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Atypical teratoid/rhabdoid tumors (AT/RTs) in the rhabdoid tumor predisposition

syndromes are most often caused by germline mutations of the SMARCB1 gene located

in chromosome 22q11.2. Although rarely, it can also result from the constitutional

ring chromosome 22 (r22): during mitosis the ring chromosome may lead to an

increased rate of somatic mutations, resulting in rhabdoid tumor predispositions when

the tumor-suppressor gene SMARCB1 is involved. Individuals with r22 may present

similar features as those with Phelan-McDermid syndrome (PMDS) due to 22q13.3

deletion, including the SHANK3 gene. Despite several reports on AT/RT in children with

r22 and/or PMDS have been published, the role of constitutional r22 as new oncogenic

mechanism for AT/RT is still under investigation. There is not a lot of data available on

therapeutic and prognostic implications of r22 in AT/RT and PMDS. Herein, we present

the first case of a child with constitutional r22, PMDS and AT/RT of the brain, who is

a long term survivor and is been treated with growth hormone. We also describe an

unexpected adverse reaction to midazolam.

Keywords: atypical teratoid/rhabdoid tumor, growth hormone, SMARCB1, INI1, ring chromosome, midazolam,

case report, Phelan McDermid Syndrome (PHMDS)

INTRODUCTION

Atypical teratoid/rhabdoid tumors (AT/RTs) represent 20% of highly malignant tumors of the
central nervous system (CNS), in children < 3 years old (1).

The SMARCB1/INI1 gene codes a subunit of the switch/sucrose non-fermentable (SWI/SNF)
complex, actin-dependent chromatin remodeling complex and is known to act as a tumor
suppressor. This gene is frequently inactivated through somatic point mutation or deletion,
followed by a second hit. The constitutional pathogenic variant in SMARCB1 causes rhabdoid
tumor predisposition syndrome. About 25%–35% of newly diagnosed children with rhabdoid
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tumors have a germline pathogenic variant in SMARCB1 (2).
The rhabdoid tumor predisposition syndrome is rarely as a
consequence of the loss of the expression of the ATPase
subunit SMARCA4, also known as BRG1, another SWI/SNF
chromatin-remodeling complex member (3). Therefore, the
presence of the expression of SWI/SNF-related matrix-associated
actin-dependent regulator of chromatin subfamily B member 1
(SMARCB1) protein does not rule out a diagnosis of AT/RT (4).

AT/RT has been previously reported in patients with r22 (5–
8) and recently also in PMDS (OMIM# 606232) (9–11). Ring
chromosome 22 syndrome is an autosomal anomaly with most
features common to 22q13 deletion syndrome. Byers et al. (11)
hypothesized that mitotic instability of r22 could lead to somatic
mosaic aneuploidy, resulting in a heterozygous loss of SMARCB1.
A complete loss of SMARCB1 expression in tumor cells can be the
result of a second-hit or an alternative inactivating mechanism,
such as methylation pattern, variants in non-coding regions,
promoters or enhancers.

PMDS is a contiguous gene disorder caused by a
heterozygous contiguous gene deletion at chromosome
22q13 or by mutation in the SHANK3 gene, which is
located within the minimum critical region. The loss of
22q13.3 can result from a simple deletion, translocation,
ring chromosome formation or, less commonly, from
structural changes affecting the long arm of chromosome
22, specifically the region containing the SHANK3 gene. It
is underdiagnosed and till now the prevalence is unknown
(12). More than 50% of patients show autism or autistic-
like behavior due to haploinsufficiency of the synaptic
scaffolding protein SHANK3. Other major features of PMDS
include: global developmental delay, neurologic and motor
regression with moderate to severe intellectual impairment,
absent or severely delayed speech, hypotonia, dysmorphic
features, normal to accelerated growth and increased pain
tolerance (13).

In cellular models of PMDS, neurons with reduced SHANK3
expression show defects in excitatory, but not inhibitory, synaptic
transmission. Excitatory synaptic transmission can be corrected
by restoring SHANK3 expression or by treating neurons with
insulin-like growth factor 1 (IGF-1) leading to the formation
of mature excitatory synapses that lack SHANK3 but contain
the post synaptic density protein-95 (PSD-95) and N-methyl-D-
aspartate (NMDA) receptors.

In the literature, patients with autism spectrum disorders or
PMDS do not show an increased incidence of adverse events
post-procedural sedation with midazolam (14, 15). Li et al.
have examined whether sensitivity to isoflurane anesthesia is
altered in genetic mouse model of PMDS (Shank3 deleted), they
showed that Shank3 deletion confers enhanced sensitivity to
isoflurane (16).

Herein, we present from a multidisciplinary perspective a
complex case of r22 in a child with PMDS due to a partial
deletion of chromosome 22 not involving the SMARCB1 gene,
who survived a metastatic AT/RT of the CNS. We also describe,
for the first time in such a patient, the benefits of hrGH
therapy and a serious adverse event after procedural sedation
with midazolam.

CASE PRESENTATION

The child was born after a 38-week uncomplicated pregnancy
from non-consanguineous parents. The family history was
uneventful. APGAR (Appearance, Pulse, Grimace, Activity,
Respiration) scores were 9 at the 1st min and 10 at 5th min.
After delivery, the neonate did not present major dysmorphisms
or hypotonia; normal growth and development were reported
(Figures 1, 2).

At 2 years and 6 months the child started having feeding
problems and vomiting episodes and he underwent a brain
Magnetic Resonance Imaging (MRI) that showed diffused
pathological tissue of the 4th ventricle area with metastatic

FIGURE 1 | One year old.

FIGURE 2 | Two years old.

FIGURE 3 | (A) High-power view illustrates AT/RT cells of the patient

(hematoxylin and eosin staining). (B) Rhabdoid cells negative for SMARCB1

protein (immunohistochemistry).
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diffusion at the left temporal brain lobe, spinal cord at D5-D6
level and cauda.

Partial resection of the mass occupying the 4th ventricle
allowed the diagnosis of AT/RT. Histological analysis of the
tumor showed a population of cells with rhabdoid features
(Figure 3A). Immunohistochemistry showed the absence of the
expression of SMARCB1 protein (Figure 3B), at the same time
the expression of EMA and focal of AML and SYN was observed
(data not shown). The histological diagnosis was confirmed by
a national centralized reviewer. An abdominal ultrasound ruled
out the presence of any renal mass.

After neurosurgery, the patient’s clinical conditions were
very severe due to the progression of the spinal metastasis,
with pain difficult to control, progressive paraparesis, sphincter
impairment and posterior fossa syndrome. Chemotherapy (CT)
was started according to European protocol EU RHAB 2010
and adapted for the critical clinical conditions. Three courses of
induction CT (Doxorubicin 1.4mg/kg/24 h× 2 days; Vinorelbine
0.7 mg/kg for 3 days; 2 ICE cycles: Ifosfamide 66.6 mg/kg and
Etoposide 3.3 mg/kg x 3 days, Carboplatinum 16.7 mg/kg for
1 day) and 2 courses of myeloablative high dose CT (1 course
of Thiotepa 300 mg/m2 x 3 days + Carbo 500 mg/m2 x 3
days and 1 course of Thiotepa 300 mg/m2 x 3 days) were
delivered. The MRI showed that all the sites exhibited a good
response after the induction-and myeloablative-CT. Treatment
was completed at the age of 3 years and 2 months when the child
had been irradiated by Tomotherapy technique: 3520 cGy on the
cranio-spinal axis, followed by boosts on sites of residual disease:
posterior fossa and temporo-polar lesions up to 5800 cGy; cauda
equina up to 4960 cGy; D5-D6 4960 up to cGy.

After irradiation, the child suffered prolonged leukopenia and
thrombocytopenia with one episode of general infection treated
with multiple transfusions and broad-spectrum antibiotics.
Valproic Acid was chosen as a prophylactic anti-seizure drug for
its anti-tumor properties in high-grade brain tumors (17, 18).

The MRI at 1 and 3 months after irradiation showed a
complete remission at the level of the primary site, while
millimetric cystic lesions improved slightly (with signal like
cerebrospinal fluid) at the temporo-polar site and at the residual
spinal lesions. The MRI, 6 months after the therapies, showed a
definite improvement of the metastatic spinal lesions, which were
no longer detectable.

Despite starting the intensive multidisciplinary rehabilitation
program early, the patient exhibited the following signs: growth
and weight impairment; severe psychomotor regression; global
hypotonia; cognitive impairment with only partial recovery after
rehabilitation; oropharyngeal dysphagia for liquid and solid food;
osteoporosis and low trauma vertebral fractures; and alopecia.

Three years after the end of radiotherapy, the child had
a complete neuroradiologic remission of the disease, and
the patient met auxological criteria to initiate evaluation for
growth hormone deficiency (GHD). Even though the height was
appropriate for age, sex and target height, it dropped from +0.8
to−0.3 SDS (Standard Deviation Score) due to the pathological
growth velocity (<2 cm in 1 year). Two provocative GH tests
confirmed the diagnosis of GHD (the peak value of serum GH
was 3,52 ng/mL after stimulation with intravenous infusion of

Arginine, and 6.63 ng/mL after stimulation with intramuscular
injection of Glucagone; in both tests the normal values were
>8 ng/ml). A full evaluation of the other pituitary hormones
ruled out further damages. Recombinant human GH (hrGH)
was started at a 0.028 mg/kg/day dose without adverse effects.
After 6 months of hrGH, the 1 year growth velocity increased
from 4 cm/year (−2.2 SDS) to 5.5 cm/year (−0.3 SDS) and the
parents reported an improved quality of life, muscle strength
and physical capability. At the last evaluation, after 18 months of
treatment, the growth velocity remained consistently regular (6.2
cm/year,−0.8 SDS); IGF-1 increased from 47.6 ng/ml (−3.8 SDS)
to 78.1 ng/ml (−2.3 SDS) 6 months after hrGH initiation (0.028
mg/kg/day), reaching normal values up to 146.2 ng/ml (−0.55
SDS) after a further 18 months of treatment (0.031 mg/kg/day).
The latter dose is currently ongoing without side effects.

As for institutional protocol, intranasal midazolam was
implemented to increase the patient’s compliance to procedural
sedation for MRI; shortly after midazolam was administered for
the first time to our patient (months before starting hrGH) he
showed signs of shock (severe hypotension, prolonged capillary
refill time, a decreased level of consciousness and urinary output,
and bradycardia) and needed resuscitation. The hypovolemic
shock treatment included three intravenous boluses of fluids 20
ml/kg (5% dextrose in NaCl 0.9% physiological solution), and a
hydrocortisone 10 mg/kg intravenous injection which resulted in
a slow recovery of the state of consciousness and improvement
of the vital signs. A subsequent ACTH (adrenocorticotropic
hormone) low dose test excluded central adrenal insufficiency.
An MRI was performed 5 months after starting hrGH using
Propofol intravenously as procedural sedation without side
effects. Complete remission of the disease was confirmed
after 18 months of hrGH therapy (5 years after the end of
oncological treatment).

Mild dysmorphic facial features were detectable by facial
photos before chemo-radiotherapy (long eyelashes, bulbous nose,
large and prominent ears) (Figure 2) and due to the severe late
effects (Figure 4) the child underwent genetic analysis. Array-
CGH (Whole-genome 60K Agilent array, Human Genome
CGH Microarray, Agilent Technologies, Santa Clara, CA, USA)
revealed a de-novo chromosomal rearrangement: arr[GRCh37]
22q13.32q13.33(48746241_tel)x1 dn involving a partial deletion
of long arm of chromosome 22 that is extended for 2,4Mb
from nucleotide 48.746.241 to the telomere (Figure 5). Data
was analyzed using Agilent Cytogenomics Software. All genomic
positions were reported according to the human genome
assembly (GRCh37/hg19). This genomic region is known to
include 36 genes (including SHANK3) and this chromosomic
region is responsible for the deletion syndrome of 22q13.3. The
presence of the SHANK3 deletion confirmed the diagnosis of
PMDS. SMARCB1 was not mutated in the germline DNA as
demonstrated by the Next-Generation Sequencing analysis (Ion
Torrent NGS sequencing systems, Ion AmpliSeq kit, Waltham,
MA, USA), the MLPA analysis was not possible due to the
lack of biological material available. Cytogenetic analysis using
Q-banding techniques at the 400 bands of resolution revealed
a 46, XY, r22(p11.2;q13.32)dn karyotype in the 30 metaphase
cells examined (Figure 6A). FISH studies were performed using

Frontiers in Neurology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 741062

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Crocco et al. Emerging Role of Ring Chromosome 22

FIGURE 4 | Eight years old.

FIGURE 5 | Results of array-CGH analysis. Zoom view of long arm of chromosome 22 shows a 2,4Mb deletion at 22q13.32q13.33 spanning from position

48746241 bp to the telomere.

SureFISH probe Agilent (Santa Clara, CA, USA) 22q13.33
SHANK3 and chromosome 14/22 alpha satellite probe Acquarius
Cytocell (Cambridge, UK) (Figure 6B), the results confirmed the
CGH Microarray and karyotype analysis. The genetic study of
both parents was negative.

DISCUSSION

In our clinical case SMARCB1 was not mutated in the germline

DNA and the partial deletion of chromosome 22 not involving

the SMARCB1 gene, nevertheless the immunohistochemistry of
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FIGURE 6 | (A) Q-banded karyotype showing ring chromosome 22. (B) FISH analysis with 14/22 centromeric probe and specific SHANK3 probe (green and red

signals, respectively). The arrow indicates the normal chromosome 22, the arrowhead shows the absence of SHANK3 signal on the ring chromosome 22.

the AT/RT tumor of our patient demonstrated the absence of
the SMARCB1 protein (Figure 3B), suggesting the loss of both
alleles. We hypothesized that in cancer cells the loss of expression
of the SMARCB1 protein was due to a somatic mosaic aneuploidy
involving r22 and including SMARCB1, as described by Byers
et al. (11), followed by a second-hit.

Familial cases described as the rhabdoid tumor predisposition
syndrome, have been linked to heterozygous SMARCB1
germline mutations. The loss of expression of SMARCB1 is
the defining molecular genetic feature of AT/RT (19, 20).
Immunohistochemical staining of SMARCB1 is currently
considered very sensitive and highly specific for the detection
of SMARCB1 genetic defects (21). Tsai et al. (22), by using gene
expression microarray analysis on Taiwanese AT/RT, found that
four of the five AT/RT cases examined still showed positive
SMARCB1 mRNA signal even though SMARCB1 proteins were
stained negative by immunohistochemistry. They sequenced
the whole SMARCB1 gene in 4 AT/RT cases (no DNA available
for the fifth case) to check DNA mutations in the SMARCB1
gene genomic DNA region. Three of the four AT/RTs did
not show sequence alternation in the SMARCB1 gene after
the PCR-amplified genomic DNAs were isolated from fresh
frozen tumor tissue. Similarly, in another independent cohort
containing 20 AT/RTs, about 10% of cases did not have coding
sequence mutations in any of the 9 exons of SMARCB1 and
yet had decreased expression levels of SMARCB1 by RT-PCR
analysis and undetectable levels of the protein by Western blot
analysis (23).

The monosomy of 22q13.3 has findings typical of such
deletion syndrome characterized by global developmental delay,
generalized hypotonia, and absent or severely delayed speech
(24), but the true prevalence of 22q13.3 deletion may be
underestimated (12). The deleted region contains numerous
genes that could have an effect on the presence of AT/RT and the
developmental delay of the child.

Among the genes, the bromodomain containing 1 (BRD1)
gene has been shown to be associated with schizophrenia
and bipolar disorder in genetic studies, including gene-
wise significant association in a large schizophrenia genome-
wide association study meta-analysis (25, 26). Furthermore,

Cai QQ et al. demonstrated that sulfatide interaction with
the BRD1 mediates acetylation and is important for the
regulation of integrin αV gene expression in hepatocarcinoma
(27) and similarly could have the same effect in AT/RT.
While proviral integration of Moloney murine 3 (PIM3) is
associated with Distal Muscular Dystrophy, it has also been
demonstrated to function as an oncogenic factor promoting
tumor growth in colorectal cancer (28) and hepatoblastoma
(29). The modulator of VRAC current 1 (MLC1) is associated
with Megalencephalic Leukoencephalopathy with subcortical
cysts and it could be related to melanoma survival and
chemoresistance through mitogen-activated protein kinases
(MAPK) - extracellular signal-regulated kinases (ERK) pathway
(30, 31). The histone deacetylase 10 (HDAC10) is involved in
transcriptional repression of the histone acetyl transferase (HAT).
In many cancers, the balance betweenHAT andHDAC is altered.
Diseases associated with HDAC10 include Neuroblastoma (32),
renal cell carcinoma (33) and lung adenocarcinoma (34).
HDAC inhibitors (HDACis) were shown to exert antitumor
effects in several cancer cell lines, confirming the role of
HDACs in oncogenesis (35). MAPK8IP2 gene encodes a
scaffold protein: The JNK-interacting protein (JIP), that is
more abundantly expressed in the cerebellum, pituitary gland,
occipital lobes and the amygdala, and it could be associated to
Ameloblastic Carcinoma and Spinocerebellar Ataxia X-Linked 5.
The p38-MAPK signaling, including p38β (MAPK11) and p38γ
(MAPK12), is associated with the development and progression
of several types of cancer (36–38). On the other hand, the MAPK
pathway could be involved in the occurrence of AT/RT (39, 40).
PLXNB2 is required for normal differentiation and migration
of neuronal cells during brain corticogenesis and for normal
embryonic brain development (41–43). Therefore, also PLXNB2
could contribute to the delay in developmental of the child.

SHANK3 is a protein coding gene and a member
of the SHANK gene family. The SHANK3 protein is
particularly involved in the postsynaptic density that connects
neurotransmitter receptors, ion channels, and other membrane
proteins to the actin cytoskeleton and G-protein-coupled
signaling pathways. Mutations in the SHANK3 gene are a
cause of autism spectrum disorder, which is characterized by

Frontiers in Neurology | www.frontiersin.org 5 October 2021 | Volume 12 | Article 741062

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Crocco et al. Emerging Role of Ring Chromosome 22

impairments in social interaction and communication, and
restricted behavioral patterns and interests. Mutations in this
gene are also associated with schizophrenia type 15, and are a
major cause in the neurological symptoms of PMDS (9), that
could be related to the severe clinical neurological features that
characterize the child. While SHANK3 has been extensively
studied as the cause (or at least the main contributory gene) of
PMDS, many other genes are involved in the pathogenesis of
this contiguous gene disorder and its phenotype. Despite the
fact that SHANK3 is thought to be the strongest candidate gene
for the neurological features of PMDS (24, 44, 45), interstitial
deletions of the 22q13 chromosomal region (that do not involve
SHANK3) have rarely been detected in patients with the main
clinical features common to PMDS (46, 47). These patients
display a phenotype partially overlapping with PMDS, including
developmental delay, hypotonia and language disorders, but the
autism spectrum disorder symptomatology was reported less
frequently in these patients (48).

Neurological impairment is a common late effect in central
nervous system tumors; in contrast, it’s early detection in
our patient prompted genetic counseling. The diagnosis of
the PMDS, a contiguous gene disorder, could explain the
rapidly worsening neurological effects after cancer therapies,
and the failure of multidisciplinary rehabilitation, despite the
favorable trend of the oncological disease. It is possible that ring
chromosome has important prognostic implications playing a
role in worsening the effects of the cancer therapies, especially
radiotherapy, due to the continuous risk of dynamic somatic
mutations (11, 49, 50).

Late effects due to hypothalamic-pituitary irradiation usually
begins with GH deficiency. The endocrine-metabolic effects of
hrGH and insulin-like growth factor-1 (IGF-1) therapy are well
known in patients with pituitary defects and primary IGF-1
deficiency, respectively. In recent years, neurologic and other
effects in Phelan McDermid Syndrome have been studied after
IGF-1, but not after hrGH therapy. Recent evidence in mice
and human neuronal models of SHANK3 deficiency (51, 52)
suggest that IGF-1 can reverse synaptic plasticity and motor
learning deficits. This evidence was also supported by Kolevzon
et al. (53) in a placebo-controlled, double-blind, crossover
study in which nine children with PMDS aged 5 to 15 years
were treated with IGF-1or placebo for 3 months in a random
order and crossed to the alternative treatment arm after a 4
week wash-out period; interestingly, during the IGF-1 therapy
phase a significant improvement in both social impairment
and restrictive behaviors was demonstrated. To the best of our
knowledge, no studies have been conducted on recombinant
human Growth Hormone (rhGH) therapy in AT/RT and PMDS
and/or r22, this is the first case with GHD treated with hrGH
described in the literature.

In the reported clinical case, hrGH therapy showed
improvement in the growth rate despite an initial low dosage
chosen for safety purposes, body thinness and spinal irradiation.
It is important to underline that hrGH therapy improved the
quality of life, as reported by the parents and demonstrated by a
better resistance to rehabilitation stresses, recovery of dysphagia
for fluids and increased muscle mass.

In consideration of the multiple procedural anesthesia,
essential for radiological follow-up, the involvement of the
multidisciplinary team, turned out to be crucial for reducing
the risks associated with sedation. Indeed, Shank3 mutation
confers enhanced sensitivity to isoflurane volatile anesthetic
in central nervous systems of mutant mice models (16). This
aspect deserves further study considering the important clinical
implications, such as to avoid excessive use of volatile anesthetics,
and suggests that this vulnerable set of patients may need
additional monitoring during anesthesia.

CONCLUSIONS

At the end of this report there are some issues worth further
consideration. To our knowledge, this is the first reported
patient with PMDS and r22 that survived a childhood metastatic
AT/RT. Furthermore, he is the third reported case of r22 and
22q13 deletion not including SMARCB1 associated to this rare
malignant tumor (8, 11). This underlines the importance of
regular screening for early detection of central nervous system
rhabdoid tumors in patients with r22 and deletion of 22q13
(although not involving mutations of the SMARCB1 gene). The
hrGH therapy was safe, it improved the auxological parameters
and the quality of life of the entire family; however, GHD
must be ruled out early when the growth velocity declines,
also in the context of a normal height, in order to initiate
hrGH therapy as soon as the oncological conditions allow it.
The management of GHD in high-grade rhabdoid tumors is
still under debate. In accordance with international guidelines,
especially in the context of genetic cancer predisposition
syndromes, a multidisciplinary discussion is mandatory. The
GHD in cancer survivors could be treated with the same hrGH
doses as is used for non-cancer GHD patients.

Finally, we would like to suggest the importance of studying
and defining a protocol to reduce the potential risks related to
the administration of volatile anesthetics in PMDS.

Following the analysis of Byers et al. (11), it could be
argued that ring chromosome 22 may be decisive for the
occurrence of AT/RT when SMARCB1 is not constitutionally
mutated, however, further histogenetic analyses are necessary to
explore this hypothesis, and the possible involvement of other
contiguous genes.
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