GHz Quad-Core Intel Core i5 system with 16GB LPDDR3 memory.

25

about the experimental setup are given in the figure caption. The proposed
algorithm uses again only a polishing step and not a full transform update, for
computational efficiency.

Finally, in Figure 6 we show the speedup achieved by the proposed transfor-
mations. Throughout the paper, we define numerically efficient transformations
as those that present a low number of additions and multiplications in matrix-
vector operations, i.e., FLOP (floating-point operations) count. In this figure,
we also show the speedup in terms of actual running time and compare it with
the FLOP count. We stress that the speedup does not refer to the running
time of the proposed Algorithm 1, but the application of the transformations
reached by this algorithm. For this figure, the butterfly transformations (G and
T transformations) are implemented in the C programming language (a Matlab
implementation of the application of these butterflies is hopelessly slow as com-
pared to just matrix-vector multiplication in Matlab, i.e., the “*” operation calls
compiled BLAS functions as opposed to parsing and running Matlab scripts).

26

References

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19:297–301, 1965.

I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps.
J. Fourier Anal. App., 4(3):247–269, 1998.

M. Defferrard, L. Martin, R. Pena, and N. Perraudin. PyGSP: Graph Signal
Processing in Python, 2015.

T. Frerix and J. J. Bruna. Approximating orthogonal matrices with effective
Givens factorization. In Proceedings 36th International Conference on Ma-
chine Learning (ICML), 2019.

W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue problem.
Linear Algebra Appl., 114-115:815–839, 1989.

W. Givens. Computation of plain unitary rotations transforming a general
matrix to triangular form. Journal of the Society for Industrial and Applied
Mathematics, 6(1):26–50, 1958.

G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th
century. Journal of Computational and Applied Mathematics, 123(1-2):35–
65, 2000.

G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, 1996.

R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar
community structure in a network of human interactions. Physical review. E,
Statistical, nonlinear, and soft matter physics, 68:065103, 2004.

G. H. Hardy, J. E. Littlewood, and G. Polya. Cambridge University Press, 1952.

P. Henrici. On the speed of convergence of cyclic and quasicyclic Jacobi methods
for computing eigenvalues of Hermitian matrices. Journal of the Society for
Industrial and Applied Mathematics, 6(2):144–162, 1958.

C. Jacobi. Uber ein leichtes Verfahren die in der Theorie der Sacularstorungen
vorkommenden Gleichungen numerisch aufzulosen. Journal fur die reine und
angewandte Mathematik, 30:51–94, 1846.

R. Kondor, N. Teneva, and V. K. Garg. Multiresolution matrix factorization.
In Proceedings 31st International Conference on Machine Learning (ICML),
pages II–1620–II–1628, 2014.

R. Kyng and S. Sachdeva. Approximate Gaussian elimination for Laplacians -
fast, sparse, and simple. In IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 573–582, 2016.

27

L. Le Magoarou, R. Gribonval, and N. Tremblay. Approximate fast graph
Fourier transforms via multi-layer sparse approximations. IEEE Transactions
on Signal and Information Processing over Networks, 4(2):407–420, 2018.

A. B. Lee, B. Nadler, and L. Wasserman. Treelets - an adaptive multi-scale
basis for sparse unordered data. Annals of Applied Statistics, 2(2):435–471,
2008.

J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego networks.
In Advances in Neural Information Processing Systems 25, pages 539–547.
2012.

J. A. Meijerink and H. A. Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:
148–162, 1977.

P. K. Mudrakarta, S. Trivedi, and R. Kondor. Asymmetric multiresolution
matrix factorization. arXiv 1910.05132, 2019.

J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li,
G. Berriz, F. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Si-
mon, M. Boxem, S. Milstein, J. Rosenberg, D. Goldberg, L. Zhang, S. Wong,
G. Franklin, and M. Vidal. Towards a proteome-scale map of the human
protein-protein interaction network. Nature, 437:1173–8, 2005.

C. Rusu. Learning multiplication-free linear transformations. arXiv 1812.03412,
2018.

C. Rusu and L. Rosasco. Fast approximation of orthogonal matrices and appli-
cation to PCA. arXiv 1907.08697, 2019.

C. Rusu and J. Thompson. Learning fast sparsifying transforms. IEEE Trans.
Sig. Proc., 65(16):4367–4378, 2017.

P. Schonemann. On two-sided orthogonal Procrustes problems. Psychometrika,
33(1):19–33, 1968.

G. Shabat, Y. Shmueli, Y. Aizenbud, and A. Averbuch. Randomized LU de-
composition. Applied and Computational Harmonic Analysis, 44(2):246 – 272,
2018.

U. Shalit and G. Chechik. Coordinate-descent for learning orthogonal matrices
through Givens rotations. In Proceedings 31st International Conference on
Machine Learning (ICML), pages I–548–I–556, 2014.

G. W. Stewart. The decompositional approach to matrix computation. Com-
puting in Science Engineering, 2(1):50–59, 2000.

28

	1 Introduction
	2 Prior approaches
	3 Problem setup and formulation
	3.1 The symmetric case
	3.2 The unsymmetric case

	4 Proposed factorizations and algorithms
	4.1 Approximation of symmetric matrices
	4.2 Approximation of unsymmetric matrices
	4.3 The proposed algorithm

	5 Experimental results
	6 Conclusions

