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ACCELERATED ITERATIVE REGULARIZATION VIA DUAL
DIAGONAL DESCENT\ast 

LUCA CALATRONI\dagger , GUILLAUME GARRIGOS\ddagger , LORENZO ROSASCO\S , AND

SILVIA VILLA\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We propose and analyze an accelerated iterative dual diagonal descent algorithm
for the solution of linear inverse problems with strongly convex regularization and general data-fit
functions. We develop an inertial approach of which we analyze both convergence and stability
properties. Using tools from inexact proximal calculus, we prove early stopping results with optimal
convergence rates for additive data terms and further consider more general cases, such as the
Kullback--Leibler divergence, for which different type of proximal point approximations hold.
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1. Introduction. We are interested in solving the linear inverse problem:

(1.1) find \=x \in \scrX s.t. A\=x = \=y,

where A : \scrX \rightarrow \scrY is a bounded linear operator between two Hilbert spaces \scrX and
\scrY and \=y \in \scrY is a given measurement of some unknown quantity \=x \in \scrX we want
to recover. In general, the inverse problem (1.1) is ill-posed as its solution (if it
exists) may lack some fundamental properties like uniqueness or stability. A standard
modeling hypothesis in inverse problems [42, 27] is assuming that the desired \=x is
well-approximated by x\dagger \in \scrX solving

(P0(\=y)) find x\dagger \in argmin

\biggl\{ 
R(x) s.t. x \in argmin

x\prime \in \scrX 
\ell (Ax\prime ; \=y)

\biggr\} 
.

Here, R is a regularization function enforcing a priori knowledge on the desired solu-
tion \=x, while \ell : \scrY 2 \rightarrow \BbbR \cup \{ +\infty \} is a data-fit function. In practical situations, the
data is subject to noise due to, e.g., possible transmission and/or acquisition prob-
lems. As a consequence, only an inexact version \^y of \=y is accessible. Replacing \^y in
(P0(\=y)) no longer provides a suitable solution of problem (1.1), hence a regularization
method is needed. Regularization methods can be seen as a way to explore the space
of solutions \scrX to find a good approximation of x\dagger in the presence of noise. More
precisely, they have the following characteristics:
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1. Given any data y \in \scrY , the method generates a regularization path \{ x\sansp (y)\} \sansp \in \sansP 

where \sansP \subset \BbbR is a set of regularization parameters.
2. Given the true data \=y, there exists an accumulation point \sansp 0 of \sansP such

that the regularization path converge to the ideal solution x\dagger of (P0(\=y)),
i.e., lim\sansp \rightarrow \sansp 0 x\sansp (\=y) = x\dagger .

3. For any given noise level \delta > 0 and noisy data \^y such that \| \=y - \^y\| ď \delta , there
exists a regularization parameter \sansp (\delta ) \in \sansP such that

(1.2) \| x\sansp (\delta )(\^y) - x\dagger \| = O(\delta \alpha ) for some \alpha > 0.

The quantity O(\delta \alpha ) is often called the convergence rate of the considered regulariza-
tion method, and the exponent \alpha quantifies its efficiency: the larger \alpha is, the closer the
regularized solution x\sansp (\delta )(\^y) will be to the desired x\dagger and hence less affected by noise.
Convergence and rates depend on the chosen regularization method and the proper-
ties of the considered problem. We briefly review in the following two well-known
families of regularization methods.

Tikhonov regularization. This is the most classical regularization approach, which,
for a given \lambda > 0, relies on the following family of penalized optimization problems:

(P\lambda (\^y)) find \^x\lambda \in argmin
x\in \scrX 

\biggl\{ 
p\lambda (x) := R(x) +

1

\lambda 
\ell (Ax; \^y)

\biggr\} 
.

Intuitively, the so-called regularization parameter \lambda balances the trust in the data \^y
with the regularization enforced by R. In other words, it parametrizes a regularization
path \{ x\lambda (\^y)\} \lambda >0 along which we look for a good approximation of x\dagger (see Figure 1
for an illustrative example). In practice, this requires two steps. First, problem
(P\lambda (\^y)) needs to be solved for various choices of \lambda by means of a suitable optimization
algorithm (see, e.g., [38]). Second, all the computed solutions are compared using some
validation criterion (e.g., discrepancy principles [42], SURE [56, 40], cross-validation
[57], and many more) and an optimal parameter \lambda \ast is computed along with the
corresponding solution \^x\lambda \ast .

There are a number of related regularization methods based on variational prob-
lems. For instance, one can replace (P\lambda (\^y)) with a constrained formulation, such as
min R(x) subject to \ell (Ax; y) ď \sigma , for a given error level \sigma ě 0, which can be solved
by appropriate optimization methods; see, for instance, [28, 4]. Next, we discuss a
class of regularization methods based on quite different ideas.

Fig. 1. Tikhonov regularization path on a simple problem. After computing the solution \^x\lambda :=
x\lambda (\^y) of the problem (P\lambda (\^y)) for several values of \lambda , the best parameter \lambda is selected. In this example,
\lambda \simeq 10 - 3 minimizes \| \^x\lambda  - x\dagger \| .
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Iterative regularization. The choice of the optimal parameter \lambda in a Tikhonov reg-
ularization approach is in general very costly computationally. The family of so-called
iterative regularization methods provides an accurate and more efficient alternative
approach [42, 21, 45]. Iterative regularization methods are regularization methods
for which the regularization path \{ xk(\^y)\} k is parametrized by the iterate index k of
algorithms which can easily compute the iterates in terms of R, \ell , and A. These algo-
rithms are usually designed to iteratively solve (P0(\=y)) in a stable way with respect to
errors on \=y. Using these methods, it is therefore possible to find an approximation of
x\dagger given noisy data \^y by ``stopping"" the algorithm when close to x\dagger [19, 32, 33, 29] (see
Figure 2). In these methods, the number of iterations plays the role of a regularization
parameter, controlling at the same time the accuracy of the solution and the compu-
tational cost. In practice, the selection of this regularization parameter is made using
the similar validation criterion as the ones described for Tikhonov regularization.

Previous results. For quadratic data-fit terms \ell and square-norm regularization
R, both Tikhonov and iterative regularization approaches (such as the Landweber
algorithm) have been shown to be optimal, in the sense that their reconstruction error

in (1.2) has optimal rate O(\delta 
1
2 ) [42]. Optimal results with possibly fewer iterations

have also been obtained by considering accelerated approaches [42, 52]. For quadratic
data-fit terms and general strongly convex regularizers, an iterative regularization
procedure combined with a Morozov-type discrepancy principle was also shown to
be optimal in [33], and accelerated approaches based on a dual accelerated gradient
descent were shown to be optimal with fewer iterations in [49]. Iterative regularization
methods also have been studied in the case of general convex regularizers in [32],
where estimates in terms of the Bregman distance were proved (see also [33, 19] for
Tikhonov-type approaches), but no explicit rates in the form (1.2) were shown. More
general iterative algorithms defined in Banach spaces have been studied in [46, 47,
31] for linear and nonlinear inverse problems and in [29] for L1 and total variation
regularization. For data-fit terms different from the squared norm, the literature is
more scarce. In the context of iterative regularization methods, we mention [26] for
results in the framework of Bregman distances and [43], where the Dual Diagonal
Descent (3D) algorithm is considered. Here, the authors provide convergence rates
for general data-fit terms, but the latter is suboptimal in the quadratic case.

Fig. 2. Illustration of two iterative regularization methods (Dual Diagonal Descent (3D) [43]
and its Inertial variant (I3D) proposed in this work) on a simple problem. Left: given the true data
\=y, the iterates converge to the ideal solution x\dagger . Right: given noisy data \^y, the iterates xk(\^y) =: \^xk

approach x\dagger before tending away from it. Regularization holds by early stopping the algorithms at
a suitably chosen iterate k\ast . In this example, k\ast \simeq 2 \times 104 (resp., 50) minimizes \| \^xk  - x\dagger \| for
(3D) (resp., (I3D) ).
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Contribution and organization of the paper. In this paper, we study a novel ac-
celerated iterative regularization algorithm with strongly convex regularization and
general data-fit terms. To the best of our knowledge, accelerated iterative regular-
ization approaches have not been studied in this general setting. Our Inertial Dual
Diagonal Descent algorithm, dubbed (I3D), extends the (3D) iterative algorithm stud-
ied in [43] by introducing an inertial term which yields acceleration.

Our main contribution is the analysis of convergence rates for this method. We
show that these rates depend on how the noise interacts with the data-fit term con-
sidered. By introducing acceleration, we prove that the same or better convergence
rates than those of (3D) can be achieved with much fewer iterations (see Figure 2 for
an illustration). This extends similar observations previously made in the quadratic
case in, e.g., [52, 49]. For the latter case, in particular, we obtain the optimal rate

O(\delta 
1
2 ). In addition, we show that this rate holds more generally for every additive

data-fit, including, for instance, the \ell 1 data term. From an optimization perspective,
the rationale behind this fact is that inertial dynamics are able to exploit information
in previous iterates to converge faster to an optimal solution. However, as pointed
out in [41], inertial methods suffer from error accumulation that need to be controlled
along the iterations and balanced with the improvement observed in the convergence
speed, which makes their analysis in an inverse problem framework nontrivial.

The paper is organized as follows. In section 2 we introduce the notation and
the main assumptions. In section 3 we introduce and analyze the inertial continuous
dynamical system corresponding to (I3D) and, in particular, study its asymptotic be-
havior in Theorem 3.3. In section 4, we derive the algorithm (I3D) as a discretization
in time of the continuous dynamics. We study its convergence properties in Theo-
rem 4.6, showing fast convergence of the iterates to x\dagger in the noiseless case. In section
5 we study the stability properties of (I3D) in the presence of errors due to noise,
proving a general abstract stability result in Theorem 5.5. We specialize this result in
Theorems 5.6, 5.7, and 5.8 showing how convergence rates change depending on which
type of error is assumed. Finally, in section 6, we provide explicit convergence rates
for data-fit terms used in practice, including the Kullback--Leibler (KL) divergence.

2. Main assumptions and background on diagonal methods. We begin
fixing the notation. Let \scrH be a Hilbert space with scalar product \langle \cdot , \cdot \rangle and associated
norm \| \cdot \| . Given y \in \scrH and \varrho \in \BbbR +, let \BbbB (y, \varrho ) be the open ball of center y and
radius \varrho . We denote by \Gamma 0(\scrH ) the set of proper, convex, and lower semicontinuous
functions from \scrH to ]  - \infty ,+\infty ]. We say that f \in \Gamma 0(\scrH ) is \sigma -strongly convex if
f - \sigma \| \cdot \| 2/2 \in \Gamma 0(\scrH ), with \sigma \in ]0,+\infty [. We recall that the subdifferential of f \in \Gamma 0(\scrH )
is the multivalued operator \partial f : \scrH \rightarrow 2\scrH defined by

(2.1) (\forall x \in \scrH ) \partial f(x) := \{ u \in \scrH : f(x\prime ) - f(x) - \langle u, x\prime  - x\rangle ě 0 \forall x\prime \in \scrH \} .

If f is Gateaux differentiable at x \in \scrH , then \partial f(x) = \{ \nabla f(x)\} ; see, e.g., [22, Propo-
sition 17.31(i)]. For all x \in \scrH and \tau > 0, we also recall the definition of the proximity
operator prox\tau f : \scrH \rightarrow \scrH of f \in \Gamma 0(\scrH ) with parameter \tau , which is defined by

(2.2) prox\tau f (x) = (I + \partial f) - 1(x) = argmin
x\prime \in \scrH 

\biggl\{ 
f(x\prime ) +

1

2\tau 
\| x\prime  - x\| 2

\biggr\} 
.

For a given f \in \Gamma 0(\scrH ), we will then denote by f\ast : \scrH \rightarrow [ - \infty ,+\infty ] the Fenchel
conjugate of f , i.e., the function defined by

(\forall u \in \scrH ) f\ast (u) = sup
x\in \scrH 
\{ \langle u, x\rangle  - f(x)\} .
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The Fenchel conjugate f\ast of f belongs to \Gamma 0(\scrH ) and is differentiable at any point
with a \sigma  - 1-Lipschitz continuous gradient when f is \sigma -strongly convex; see, e.g., [22,
Theorem 18.15]. Furthermore, the following property holds (see [22, Theorem 16.23]):

(\forall (x, u) \in \scrH 2) u \in \partial f(x)\leftrightarrow x \in \partial f\ast (u).

Given \Omega \subset \scrH and q ě 1, we say that f is q-conditioned on \Omega if argmin f \not = \emptyset and

(\exists \gamma > 0)(\forall x \in \Omega )
\gamma 

q
dist (x, argmin f)q ď f(x) - inf f,

and say that f is globally q-conditioned when it is q-conditioned on \scrH . Further, we
say that f is locally q-conditioned if, for any \~x \in argmin f , it is q-conditioned on
\BbbB (\~x, \varrho ) for some \varrho \in \BbbR +. Finally, given two sequences (ak)kě1 and (bk)kě1 of real
numbers, we will write ak = O(bk) whenever there exists a positive constant M > 0
such that ak ď Mbk for all k ě 1. We will further use the more precise notation
ak = \Theta (bk) if both conditions ak = O(bk) and bk = O(ak) hold. Note also that we
will use the notation \| \cdot \| and \langle \cdot , \cdot \rangle for the norm and the scalar product in all the
Hilbert spaces considered.

2.1. Main assumptions. We make the following assumptions on the data-fit \ell 
and the regularizer R:

(L1) For all y \in \scrY , the function \ell y := \ell (\cdot , y) \in \Gamma 0(\scrY ) and is coercive.
(L2) For all (y1, y2) \in \scrY 2, \ell (y1, y2) ě 0 and \ell (y1, y2) = 0 \Leftarrow \Rightarrow y1 = y2.
(L3) For given ``true"" data \=y \in \scrY , \ell \=y is locally q-conditioned for some q \in [1,+\infty [.
(R1) R is \sigma -strongly convex with \sigma \in ]0,+\infty [,
(R2) \partial R(x

\dagger ) \cap ImA\ast \not = \emptyset .
Observe that, in light of assumption (L2), assumption (L3) can be rewritten as

(\exists \varrho > 0)(\exists \gamma > 0)(\forall y \in \BbbB (\=y, \varrho ))
\gamma 

q
\| y  - \=y\| q ď \ell (y, \=y).

These assumptions on \ell and R cover a wide range of inverse problems, as discussed
next.

Definition 2.1. A data-fit is said to be additive if there exists \scrN \in \Gamma 0(\scrY ) such
that

(\forall (y1, y2) \in \scrY 2) \ell (y1, y2) = \scrN (y1  - y2).
Example 2.2 (data-fit functions). For \scrY = \BbbR d, the additive data-fit functions

defined by the functions \scrN below trivially satisfy (L1)--(L2). In addition, \ell \=y satisfies
(L3) if and only if \scrN is locally q-conditioned for some q ě 1. We report here some
examples of locally and globally conditioned functions \scrN . Many of them are indeed
globally conditioned.

\bullet \scrN (y) = 1
2\| y\| 

2 is globally 2-conditioned, with \gamma = 1.
\bullet \scrN (y) = 1

q\| y\| 
q
q, for q ě 1, is globally q-conditioned, with \gamma = dr, where

r = min( 1q  - 
1
2 , 0). Note that this includes the case of the \ell 1-norm.

\bullet The weighted sum [44] \scrN (y) = \alpha \| y\| 1 + 1
2\| y\| 

2
2, for \alpha > 0, is globally 1-

conditioned, with \gamma = \alpha .
\bullet The Huber data-fit function [35] \scrN (y) =

\sum d
i=1 h\nu (y

i), where h\nu : \BbbR \rightarrow \BbbR + is
the Huber smoothing function, defined for \nu > 0 by

(2.3) (\forall t \in \BbbR ) h\nu (t) :=

\Biggl\{ 
1
2\nu t

2 if | t| ď \nu ,

| t|  - \nu 
2 otherwise.

For every \varrho \in ]0,+\infty [, it is 2-conditioned on \BbbB (0, \varrho ), with \gamma = min\{ 1\nu ,
2\varrho  - \nu 
\varrho 2 \} .
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\bullet The exact penalization defined by \scrN (y) = 0 if y = 0 and \scrN (y) = +\infty 
otherwise is globally 1-conditioned, with \gamma = 1.

We also mention here a nonadditive data-fit function used in several applications,
which also satisfies assumption (L3):

\bullet The KL divergence, defined by

(2.4) \ell (y2, y1) = KL(y1, y2) :=

d\sum 
i=1

kl(yi1, y
i
2),

where

(\forall (t1, t2) \in \BbbR 2) kl(t1, t2) :=

\left\{     
t1 log

t1
t2
 - t1 + t2 if (t1, t2) \in ]0,+\infty [

2
,

+\infty otherwise.

For every \varrho \in ]0,+\infty [, \ell \=y(\cdot ) = KL(\=y, \cdot ) is 2-conditioned on \BbbB (\=y, \varrho ), with
\gamma = 2

\varrho c2 + 2
\varrho 2c ln

c
\varrho +c , and c = d\| \=y\| \infty (see Lemma A.2).

Example 2.3 (regularizers). A classical regularizer widely used in signal/image
processing as a sparsifying prior is the \ell 1-norm of the coefficients with respect to
an orthonormal basis or, more generally, of a dictionary. Another popular choice
in imaging is the total variation seminorm [53], due to its ability to preserve edges,
together with its generalizations [30, 37]. For some specific tasks in computer vision
and machine learning, there is also a need for structured sparsity. This can be enforced
by means of group sparsity inducing norms [60, 18]. While not being strongly convex,
these regularizers can be included in our framework by simply adding a quadratic
term \sigma 

2 \| \cdot \| 
2 where \sigma is small positive parameter, in the flavor of the elastic net

regularization [62].

2.2. Iterative methods based on continuous and discrete dynamics. It is
useful to review some approaches designed for solving (1.1), the hierarchical problem
(P0(\=y)), and the Tikhonov-regularized problem (P\lambda (\^y)). In particular, we focus on
approaches based on duality and/or combined with diagonal dynamics.

Mirror descent approaches. A class of methods solving (1.1) consider the problem

(2.5) find x\dagger \in argmin
x\in \scrX 

\{ R(x) + \delta \=y(Ax)\} ,

where the constraint (1.1) is encoded by the indicator function \delta \=y. Using Fenchel--
Rockafeller duality the corresponding dual problem reads

(D0) find u\dagger \in argmin
u\in \scrY 

\{ d0(u) := R\ast ( - A\ast u) + \langle \=y, u\rangle \} .

Since R\ast is smooth (see (ii) in Lemma A.1), a gradient method can be used to solve
(D0); see [25, 49]. This coincides, up to a change of variables, with mirror descent
approaches [23] and linearized Bregman iterations [33, 19], where R plays the role
of the mirror function. However, extending this approach for solving (P0(\=y)) is not
clear.

Primal diagonal dynamics. A classical approach to solve hierarchical problems
like (P0(\=y)) is based on the diagonal principle, which essentially states that when
\^y = \=y and \lambda \rightarrow 0, problem (P\lambda (\^y)) converges toward (P0(\=y)) in an appropriate sense
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[5, Theorem 2.6]. In this view, diagonal approaches have been considered as non-
autonomous dynamics solving (P\lambda (\^y)) with a parameter \lambda monotonically decreasing
to zero. The simplest example of a continuous diagonal dynamic is the diagonal
steepest descent differential inclusion defined for an initial t0 > 0, which reads

(PD\lambda ) x(t0) = x0, \lambda (t)\searrow 0, \.x(t) + \partial p\lambda (t)(x(t)) \ni 0,

where p\lambda (t)(x(t)) is defined in (P\lambda (\^y)). This dynamic is studied in [11, 13, 7], where

convergence of x(t) to x\dagger was guaranteed provided that \lambda (t) \rightarrow 0 fast enough, i.e.,
\lambda \in L1/(q - 1)([t0,+\infty )), where q \in [1,+\infty ) is the exponent in (L3); see [7, Corollary
3.3, Remark 4.4]. Discrete counterparts of (PD\lambda ) have also been studied [20, 12, 39].
They can be seen as a variant of the forward-backward algorithm applied to solve
problem (P\lambda (\^y)), where the penalization parameter tends to zero along the iterations.
A main drawback of this type of algorithms is that they are expensive for nonsmooth
data-fit terms, since they require computing the proximal operator of the composition
\ell \=y \circ A. A possible way to overcome this issue consists in applying Fenchel--Rockafellar
duality to (P\lambda (\^y)), thus considering the dual problem (D\lambda ), where the linear operator
appears only in composition with the smooth function R\ast . Then, it is possible to
apply an explicit gradient step to R\ast \circ ( - A\ast ), while the nonsmooth data-fit term can
be cheaply treated via its proximal operator.

Dual diagonal dynamics. The dual problem of (P\lambda (\^y)) is

(D\lambda ) find u\lambda \in argmin
u\in \scrY 

\biggl\{ 
d\lambda (u) := R\ast ( - A\ast u) +

1

\lambda 
\ell \ast (\lambda u; \^y)

\biggr\} 
.

Solutions of (D\lambda ) are related to those of (P\lambda (\^y)) via the formula x\lambda = \nabla R\ast ( - A\ast u\lambda ),
which holds thanks to the strong convexity of R. A natural question is whether the
diagonal principle can be applied to the dual problem (D\lambda ) as well. The corresponding
dual diagonal continuous dynamics read

(DD\lambda ) u(t0) = u0, \lambda (t)\searrow 0,

\Biggl\{ 
x(t) = \nabla R\ast ( - A\ast u(t)),

\.u(t) + \partial d\lambda (t)(u(t)) \ni 0,

where, similarly as before, provided that \lambda \in L1/(q - 1)([t0,+\infty )), the trajectory x(t) is
guaranteed to converge to x\dagger . The discrete counterpart of (DD\lambda ) has been studied in
[43] under the name of Dual Diagonal Descent algorithm, (3D) where its convergence
and stability properties have been investigated. For \^y \in \scrY such that \| \^y - \=y\| ď \delta and
additive data-fit functions, the authors showed that stopping the algorithm at k\delta =
\Theta (\delta  - 2/3) guarantees that the convergence rate (1.2) holds with \alpha = 1/3. However,
this rate is not optimal for quadratic data terms [42]. In this paper, we propose a
dual diagonal approach which, thanks to the use of acceleration, provides optimal
convergence rates and an earlier stopping time.

3. Continuous inertial dual diagonal dynamic. First-order inertial algo-
rithms are popular in optimization due to their faster convergence on smooth and
nonsmooth convex problems; see, e.g., [51, 24]. In several papers continuous inertial
dynamics have been studied considering appropriate Lyapunov functions [58, 48, 3].
As already discussed, their regularization properties are also known for quadratic
data-fit terms [52, 49]. We propose an inertial approach for general data-fit terms,
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ACCELERATED ITERATIVE REGUALRIZATION VIA INERTIAL 3D 761

considering a variant of the dynamic in (DD\lambda ). Namely, for a given \alpha > 0 and initial
t0 > 0, we consider

(IDD\lambda ) (u(t0), \.u(t0)) = (u0, \.u0), \lambda (t)\searrow 0,

\Biggl\{ 
x(t) = \nabla R\ast ( - A\ast u(t)),

\"u(t) +
\alpha 

t
\.u(t) + \partial d\lambda (t)(u(t)) \ni 0.

The asymptotic behavior of the trajectories of this inertial differential inclusion will be
analyzed next, while its discrete counterpart will be studied in the rest of the paper.

Remark 3.1. The idea of coupling inertia with Tikhonov regularization is not new.
In [9], an inertial variant of the primal dynamic (PD\lambda ) is proposed for R = \| \cdot \| 2/2.
The corresponding inertial primal diagonal approach is

(IPD\lambda ) (x(t0), \.x(t0)) = (x0, \.x0), \lambda (t)\searrow 0, \"x(t) +
\alpha 

t
\.x(t) + \lambda (t)\partial p\lambda (t)(x(t)) \ni 0.

Under a suitable decay assumption on \lambda (\cdot ) the authors guarantee fast convergence and
regularization [9, section 6]. Compared to (IPD\lambda ), in our dual formulation (IDD\lambda )
we take advantage of a different scaling between the data-fit and the regularizer.
Indeed, to derive (IDD\lambda ) the data-fit in the primal problem (P\lambda (\^y)) is multiplied by
\lambda (t) - 1 \rightarrow +\infty , while in (IPD\lambda ) the regularizer is multiplied by \lambda (t) \rightarrow 0. For first-
order systems this difference is inessential, the two approaches being equivalent for
an appropriate change of variables [13]. However, for second-order systems these two
scalings describe different dynamics [14, section 4]. This difference can be understood
looking at the limits (in the \Gamma -convergence sense) of the corresponding parametrized
functions, which read

(3.1) if \lambda \searrow 0, p\lambda \rightarrow p0 := R+ \delta argmin \ell y\circ A and \lambda p\lambda \rightarrow \delta domR + \ell y \circ A.

3.1. Convergence of the continuous inertial dual diagonal dynamic. In
this section we study the convergence properties of the trajectories of (IDD\lambda ), as-
suming their existence to simplify the analysis. We remark that if d\lambda is assumed to
be differentiable with a Lipschitz continuous gradient, global existence and unique-
ness results of a classical C2([t0,+\infty ),\BbbR +) solution to (IDD\lambda ) hold by the Cauchy--
Lipschitz theorem. However, this assumption requires the data-fidelity function \ell \=y
to be strongly convex (see [22, Theorem 18.15]), which is in general not the case for
most of the data-fit terms; see Example 2.2. We refer to [34, 3] for further details.
In the following theorem, we show that the inertial term (IDD\lambda ) ensures that the
dual function values d\lambda (t)(u(t)) tend to inf d0 at a O(t - 2) rate as expected for inertial
methods. Further, switching from the dual to the primal problem by means of the
formula x(t) = \nabla R\ast ( - A\ast u(t)), we prove the convergence of x(\cdot ) to x\dagger . To prove these
results, some assumptions on the decay of \lambda (\cdot ) are needed, as it is usual for dynamics
such as (PD\lambda ) and (IPD\lambda ). We thus consider the following assumption:

(\Lambda ) \lambda : [0,+\infty [ \rightarrow ]0,+\infty [ is a nonincreasing differentiable function such that
limt\rightarrow \infty \lambda (t) = 0. If q defined in assumption (L3) is strictly greater than 1,

we assume that the quantity \Lambda c :=
\int +\infty 
t0

t\lambda 
1

q - 1 (t) dt is finite.

Remark 3.2. A sufficient condition ensuring the validity of (\Lambda ) is that \lambda (\cdot ) \in 
L

1
2(q - 1) ([t0,+\infty )); see Lemma A.4 in the appendix.

We are now ready to state the main convergence result for continuous dynam-
ics. Note that Lemma A.1(iii) ensures that the set of solutions of problem (D0) is
nonempty. To prove fast convergence results of the dual function values, we follow
the approach considered in [8, 58, 3] and define a suitable Lyapunov-type function.
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762 L. CALATRONI, G. GARRIGOS, L. ROSASCO AND S. VILLA

Theorem 3.3. Let the assumptions (L1)--(L3), (R1)--(R2), (\Lambda ) hold true. Let
u\dagger \in argmin d0 and assume that \lambda (t0)\| u\dagger \| ď \gamma \varrho q - 1/q. Let \alpha ě 3 and let the pair
(x(\cdot ), u(\cdot )) be a solution to (IDD\lambda ) in the following sense:

\bullet u \in \scrC 1([t0,+\infty [,\scrY ), and x = \nabla R\ast \circ ( - A\ast ) \circ u,
\bullet for every T > t0, \.u and d\lambda (\cdot ) \circ u are absolutely continuous on [t0, T ],
\bullet for a.e. t \in [t0,+\infty [,  - \"u(t) - \alpha 

t \.u(t) \in \partial d\lambda (t)(u(t)).
Then, there exists an explicitly computable constant C \in ]0,+\infty [ such that

\forall t > t0 d\lambda (t)(u(t)) - inf d0 ď
C

t2
and \| x(t) - x\dagger \| ď

\surd 
2C\surd 
\sigma t
.

Proof. We define the following energy:

(3.2) (\forall t ě t0) \scrE (t) := t2
\bigl( 
d\lambda (t)(u(t)) - inf d0

\bigr) 
+

1

2
\| (\alpha  - 1)(u(t) - u\dagger ) + t \.u(t)\| 2.

From now on, we will use the shorthand notation

(3.3) R\ast 
A := R\ast \circ ( - A\ast ), \ell \ast \=y(\cdot ) := \ell (\cdot , \=y)\ast 

so that the composite dual function d\lambda can be written as d\lambda (u) = R\ast 
A(u)+\lambda  - 1\ell \ast \=y(\lambda u)

for every u \in \scrY . Since \partial d\lambda (t)(u(t)) = \nabla R\ast 
A(u(t))+\partial \ell 

\ast 
\=y(\lambda (t)u(t)) [22, Proposition 16.6

and Corollary 16.53], the notion of solution introduced entails the existence of some
\eta : [t0,+\infty )\rightarrow \scrY such that

for a.e. t > t0, \"u(t) +
\alpha 

t
\.u(t) +\nabla R\ast 

A(u(t)) + \eta (t) = 0 and \eta (t) \in \partial \ell \ast \=y(\lambda (t)u(t)).

We divide the proof into two steps.
Step 1. Fast convergence rates. The function \scrE is differentiable a.e. on [t0,+\infty [

since it is absolutely continuous. We thus compute its derivative and obtain

\.\scrE (t) = 2t
\Bigl( 
d\lambda (t)(u(t)) - inf d0

\Bigr) 
+
t2 \.\lambda (t)

\lambda 2(t)

\Bigl( 
\langle \eta (t), \lambda (t)u(t)\rangle  - \ell \ast \=y(\lambda (t)u(t))

\Bigr) 
+ t2

\Bigl\langle 
\.u(t), \"u(t)+

\alpha 

t
\.u(t) +\nabla R\ast 

A(u(t)) + \eta (t)
\Bigr\rangle 
+ t(\alpha  - 1)

\Bigl\langle 
u(t) - u\dagger , \alpha 

t
\.u(t) + \"u(t)

\Bigr\rangle 
.

The second term in the expression above is nonpositive because \lambda is differentiable and
decreasing and, moreover, by convexity of \ell \=y(\cdot ) together with Lemma A.1(ii), there
holds

\ell \ast \=y(\lambda (t)u(t)) - \langle \eta (t), \lambda (t)u(t)\rangle ď \ell \ast \=y(0) = 0.

Furthermore, the third term is equal to zero a.e. since u(\cdot ) is a solution of (IDD\lambda )
by assumption. We thus deduce that for a.e. t > t0

(3.4) \.\scrE (t) ď 2t
\Bigl( 
d\lambda (t)(u(t)) - inf d0

\Bigr) 
+ t(\alpha  - 1)

\Bigl\langle 
u\dagger  - u(t), - \"u(t) - \alpha 

t
\.u(t)
\Bigr\rangle 
.

Using that  - \"u(t) - \alpha 
t \.u(t) \in \partial d\lambda (t)(u(t)) and from the convexity of d\lambda (t)(\cdot ) we have

(3.5) for a.e. t > t0

\Bigl\langle 
u\dagger  - u(t), - \"u(t) - \alpha 

t
\.u(t)
\Bigr\rangle 

ď d\lambda (t)(u
\dagger ) - d\lambda (t)(u(t)).

We now add and subtract inf d0 = d0(u
\dagger ) and define r\lambda (t)(u

\dagger ) := d\lambda (t)(u
\dagger )  - inf d0.

We get

(3.6)
\Bigl\langle 
u\dagger  - u(t), - \"u(t) - \alpha 

t
\.u(t)
\Bigr\rangle 

ď r\lambda (t)(u
\dagger ) + inf d0  - d\lambda (t)(u(t)).

D
ow

nl
oa

de
d 

10
/1

3/
21

 to
 1

30
.2

51
.2

19
.1

32
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED ITERATIVE REGUALRIZATION VIA INERTIAL 3D 763

Applying this inequality to (3.4), since \alpha ě 3 and d\lambda (t)(u(t)) - inf d0 ě 0 (see Propo-
sition A.1.(iv)), we get

(3.7) \.\scrE (t) ď t(3 - \alpha )
\Bigl( 
d\lambda (t)(u(t)) - inf d0

\Bigr) 
+ t(\alpha  - 1)r\lambda (t)(u

\dagger ) ď t(\alpha  - 1)r\lambda (t)(u
\dagger ).

To bound the right-hand side, we now apply Lemma A.1(vi) and deduce that, since
\lambda (t) ď \lambda (t0),

\.\scrE (t) ď c(\alpha  - 1)t\lambda (t)
1

q - 1 ,

where the constant c is defined as

(3.8) c :=

\Biggl\{ 
0 if q = 1,

(1 - (1/q))\gamma  - 1/(q - 1)\| u\dagger \| q/(q - 1) if q > 1

and is finite in both cases. Since the above inequality holds for a.e. t > t0, assumption
(\Lambda ) yields that for a.e. t > t0,

\scrE (t) = \scrE (t0) +
\int t

t0

\.\scrE (t) ď \scrE (t0) + c(\alpha  - 1)\Lambda c.

By now defining C := \scrE (t0) + c(\alpha  - 1)\Lambda c, we derive

(3.9) d\lambda (t)(u(t)) - inf d0 ď
C

t2
.

Step 2. Convergence rate for the primal iterates. From (3.9), used in combination
with Lemma A.1(v), we get

\sigma 

2
\| x(t) - x\dagger \| 2 ď d0(u(t)) - inf d0 = (d0(u(t)) - d\lambda (t)(u(t))) + (d\lambda (t)(u(t)) - inf d0)

ď (d0(u(t)) - d\lambda (t)(u(t))) +
C

t2
.

The monotonicity property of Lemma A.1(iv) implies that the first term on the right-
hand side above is nonpositive, whence we get

(3.10) \| x(t) - x\dagger \| ď

\surd 
2C\surd 
\sigma t
.

4. Inertial Dual Diagonal Descent (I3D) algorithm. In this section, we
study the convergence properties of the discrete analogue of (IDD\lambda ), thus deriving
an accelerated version of the (3D) algorithm studied in [43].

4.1. From the continuous dynamic to the discrete algorithm. We follow
here a standard approach for computing the time-discretization of continuous dynam-
ical systems considered, e.g., in [1, 16, 58, 8]. Recalling the notation (3.3), we note
that (IDD\lambda ) can be equivalently written as

(4.1)

\Biggl\{ 
x(t) = \nabla R\ast ( - A\ast u(t)),

\"u(t) + \alpha 
t \.u(t) + \partial \ell \ast \=y(\lambda (t)u(t)) +\nabla R\ast 

A(u(t)) \ni 0.

We discretize (4.1) explicitly with respect to the smooth component \nabla R\ast 
A and semi-

implicitly with respect to the nonsmooth term \partial \ell \ast \=y. In other words, we discretize
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764 L. CALATRONI, G. GARRIGOS, L. ROSASCO AND S. VILLA

implicitly the trajectories, while leaving explicit the dependence on the discretized
values \lambda k. For k ě 0, a fixed time step size h > 0 and for time-discretization points
tk = kh, we set uk := u(tk), \lambda k := \lambda (tk) and derive the finite difference scheme\Biggl\{ 

xk = \nabla R\ast ( - A\ast uk),
1
h2 (uk+1  - 2uk + uk - 1) +

\alpha 
kh2 (uk  - uk - 1) + \partial \ell \ast \=y(\lambda kuk+1) +\nabla R\ast 

A(wk) \ni 0,

where wk is a linear combination of uk and uk - 1 which will be made clear in the
following. After straightforward calculations, we rewrite the system above as

(4.2)

\Biggl\{ 
xk = \nabla R\ast ( - A\ast uk),

uk+1 + h2\partial \ell \ast \=y(\lambda kuk+1) \ni uk +
\bigl( 
1 - \alpha 

k

\bigr) 
(uk  - uk - 1) - h2\nabla R\ast 

A(wk).

By setting \alpha k = 1 - \alpha /k, \tau := h2, and wk := uk + \alpha k(uk  - uk - 1), we get\left\{       
wk = uk + \alpha k(uk  - uk - 1),

uk+1 =
\Bigl( 
I + \tau 

\lambda k
\partial \ell \ast \=y(\lambda k\cdot )

\Bigr)  - 1

(wk  - \tau \nabla R\ast 
A(wk)) ,

xk+1 = \nabla R\ast ( - A\ast uk+1).

Note that the proximal operator of the map \ell \ast \=y(\lambda k\cdot ) with parameter \tau /\lambda k appears,
in combination with an explicit gradient step for R\ast 

A. We can thus introduce the
(I3D) algorithm:

For u0 = u1 \in \scrY , compute for k ě 1

\left\{     
wk = uk + \alpha k(uk  - uk - 1),

uk+1 = prox \tau 
\lambda k

\ell \ast \=y(\lambda k\cdot ) (wk  - \tau \nabla R\ast 
A(wk)) ,

xk+1 = \nabla R\ast ( - A\ast uk+1).

(I3D)

This algorithm depends on three parameters: the step size \tau > 0, the relaxation
parameters (\lambda k)k, and the friction parameters (\alpha k)k. The step size will be chosen
depending on the value of the Lipschitz constant of \nabla R\ast 

A. For the choice of the
relaxation parameters, we will consider a discrete analogue of the assumption (\Lambda )
formulated in the continuous setting. For the friction parameters \alpha k, we will allow
more general values than the ones above.

We gather the requirements on these parameters in the following assumptions:

(P1) \tau \in (0, \sigma 2

\| A\| 2 ], where \sigma > 0 is defined in assumption (R1).

(P2) \alpha k is nonnegative and for every k ě 1 and tk := 1 +
\sum +\infty 

i=k

\prod i
j=k \alpha j is finite,

with tk = \Theta (k).
(P3) (\lambda k) is a strictly positive nonincreasing sequence such that limk\rightarrow \infty \lambda k = 0.

Moreover, by defining

(4.3) \Lambda :=

\Biggl\{ \sum 
kě1 tk+1\lambda 

1/(q - 1)
k if q > 1,

0 if q = 1,

we have that \Lambda < +\infty .
(P4) For u\dagger \in argmin d0, we have \lambda 0\| u\dagger \| ď \gamma \varrho q - 1/q.

Remark 4.1 (on assumption (P3)). As commented in Remark 3.2, one can check

that a sufficient condition for (P3) to hold is that \lambda \in \ell 
1

2(q - 1) (\BbbN ). In particular, if we
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ACCELERATED ITERATIVE REGUALRIZATION VIA INERTIAL 3D 765

consider a sequence verifying \lambda k = O
\bigl( 
k - \theta 

\bigr) 
for some \theta > 0, it is easy to verify that

(P3) holds as long as \theta > 2(q - 1). For q = 1 (for instance, if \ell (y1, y2) = \| y1 - y2\| 1), no
summability condition is required. Roughly speaking, the assumption \lambda \in \ell 

1
2(q - 1) (\BbbN )

means in this case that \lambda \in \ell \infty (\BbbN ), which is already implied by limk\rightarrow \infty \lambda k = 0.

Remark 4.2 (on assumption (P4)). For many choices of data-fits, \varrho = +\infty (see
Example 2.2), in which case the assumption is automatically satisfied. Also, note that
in assumption (P3), we require \lambda k to tend to zero. This means that \lambda K\| u\dagger \| ď \gamma \varrho q - 1/q
for some K \in \BbbN . In this case, up to a time rescaling k \leftarrow k+K, the required estimates
always hold true.

Following [6], we require the sequence of friction parameters (\alpha k) to satisfy (P2),
a particular summability property guaranteeing a technical condition crucial in the
following proofs. We summarize such a requirement and the resulting condition in
the following lemma.

Lemma 4.3 (see [6, Lemma 2.1]). Assume that (\alpha k) is nonnegative and satisfies

(4.4)

+\infty \sum 
i=k

i\prod 
j=k

\alpha j < +\infty for every k ě 1.

Then, the sequence defined by

(4.5) tk := 1 +

+\infty \sum 
i=k

i\prod 
j=k

\alpha j

is well-defined (P2), and satisfies for every k ě 1 the following properties:

(4.6) 1 + \alpha ktk+1 = tk, t2k+1  - t2k ď tk+1.

Remark 4.4 (classical choices of \alpha k and tk). Definitions (4.4) and (4.5) above
accommodate standard choices of sequences (\alpha k) and (tk). For example, in his seminal
work Nesterov [50] considered

(4.7) \alpha k =
tk  - 1

tk+1
and tk+1 =

\sqrt{} 
1 + 4t2k + 1

2
, t1 = 1,

which can be shown to verify the two conditions (4.4) and (4.5), as well as k/2 ď tk ď

k. For a given \alpha > 1, the two asymptotically equivalent choices

\alpha k = 1 - \alpha 

k
, tk+1 =

k

\alpha  - 1
, and \alpha k =

k  - 1

k + \alpha  - 1
, tk+1 =

k + \alpha  - 1

\alpha  - 1

have been recently considered in [36, 2, 10] and can be shown to satisfy (P2). Note
that for \alpha = 3 these sequences are asymptotically equivalent to the Nesterov sequences
(4.7).

Remark 4.5 (splitting of the loss). In [43] the decomposition of the loss function
\ell \=y = \phi \=y \square \psi \=y was considered, where \square is the infimal convolution and \psi \=y is the
possible strongly convex component of \ell \=y. In such case, the dual function \ell \ast \=y(\cdot ) can be
expressed as \ell \ast \=y = \psi \ast 

\=y + \phi \ast \=y, where \phi 
\ast 
\=y is in general nonsmooth, while \phi \ast \=y has Lipschitz

gradient and can therefore be incorporated with the smooth term R\ast 
A in the dual

function d\lambda . For several data discrepancies, however, \psi \=y = \delta \{ 0\} (see [43, section 4.3]).
To simplify the presentation, we do not consider this decomposition in this work.
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4.2. Fast convergence of the algorithm. We now prove the discrete analogue
of Theorem 3.3 for (I3D). We follow the approach considered in [25, 15, 58, 8, 6].

Theorem 4.6 (fast convergence). Let the assumptions (L1)--(L3), (R1)--(R2),
(P1)--(P4) hold true. Let (xk) and (uk) be the sequences generated by algorithm (I3D).
Then, there exists C \in ]0,+\infty [ such that

(4.8) d\lambda k
(uk) - inf d0 ď

C

t2k
and \| xk  - x\dagger \| ď

\surd 
2C\surd 
\sigma tk

.

Proof. Let u\dagger \in argmin d0 be the minimizer of d0 for which assumption (P4)
holds, and define, for every k ě 1, the discrete Lyapunov energy function

(4.9) \scrE (k) := t2k

\Bigl( 
d\lambda k

(uk) - inf d0

\Bigr) 
+

1

2\tau 
\| zk  - u\dagger \| 2,

where zk is defined as

(4.10) zk := uk - 1 + tk(uk  - uk - 1).

Our goal is to get an estimate on the decay of \scrE along time. In particular, we will
show that for every k ě 1

(4.11) \scrE (k + 1) - \scrE (k) ď tk+1

\Bigl( 
d\lambda k

(u\dagger ) - inf d0

\Bigr) 
,

which can be seen as a discrete analogue of (3.7), and from which the desired accel-
erated convergence rates will follow in a straightforward manner.

For simplicity, let us denote by \ell k the function defined by setting

(4.12) (\forall u \in \scrY ) \ell k(u) := \lambda  - 1
k \ell \ast \=y(\lambda ku).

To prove (4.11), we define for every k ě 1 the operator Gk : \scrY \rightarrow \scrY as

(4.13) Gk(z) :=
1

\tau 

\Bigl( 
z  - prox\tau \ell k(z  - \tau \nabla R

\ast 
A(z))

\Bigr) 
and notice that the proximal step of (I3D) can be written in terms of Gk as uk+1 =
wk  - \tau Gk(wk). The descent lemma (see, e.g., [6, 36]) yields

(4.14) d\lambda k
(w  - \tau Gk(w)) ď d\lambda k

(u) + \langle Gk(w), w  - u\rangle  - 
\tau 

2
\| Gk(w)\| 2 \forall w, u \in \scrY .

Evaluating (4.14) for u = uk and w = wk, we get

(4.15) d\lambda k
(uk+1) ď d\lambda k

(uk) + \langle Gk(wk), wk  - uk\rangle  - 
\tau 

2
\| Gk(wk)\| 2.

Similarly, evaluating (4.14) for u = u\dagger and w = wk, we derive

(4.16) d\lambda k
(uk+1) ď d\lambda k

(u\dagger ) + \langle Gk(wk), wk  - u\dagger \rangle  - 
\tau 

2
\| Gk(wk)\| 2.

We now multiply (4.15) by tk+1  - 1 and we add it to (4.16), thus obtaining

tk+1d\lambda k
(uk+1) ď (tk+1  - 1)d\lambda k

(uk) + d\lambda k
(u\dagger )

+ \langle Gk(wk), (tk+1  - 1)(wk  - uk) + (wk  - u\dagger )\rangle  - 
\tau 

2
tk+1\| Gk(wk)\| 2.(4.17)
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As an immediate consequence of Lemma 4.3, we observe that

(tk+1  - 1)(wk  - uk) + wk = uk + tk+1(wk  - uk)
= uk + tk+1\alpha k(uk  - uk - 1)(4.18)

= uk - 1 + (1 + tk+1\alpha k)(uk  - uk - 1)

= uk - 1 + tk(uk  - uk - 1) = zk.

Thanks to (4.10), the fact that zk  - \tau tk+1Gk(wk) = zk+1, and the previous equality,
we can now reorder the terms in (4.17) and rewrite it as

tk+1(d\lambda k
(uk+1) - d\lambda k

(u\dagger )) ď (tk+1  - 1)(d\lambda k
(uk) - d\lambda k

(u\dagger ))

+
1

2\tau tk+1

\bigl( 
\| zk  - u\dagger \| 2  - \| zk+1  - u\dagger \| 2

\bigr) 
.

We now multiply everything by tk+1, rearrange, and get

t2k+1(d\lambda k
(uk+1) - d\lambda k

(u\dagger )) +
1

2\tau 
\| zk+1  - u\dagger \| 2(4.19)

ď (t2k+1  - tk+1)(d\lambda k
(uk) - d\lambda k

(u\dagger )) +
1

2\tau 
\| zk  - u\dagger \| 2,

which can be equivalently rewritten as

t2k+1

\Bigl( 
d\lambda k

(uk+1) - d\lambda k
(u\dagger )

\Bigr) 
+

1

2\tau 
\| zk+1  - u\dagger \| 2

ď t2k

\Bigl( 
d\lambda k

(uk) - d\lambda k
(u\dagger )

\Bigr) 
+ (t2k+1  - tk+1  - t2k)

\Bigl( 
d\lambda k

(uk) - d\lambda k
(u\dagger )

\Bigr) 
+

1

2\tau 
\| zk  - u\dagger \| 2.

To get the desired terms, we first use on the left-hand side the monotonicity property
of the function d\lambda k

(\cdot ) as a function of k (see Lemma A.1(iv)) and then add and
subtract in the parentheses the term inf d0, thus getting

t2k+1

\Bigl( 
d\lambda k+1

(uk+1) - inf d0

\Bigr) 
+

1

2\tau 
\| zk+1  - u\dagger \| 2

ď t2k

\Bigl( 
d\lambda k

(uk) - inf d0

\Bigr) 
+ (t2k+1  - tk+1  - t2k)

\Bigl( 
d\lambda k

(uk) - inf d0

\Bigr) 
(4.20)

+ tk+1

\Bigl( 
d\lambda k

(u\dagger ) - inf d0

\Bigr) 
+

1

2\tau 
\| zk  - u\dagger \| 2.

After rearranging and recalling the definition of \scrE in (4.9), we deduce

\scrE (k + 1) + (t2k + tk+1  - t2k+1)
\Bigl( 
d\lambda k

(uk) - inf d0

\Bigr) 
ď \scrE (k) + tk+1

\Bigl( 
d\lambda k

(u\dagger ) - inf d0

\Bigr) 
.

Thanks to (4.6) and Lemma A.1(iv), we can now neglect the second term on the
left-hand side of the above inequality, finally getting the desired inequality (4.11).
Iterating this inequality recursively entails

\scrE (k) ď \scrE (1) +
k - 1\sum 
j=1

tj+1

\Bigl( 
d\lambda j (u

\dagger ) - inf d0

\Bigr) 
.(4.21)

To bound the sum appearing on the right-hand side, we need to analyze the residuals
rj := d\lambda j

(u\dagger ) - inf d0. Similarly as for the estimation obtained in the continuous case,
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we can use for this purpose the property in Lemma A.1(vi) and get that for some
fixed constant c > 0 independent on j (defined analogously as in (3.8)), we have

rj ď c\lambda 
1

q - 1

j for every j ě 1.

By assumption (P3), with \Lambda as in (4.3), we thus conclude that

k - 1\sum 
j=1

tj+1rj ď c

k - 1\sum 
j=1

tj+1\lambda 
1

q - 1

j ď c\Lambda < +\infty .

This allows us to deduce from (4.21) the convergence rate on the dual values in (4.8)
by simply taking C := \scrE (1)+ c\Lambda . Finally, the convergence rate on the primal iterates
in (4.8) follows from Lemma A.1(v).

Remark 4.7 (Nesterov scheme as a special case). Let f be any differentiable
function in \Gamma 0(\scrX ) with Lipschitz-continuous gradient. Take R = f\ast , A =  - I, \=y = 0,
and \ell (y1, y2) = \delta 0(y2 - y1), so that assumptions (L1)--(L3) and (R1)--(R2) are verified.
In that case, d0 = f , and (I3D) reads

u0 = u1 \in \scrY , compute for k ě 1

\left\{     
wk = uk + \alpha k(uk  - uk - 1),

uk+1 = wk  - \tau \nabla f(wk),

xk+1 = \nabla f(uk+1),

which in the dual exactly performs Nesterov's method [51]. From our rates and
Lemma A.1(iv), we deduce that f(uk)  - inf f = O(k - 2). Furthermore, according
to the Nemirovski and Yudin optimality result [51, Theorem 2.1.7], these rates are
optimal over the class of Lipschitz smooth convex functions.

Remark 4.8 (different growth for tk). In assumption (P2) we require the sequence
(tk) to satisfy tk = \Theta (k), but this is actually not used in the proof of Theorem 4.6.
What is crucial there is that tk < +\infty , so that Lemma 4.3 can be used. Indeed, one
might ask whether it is possible to require tk = \Theta (k\beta ), with \beta > 1 to improve the rates
in (3.9). It is a simple exercise to verify that this is not possible, since (4.6) implies
tk ď t1k, hence we must have \beta ď 1 so that the best rates are actually achieved for
\beta = 1.

5. Stability properties in the presence of errors. We now study the itera-
tive regularization properties of (I3D) in the presence of noisy data \^y \in \scrY . We thus
consider

For \^u0 = \^u1 \in \scrY , compute for k ě 1

\left\{     
\^wk = \^uk + \alpha k(\^uk  - \^uk - 1),

\^uk+1 = prox \tau 
\lambda k

\ell \ast \^y(\lambda k\cdot ) ( \^wk  - \tau \nabla R\ast 
A( \^wk)) ,

\^xk+1 = \nabla R\ast ( - A\ast \^uk+1).

(5.1)

A first natural question one may ask is how much the dual and primal iterates \^uk
and \^xk are affected by noise in terms of both convergence and stability. We discuss
these issues showing that the noisy perturbation can be interpreted as an error in the
calculation of the proximal step of the (I3D) algorithm. Before starting, we motivate
the following with an example.
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Example 5.1. Assume \scrY = \BbbR and \^y = \=y + \delta for some \=y, \delta > 0. The (I3D) al-
gorithm makes use of the datum only for the evaluation of the proximal operator
prox \tau 

\lambda \ell \ast \^y(\lambda \cdot )
. One possible way to measure the impact of the noise consists then in

finding an upper bound for | prox \tau 
\lambda \ell \ast \=y(\lambda \cdot )(w)  - prox \tau 

\lambda \ell \ast \^y(\lambda \cdot )
(w)| for w \in \scrY (see [43,

Lemma 10]). Consider the following two illustrative cases:
\bullet \ell y = 1

2 | \cdot  - y| 
2. We have

sup
\=y\in \scrY 

sup
w\in \scrY 
| prox \tau 

\lambda \ell \ast \=y(\lambda \cdot )(w) - prox \tau 
\lambda \ell \ast \^y(\lambda \cdot )

(w)| = \tau \delta 

1 + \tau \lambda 
.

\bullet \ell y = kl(y; \cdot ). We have

sup
\=y\in \scrY 

sup
w\in \scrY 
| prox \tau 

\lambda \ell \ast \=y(\lambda \cdot )(w) - prox \tau 
\lambda \ell \ast \^y(\lambda \cdot )

(w)| =
\sqrt{} 
\tau \delta 

\lambda 
.

In the former case, the error assumed in the evaluation of \=y has order \delta . However,
a different behavior is observed for the latter example. The square-root dependence
on \delta makes the estimate worse in a small noise regime, when \delta \ll 1. Further, notice
that in a diagonal regime the sequence (\lambda k) converges to zero (P3), which makes the
overall error grow fast along the iterations.

Example 5.1 shows that data-fit terms behave differently in the presence of noise.
We thus need to provide an analysis flexible enough to take these differences into
account and avoid suboptimal results via worst-case estimates. This is the purpose
of the following discussion, where we will see that additive data terms (in the sense
of Definition 2.1) behave essentially like 1

2 | \cdot  - y| 
2, while the KL data term belongs to

a class of less stable losses.

5.1. \bfitvarepsilon -subdifferentials and inexact proximal calculus. In this section, we
make precise the notion of noise perturbation we intend to use. To do so, we first
recall standard definitions regarding the approximate subdifferential and proximal-
type minimization problems.

Definition 5.2 (\varepsilon -subdifferential [61]). Let \scrH be a Hilbert space, f \in \Gamma 0(\scrH ), and
\varepsilon ě 0. The \varepsilon -subdifferential of f at x \in dom f is the set

(5.2) \partial \varepsilon f(x) = \{ u \in \scrH : f(x\prime ) ě f(x) + \langle u, x\prime  - x\rangle  - \varepsilon \forall x\prime \in \scrH \} .

Such a notion generalizes that of the subdifferential recalled in (2.1). In particular,
if \varepsilon ě 0, then \partial f(x) \subset \partial \varepsilon f(x) for any x \in \scrH , and we have

(5.3) 0 \in \partial \varepsilon f(x) \Leftarrow \Rightarrow x \in argmin\varepsilon f = \{ x\prime \in \scrH : f(x\prime ) ď inf f + \varepsilon \} .

We recall now some useful characterizations of the proximal operator of f \in \Gamma 0(\scrH )
with parameter \eta > 0,

(5.4) p = prox\eta f (x) \leftrightarrow 
x - p
\eta 
\in \partial f(p) \leftrightarrow p = argmin

z

\biggl\{ 
f(z) +

1

2\eta 
\| z  - x\| 2

\biggr\} 
.

Next, we introduce notions of approximation of proximal points that can be seen as
relaxed conditions of the characterizations in (5.4) (for details see [54, 17]).

Definition 5.3 (approximation of proximal points). Let f \in \Gamma 0(\scrH ), x \in \scrH ,
\eta > 0, and p := prox\eta f (x). We say that \^p \in \scrH is
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\bullet a type 1 approximation of p with precision \varepsilon 1, and we write \^p \approx \varepsilon 1
1 p, if

\exists e \in \scrH , \exists (\varepsilon 1, \varepsilon 2, \varepsilon 3) \in [0,+\infty [2, \| e\| ď \varepsilon 3, \varepsilon 
2
2 + \varepsilon 23 ď \varepsilon 21,

x+ e - \^p

\eta 

\in \partial \varepsilon 22
2\eta 

f(\^p);

\bullet a type 2 approximation of p with precision \varepsilon 2, and we write \^p \approx \varepsilon 2
2 p, if

(5.5) \exists \varepsilon 2 \in [0,+\infty [,
x - \^p

\eta 
\in \partial \varepsilon 22

2\eta 

f(\^p);

\bullet a type 3 approximation of p with precision \varepsilon 3, and we write \^p \approx \varepsilon 3
3 p, if

(5.6) \exists e \in \scrH ,\exists \varepsilon 3 \in [0,+\infty ], \| e\| ď \varepsilon 3,
x+ e - \^p

\eta 
\in \partial f(\^p).

Type 3 approximations simply describe the presence of an additive error in the
argument of the proximal map, i.e., \^p = prox\eta f (x + e). We show in section 6.1
that this type of error arises naturally when additive data-fit functions are used.
Type 2 approximations correspond to the presence of errors in the subdifferential
operator. Type 1 approximations can be seen as a combination of type 2 and type 3
approximations, and the following lemma provides an easy characterization.

Lemma 5.4 (see [55, 54]). Let f \in \Gamma 0(\scrH ), x \in \scrH , \eta > 0. Then

(5.7) \^p \approx \varepsilon 1
1 prox\eta f (x) \leftrightarrow \^p \in argmin\varepsilon 1

\biggl\{ 
f(\cdot ) + 1

2\eta 
\| \cdot  - x\| 2

\biggr\} 
.

We are now ready to study the stability properties of the (I3D) algorithm.

5.2. Stability estimates in the presence of errors. Using the notions in-
troduced in the previous section, we can quantify the error due to the replacement of
\=y by \^y. In particular, recalling Definition 5.3, we assume that at each iteration the
proximal step with \^y is an i-type approximation of the proximal step with \=y, where
i \in \{ 1, 2, 3\} :

(Ei) (\forall k ě 1)(\exists \varepsilon i,k ě 0) s.t. (\forall w \in \scrY ) prox \tau 
\lambda k

\ell \ast \^y(\lambda \cdot )
(w) \approx \varepsilon i,k

i prox \tau 
\lambda k

\ell \ast \=y(\lambda \cdot )(w).

In section 6 we show that this is indeed a natural assumption for standard data-fit
terms.

We can now prove our second main result for (I3D) which provides error estimates
under assumption (Ei) with i = 1. Stability results for type 2 and type 3 approxi-
mations are deduced as particular cases after noticing that for these choices the error
terms with \varepsilon 3,k and \varepsilon 2,k vanish, respectively, for every k.

Theorem 5.5 (error estimates for type 1 errors). Assume that (L1)--(L3), (R1)--
(R2), (P1)--(P4) hold true. Let (\^xk), (\^uk) be the sequences generated by (I3D) with
noisy datum \^y, and suppose that (Ei) holds with i = 1. Then, the following stability
estimate holds true:

(5.8) (\forall k ě 1) t2k
\sigma \tau 

2
\| \^xk  - x\dagger \| 2 ď C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j +

5

2

\Biggl( 
k - 1\sum 
j=1

tj+1\varepsilon 3,j

\Biggr) 2

,
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where the constant C is defined as C := 2\tau t21(d1(\^u0) - inf d0) + \| \^u0  - u\dagger \| 2 +Cq with

Cq :=

\Biggl\{ 
0 if q = 1,

2\tau \Lambda (1 - 1
q )\gamma 

 - 1/(q - 1)\| u\dagger \| q/(q - 1) if q > 1.

Proof. Following the proof of Theorem 4.6, we define the discrete energy function

(5.9) \^\scrE (k) := t2k

\Bigl( 
d\lambda k

(\^uk) - inf d0

\Bigr) 
+

1

2\tau 
\| \^zk  - u\dagger \| 2

for k ě 1, where u\dagger \in argmin d0 (so that inf d0 = d0(u
\dagger )) and \^zk is defined as

(5.10) \^zk := \^uk - 1 + tk(\^uk  - \^uk - 1).

Since \^uk+1 \approx 
\varepsilon 1,k
1 prox\tau \lambda  - 1

k \ell \ast \^y(\lambda k \cdot )( \^wk  - \tau \nabla \scrR A( \^wk)), using Definition 5.3, we have

(5.11) \xi k :=
\^wk + ek  - \^uk+1

\tau 
, \xi k  - \nabla \scrR A( \^wk) \in \partial \varepsilon 2

2,k
2\tau 

\ell \ast \^y(\lambda k\^uk+1),

where ek \in \scrH , \varepsilon 22,k + \varepsilon 23,k ď \varepsilon 21,k, and \| ek\| ď \varepsilon 3,k. Without loss of generality, we

can assume that \varepsilon 22,k + \varepsilon 23,k = \varepsilon 21,k. Thus, thanks to the descent lemma proved in [59,

Lemma 4.1] and applied to d\lambda k
= \scrR A + \lambda  - 1

k \ell \ast \^y(\lambda k \cdot ), we derive

(5.12) d\lambda k
(\^uk+1) ď d\lambda k

(u) + \langle \^uk+1  - u, \xi k\rangle +
L

2
\| \^uk+1  - \^wk\| 2 +

\varepsilon 22,k
2\tau 

\forall u \in \scrY ,

where L = \| A\| 2/\sigma 2. Using the fact that \tau L ď 1 by (P1), rearranging and neglecting
nonpositive quantities, we obtain that for all u \in \scrY 

d\lambda k
(\^uk+1) ď d\lambda k

(u) - 1

\tau 
\| \^uk+1  - \^wk\| 2 +

\Bigl\langle 
\^uk+1  - \^wk,

ek
\tau 

\Bigr\rangle 
+ \langle \^wk  - u, \xi k\rangle 

+
1

2\tau 
\| \^uk+1  - \^wk\| 2 +

\varepsilon 22,k
2\tau 

= d\lambda k
(u) + \langle \^wk  - u, \xi k\rangle  - 

\tau 

2
\| \^uk+1  - \^wk

\tau 
\| 2 + \tau 

\biggl\langle 
\^uk+1  - \^wk

\tau 
,
ek
\tau 

\biggr\rangle 
+
\varepsilon 22,k
2\tau 

= d\lambda k
(u) + \langle \^wk  - u, \xi k\rangle  - 

\tau 

2
\| \xi k\| 2 +

1

2\tau 

\bigl( 
\| ek\| 2 + \varepsilon 22,k

\bigr) 
ď d\lambda k

(u) + \langle \^wk  - u, \xi k\rangle  - 
\tau 

2
\| \xi k\| 2 +

\varepsilon 21,k
2\tau 

,(5.13)

which can be seen as a noisy version of (4.14). We divide the rest of the proof into
three steps. Since the former ones are analogous to the calculations done in the
error-free case, we will skip some of the details for those.

Step 1. We show that for every k ě 1, there holds

(5.14) \^\scrE (k + 1) - \^\scrE (k) ď tk+1

\Bigl( 
d\lambda k

(u\dagger ) - inf d0

\Bigr) 
+

tk+1

\tau 
\langle ek, \^zk  - u\dagger \rangle +

t2k+1

2\tau 
\varepsilon 22,k.

To prove this, we write the descent inequality (5.13) first for u = \^uk,

(5.15) d\lambda k
(\^uk+1) ď d\lambda k

(\^uk) + \langle \^wk  - \^uk, \xi k\rangle  - 
\tau 

2
\| \xi k\| 2 +

\varepsilon 21,k
2\tau 

,
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and then for u = u\dagger ,

(5.16) d\lambda k
(\^uk+1) ď d\lambda k

(u\dagger ) + \langle \^wk  - u\dagger , \xi k\rangle  - 
\tau 

2
\| \xi k\| 2 +

\varepsilon 21,k
2\tau 

.

We now multiply (5.15) by tk+1  - 1 and add it to (5.16), thus getting

tk+1d\lambda k
(\^uk+1) ď (tk+1  - 1)d\lambda k

(\^uk) + d\lambda k
(u\dagger )

+ \langle \xi k, (tk+1  - 1)( \^wk  - \^uk) + \^wk  - u\dagger \rangle  - 
tk+1\tau 

2
\| \xi k\| 2 +

tk+1

2\tau 
\varepsilon 21,k.(5.17)

We apply the property (tk+1 - 1)( \^wk  - \^uk) + \^wk = \^zk (see (4.10)) and write (5.17) as

tk+1(d\lambda k
(\^uk+1) - d\lambda k

(u\dagger )) ď (tk+1  - 1)(d\lambda k
(\^uk) - d\lambda k

(u\dagger ))

+
1

2\tau tk+1

\bigl( 
\| \^zk  - u\dagger \| 2  - \| \^zk  - u\dagger  - \tau tk+1\xi k\| 2

\bigr) 
+
tk+1

2\tau 
\varepsilon 21,k.

From the identity  - \tau tk+1\xi k = \^zk+1  - \^zk  - tk+1ek, we deduce

tk+1(d\lambda k
(\^uk+1) - d\lambda k

(u\dagger )) +
1

2\tau tk+1
\| \^zk+1  - u\dagger \| 2

ď (tk+1  - 1)(d\lambda k
(\^uk) - d\lambda k

(u\dagger )) +
1

2\tau tk+1
\| \^zk  - u\dagger \| 2

+
1

\tau 
\langle \^zk+1  - u\dagger , ek\rangle +

tk+1

2\tau 

\bigl( 
\varepsilon 21,k  - \| ek\| 2

\bigr) 
.

= (tk+1  - 1)(d\lambda k
(\^uk) - d\lambda k

(u\dagger )) +
1

2\tau tk+1
\| \^zk  - u\dagger \| 2

+
1

\tau 
\langle \^zk+1  - u\dagger , ek\rangle +

tk+1

2\tau 
\varepsilon 22,k.

We now multiply everything by tk+1, rearrange, and get

t2k+1

\Bigl( 
d\lambda k

(\^uk+1) - d\lambda k
(u\dagger )

\Bigr) 
+

1

2\tau 
\| \^zk+1  - u\dagger \| 2

ď t2k

\Bigl( 
d\lambda k

(\^uk) - d\lambda k
(u\dagger )

\Bigr) 
+ (t2k+1  - tk+1  - t2k)

\Bigl( 
d\lambda k

(\^uk) - d\lambda k
(u\dagger )

\Bigr) 
+

1

2\tau 
\| \^zk  - u\dagger \| 2 +

tk+1

\tau 
\langle ek, \^zk+1  - u\dagger \rangle +

t2k+1

2\tau 
\varepsilon 22,k.

Using now that d\lambda k
(\^uk) ě inf d0 (see Lemma A.1(iv)), adding and subtracting in the

parentheses the term inf d0, and after recalling the definition of \scrE in (5.9), we get

(5.18) \^\scrE (k + 1) + (t2k + tk+1  - t2k+1)
\Bigl( 
d\lambda k

(uk) - inf d0

\Bigr) 
ď \^\scrE (k) + tk+1

\Bigl( 
d\lambda k

(u\dagger ) - inf d0

\Bigr) 
+

tk+1

\tau 
\langle ek, \^zk  - u\dagger \rangle +

t2k+1

2\tau 
\varepsilon 22,k,

whence we deduce condition (5.14) since t2k+ tk+1 - t2k+1 ě 0 and d\lambda k
(u\dagger ) - inf d0 ě 0

(see (4.6)). Iterating recursively (5.14), the Cauchy--Schwarz inequality yields

\^\scrE (k) ď \^\scrE (1) +
k - 1\sum 
j=1

tj+1

\Bigl( 
d\lambda j

(u\dagger ) - inf d0

\Bigr) 
+

k - 1\sum 
j=1

tj+1

\tau 
\varepsilon 3,j\| \^zj+1  - u\dagger \| +

k - 1\sum 
j=1

t2j+1

2\tau 
\varepsilon 22,j ,

(5.19)

which is the starting point used in the following to deduce the desired stability esti-
mate. We now study separately the sums appearing on the right-hand side of (5.19).
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Step 2. For the first term in (5.19), following the proof of Theorem 4.6, we get

k - 1\sum 
j=1

tj+1

\Bigl( 
d\lambda j

(u\dagger ) - inf d0

\Bigr) 
ď c

k - 1\sum 
j=1

tj+1\lambda 
1

q - 1

\lambda j
ď c\Lambda < +\infty ,

where c is defined in (3.8), and \Lambda is finite thanks to assumption (P3).
Step 3. To bound the second sum in (5.19), we observe that by definition \^\scrE (k) ě

1
2\tau \| \^zk  - u

\dagger \| 2. Then, we set C = 2\tau ( \^\scrE (1) + c\Lambda ) and derive

(5.20) \| \^zk  - u\dagger \| 2 ď C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j + 2

k - 1\sum 
j=1

tj+1\varepsilon 3,j\| \^zj+1  - u\dagger \| .

We now recall Lemma A.5, which applied to ak = \| \^zk  - u\dagger \| , bk = 2tk+1\varepsilon 3,k, ck - 1 =

C +
\sum k - 1

j=1 t
2
j+1\varepsilon 

2
2,j implies

k - 1\sum 
j=1

tj+1\varepsilon 3,j\| \^zj+1  - u\dagger \| ď

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  \left(  \sqrt{}    C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j + 2

k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  .

Combining altogether in (5.19), we thus deduce

\^\scrE (k) ď
C

2\tau 
+

k - 1\sum 
j=1

t2j+1

2\tau 
\varepsilon 22,j +

1

\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  \left(  \sqrt{}    C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j + 2

k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  .

(5.21)

Young's inequality applied to the product appearing on the right-hand side of
(5.21) yields

1

\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  \left(  \sqrt{}    C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j + 2

k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  
=

1

\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  \left(  \sqrt{}    C +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j

\right)  +
2

\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  2

ď
5

2\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  2

+
C

2\tau 
+

1

2\tau 

k - 1\sum 
j=1

t2j+1\varepsilon 
2
3,j .

Hence, we thus obtain from (5.21)

(5.22) \^\scrE (k) ď
C

\tau 
+

1

\tau 

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j +

5

2\tau 

\left(  k - 1\sum 
j=1

tj+1\varepsilon 3,j

\right)  2

.

To conclude, we use Lemma A.1(v) and deduce

(5.23) \^\scrE (k) ě t2k(d\lambda k
(\^uk) - inf d0) ě t2k(d0(\^uk) - inf d0) ě

t2k\sigma 

2
\| \^xk  - x\dagger \| 2,

which combined with (5.22) provides the desired stability estimate (5.8).
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5.3. Early stopping. Starting from the stability estimate (5.22), in this section
we provide early stopping results guaranteeing the iterative regularization properties
of (I3D). These results quantify the reconstruction error \| \^xk(\delta )  - x\dagger \| that can be
achieved by stopping the algorithm on noisy data at a suitable early iteration k\delta . As
expected, when errors are small we can recover a good reconstruction by stopping the
algorithm later. On the other hand, when the errors are large, the algorithm needs
to be stopped earlier to guarantee a good reconstruction. Note that these errors can
be constant, or even increasing along iterations. We also show that the convergence
rates we obtain depend on the type of error considered (see Definition 5.3). Adapting
Theorem 5.5 to the three cases of assumption (Ei) for i \in \{ 1, 2, 3\} , we thus derive the
following three theorems.

Theorem 5.6 (early stopping for type 1 errors). Assume that (L1)--(L3), (R1)--
(R2), (P1)--(P4) hold true, and suppose that \lambda k = \Theta (k - \theta ) with \theta > 2(q - 1). Let (\^xk)
be the sequence generated by (I3D) with noisy datum \^y, and assume that (Ei) holds
with i = 1, \varepsilon 2,k = O(\delta \lambda  - r2

k ), \varepsilon 3,k = O(\delta \lambda  - r3
k ) for some \delta > 0 and r2, r3 ě 0. Set

(5.24) \alpha := max

\biggl\{ 
2

3 + 2r2\theta 
,

1

2 + r3\theta 

\biggr\} 
.

Then, any early stopping rule with k(\delta ) = \Theta (\delta  - \alpha ) verifies

(5.25) \| \^xk(\delta )  - x\dagger \| = O (\delta \alpha ) for \delta \searrow 0.

Proof. We apply the stability estimate (5.8) provided by Theorem 5.5. After
substituting the expression for \varepsilon 2,k and \varepsilon 3,k, we get

t2k\| \^xk  - x\dagger \| 2 = O

\Biggl( 
1 +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j +

\Biggl( 
k - 1\sum 
j=1

tj+1\varepsilon 3,j

\Biggr) 2\Biggr) 
(5.26)

= O(1 + \delta 2k3+2r2\theta + \delta 2k4+2r3\theta ).

In correspondence with the stopping time k(\delta ), and using the fact that tk(\delta ) = \Theta (k(\delta )),
we deduce from above

\| \^xk(\delta )  - x\dagger \| 2 = O
\Bigl( 
\delta 2\alpha + \delta 2 - \alpha (1+2r2\theta ) + \delta 2 - 2\alpha (1+r3\theta )

\Bigr) 
= O

\Bigl( 
\delta min\{ 2\alpha ;2 - \alpha (1+2r2\theta ),2 - 2\alpha (1+r3\theta )\} 

\Bigr) 
.(5.27)

Let us now define \beta := min\{ 12 + r2\theta ; 1 + r3\theta \} . We easily see that

(5.28) min\{ 2 - \alpha (1 + 2r2\theta ); 2 - 2\alpha (1 + r3\theta )\} = 2 - 2\alpha \beta ,

so that min\{ 2\alpha , 2 - \alpha (1+2r2\theta ), 2 - 2\alpha (1+r3\theta )\} = min\{ 2\alpha , 2 - 2\alpha \beta \} , which is maximal
for \alpha = 1

1+\beta .

The analogous results for errors of types 2 and 3 are straightforward.

Theorem 5.7 (early stopping for type 2 errors). Assume that the assumptions
(L1)--(L3), (R1)--(R2), (P1)--(P4) hold true, and suppose that \lambda k = \Theta (k - \theta ) with \theta >
2(q - 1). Let (\^xk) be the sequence generated by (I3D) with noisy datum \^y, and assume
that (Ei) holds with i = 2, \varepsilon 2,k = O(\delta \lambda  - r2

k ) for some \delta > 0 and r2 ě 0. Then, any

early stopping rule with k(\delta ) = \Theta (\delta  - 
2

3+2\theta r ) verifies

(5.29) \| \^xk(\delta )  - x\dagger \| = O
\Bigl( 
\delta 

2
3+2\theta r

\Bigr) 
for \delta \searrow 0.
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Proof. For type 2 approximation (5.8) \varepsilon 3,k \equiv 0, and we get

t2k\| \^xk  - x\dagger \| 2 = O

\Biggl( 
1 +

k - 1\sum 
j=1

t2j+1\varepsilon 
2
2,j

\Biggr) 
= O

\Biggl( 
1 +

k - 1\sum 
j=1

\delta 2j2+2r\theta 

\Biggr) 
(5.30)

= O(1 + \delta 2k3+2r\theta ).

In correspondence with any stopping time k(\delta ) = \Theta (\delta  - \alpha ), we thus have

(5.31) \| \^xk(\delta )  - x\dagger \| 2 = O
\bigl( 
k(\delta ) - 2 + \delta 2k(\delta )1+2r\theta 

\bigr) 
= O

\Bigl( 
\delta 2\alpha + \delta 2 - \alpha (1+2r\theta )

\Bigr) 
.

The term on the right-hand side is minimized when \alpha = 2
3+2\theta r .

Theorem 5.8 (early stopping for type 3 errors). Assume that the assumptions
(L1)--(L3), (R1)--(R2), (P1)--(P4) hold true, and suppose that \lambda k = \Theta (k - \theta ) with \theta >
2(q - 1). Let (\^xk) be the sequence generated by (I3D) with noisy datum \^y, and assume
that (Ei) holds with i = 3 with \varepsilon 3,k = O(\delta \lambda  - r3

k ) for some \delta > 0 and r3 ě 0. Then,

any early stopping rule with k(\delta ) = \Theta (\delta  - 
1

2+\theta r ) verifies

(5.32) \| \^xk(\delta )  - x\dagger \| = O
\Bigl( 
\delta 

1
2+\theta r

\Bigr) 
for \delta \searrow 0.

Proof. Assuming type 3 errors means that in the estimate (5.8) \varepsilon 2,k \equiv 0, so that
(5.33)

t2k\| \^xk - x\dagger \| 2 = O(1)+O

\Biggl( 
k - 1\sum 
j=1

tj+1\varepsilon 3,j

\Biggr) 2

= O(1)+O

\Biggl( 
k - 1\sum 
j=1

\delta j1+r\theta 

\Biggr) 2

= O(1+\delta 2k4+2r\theta ).

In correspondence with the stopping time k(\delta ) = \Theta (\delta  - \alpha ), we thus deduce

(5.34) \| \^xk(\delta )  - x\dagger \| 2 = O
\bigl( 
k(\delta ) - 2 + \delta 2k(\delta )2+2r\theta 

\bigr) 
= O

\Bigl( 
\delta 2\alpha + \delta 2 - 2\alpha (1+r\theta )

\Bigr) 
.

The term on the right-hand side is minimal whenever \alpha = 1
2+\theta r .

6. Applications to specific data-fit terms. We now apply the results from
section 5.3 to some standard data-fit terms relevant in several applications. We in-
troduce the following definition of noise perturbation.

Definition 6.1 (\delta -perturbation). For given \=y, \^y \in \scrY and \delta \in \BbbR ++, we say that
\^y is a \delta -perturbation of \=y according to \ell if

\ell \^y(\=y) = \ell (\=y, \^y) ď \delta q,

where q \in [1,+\infty ) is the conditioning exponent appearing in (L3).

We now show that a \delta -perturbation \^y of \=y corresponds to considering a proximal
mapping of \ell \ast \^y approximating the corresponding proximal mapping of \ell \ast \=y in the sense
of Definition 5.3 with some precision \varepsilon (\delta ) depending on the noise level \delta .

6.1. Additive data-fit terms. For additive data-fit terms (see Example 2.2),
a \delta -perturbation corresponds to a type 3 approximation of the proximal mapping.

Proposition 6.2 (additive data-fit terms lead to type 3 errors). Let \scrN \in \Gamma 0(\scrY )
and assume that \ell y2

(y1) = \scrN (y2  - y1) for every (y1, y2) \in \scrY 2. For given (\delta , \tau , \lambda ) \in 
(0,+\infty )3, let \^y \in \BbbB (\=y, \varrho ) be a \delta -perturbation of \=y in the sense of Definition 6.1. Then

(\forall z \in \scrY ) \^p = prox \tau 
\lambda \ell \ast \^y(\lambda \cdot )

(z) \approx \varepsilon 
3 \=p = prox \tau 

\lambda \ell \ast \=y(\lambda \cdot )(z)
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with precision \varepsilon = \tau \delta (q/\gamma )1/q and where q ě 1 and \gamma > 0 are the conditioning
parameters appearing in assumption (L3).

Proof. We need to find e \in \scrY and \varepsilon ě 0 such that \| e\| ď \varepsilon and

(6.1)
z + e - \^p

\tau 
\in 1

\lambda 
\partial \ell \ast \=y(\lambda \cdot )(\^p).

Due to the special form of the data-fit we start noting that for any u \in \scrY we have

\ell \ast \=y(u) = \scrN \ast (u) + \langle \=y, u\rangle ,

and the same holds for \ell \ast \^y. Then

(6.2) \partial \ell \ast \^y(\lambda \cdot )(\^p) = \lambda \partial \ell \ast \^y(\lambda \^p) = \lambda \partial 
\Bigl( 
\scrN \ast + \langle \^y, \cdot \rangle 

\Bigr) 
(\lambda \^p) = \lambda \partial \scrN \ast (\lambda \^p) + \lambda \^y.

By definition of \^p we have that (z  - \^p)/\tau \in (1/\lambda )\partial \ell \ast \^y(\lambda \cdot )(\^p) = \partial \scrN \ast (\lambda \^p) + \^y, which,
by simple algebraic manipulations, entails the required condition (6.1), since

z  - \^p

\tau 
\in \partial \scrN \ast (\lambda \^p) + \=y + (\^y  - \=y)\Leftarrow \Rightarrow z  - \^p+ \tau (\=y  - \^y)

\tau 
\in \partial \scrN \ast (\lambda \^p) + \=y =

1

\lambda 
\partial \ell \ast \=y(\lambda \cdot )(\^p).

By now setting e = \tau (\=y  - \^y), we can find the required value of \varepsilon combining the q-
conditioning of the function \ell \=y on \BbbB (\=y, \varrho ) assumed in (L3) with the \delta -perturbation
assumption:

\| e\| = \tau \| \=y  - \^y\| ď \tau 

\biggl( 
q

\gamma 
\ell (\^y, \=y)

\biggr) 1/q

ď \tau 

\biggl( 
q

\gamma 

\biggr) 1/q

\delta =: \varepsilon ,

where \gamma > 0 and q ě 1 are the conditioning parameters. We can thus conclude that
\^p is a \varepsilon -approximation of \=p with precision \varepsilon , as required.

Thanks to Proposition 6.2, we can now derive the early stopping result for additive
data-fit terms by applying Theorem 5.8 with the above choice of \varepsilon .

Corollary 6.3 (early stopping for additive data-fit terms). Let \scrN \in \Gamma 0(\scrY ) and
set \ell y2

(y1) = \scrN (y2  - y1) for every (y1, y2) \in \scrY 2. Assume that the assumptions (L1)--
(L3), (R1)--(R2), (P1)--(P4) hold and that \lambda k = \Theta (k - \theta ) with \theta > 2(q - 1). Let (\^xk) be
the sequence generated by (I3D) with \^y \in \BbbB (\=y, \varrho ), such that \^y is a \delta -perturbation of \=y.
Then, any early stopping rule with k(\delta ) = \Theta (\delta  - 1/2) verifies

(6.3) \| \^xk(\delta )  - x\dagger \| = O(\delta 
1
2 ) for \delta \searrow 0.

Remark 6.4 (optimality of the rates). The convergence rate in (6.3) is optimal for
regularization methods with additive data-fit terms [42]. Among inertial algorithms,
optimal convergence rates for different choices of regularizers but only quadratic data-
fit terms have been proved in [52, 49]. For more general additive data-fits (e.g., the
\ell 1-norm; see Example 2.2), in [26] the authors prove a rate O(\delta 1/2) in terms of the
Bregman distance, which is different from (6.3). To our knowledge, our result is the
first one showing optimal convergence rates for iterative regularization methods when
general data-fit terms are considered and improving the estimates obtained in [43]
that showed a suboptimal rate O(\delta 1/3).

Remark 6.5 (different growth for tk). As noted in Remark 4.8, if we replace
tk = \Theta (tk) by tk = \Theta (k\beta ), then \beta ď 1, and \beta = 1 gives the fastest convergence rate
for true datum \=y. Corollary 6.3 implies that also for noisy data \^y, any stopping rule

with k(\delta ) = \Theta (\delta  - 1/(1+\beta )) verifies \| \^xk(\delta )  - x\dagger \| = O(\delta 
\beta 

\beta +1 ) for \delta \searrow 0, where again the
best rate is achieved for \beta = 1.

D
ow

nl
oa

de
d 

10
/1

3/
21

 to
 1

30
.2

51
.2

19
.1

32
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED ITERATIVE REGUALRIZATION VIA INERTIAL 3D 777

6.2. KL divergence. We consider the KL divergence as an example of a
nonadditive data-fit term. KL divergence is often used in the presence of Poisson
noise in the measurements. We show that for the KL divergence, \delta -perturbations lead
to type 2 approximations. We recall that the KL divergence is locally 2-conditioned
(see Example 2.2).

Proposition 6.6. Assume that \ell y2
(y1) = KL(y2; y1) for every (y1, y2) \in \scrY 2. For

(\delta , \tau , \lambda ) \in (0,+\infty )3, let \^y \in \BbbB (\=y, \varrho ) be a \delta -perturbation of \=y. Then

(\forall z \in \scrY ) \^p = prox \tau 
\lambda \ell \ast \^y(\lambda \cdot )

(z) \approx \varepsilon 
2 \=p = prox \tau 

\lambda \ell \ast \=y(\lambda \cdot )(z)

with \varepsilon =
\surd 
2\tau \delta /\lambda .

Proof. It is enough to prove that for all z \in \scrY 

(6.4)
\lambda (z  - \^p)

\tau 
\in \partial \lambda \varepsilon 2

2\tau 

KL\ast 
\=y(\lambda \cdot )(\^p) = \lambda \partial \lambda \varepsilon 2

2\tau 

KL\ast 
\=y(\lambda \^p) \Leftarrow \Rightarrow z  - \^p

\tau 
\in \partial \lambda \varepsilon 2

2\tau 

KL\ast 
\=y(\lambda \^p).

We set x = (z  - \^p)/\tau \in \scrY and consider the function g : \scrY \rightarrow \BbbR d \cup \{ +\infty \} defined by

(6.5) g(w) =
KL\=y

\lambda 
(w) \forall w \in \scrY .

By the standard property of convex conjugates we have that for any u \in \scrY 

(6.6) g\ast (u) =

\biggl( 
KL\=y

\lambda 

\biggr) \ast 

(u) =
1

\lambda 
KL\ast 

\=y(\lambda u).

We now claim that x \in \partial \lambda \varepsilon 2

2\tau 

g\ast (\^p). To show that, we apply the Young--Fenchel in-

equality (A.14) of Lemma A.6 to g with x\ast = \^p. Our objective is thus to show
that

g(x) + g\ast (\^p) ď \langle x, \^p\rangle + \lambda \varepsilon 2

2\tau 
,

which, by definitions (6.5) and (6.6) and upon multiplication by \lambda , coincides with

(6.7) KL\=y(x) + KL\ast 
\=y(\lambda \^p) ď \langle x, \lambda \^p\rangle + \lambda 2\varepsilon 2

2\tau 
.

Using the expression of KL and of its convex conjugate given by (A.5), we express
the sum on the left-hand side of (6.7) as

(6.8) KL\=y(x) + KL\ast 
\=y(\lambda \^p) =

d\sum 
i=1

\biggl( 
\=yi log

\=yi
xi
 - \=yi + xi  - \=yi log(1 - \lambda \^pi)

\biggr) 
.

Furthermore, by definition of \^p, we have that componentwise there holds

\lambda 

\tau 
(zi  - \^pi) \in \lambda \partial kl\ast \^yi

(\lambda \^pi) \Leftarrow \Rightarrow xi \in \partial kl\ast \^yi
(\lambda \^pi),
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which, since kl\ast \^yi
is differentiable (see formula (A.5)), entails that for every i = 1, . . . , d

the element xi can be written as xi = \^yi/1 - \lambda \^pi. Substitute this expression in the
formula (6.8) to derive

KL\=y(x) + KL\ast 
\=y(\lambda \^p) =

d\sum 
i=1

\=yi log \=yi  - \=yi log \^yi  - \=yi + \^yi\underbrace{}  \underbrace{}  
kl(\=yi;\^yi)

+(((((((
\=yi log(1 - \lambda \^pi) +

\bigl( 
\^yi/(1 - \lambda \^pi)

\bigr) \underbrace{}  \underbrace{}  
xi

\lambda \^pi  - (((((((
\=yi log(1 - \lambda \^pi)

= KL\=y(\^y) + \langle x, \lambda \^p\rangle 
ď \delta 2 + \langle x, \lambda \^p\rangle ,(6.9)

where the last inequality follows from the perturbation assumption KL\=y(\^y) ď \delta 2. We
thus get (6.7) by choosing \varepsilon =

\surd 
2\tau \delta /\lambda , which concludes the proof.

From Proposition 6.6 and Theorem 5.7, we derive stopping rules for the KL
divergence.

Corollary 6.7 (early stopping for KL divergence). Let \ell y2
(y1) = KL(y2; y1) for

every (y1, y2) \in \scrY 2. Assume that the assumptions (L1)--(L3), (R1)--(R2), (P1)--(P4)
hold true, and suppose that \lambda k = \Theta (k - \theta ) with \theta > 2. Let (\^xk) be the sequence gener-
ated by (I3D) given \^y, such that \^y is a \delta -perturbation of \=y in the sense of Definition

6.1. Then, any early stopping rule with k(\delta ) = \Theta (\delta  - 
2

3+2\theta ) verifies

(6.10) \| \^xk(\delta )  - x\dagger \| = O(\delta 
2

3+2\theta ) for \delta \searrow 0.

Remark 6.8. It is hard to assess the quality of the rate in (6.10) since the no-
tion of optimality in [42] only applies to additive noise. In the context of Bregman
divergences, some analysis has been pursued in [26, section 4.2, estimate (4.3)]. The
estimates obtained therein lead to a rate of order \delta 1/4 for suitable choices of the regu-
larization parameter. In comparison, our estimate (6.10) is sharper and more explicit.
Furthermore, as for additive data-fit terms, the use of inertia improves the rates in
[43].

Remark 6.9 (the KL divergence does not lead to type 3 errors). The convergence
rates for additive data-fit terms proved in Corollary 6.3 are better than the rate for
the KL divergence, due to the fact that for the KL divergence we proved that \delta -
perturbations correspond to type 2 errors, instead of type 3 errors. Indeed, Lemma
A.3 in the appendix shows that the error in the evaluation of proximal points for the
KL divergence cannot be cast in a type 3 approximation.

7. Conclusions and outlook. In this paper we proposed an inertial dual diag-
onal method to solve inverse problems for a wide class of data-fit and regularization
terms, possibly corrupted by noise. On the one hand, we established convergence
results for both continuous and discrete dynamics. On the other hand, we derived
stability results and corresponding early stopping rules, characterizing the regular-
ization properties of the proposed method. A number of open questions are left for
future study. It would be interesting to consider a wider class of problems, for exam-
ple, allowing for regularization terms that are convex but not strongly convex, and
possibly nonconvex data fidelity terms. From an algorithmic point of view, it would
be interesting to consider alternative approaches, such as stochastic methods. Finally,
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it would be interesting to investigate the numerical properties of the proposed method
for practical problems.

Appendix A. Auxiliary results. We gather in this appendix some relevant
results used in this work.

A.1. Properties of the dual diagonal function. We first consider \scrR A, \ell 
\ast 
y

defined in (3.3) and on the diagonal dual function d\lambda and its limit d0 defined in (D\lambda )
and (D0), respectively. For similar results see also [43].

Lemma A.1. Under the assumptions (L1)--(L3) and (R1)--(R2), we have that the
following properties hold:

(i) \scrR A is differentiable and \nabla R\ast 
A is Lipschitz continuous, with Lipschitz constant

equal to \sigma  - 1\| A\| 2.
(ii) For all y \in \scrY , \ell \ast y(0) = 0 and \partial \ell \ast y(0) = \{ y\} .
(iii) There holds argmin d0 \not = \emptyset .
(iv) For all u \in \scrY , the function \lambda \in [0,+\infty ) \mapsto \rightarrow d\lambda (u) is nondecreasing.
(v) For all t > 0, and u \in \scrY , if x := \nabla R\ast ( - A\ast u), then \sigma 

2 \| x  - x
\dagger \| 2 ď d0(u)  - 

inf d0.
(vi) For all u\dagger \in argmin d0, if \lambda \| u\dagger \| ď

\gamma 
q \varrho 

q - 1, then

(A.1) d\lambda (u
\dagger ) - inf d0 ď

\Biggl\{ 
0 if q = 1,

(1 - 1
q )\gamma 

 - 1/(q - 1)\| u\dagger \| q/(q - 1)\lambda 1/(q - 1) if q > 1.

Proof. (i) This follows from the strong convexity of R; see, e.g., [22, Theorem
18.15].
(ii) It is a simple consequence of the properties of the Fenchel transform as it can be
found, e.g., in [22, Proposition 13.10(i) and Corollary 16.30].
(iii) and (v) These follow from [43, Lemma 5] by simply taking f = R and g = \delta \{ \=y\} ,
while property (iv) has been proved in [43, Proposition 2(i)].
(vi) It is enough to verify that \ell \=y(\cdot ) is q-well-conditioned in the sense of [43, Definition
1], while assumption (L3) holds only locally. To check this, we introduce the function
\psi : \BbbR \rightarrow \BbbR defined for the \varrho > 0 appearing in (L3) by

(A.2) \psi t \mapsto \rightarrow 

\left\{   
\gamma 
q | t| 

q if | t| ď \varrho ,

\gamma 
q \varrho 

q - 1| t| if | t| > \varrho .

From (L3), we easily deduce that \ell \=y(y) ě \psi (\| y  - \=y\| ) for all y \in \scrY (see [61, Corollary
3.4.2]). Note that \psi is not convex for q > 1, so in this case we consider instead the
function

(A.3) m : \BbbR \rightarrow \BbbR , t \mapsto \rightarrow 

\left\{   
\gamma 
q | t| 

q if | t| ď q1/(1 - q)\varrho ,

\gamma 
q \varrho 

q - 1| t|  - \gamma 

q
q

q - 1
\varrho q(1 - 1

q ) if | t| > q1/(1 - q)\varrho ,

and define m := \psi for q = 1. It is an easy exercise to verify that m is indeed a
convex function on \BbbR and that m(w) ď \psi (w) for all w \in \BbbR . Now, we can make use of
[43, Lemma 2], which tells us that d\lambda (u) - inf d0 ď \lambda  - 1m\ast (\| u\| \lambda ). The desired result
now follows from the computation of the Fenchel transform of m. If q = 1, we have
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that m(t) = \gamma | t| , so classic Fenchel calculus entails that m\ast is \delta [ - \gamma ,\gamma ], the indicator
function of [ - \gamma , \gamma ]. If q > 1, easy computations show that m\ast reads

(A.4) m\ast : \BbbR \rightarrow \BbbR , s \mapsto \rightarrow 

\Biggl\{ 
(1 - 1

q )\gamma 
 - 1/(q - 1)| s| 

q
q - 1 if | s| ď \gamma 

q \varrho 
q - 1,

+\infty if | s| > \gamma 
q \varrho 

q - 1.

By now applying [43, Lemma 2] we conclude.

A.2. Useful tools for KL computations. In this section, we report some
computations and properties concerning the KL divergence defined in (2.4). For
any (u, y) \in (\BbbR d)2 we define KL(y, u) as in (2.4) for all i = 1, . . . , d. Consider
now the functions KL and kl with respect to the first argument only, and define
KLy(u) := KL(y;u) and, similarly, its ith component klyi(ui) for a fixed y \in \BbbR d. The

componentwise expression for KL\ast 
y(w) =

\sum d
i=1 kl

\ast 
yi
(wi) can then be found simply by

Fenchel calculus. It reads

(A.5) kl\ast yi
(wi) =

\Biggl\{ 
 - yi log(1 - wi) if 1 - wi > 0,

+\infty otherwise.

Proximal maps. For every i = 1, . . . , d, straightforward calculations show that

(A.6) prox \tau 
\lambda klyi

(ui) =
1

2

\Biggl( 
ui  - 

\tau 

\lambda 
+

\sqrt{} \Bigl( 
ui  - 

\tau 

\lambda 

\Bigr) 2
+ 4

\tau 

\lambda 
yi

\Biggr) 
.

Furthermore, by applying Moreau's identity we have

(A.7) prox \tau 
\lambda kl\ast yi

(\lambda \cdot )(wi) =
1

2\lambda 

\Biggl( 
(1 + \lambda wi) - 

\sqrt{} 
(1 - \lambda wi)

2
+ 4\lambda \tau yi

\Biggr) 
.

The following lemma implies the q-conditioning of the KL divergence.

Lemma A.2 (2-conditioning of the KL data-fit). Let \=y \in \BbbR d and \varrho \in ]0,+\infty [.
Then,

(A.8) (\forall y \in \BbbB (\=y, \varrho )) KL(\=y, y) ě

\biggl( 
1

\varrho c2
+

1

\varrho 2c
ln

c

\varrho + c

\biggr) 
\| y - \=y\| 2, where c = d\| \=y\| \infty .

Proof. Let y \in \BbbB (\=y, \varrho ). By [43, Lemma 10.2], we have that

(A.9) KL(\=y, y) ě cm(\| y  - \=y\| ), where m(t) = c - 1| t|  - ln
\bigl( 
1 + c - 1| t| 

\bigr) 
.

To get the desired result, we need to find a quadratic lower bound for m over [ - \varrho , \varrho ].
For simplicity, let us consider the change of variable s = c - 1| t| \in [0, c - 1\varrho ]. Since the
statement is trivially valid for y = \=y, we can assume that s > 0 and write

s - ln(1 + s) = s2\phi (s), where \phi (s) :=
s - ln(1 + s)

s2
.

To conclude, we only need to verify that \phi is decreasing on ]0,+\infty [. Indeed, this
would imply that m(t) ě c - 2t2\phi (c - 1\varrho ), which together with (A.9) would complete
the proof. To see that \phi is decreasing, we compute explicitly its derivative on ]0,+\infty [
and see that \phi \prime (s) ď 0 if and only if \psi (s) := s(s+2) - 2(1+s) ln(1+s) ě 0. Combining
this with the fact that \psi (0) = 0 and that \psi \prime (s) = 2(s - ln(1 + s)) is positive ]0,+\infty [
we conclude the proof.
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The following result deals with the approximation of proximal points of the dual
of the KL divergence, corresponding to noise-free and noisy data \=y and \^y, respectively.
As shown in Proposition 6.6, a type 2 approximation in the sense of Definition 5.3
holds. The following proposition provides a one-dimensional counterexample showing
that a type 3 approximation---for which better convergence rates can be obtained---
cannot hold.

Proposition A.3. Let w \in \BbbR and \=y, \^y \in ]0,+\infty [. If proxkl\ast \^y (w) \approx 
\varepsilon 
3 proxkl\ast \=y (w)

holds in the sense of Definition 5.3 for some \varepsilon > 0, then

\varepsilon ě
2| \^y  - \=y| 

(1 - w) +
\sqrt{} 

(1 - w)2 + 4\^y
.

In particular, \varepsilon \rightarrow +\infty when w \rightarrow +\infty .

Proof. Let \varepsilon ě 0 such that the type 3 approximation property holds. By Defini-
tion 5.3, there exists e \in \BbbR such that | e| ď \varepsilon and proxkl\ast \^y (w) = proxkl\ast \=y (w + e). Using

the formula (A.7), we see that this is equivalent to

(A.10)
1

2

\Bigl[ 
(1 + w) - 

\sqrt{} 
(1 - w)2 + 4\^y

\Bigr] 
=

1

2

\Bigl[ 
(1 + w + e) - 

\sqrt{} 
(1 - w  - e)2 + 4\=y

\Bigr] 
and we complete the proof by noting that the above equality is equivalent to

(A.11) e
1

2

\Bigl[ 
(1 - w) +

\sqrt{} 
(1 - w)2 + 4\^y

\Bigr] 
= \=y  - \^y.

A.3. Miscellaneous. We here recall some technical lemmas which are used in
several sections of the manuscript. The following lemma is useful to characterize the
speed of decay of the diagonal term \lambda (\cdot ) in assumption (\Lambda ); see also Remark 3.2.

Lemma A.4. Let \lambda : \BbbR + \rightarrow \BbbR + a decreasing function such that
\int 
\BbbR +
| \lambda (t)| 1/2 dt <

+\infty . Then, the function t \mapsto \rightarrow t\lambda (t) is integrable on \BbbR +.

Proof. We first show that the function t \mapsto \rightarrow t
\sqrt{} 
\lambda (t) tends to zero as t\rightarrow +\infty . We

have that for every T > 0,\int +\infty 

T/2

\sqrt{} 
\lambda (t) dt ě

\int T

T/2

\sqrt{} 
\lambda (t) dt ě

T

2

\sqrt{} 
\lambda (T ),

where the last inequality follows from the decreasing property of \lambda in the interval
[T/2, T ]. By taking limits, we get the required property:

limsup
T\rightarrow +\infty 

T

2

\sqrt{} 
\lambda (T ) ď lim

T\rightarrow +\infty 

\int +\infty 

T/2

\sqrt{} 
\lambda (t) dt = 0.

Now, from the observation

lim
t\rightarrow +\infty 

t\lambda (t)\sqrt{} 
\lambda (t)

= lim
t\rightarrow +\infty 

t
\sqrt{} 
\lambda (t) = 0,

we deduce that there exists some T > 0 such that t\lambda (t) ď
\sqrt{} 
\lambda (t) for all t ě T . By

thus taking T > T , we have\int T

0

t\lambda (t) dt =

\int T

0

t\lambda (t) dt+

\int T

T

t\lambda (t) dt ď

\int T

0

t\lambda (t) dt+

\int T

T

\sqrt{} 
\lambda (t) dt,
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which by taking the supremum over all T > \=T on both sides entails\int 
\BbbR +

t\lambda (t) dt ď

\int T

0

t\lambda (t) dt+

\int +\infty 

T

\sqrt{} 
\lambda (t) dt < +\infty .

Next, we state and prove a variant of [8, Lemma 5.14] which we have used in the
proof of Theorem 5.8 to get the final stability estimate (5.8).

Lemma A.5. Let (ak)k\in \BbbN , (bk)k\in \BbbN , and (ck)k\in \BbbN be positive sequences, and assume
that ck is increasing. If

(A.12) (\forall k \in \BbbN ) a2k ď ck +

k - 1\sum 
j=1

bjaj+1,

then maxj=1,...,k aj ď
\surd 
ck +

\sum k - 1
j=1 bj for every k \in \BbbN .

Proof. Take k \in \BbbN , and let Ak := maxm=1,...,k am. Then, for all 1 ď m ď k,

(A.13) a2m ď cm +

m - 1\sum 
j=1

bjaj+1 ď ck +Ak

k - 1\sum 
j=1

bj ,

because ck is increasing and bj is positive. Therefore A2
k ď ck + Ak

\sum k - 1
j=1 bj . Define

Sk =
\sum k - 1

j=1 bj . By computing and bounding the solutions of the previous inequality
we conclude that

Ak ď
Sk +

\surd 
Sk + 4ck
2

ď Sk +
\surd 
ck.

We recall a useful characterization of the elements in the \varepsilon -subdifferential of a
function in \Gamma 0(\scrH ). This property is used to prove Proposition 6.6; see also [61].

Lemma A.6 (see [61, Theorem 2.4.2]). Let \scrH be a Hilbert space, let f \in \Gamma 0(\scrH ),
let (x, u) \in \scrH 2, and let \varepsilon > 0. Then, the following statements are equivalent:

(i) u \in \partial \varepsilon f(x).
(ii) The following \varepsilon -Young--Fenchel inequality holds:

(A.14) f(x) + f\ast (u) ď \langle u, x\rangle + \varepsilon .

(iii) x \in \partial \varepsilon f\ast (u).
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