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Abstract
In this work, a freeway traffic control scheme is proposed to regulate traffic in
freeway networks via multi-class ramp metering. Specifically, each controlled
on-ramp of the system adopts a feedback regulator of proportional-integral type
and is able to compute the traffic flows entering the freeway mainstream, dif-
ferentiated for each class of vehicles, e.g., cars and trucks. Since a crucial aspect
of proportional-integral controllers is the tuning of parameters, in this work an
optimization-based procedure is devised to determine the controller parameters
to be used in the different on-ramps of the network, according to the detected
traffic conditions. To this end, a set of representative traffic scenarios is defined
and, for each scenario, an offline optimization procedure is applied to deter-
mine the optimal parameters. Then, in real time, a controller parameter selector
identifies the scenario associated with the current system conditions and com-
municates to the local controllers the optimal parameters to be applied. The
effectiveness of the proposed control scheme is tested in a simulative example
and the main results are discussed in the paper.
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1 INTRODUCTION

In a world in which individual mobility needs are becoming more and more pressing and road transport, both for
freight and for passengers, keeps increasing, the efficient management of traffic networks is a fundamental topic to
which researchers continue to devote important efforts to find solutions that combine economic needs, users’ lev-
els of service, efficiency, and environmental protection. Freeway systems, although designed to handle high volumes
of traffic, are the infrastructures that have been mostly affected by the increase of traffic flows. The difficulty in
managing the current traffic volumes, of both cars and trucks, is often due to structural shortcomings that cannot
be easily solved, both for economic constraints and for physical limitations. In these circumstances, the develop-
ment and the adoption of specific traffic controllers is the most effective way to improve the performance of freeway
traffic systems.

In the past years, various control measures have been developed in order to allow for the efficient exploitation of
transport infrastructures by making use of modern information and communication systems.1 Among these, one of the
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most widespread is ramp metering which, in real time and on the basis of the state measurements in the mainstream,
modulates the traffic flows entering the freeway with the aim of reducing congestion, or with other objectives, such as
minimizing emissions and crash risks, among others. In practical terms, applying ramp metering means defining the
traffic volumes that can enter the on-ramps and translating them into appropriate traffic light cycles (an overview of the
most common ramp metering implementation policies is given in Reference 2).

From a methodological point of view, the determination of the on-ramp flows can be carried out through different
methodologies. Several approaches can be found in the literature, ranging from the application of feedback regulators
to more sophisticated control strategies involving the solution of optimization problems, the definition of heuristic algo-
rithms, or the development of hierarchical control schemes (for a complete overview see Reference 3). All these methods
have proven to be capable of counteracting the onset of congestion with different levels of effectiveness by showing
advantages and disadvantages, as briefly outlined below.

The most sophisticated control strategies are those based on the adoption of optimal control schemes. These
frameworks appear in various forms within the literature where they are used based on the solution of finite
horizon optimization problems4-6 or defined as Model Predictive Control schemes.7-10 In the freeway traffic con-
trol domain, the optimal control problems are generally characterized by a non-linear and non-convex structure
which, combined with the large-scale nature of the system to be controlled, makes such problems generally dif-
ficult to be solved. One of the most effective methodologies for solving optimal control problems arising in the
context of freeway traffic systems is the feasible direction algorithm, based on gradient calculation.11 In case the cal-
culation of the gradient becomes too demanding or even impossible, derivative-free algorithms can be applied to
find the numerical solutions of the optimal control problems.12 Although very effective in theory, the application of
optimization-based methodologies in real freeway traffic systems is still rather limited, and this is mainly due to the
high computational effort associated with the solution of these optimal control problems. To address this issue, sev-
eral optimization-based control schemes have been specifically designed to reduce the computational effort, leading
for instance to hierarchical control schemes13 or distributed control schemes.14 Yet, in the perspective of reducing the
computational effort, other approaches involve the transformation of nonlinear traffic models into linear parameter
varying models.15,16

As an alternative to optimization-based approaches, feedback regulators are often applied to compute ramp meter-
ing flows. Compared with optimization-based control schemes, they generally provide a less performing solution but
present fewer limitations of practical applicability. These feedback control strategies are generally based on the definition
of the desired traffic conditions and the implementation of control actions to keep the current traffic states close to
predefined target values. Differently from optimal controllers, feedback regulators normally have a local nature, that
is, the control actions are calculated on the basis of traffic measurements that are detected in an area close to the
controlled on-ramps. The most famous feedback regulator for freeway systems is ALINEA,17 which is an integral con-
troller designed to improve the freeway throughput. An extension of ALINEA is given by PI-ALINEA,18 including a
proportional term in the control law, that has been proven to be more effective than ALINEA in stabilizing traffic
conditions in presence of bottlenecks located far downstream the on-ramps.19 Although the effectiveness of ALINEA
and PI-ALINEA has been demonstrated in many real applications,18 their ability to cope with congestion is inevitably
affected by the typical limits of local control schemes in which the control action depends exclusively on the state
measured in the immediate vicinity of the on-ramps. To overcome the local nature of classical feedback controllers, a
proportional-integral feedback controller called Extended Multi-class PI-ALINEA (EMC-PI-ALINEA) has been proposed
in References 20,21. As deeply analyzed in Reference 21, these types of controllers, which consider traffic measure-
ments in wide road portions associated with each on-ramp, are more effective than traditional local PI regulators.
However, a relevant issue associated with all feedback controllers concerns the tuning of the parameters characterizing
the control law, that is, the gains and the reference value. Typically, these parameters are defined for a standard traf-
fic scenario for which they prove to be effective, but, since in freeway networks the traffic conditions can change as a
consequence of a wide combination of events, these standard parameters can result not to be completely effective in
many cases.

In this paper, we propose a ramp metering control scheme designed to meet the real-time control requirements for
large-scale traffic networks, in which the flows entering the on-ramps are computed through PI controllers whose control
parameters are chosen according to the occurrence of different traffic scenarios and defined using an optimization-based
procedure. Moreover, in this scheme the ramp metering controllers employed in each on-ramp have a multi-class nature
and, therefore, specific control actions and control parameters are defined for different classes of vehicles (e.g., cars and
trucks, for which the entering ramps are equipped with two separate lanes and signals). Some examples of multi-class
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ramp metering can be found in References 6,22-25. However, as further clarified later on, the procedure here proposed
has a general nature and can also be adopted to define the parameters of single-class feedback controllers.

In particular, the main features of the proposed control scheme are:

• the inflows, for each on-ramp and for each class of users, are computed with PI controllers;
• the parameters of the PI controllers can be different for each on-ramp and depend on the traffic conditions of the

system; in particular, an optimization procedure is proposed to determine the parameters of the PI controllers according
to a set of traffic scenarios; such optimization is realized offline for each scenario and a library of scenarios, each one
characterized by a set of optimal control parameters, is created;

• a controller parameter selector is used to online identify the present scenario and, consequently, to select the optimal
parameters for the PI controllers.

This scheme, with a few modifications, can be applied to optimally define the parameters of any PI feedback
controller, in some way adapting such parameters to the traffic conditions in which they operate. For simplicity,
in this paper we will explain the functioning of the control scheme using the EMC-PI-ALINEA controller as a PI
controller. Through the simulation results we will demonstrate the versatility of the proposed scheme by applying
it to optimally decide the parameters not only of EMC-PI-ALINEA controllers but also of Multi-class PI-ALINEA
controllers.26

It is worth noting that the idea of optimizing the controller parameters on the basis of real-time traffic condi-
tions has already been applied in the context of traffic control systems. For example, in Reference 27, the parameters
of the perimeter-control regulator are updated in real-time based on traffic measurements, by exploiting machine
learning techniques and adaptive optimization principles. In Reference 28, a modification of ALINEA is proposed
in which the density set-point is time-varying and computed online on the basis of measurements of speeds and
flows upstream the bottleneck. In Reference 29, a receding-horizon parametrized traffic control approach is consid-
ered, in which parametrized control laws are identified and the controller optimizes the parameters of such control
law. Parametrized control laws are also considered in Reference 30, where the receding horizon control approach is
scenario-based, that is, it optimizes the worst case among a set of scenarios in order to handle uncertainties. Com-
pared with such approaches, in which the parameter optimization is realized in real time, the present work aims at
reducing the computational effort by computing the controller parameters completely offline for each scenario, so that
the only effort to be made online corresponds to choose the present scenario and the associated set of parameters.
Indeed, one of the purposes of this work is to demonstrate the convenience of using optimization-based approaches
within a scheme specifically developed to meet practical applicability requirements. As mentioned above, optimal con-
trol schemes often do not find application in real-world contexts both because of the high computational burden and
because of the nonlinearity of the problems to be solved that prevents from easily finding a global optimal solution.
The simulation results reported in this paper show that, by applying the optimization-based procedure to define the
control parameters, the performance of the controllers is significantly increased. Moreover, the results produced by
the application of the control scheme proposed in this paper are compared with those resulting from the solution of
a finite-horizon optimal control problem. From this comparison, it can be observed that the application of the pro-
posed control scheme, both using EMC-PI-ALINEA controllers and Multi-class PI-ALINEA controllers, produces results
slightly worse than those obtained by solving the optimal control problem but with a computational effort that is
much lower.

The paper is organized as follows. Section 2 describes the multi-class traffic flow model used in the optimization
module. Section 3 presents the proposed control scheme, which is composed of the EMC-PI-ALINEA controllers, the
optimization-based module and the controller parameter selector. In Section 4, the proposed control scheme is assessed
in a simulation environment, considering the application to a test case. Conclusive remarks and some insights are finally
given in Section 5.

2 THE MULTI- CLASS METANET TRAFFIC FLOW MODEL

The optimization module included in the control scheme proposed in this paper is based on the predictive capabilities of a
traffic flow model. In particular, the dynamic behavior of traffic is represented with a macroscopic and multi-class traffic
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F I G U R E 1 Links and nodes in the METANET model

flow model previously presented in Reference 23. This model is inspired by the well-known METANET model,31 in its
destination-oriented version, and extended to represent different classes of vehicles, specifically cars and trucks. Indeed,
in case a high number of trucks is present in the freeway, they strongly affect the dynamics of the traffic system and
the typical assumption that vehicles form a homogeneous stream is no longer valid. The larger size and lower operating
capacity of trucks (lower speeds and longer reaction times) as well as the psychological impact that these vehicles have
on the other drivers provoke slowdowns and even traffic jams if the presence of these vehicles is particularly high. In
addition, the possibility of modeling the behavior of different classes of vehicles also allow to represent and then control
the fluctuations in demand that may occur with different characteristics (in terms of duration, intensity, location in time
and space) for such classes.

Let us now introduce the multi-class METANET traffic flow model, in which the freeway network is represented by
means of a directed graph, composed of M freeway links, O origin links, and N nodes (see Figure 1). Each freeway link m is
further divided into Nm sections with length Lm and𝜆m lanes. The set of destinations reachable from link m is denoted with
Jm, the set of destinations reachable from origin link o is denoted with Jo, while the set of origin links that are controlled
on-ramps is denoted with O ⊆ {1, … ,O}. For each node n, ̄̄Jn indicates the set of reachable destinations, On represents
the set of exiting links, and In/In denote the set of entering freeway links/origin links. The multi-class METANET traffic
flow model is a discrete model, that is, the time horizon is divided into K time steps, with sample time interval T [h].
Moreover, C vehicle classes are considered, with 𝜍c representing a conversion factor of vehicles of class c in Passenger Car
Equivalent (PCE).

The variables referring to the freeway links are: 𝜌c
m,i,j(k) is the partial traffic density of class c in section i of link m

at time instant kT with destination j ∈ Jm [veh of class c/km/lane], 𝜌c
m,i(k) is the traffic density of class c in section i

of link m at time instant kT [veh of class c/km/lane]; 𝜌m,i(k) is the total traffic density in section i of link m at time
instant kT [PCE/km/lane]; vc

m,i(k) is the mean traffic speed of class c in section i of link m at time instant kT [km/h];
qc

m,i(k) is the traffic volume of class c leaving section i of link m during time interval [kT, (k + 1)T) [veh of class c/h];
𝛾c

m,i,j(k) is the portion of the traffic volume of class c in section i of link m at time instant kT having destination j ∈ Jm
(composition rate).

The variables referring to the origin links are: dc
o,j(k) is the partial origin demand of class c entering origin link

o at time instant kT with destination j ∈ Jo [veh of class c/h]; dc
o(k) is the origin demand of class c entering origin

link o at time instant kT [veh of class c/h]; lc
o,j(k) is the partial queue length of class c at origin link o with desti-

nation j ∈ Jo at time instant kT [veh of class c]; lc
o(k) is the queue length of class c at origin link o at time instant

kT [veh of class c]; 𝛾c
o,j(k) is the portion of the traffic volume of class c leaving origin link o at time instant kT hav-

ing destination j ∈ Jo (composition rate); 𝜃c
o,j(k) is the portion of the demand of class c originating in origin link o

at time instant kT having destination j ∈ Jo; qc
o(k) is the traffic volume of class c leaving origin link o during time

interval [kT, (k + 1)T) [veh of class c/h]; qo(k) is the total traffic volume leaving origin link o during time interval
[kT, (k + 1)T) [PCE/h].

The variables referring to the nodes are: Qc
n,j(k) is the flow of class c entering node n during time interval [kT, (k + 1)T)

with destination j ∈ ̄̄Jn [veh of class c/h]; 𝛽c
m,n,j(k) is the splitting rate, that is, the portion of the traffic volume present in

node n at time instant kT which chooses link m to reach destination j ∈ ̄̄Jn.
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The two dynamic equations for the freeway links are referred to the two system state variables, that are the partial
traffic density and the mean speed, that is,

𝜌c
m,i,j(k + 1) = 𝜌c

m,i,j(k) +
T

Lm𝜆m

[
𝛾c

m,i−1,j(k)q
c
m,i−1(k) − 𝛾c

m,i,j(k)q
c
m,i(k)

]
(1)

vc
m,i(k + 1) = vc

m,i(k) +
T
𝜏c

[
V c(𝜌m,i(k)) − vc

m,i(k)
]
+ T

Lm
vc

m,i(k)
[

vc
m,i−1(k) − vc

m,i(k)
]
−

𝜈cT
[
𝜌m,i+1(k) − 𝜌m,i(k)

]
𝜏cLm

[
𝜌m,i(k) + 𝜒 c

] (2)

c = 1, … ,C, m = 1, … ,M, i = 1, … ,Nm, j = 1, … , Jm, k = 0, … ,K − 1. The steady-state speed-density relation
V c(𝜌m,i(k)) and the traffic volume qc

m,i(k) in (2) are respectively obtained as

V c(𝜌m,i(k)) = vf,c
m,i ⋅

⎡⎢⎢⎣1 −

(
𝜌m,i(k)
𝜌

m,i
max

)lc⎤⎥⎥⎦
mc

(3)

qc
m,i(k) = 𝜌c

m,i(k)v
c
m,i(k)𝜆m (4)

where 𝜌m,i(k) =
∑C

c=1𝜍
c𝜌c

m,i(k), while vf,c
m,i is the free-flow speed in section i of link m for class c [km/h], 𝜌max

m,i is the jam
density in section i of link m [PCE/km/lane].

The dynamic equation for the origin links is a conservation equation for the queue lengths, which are other state
variables, given by

lc
o,j(k + 1) = lc

o,j(k) + T
[

dc
o,j(k) − 𝛾c

o,j(k)q
c
o(k)

]
(5)

c = 1, … ,C, o = 1, … ,O, j = 1, … , Jo, k = 0, … ,K − 1, in which the traffic flow qc
o(k), that is, the traffic flow of class

c leaving origin link o, having m as downstream link, is computed in a different way if the origin link o is a controlled
on-ramp or not. Hence, it is possible to write:

qc
o(k) = min

{
dc

o(k) +
lc
o(k)
T

, qmax,c
o , qmax,c

o ⋅
𝜌max

m,1 − 𝜌m,1(k)
𝜌max

m,1 − 𝜌cr
m,1

}
o ∉ O (6)

qc
o(k) = min

{
dc

o(k) +
lc
o(k)
T

, qmax,c
o , qc

o(k), qmax,c
o ⋅

𝜌max
m,1 − 𝜌m,1(k)
𝜌max

m,1 − 𝜌cr
m,1

}
o ∈ O (7)

where qmax,c
o is the maximum flow of class c in origin link o, 𝜌cr

m,1 is the critical density of the first section of link m
[PCE/km/lane], and qc

o(k) is the ramp-metering control variable, that is, the on-ramp flow computed by the controller for
class c.

Moreover, the incoming traffic flow in a given node and the traffic flow entering the first section of a link exiting a
node are computed, respectively, as

Qc
n,j(k) =

∑
𝜇∈In

qc
𝜇,N𝜇

(k)𝛾c
𝜇,N𝜇,j

(k) +
∑
o∈In

qc
o(k)𝛾c

o,j(k) (8)

qc
m,0(k) =

∑
j∈Jm

𝛽c
m,n,j(k) ⋅ Qc

n,j(k) (9)

3 THE PROPOSED CONTROL FRAMEWORK

The traffic control scheme proposed in this paper aims at regulating a freeway network via multi-class ramp metering in
order to counteract the traffic congestion that may arise as a consequence of high traffic volumes. This control scheme
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F I G U R E 2 The proposed control framework

is designed to combine the requirements of practical applicability (low computational effort and simple controller struc-
ture) with the need to ensure high performance in the presence of different traffic scenarios, due to both recurrent and
non-recurrent traffic conditions. As specified in the Introduction, this control scheme can include several types of PI
controllers. In this section, the scheme in which each controlled ramp is equipped with an EMC-PI-ALINEA controller
is presented. Specifically, as sketched in Figure 2, this control framework is composed of three main components, the
EMC-PI-ALINEA controllers and the control parameter selector, which act online, and the optimization-based calibra-
tion of parameters, which is a procedure applied completely offline. The main features of these components are briefly
sketched below and, then, described in the following subsections:

• the EMC-PI-ALINEA controllers are present in each controlled on-ramp and compute the control actions on the basis of
the measurements collected in a neighborhood of the on-ramp itself: the parameters of each controller are time-varying,
that is, they change according to the current scenario detected in real time by the control parameter selector;

• the control parameter selector is the module of the control scheme which decides the parameters to be transmitted to
each EMC-PI-ALINEA controller; this block receives the state measurements from the real system and other informa-
tion from the traffic manager and, on the basis of this real-time knowledge, chooses from the library of traffic scenarios
the most suitable one and transmits to the EMC-PI-ALINEA controllers the associated parameters;

• the optimization-based calibration of parameters is an optimization procedure applied offline which computes, for each
traffic scenario, the corresponding set of optimal values of the EMC-PI-ALINEA parameters.

3.1 The EMC-PI-ALINEA controllers

In each controlled on-ramp, an EMC-PI-ALINEA controller operates referring to a neighborhood of the on-ramp, called
action area of the on-ramp. This area corresponds to a set of road sections and links which are located between two
consecutive on-ramps. In particular, referring to a generic controlled origin link o ∈ O, let Iact

o and Mact
o denote the set
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F I G U R E 3 Example of action areas

of sections and the set of links corresponding to the action area of origin link o. On the basis of the measurements
taken within the action area associated with each controlled on-ramp, the EMC-PI-ALINEA controllers calculate the
corresponding control laws.

An example to clarify the concept of action area is reported in Figure 3, where the action area for origin links 1, 2, and
3 are shown with reference to a simple freeway network. It is worth noting that the size of each action area depends on
the geometry of the freeway network and, as in the case of origin links 1 and 2 in this example, it may happen that two
action areas overlap. Also, in case of a bifurcation in the road network, the action area of an on-ramp can include a set of
road sections that are not contiguous but correspond to the diverging paths.

Considering a generic origin link o ∈ O, the EMC-PI-ALINEA controller computes the flow of each class c of vehicles
that should enter in the mainstream at time step k from link o according to the following control law:

qc
o(k) = max{qmin,c

o , qc
o(k − 1) − Kc,𝜎

P,o[𝜌
c
m,1(k) − 𝜌c

m,1(k − 1)] + Kc,𝜎
R,o ⋅ f c,act

o (k)[�̂�𝜎o − 𝜌act
o (k)]} (10)

where:

• qmin,c
o is the minimum traffic volume for class c in origin link o;

• f c,act
o (k) is a weighted ratio used to properly split the entering flow among the different vehicle classes; more specifically,

f c,act
o (k) is computed at each time step k and provides the ratio of the number of vehicles of class c over all the vehicles

present in the origin link o and in the sections belonging to the action area of link o, that is,

f c,act
o (k) =

𝜍c𝜂c
o(k)∑C

h=1𝜍
h𝜂h

o (k)
(11)

where 𝜂c
o(k) is given by

𝜂c
o(k) = lc

o(k) +
∑

m∈Mact
o (k)

∑
i∈Iact

o (k)
Lm𝜌

c
m,i(k) (12)
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• 𝜌act
o (k) is the highest total density detected in the action area associated with on-ramp o, that is,

𝜌act
o (k) = max

m∈Mact
o (k),i∈Iact

o (k)
𝜌m,i(k) (13)

considering the highest value of the density in the action area to be compared with the set-point corresponds to refer
to the worst case and, then, to apply a ramp-metering controller that is able to react immediately when a congestion
appears;

• Kc,𝜎
P,o, Kc,𝜎

R,o, and �̂�𝜎o are the parameters of the controller and represent, respectively, the proportional/integral gains and
the total density set-point for the action area associated with the current scenario 𝜎.

As specified earlier, the controller parameters Kc,𝜎
P,o, Kc,𝜎

R,o and �̂�𝜎o are time-varying and communicated by the control
parameter selector that chooses the optimal values of these parameters associated with the current scenario 𝜎. Note that
the gains Kc,𝜎

P,o and Kc,𝜎
R,o are different for each origin link o and for each class c, while the density set-point �̂�𝜎o refers to the

overall traffic density and only varies with the origin link o.
Moreover, the control actions (10) are referred to the specific classes of vehicles but are computed by measuring the

overall density inside road sections, thus considering the contemporary presence in the freeway links of vehicles belonging
to different categories. Finally, it is worth noting that both f c,act

o (k) in (11) with (12) and 𝜌act
o (k) in (13) are computed

considering the measurements in the overall action area, in this way the ramp metering control law is able to react more
in advance compared to the case of local controllers based only on one measurement close to the on-ramp.

3.2 Optimization-based calibration of parameters

In the proposed control scheme, the controller parameters vary for each origin link and, also, depending on the con-
sidered traffic conditions. The need to consider different parameters for different origin links is related to the fact that,
in a large scale network (e.g., containing links with different length and slope or with multiple merging zones or bifur-
cations), the characteristics of the road may differ significantly in different areas as well as some local events can have
impact only in specific areas. Moreover, recurrent or non-recurrent fluctuations in the traffic demand and the occurrence
of exceptional events such as road accidents, road works, or bad weather conditions may require the change of the con-
troller parameters over time. These different traffic conditions are captured in the proposed control scheme in terms of
traffic scenarios.

Specifically, let Σ denote the set (library) of considered traffic scenarios. Each traffic scenario 𝜎 ∈ Σ is character-
ized by a set P𝜎 of data and a set K𝜎 of controller parameters. The set P𝜎 includes the model parameters and the
features of the scenario, that are used in the optimization procedure. On the other hand, the set K𝜎 includes the con-
troller parameters that are obtained as a result of the optimization procedure and then used by the EMC-PI-ALINEA
controllers.

The considered scenarios are associated with both recurrent traffic conditions and non-recurrent situations:

• in recurrent conditions, each scenario refers to a given time window (e.g., morning peak hour) together with the
corresponding features, such as the traffic demand; note that different scenarios are considered for working and
non-working days;

• non-recurrent conditions correspond either to capacity reductions caused by accidents/road works or to traffic peaks
due to exceptional events; such peaks can be referred to a specific vehicle class or the total traffic flow; non-recurrent
conditions are differentiated depending on time windows and type of day, analogously to recurrent conditions. More-
over, it is assumed that there are not capacity reductions/traffic peaks simultaneously happening in different action
areas of the freeway network.

The set of traffic scenarios must be customized for the considered traffic network on the basis of historical data; more-
over, the library of scenarios can be updated from time to time when new traffic conditions become relevant enough to
be classified as a new scenario. Then, it is necessary to start with a base library that may also contain a limited number of
scenarios including at least the recurrent conditions of a representative working day and of a representative non-working
day. The duration of the time windows, and thus the number of scenarios to be included in the library, depends on the
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characteristics of the traffic demand of the considered network. In particular, the duration can vary from 2 to 4 h for day-
time scenarios, while it can be more extended for night scenarios, ranging from 6 to 8 h, yielding about 6-10 scenarios
per day. As for non-recurring scenarios, these can be defined based on historical data or reproduced using a dynamic
traffic model. For instance, in the case of planned roadworks in which the capacity of a freeway stretch is expected
to be temporarily reduced, the model presented in Section 2 can be used to reproduce the scenarios associated with
this event.

The set P𝜎 of data associated with scenario 𝜎 is given by

P
𝜎 = {k𝜎

0 ,H𝜎, I𝜎,D𝜎,M𝜎} (14)

where k𝜎
0 is the starting time step, H𝜎 is the length of the time horizon, I𝜎 = {𝜌c

m,i,j(k
𝜎
0 ), vc

m,i(k
𝜎
0 ), ∀c,∀m,∀i,∀j,

lc
o,j(k

𝜎
0 ),∀c,∀o,∀j} gathers the initial conditions of the state variables, D𝜎 = {dc,𝜎

o,j (k),∀c,∀o,∀j, k = k𝜎
0 , … , k𝜎

0 + H𝜎 − 1} is
the set of traffic demands, M𝜎 = {𝜌max,𝜎

m,i , 𝜆𝜎m,∀m,∀i} includes the model parameters referred to the capacity configuration
(in order to properly model situations of capacity reductions) in scenario 𝜎.

The set K𝜎 is given by

K
𝜎 =

{
Kc,𝜎

P,o,Kc,𝜎
R,o, �̂�

𝜎
o ,∀c,∀o

}
(15)

that is, it is composed of the controller parameters present in the control law defined (10). The parameters gathered in
K𝜎 and associated with each scenario 𝜎 are found by offline running an optimization-based procedure in which they
are the decision variables to be found, while the objective function corresponds to the minimization of travel times for
travelers. The problem constraints are given by the multi-class METANET traffic flow model described in Section 2. Hence,
the optimization-based procedure exploits the predictive capabilities of the traffic flow model in order to determine the
controller parameters that yield the optimal predicted dynamic behavior of the system during the whole time horizon in
each scenario.

The general formulation of the optimization problem, referred to scenario 𝜎, based on the set P𝜎 and aimed at the
optimal calibration of controller parameters in K𝜎 , is the following.

Problem 1. Given the system initial conditions I𝜎 , the demands D𝜎 and the set M𝜎 , find K𝜎 that minimizes

 = T
k𝜎

0+H𝜎∑
k=k𝜎

0

C∑
c=1

𝜍c

( M∑
m=1

Nm∑
i=1

Lm𝜌
c
m,i(k) +

O∑
o=1

lc
o(k)

)
(16)

subject to (1)–(9), (10)–(13) and

KP ≤ Kc,𝜎
P,o ≤ KP, c = 1, … ,C, o = 1, … ,O (17)

KR ≤ Kc,𝜎
R,o ≤ KR, c = 1, … ,C, o = 1, … ,O (18)

𝜌 ≤ �̂�𝜎o ≤ 𝜌, o = 1, … ,O (19)

with KP, KR, 𝜌 and KP, KR, 𝜌, respectively, lower and upper bounds for the decision variables.

The objective function to be minimized in Problem 1 is the Total Time Spent, denoted also with TTS and measured
in [PCE⋅h]. This index is a very common objective in traffic control problems and gives an indication of the time spent
by all vehicles in the freeway system. As shown in (16), the Total Time Spent is obtained as the sum of the so-called Total
Travel Time, that is, the time spent by vehicles traveling along the freeway and denoted with TTT, and the so-called Total
Waiting Time, that is, the time spent by vehicles waiting in the origin links and denoted with TWT. Note that minimizing
TTS means maximizing the system throughput and thus maximizing the system performance.

The constraints in Problem 1 are related to the dynamics of the controlled system (1)–(9), (10)–(13) and to lower
and upper bounds for the values of the gains and set-point, as reported in (17)–(19). Note that the lower and upper
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bounds of the decision variables must be properly defined since their values can affect the duration of the traffic
light cycle.

Besides computing the parameters in K𝜎 , the solution of Problem 1 also provides the optimal values of the state
variables for the considered scenario 𝜎. For such variables, the average values in time intervals of equal length (in which
the horizon H𝜎 is discretized) are computed. More precisely, P𝜎 intervals are defined, with P𝜎 < H𝜎 , and the following
values are obtained

𝜌
c
m,i(𝜅), vc

m,i(𝜅), l
c
o(𝜅), 𝜅 = 1, … ,P𝜎 (20)

and used by the controller parameter selector, as it will be described in Section 3.3.
It is worth noting that the dynamics of the traffic system described by the problem constraints (1)–(9) and (10)–(13)

is nonlinear, hence Problem 1 is a nonlinear optimization problem. For the solution of this problem, we have adopted
a gradient-free solution algorithm and, specifically, Simulated Annealing. Simulated Annealing is an iterative stochas-
tic algorithm for global nonlinear optimization, first introduced in Reference 32, then extended to combinatorial
optimization,33 and to continuous optimization.34 To perform a random search in the solution space, the Simulated
Annealing algorithm is initialized with a feasible starting solution s0 that is assigned to the current solution s, that is,
s = s0. At each iteration 𝚤 of the algorithm:

• a tentative solution s𝚤 (tentative values of the gain parameters and of the density set-points) in the neighborhood of the
current solution s is generated;

• if the tentative solution is better than the current one, that is, obj(s𝚤) < obj(s) (where obj(⋅) is the objective function
associated with the solution), the tentative solution becomes the current solution, that is, s = s𝚤;

• if the tentative solution is worse than the current one, that is, obj(s𝚤) ≥ obj(s), the tentative solution is accepted as
new current solution according to a probability given by exp

(
obj(s)−obj(s𝚤)

Γ𝚤

)
. The parameter Γ𝚤 is called “temperature”

by analogy with the annealing process and is updated with the iterations according to a suitable cooling schedule, so
that the probability of accepting a worse solution decreases with the algorithm iterations. In particular, the cooling
scheme proposed in Reference 35 is applied, that is, the temperature at iteration 𝚤 is obtained as Γ𝚤 =

||| obj(s)
log(P𝚤)

||| 𝛿, where
𝛿 represents the worsening percentage at each iteration and P𝚤 is the worsening reference acceptance probability, with
P𝚤 = 𝛼 ⋅ P𝚤−1;

• the algorithm stops when 𝚤 = Imax or 𝚤 = Ini,max, with Imax being the maximum number of total iterations and Ini,max the
maximum number of consecutive non-improving iterations.

3.3 The controller parameter selector

The controller parameter selector acts online and chooses the set of parameters K𝜎 to be adopted by the local controllers
on the basis of the present scenario 𝜎. At the beginning of each time window for each type of day, this module changes
the scenario referred to that time window in recurrent conditions. On the other hand, non-recurrent situations must be
detected online depending on the type of condition:

• capacity reductions are communicated to the selector by the traffic manager; this communication can occur in advance,
for example, in case of pre-scheduled road works, or in real time, for example, in case of traffic accidents;

• traffic peaks due to exceptional events are detected on the basis of the measured traffic state, compared with the aver-
age values of the state variables associated with the recurrent scenario of the same time window and type of day; in
particular, at each time step k the following conditions are verified:

𝜌c
m,i(k) > 𝜌

c
m,i(𝜅) + Δ𝜌, 𝜅 =

⌈
k∕H𝜎

P𝜎

⌉
(21)

vc
m,i(k) < vc

m,i(𝜅) + Δv, 𝜅 =
⌈

k∕H𝜎

P𝜎

⌉
(22)

lc
o(k) > l

c
o(𝜅) + Δl, 𝜅 =

⌈
k∕H𝜎

P𝜎

⌉
(23)
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withΔ𝜌,Δv andΔl suitable tolerance values. If one of these conditions is verified for at least one vehicle class c, a section
i of link m or an origin link o, a different scenario must be chosen. This scenario is the one corresponding to the present
time window and type of day but with an increased demand profile. In case the detected scenario is completely new,
that is, the corresponding parameters have not been computed yet, the present scenario corresponding to recurrent
conditions is maintained and the parameters associated with the new scenario are computed off-line, so that they will
be used in the future when this scenario will happen again.

Note that, alternatively to the procedure proposed in this article, the most suitable scenario can be also selected with
more sophisticated methods, for example, based on classification techniques or clustering methods (see References 36-39).

4 SIMULATIVE RESULTS

This section reports the results obtained by applying the control scheme proposed in Section 3. More in detail, the objective
of this section is twofold: on the one hand, we want to show that the optimal setting of the controller parameters signif-
icantly affects the performance of the controllers and, on the other hand, we want to demonstrate the versatility of the
proposed scheme by adopting two different PI controllers, namely the Multi-class PI-ALINEA and the EMC-PI-ALINEA,
within the control framework introduced in Section 3. In addition, an optimization-based control approach is consid-
ered to further assess the effectiveness of the proposed control framework. Specifically, this section is further divided into
three subsections: Section 4.1 describes the characteristics of the freeway network in use and the settings for creating the
libraries of scenarios related to the two controllers. Section 4.2 analyzes in depth the traffic behavior in absence of control,
while in Section 4.3 the results obtained with the application of several control strategies are illustrated and discussed.
All results shown in this section were obtained using MATLABR2017b software on a MacBook Pro with a 2 GHz Intel
Core i5 quad-core processor.

4.1 Settings of the case study

Let us first describe the structure of the freeway network considered in this work and depicted in Figure 4. Such
network consists of six freeway links, indicated with m1 to m6. Each link is composed of three lanes and a vari-
able number of sections, each of which has a length of 800 [m]. The network also includes five origin links
denoted with o1 to o5 and one exiting branch located between the origin links o2 and o3. Note that the origin
links o2, o3, o5 are controlled and equipped with dedicated traffic lights for each class of vehicles, that is, o2,
o3, o5 ∈ O. Then, for each controlled origin link the corresponding action area has been individuated, as shown
in Figure 4.

On the basis of such network, a library of traffic scenarios representing recurrent and non-recurrent traffic con-
ditions has been created. For the purposes of this work, a working day has been considered in which eight time
windows lasting 3 hours have been identified. This implies that each scenario, whether representing recurring or
non-recurring conditions, has this duration. The behavior of each scenario has been simulated with the multi-class
METANET model described in Section 2 considering a sample time T corresponding to 10 [s] that, for a total time hori-
zon of 3 hours, yields K = 1080 time steps. The main model parameters common to each traffic scenario are reported
in Table 1.

The library associated with the control scheme adopting EMC-PI-ALINEA controllers has been created for each sce-
nario 𝜎 by solving Problem 1. To create the library in case Multi-class PI-ALINEA controllers are used, a slightly different

F I G U R E 4 Layout of the freeway stretch with action areas (red dashed line)
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T A B L E 1 Main model parameters

Parameter Value Range

Multi-class traffic flow model

vf,1
m,i 120 [km/h] ∀m, ∀i

vf,2
m,i 90 [km/h] ∀m, ∀i

𝜌max
m,i 600 [PCE/km] ∀m, ∀i

qmax,1
o 1800 [veh/h] o ∈ O

qmax,2
o 450 [veh/h] o ∈ O

qmax,1
o 6000 [veh/h] o ∉ O

qmax,2
o 1500 [veh/h] o ∉ O

𝜍1 1 [PCE]

𝜍2 4 [PCE]

control problem has been solved, that is, Problem 1 in which (10)–(13) are replaced by the Multi-class PI-ALINEA control
law, given by:

qc
o(k) = max{qmin,c

o , qc
o(k − 1) − Kc,𝜎

P,o[𝜌
c
m,1(k) − 𝜌c

m,1(k − 1)] + Kc,𝜎
R,o ⋅ f c

o (k)[�̂�𝜎o − 𝜌c
m,1(k)]} (24)

where the weighted ratio f c
o (k) is computed as

f c
o (k) =

𝜍c ⋅ [𝜌c
m,1(k)Lm + lc

o(k)]∑2
c=1𝜍

c ⋅ [𝜌c
m,1(k)Lm + lc

o(k)]
(25)

The optimization problems have a time horizon H𝜎 = 1080, while the lower and upper bounds on the decision vari-
ables have been fixed as follows: KP = 1, KR = 1, 𝜌 = 45 [PCE/km] and KP = 200, KR = 200, 𝜌 = 250 [PCE/km]. The
resulting optimization problems have been solved with the Simulated Annealing algorithm described in Section 3.2, in
which the following values of the parameters have been fixed: 𝛿 = 0.01, P0 = 0.6, 𝛼 = 0.9995.

For each scenario belonging to each library, the Simulated Annealing algorithm has been initialized with different ini-
tial solutions. Furthermore, since the solution search procedure of the algorithm is randomized, the solution algorithm
has been run several times for each instance, in order to choose the best solution to be included in the traffic scenario
libraries. According to our results it seems that, for this optimization problem, the choice of the initial solution does
not have a significant influence on the solution produced by the algorithm that always provides a set of parameters
improving the objective function. In Figure 5 two examples of objective function trends during the optimization runs

F I G U R E 5 Examples of objective function trends in two optimization runs of the Simulated Annealing algorithm with different initial
solutions
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for the parameter definition of EMC-PI-ALINEA controllers are shown. Similar trends have been obtained for optimiza-
tion problems in which the Multi-class PI-ALINEA control law has been applied. Note that the two trends in Figure 5
are characterized by two different initial solutions, but still reach a similar local minimum. As it can also be seen in
Figure 5, the Simulated Annealing algorithm, by its intrinsic nature, admits the acceptance of worse solutions and it can,
in some cases, increase the value of the objective function. However, in this work, the solution corresponding to the low-
est value of the cost function is stored in memory and therefore it is used if, at the end of the solution procedure, the
current solution is not the minimum one. Finally, note that the computational time to solve Problem 1 for this setting is of
about 1 minute on a standard PC, hence absolutely acceptable taking into account that these optimization problems are
solved offline.

4.2 The uncontrolled case

Let us now introduce a case study concerning the freeway network previously described and specifically devel-
oped to test the capabilities of the proposed control scheme. In this section, only the behavior of the system with-
out the application of any control measures is analyzed. This case study starts at 6 a.m. and lasts until 1 p.m.
for a total duration of 7 [h] (corresponding to K = 2500 time steps), including both recurrent and non-recurrent
traffic scenarios. Specifically, a data set that considers two types of vehicles, that is, cars and trucks, has been
considered.

The profiles of traffic demand at the controlled on-ramps are reported in Figure 6 in which the blue line indicates
the traffic demand of cars and the red line refers to the traffic demand of trucks. The first three hours represent a typical
rush hour situation, while at 10:30 a.m. a traffic accident occurs causing the capacity reduction of a portion of freeway for
about one hour. The freeway sections affected by the capacity reduction are located in the action area referred to origin
link o2, immediately upstream of the freeway exit branch.

With these traffic inputs and considering the model settings previously introduced, the multi-class METANET
model reproduces the traffic behavior of the freeway network, which can be summarized in the mainstream den-
sity evolution reported in Figure 7. Analyzing this figure, it is possible to observe that the uncontrolled case is
characterized by the presence of two main congestions. The former involves the first three hours of the sim-
ulation and is due to a high transport demand of commuters, the freeway links more affected by this con-
gestion being m3, m4, and m5. The latter congestion appears as a consequence of the traffic accident in the
freeway link m2 and propagates backwards until link m1. The capacity reduction induced by the traffic acci-
dent has two main effects, namely obstructing the flow that wants to reach its destination far downstream
and blocking the exit branch. Without applying any traffic control, the Total Time Spent TTS is equal to
10489 [PCE⋅h].

F I G U R E 6 Traffic demands and location of the traffic accident in the considered freeway stretch
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F I G U R E 7 Traffic density evolution in time and space in the uncontrolled case

F I G U R E 8 The control framework with Multi-class PI-ALINEA controllers

4.3 The controlled cases

In this section the results obtained by applying four control strategies to the case study introduced in Section 4.2 are
shown and discussed. More in detail, the adopted control schemes are:

Control scheme 1: standard Multi-class PI-ALINEA controllers are adopted with standard controller parameters taken
from the literature;
Control scheme 2: Multi-class PI-ALINEA controllers are adopted with controller parameters optimized according to
the framework proposed in Section 3;
Control scheme 3: EMC-PI-ALINEA controllers are adopted with controller parameters optimized according to the
framework proposed in Section 3 (this is exactly the control scheme described in this article);
Control scheme 4: a finite-horizon optimal control problem is solved to compute the optimal inflows at the entering
ramps.
The overall framework corresponding to Control scheme 2 is shown in Figure 8. Note that, in such scheme, the Con-

troller Parameter Selector receives all available state measurements, while the control actions for each controlled on-ramp
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are computed according to (24), that is, they are based on the measurements detected immediately downstream the
entering ramp.

Before comparing the performance of the four control schemes, let us further detail such schemes. In Control scheme
1 the following control parameters are adopted for the Multi-class PI-ALINEA controller in each controlled ramp o ∈ O:
K1

P,o= 100, K2
P,o = 50, K1

R,o = 33, K2
R,o = 6, �̂�𝜎o=140.

Regarding Control scheme 2 and Control scheme 3, the following considerations hold. Since the simulation starts
at 6:00 a.m. and ends at 1:00 p.m., the simulation includes three time windows. Each time window is associ-
ated with a recurrent traffic scenario and the presence of the traffic accident requires a non-recurrent traffic sce-
nario associated with the action area and the time window in which the capacity reduction occurs. This leads
to the selection of four traffic scenarios that, for the sake of simplicity, for both control schemes are indicated
with 𝜎 = 1, 2, 3, 4, as better specified in Table 2. These traffic scenarios are associated with different sets of param-
eters K𝜎 , 𝜎 = 1, 2, 3, 4, the values of which are depicted in Figure 9 for Control scheme 2 and in Figure 10 for
Control scheme 3.

Finally, in Control scheme 4 the flows entering the on-ramps are computed by defining and solving a finite-horizon
optimal control problem. In this optimal control problem the objective function J to minimize is given by

J = TTS +
K-1∑
k=1

C∑
c=1

∑
o∈O

𝜔
[
qc

o (k) − qc
o (k − 1)

]2 (26)

where TTS is the Total Time Spent, while the second term, weighed with 𝜔, is used to suppress the variations of the con-
trol actions over the time horizon. Furthermore, the traffic flow model presented in Section 2 is included by means of

T A B L E 2 Traffic scenarios

Scenario name Scenario type Start time End time

𝜎 = 1 Recurrent 6:00 a.m. 9:00 a.m.

𝜎 = 2 Recurrent 9:00 a.m. 10:35 a.m.

𝜎 = 3 Non-recurrent 10:35 a.m. 12:00 a.m.

𝜎 = 4 Recurrent 12:00 a.m. 1:00 pm

F I G U R E 9 Optimal values of density set-points (9a), proportional gain parameters (9b) and integral gain parameters (9c) in Control
scheme 2
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F I G U R E 10 Optimal values of density set-points (10a), proportional gain parameters (10b) and integral gain parameters (10c) in
Control scheme 3

constraints in the optimal control problem. The resulting optimization problem is very complex since it is a highly non-
linear problem with large dimensions. Furthermore, due to the presence of many local minima, the numerical solution
of the optimal control problem has been obtained by first performing a global search and then a local search starting the
optimal solution obtained with the global search. Both searches have been conducted using the Simulated Annealing
algorithm described in Section 3.2. Note that the solution of this optimal control problem for the test case here considered
takes several hours, hence it is not applicable in real time but considered only for benchmark purposes. Alternatively to
the solution of a finite-horizon optimal control problem, receding-horizon optimal control problems or model predictive
control schemes can be used to optimally define the entering flows at the on-ramps. However, it should be noted that the
application of such approaches on large-scale freeway networks, although very effective, is still a challenging problem
because of their computational burden. Recent works in the literature, such as those proposed in References 40, 41 have
recognized that the limits to the applicability of these approaches for real-time control purposes are due, among others,
to the complexity of these problems and their computation time that increases rapidly as the size of the freeway network
increases.

The application of the four control schemes leads to a substantial improvement in traffic conditions compared to the
uncontrolled case. This observation stems from the comparison of the traffic density evolution in the uncontrolled case
(Figure 7) with the density evolution for the four controlled cases displayed in Figure 11. By observing these profiles, it is
possible to state that the first congestion created by commuter movements during peak hours is completely solved with
the application of all control schemes, while the second congestion caused by the traffic accident is partially reduced with
a level of effectiveness that depends on the implemented control scheme.

To better analyze the effectiveness of each control scheme, Table 3 shows a comparison in terms of their capabil-
ity to improve the traffic conditions. Specifically, the columns of the upper part of Table 3 report the values of the Total
Time Spent TTS, the Total Travel Time TTT, the Total Waiting Time TWT and the percentage of reduction of TTS com-
pared with the uncontrolled case RTTS. The lower part of Table 3 reports the Total Time Spent TTS′ computed in the
first time window and for the whole network (i.e., during the first congestion), the respective percentage of reduction
compared with the uncontrolled case RTTS′ , the Total Time Spent TTS′′ computed for the links and for the time peri-
ods involved in the traffic accidents and the corresponding percentage of reduction compared with the uncontrolled
case RTTS′′ .

Analyzing these indicators in Table 3, and especially comparing those obtained from the application of Control scheme
1 and Control scheme 2, it can be observed that the Multi-class PI-ALINEA controllers with optimized parameters cause
a travel time reduction that is higher than the one obtained with the same controllers adopting standard (not optimized)
parameters. It is worth noting that the performance produced by Control scheme 1 could be improved by introducing some
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F I G U R E 11 Traffic density evolution in the four control schemes

T A B L E 3 Comparison of the control schemes

TTS [PCE⋅h] TTT [PCE⋅h] TWT [PCE⋅h] RTTS [%]

No control case 10489 10489 - -

Control scheme 1 9741 8271 1470 7.13

Control scheme 2 9345 8286 1059 10.91

Control scheme 3 8958 8258 700 14.60

Control scheme 4 8835 8569 266 15.77

TTS′ [PCE⋅h] RTTS′ [%] TTS′′ [PCE⋅h] RTTS′′ [%]

No control case 5644 - 846 -

Control scheme 1 5053 10.47 832 1.65

Control scheme 2 4702 16.69 839 0.87

Control scheme 3 4329 23.3 820 3.07

Control scheme 4 4221 25.21 812 4.02
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constraints on the queue lengths at the entering ramps. However, this aspect is not investigated in this article since it is
out of the scope of this work.

Moreover, in Table 3 it can also be observed that the application of Control scheme 3, in which all local con-
trollers are of EMC-PI-ALINEA type, leads to better performance than Control scheme 1 and Control scheme 2. However,
the best performance is achieved by applying Control scheme 4 in which the optimization-based approach is per-
formed, even if this performance is only slightly better than the one obtained with Control scheme 3. Note that the
parameters adopted in Control scheme 2 and Control scheme 3 have been obtained on the basis of scenarios with char-
acteristics that are similar but not identical to the traffic conditions of the case study, making these results even more
valuable.

To further compare the four control schemes, it can be useful to analyse the queue lengths at the origin links, as
reported in Figure 12. Looking at this figure, it is possible to consider that the Multi-class PI-ALINEA controllers with
standard parameters in Control scheme 1 lead to very long queues at the entering on-ramps, corresponding to high waiting
times, represented by TWT, as reported in Table 3. Again in Figure 12 it is possible to notice that the results obtained from
the application of Control scheme 3 are the closest to the results obtained by solving the optimization problem in Control
scheme 4.

Specifically, when Control scheme 1 and Control scheme 2 are applied, the ramp metering strategy is actuated mainly
at origin link o5 creating queues on that on-ramp (see Figure 12a and Figure 12b), hence entailing an overall improve-
ment in the mainstream, as also shown in Figure 13, at the expense of users aiming to access from ramp o5. The Control
scheme 3, on the other hand, activates ramp metering on both the controlled on-ramps o3 and o5 (see Figure 12c),
producing a more effective and fair solution. Even observing the trend of the queues produced in dealing with the con-
gestion created by the traffic accident, it can be noted that Control scheme 1 and Control scheme 2 act later than Control
scheme 3, which turns out to be more performing also in this circumstance. This effectiveness is motivated by the fact
that in Control scheme 3 the control actions are calculated on the basis of traffic conditions detected over the entire
action area associated with each controlled origin link and not only on the basis of the measurements taken downstream
the on-ramps as in Multi-class PI-ALINEA. Of course, the best control actions are those obtained by applying Control
scheme 4. Analyzing the trends of the queues in Figure 12d it is possible to notice that this control scheme acts in strong

F I G U R E 12 Queue length at the controlled origin links in the four control schemes: blue line for cars, red line for trucks
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F I G U R E 13 Traffic density evolution downstream the origin link o5 in the four control schemes

advance in comparison with the other control schemes producing, at the origin link o5, a queue of shorter length but
lasting longer.

Finally, it can be observed that the control scheme proposed in the present article (Control scheme 3) provides a perfor-
mance that is very close to the optimal one (Control scheme 4) and, also, is a very effective tool for large-scale and real-time
applications, since all the optimization procedures are applied completely offline and, hence, the computational burden
does not represent a limitation for the real applicability. Another aspect to consider for the optimal calibration approach
is that all the scenarios and the corresponding controller parameters must be saved in a database but the associated mem-
ory requirement is not critical for real applications since the size of data to be saved is absolutely compatible with the
standard databases used by freeway traffic managers to save historical traffic data.

5 CONCLUSIONS

This paper proposes an optimization-based calibration approach to define the control parameters of PI controllers adopted
to compute the ramp metering flows. The control framework proposed in this work has a general nature and can be applied
to different PI regulators. The main peculiarities of this scheme concerns the optimal determination of the controller
parameters, since the tuning of the control parameters is particularly crucial to ensure an effective control.

The methodology proposed in this paper is based on offline optimization of these parameters on the basis of recurring
or non-recurring traffic scenarios that may occur on the network under consideration. This allows to build a library
of parameters from which the most appropriate ones are chosen online on the basis of the traffic conditions actually
occurring in the network. As shown in the section dedicated to the description of the simulative results, the adoption
of a specific version of the Simulated Annealing algorithm allows to find optimal solutions that are not very sensitive to
the choice of the initial solutions adopted and in a rather short computation time. Despite these characteristics, it is not
advisable to use this optimization procedure in real time both because it is a stochastic procedure that for some runs could
provide inadequate solutions, and because it is not always possible to obtain from the real system all the information
needed to solve the optimization problem.

The application of this scheme to a case study has shown that the optimal setting of the controller parameters produces
very satisfactory results. In addition, these results have been compared with those obtained from solving an optimal ramp
metering control problem. From these experiments it is possible to conclude that the rather simple implementation of the
offline controller parameter library and the selection of these parameters online makes this approach workable in real
control applications.
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