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Sintesi

Studiamo trasformazioni di Cremona determinantale, cioè trasformazioni
birazionale il cui ideale di base è l’ideale dei minori massimali di una matrice
Φ, via la risoluzioni dei sistemi di polinomi definiti da Φ. Usando geometria
convessa, questo approccio porta in particolare a descrivere i gradi proiettivi
di alcuni trasformazioni di Cremona determinantale raccolte.

Parole chiavi: Geometria algebrica, Commutative algebra, Algebra commutativa,

Teoria delle singolarità, ipersuperfici homaloidale, Algebra simmetrica e algebra di Rees,

Syzygies, Risoluzione, Gradi proiettivi d’una trasformazione razionale, Trasformazioni de-

terminantale, Trasformazioni di Cremona, polinomi ed ipersuperfici homaloidale, trasfor-

mazioni di Cremona pfaffiane, volumi misti dei politopi, teorema di Bernstein sugli sistemi

di polinomi, trasformazioni di Cremona determinantale raccolte.

Abstract

We study determinantal Cremona maps, i.e. birational maps whose base
ideal is the maximal minors ideal of a given matrix Φ, via the resolution
of the polynomials systems defined by Φ. Using convex geometry, this ap-
proach leads in particular to describe the projective degrees of some glued
determinantal maps.

Keywords: Algebraic Geometry, Commutative algebra, Singularity theory, Homa-

loidal hypersurfaces, Symmetric and Rees algebra, Syzygies, Resolutions, projective de-

grees of a rational map, determinantal maps, Cremona maps, homaloidal polynomials and

homaloidal hypersurfaces, pfaffian Cremona maps, Mixed volumes of polytopes, Bernstein

theorem on sparse polynomial systems, glued determinantal Cremona map.
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Introduction

This work is about determinantal Cremona maps f = (f0 : . . . : fn) : Pnk 99K Pnk
where n ∈ N∗. Recall that a rational map f : X 99K Y between two algebraic
varieties X and Y , endowed with their Zariski topology, is a representative of an
equivalence class for the equivalence relation that identifies the morphisms coincid-
ing on a dense open subset of X. Given an integer n > 1, when X and Y are both
the n-dimensional projective space Pnk over a field k, a rational map f : Pnk 99K Pnk is
then represented by n+1 homogeneous polynomials f0, . . . , fn ∈ R = k[x0, . . . , xn]
of the same degree and without common factor, a fact that we sum up in the
notation f = (f0 : . . . : fn) : Pnk 99K Pnk .

In this framework, determinantal maps f = (f0 : . . . : fn) : Pnk 99K Pnk are
maps whose defining polynomials f0, . . . , fn are the n-minors of a given (n+ 1)×n
matrix Φf ∈ R(n+1)×n where all the entries of a given column are homogeneous of
the same degree. The matrix Φf is then called the Hilbert-Burch matrix of f , see
below for justifications about this designation.

On the other hand, a map f = (f0 : . . . : fn) : Pnk 99K Pnk and another map
g = (g0 : . . . : gn) : Pnk 99K Pnk which is dominant i.e. whose image is dense on the
target space, can be composed, the composition f ◦ g being defined by the n + 1
polynomials f0(g0, . . . , gn), . . . , fn(g0, . . . , gn) given by substituting g0, . . . , gn to
the variables x0, . . . , xn in f0, . . . , fn. A Cremona maps is a map which has an
inverse g : Pnk 99K Pnk for the composition law, that is to say f ◦ g and g ◦ f
are equal, as rational maps, to the identity morphism of Pnk . Another way to get
familiar with Cremona maps is to consider the polynomial systems they define: let
f = (f0 : . . . : fn) : Pnk 99K Pnk be a dominant map and assume that the base field
k is algebraically closed. Then, given any general point y = (y0 : . . . : yn) ∈ Pnk i.e.
y is such that its components y0, . . . , yn ∈ k are random coefficients, the number
of distinct solutions x = (x0 : . . . : xn) ∈ Pnk of the system

f0(x0, . . . , xn) = y0

...
...

fn(x0, . . . , xn) = yn

does not depend on y. This latter quantity, denoted d0(f) in the following, is called
the topological degree of f . A Cremona map being by definition an isomorphism
between two open subsets of Pnk , f is a Cremona map if and only if d0(f) = 1.
Keeping this latter criterion in mind, a naive strategy to determine if f is a Cremona
map is to compute explicitly the preimages x ∈ f−1({y}) of a general point y ∈ Pnk .
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To look through this strategy, we develop it now in a structuring example for this
work: the one given by the so-called standard Cremona map of P2

k.

Example 1. Let τ2 = (x1x2 : x0x2 : x0x1) : P2
k 99K P2

k over an algebraically closed
ground field k. Its open subset of definition is the set P2

k\{(1 : 0 : 0), (0 : 1 : 0), (0 :
0 : 1)}. Moreover the components x1x2, x0x2, x0x1 of τ2 do not share a common
component and are the 2-(signed) minors of the matrix

Φτ2 =

 x0 0
−x1 x1

0 −x2


so τ2 is a determinantal map. A general point y = (y0 : y1 : y2) ∈ P2

k is the
intersection of two lines, say La = V(a0y0 +a1y1 +a2y2) and Lb = V(b0y0 + b1y1 +
b2y2) and let us compute the preimages x ∈ τ−1

2 (y) of y as follows. Consider the
four 3-minors of the matrix  x0 0 a0 b0

−x1 x1 a1 b1
0 −x2 a2 b2


defined by concatenating the matrix of Φ2 and the 3 × 2-matrix with entries in k
defined by the coefficients of La and Lb. Among these four 3-minors, consider in
particular the point x = (x0 : x1 : x2) defined as zero locus of the ones containing
the coefficients of La and Lb, that is x satisfies:

x0

∣∣∣∣a1 b1
a2 b2

∣∣∣∣+ x1

∣∣∣∣a0 b0
a2 b2

∣∣∣∣ = 0

x1

∣∣∣∣a0 b0
a2 b2

∣∣∣∣+ x2

∣∣∣∣a0 b0
a1 b1

∣∣∣∣ = 0.

The so-called liaison theory, see below for more about liaison theory, applied on
codimension 2 determinantal ideal asserts that this latter zero locus point defines
in general the only solutions of the polynomial system

y0 = x1x2

y1 = x0x2

y2 = x0x1.

Since it is only one point, namely

x =

(∣∣∣∣a0 b0
a2 b2

∣∣∣∣ ∣∣∣∣a0 b0
a1 b1

∣∣∣∣ : −
∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ∣∣∣∣a0 b0
a1 b1

∣∣∣∣ :

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ∣∣∣∣a0 b0
a1 b1

∣∣∣∣) ,
one has d0(τ2) = 1 so τ2 is a Cremona map.

The previous example illustrates a specificity when computing the topological
degree of a determinantal map and one of our starting motivations was to un-
derstand the different tools, for instance provided by liaison theory, in order to
describe determinantal Cremona maps. Moreover, given a determinantal Cremona



map f : Pnk 99K Pnk , we are not only interested in its topological degree d0(f) but
also in all its projective degrees d0(f), . . . , dn(f) which are the quantities such that
for any i ∈ {0, . . . , n},

di(f) = #f−1(Hn−i
y ) ∩Hi

x

is the cardinal of the intersection of the preimage f−1(Hn−i
y ) of a general codimen-

sion n − i linear space Hn−i
y in the target space of f with a general codimension

i linear space Hi
x in the source space of f . One motivation was to understand the

distribution of these quantities when considering determinantal Cremona maps.

Let us now describe in more details the influences which motivated this work.

State of the art about determinantal maps

Maps with palindromic projective degrees

Our starting points are the articles [GSP06] and [DH17] describing, among other
results, a family of cubo-cubic determinantal Cremona maps and a family of quarto-
quartic determinantal Cremona maps in the projective 3-dimensional space P3

k

where a cubo-cubic map f : P3
k 99K P3

k is a map such that(
d0(f), d1(f), d2(f), d3(f)

)
= (1, 3, 3, 1)

and a quarto-quartic map f : P3
k 99K P3

k is a map such that(
d0(f), d1(f), d2(f), d3(f)

)
= (1, 4, 4, 1).

In the first case, the cubo-cubic determinantal maps are defined by the 3-minors of
a 4× 3-matrix with linear entries without algebraic relations between them. This
latter condition is in particular fulfilled when the linear entries are general i.e. that
the coefficients of each entries are taken randomly in k (say k is an algebraically
closed field) and in which case the associated map is called a general determinan-
tal Cremona map [GSP06]. The determinantal quarto-quartic maps described in
[DH17] are particular instances of determinantal maps P3

k 99K P3
k whose defining

4 × 3 Hilbert-Burch matrix is almost linear that is, in this case, that two of its
columns are filled with homogeneous linear polynomials and the remaining column
is filled with homogeneous polynomials of degree 2. If those latter entries were all
general polynomials, the associated determinantal map would not be a Cremona
map and in particular not a quarto-quartic map, see Example 1.1.2 for more ex-
planations. However, if all the degree one entries of one column and all the degree
2 of Φf belongs to the ideal of a line in P3

k, say (x0, x1), and all the entries of Φf
are general under these conditions, one obtains a quarto-quartic Cremona map.

One of the motivations for this present work was to generalize the previous
constructions of determinantal Cremona maps and to clarify the description of
their projective degrees. To complete this picture about projective degrees, let
us emphasize that all the developments we will present in this manuscript fit in
line with a long standing question that one can find in [Dol11, 7.1.3]: given n >
1, let f : Pnk 99K Pnk be a Cremona map. Then its projective degrees d0(f) =
1, d1(f), . . . , dn−1(f), dn(f) = 1 are subject to some constraints defined by the



so-called Cremona’s inequalities and Hodge-type inequalities [Dol11, end of 7.1.3],
namely for 0 6 i, j 6 n:

dn−i−j(f) 6 dn−i(f)dn−j(f)

di+j(f) 6 di(f)dj(f)

dn−i+1(f)dn−i−1(f) 6 dn−i(f)2.

(E)

Problem 2. Given d0 = 1, d1, . . . , dn−1, dn = 1, n integers verifying (E), does
there exist a Cremona map f : Pnk 99K Pnk such that d0(f) = d0, . . . , dn(f) = dn?

If n = 3, the answer to Problem 2 is yes by a result in [Pan13] but it is however
not known in more generality. Even if we won’t bring much to this question,
apart from explicit sequence d0, d1, . . . , dn−1, dn that are realized as the projective
degrees of explicit Cremona maps, it is a background problem we had in mind
when looking at determinantal Cremona maps.

In relation with the quarto-quartic maps, we relied also on [KPU11] where the
three authors described, inter alia, the equations of the graph of a determinantal
map f : P1

k 99K Pnk whose (n + 1) × n-Hilbert-Burch matrix Φf is almost linear
(that is n − 1 columns of Φf are filled with linear homogeneous polynomials and
the remaining columns is filled with homogeneous polynomials of degree d > 2).
Recall that the graph Γf of a map f : X 99K Y between two varieties X and Y is

the closure {
(
x, f(x)

)
∈ X × Y, x ∈ U in the Zariski topology of X×Y of the set of

couple
(
x, f(x)

)
∈ U ×Y for an open subset U ⊂ X such that the restriction fU of

a representative of f to U is a morphism from U to Y . Since the projective degrees
of f can be defined via Γf , the description of the equations of Γf provide precious
information when determining conditions under which f is a Cremona map or not.

Liaison and residuality theory applied to determinantal maps

The article [KPU11] is one of the many works released over the past fifty years
applying the ideas of liaison theory and its generalization, residuality theory, to
the study of rational maps. Let us refer to [PS74] and [MDP90] (resp. [Hun83]) for
introductions and results about liaison theory (resp. residuality) and only mention
that the computation we explained in Example 1 to compute the topological degree
d0(τ2) was nothing but an illustration of those ideas continuously developed over
the past years. We refer now to few of those works that particularly influenced us.

Given a rational map f = (f0 : . . . : fn) : Pnk 99K Pnk (n > 1), a presentation
matrix Φf ∈ R(n+1)×m (R = k[x0, . . . , xn], m > n) of the base ideal

If = (f0, . . . , fn) ⊂ R

provides a first approximation of the equations of Γf , see [RS01], [BCJ09], [BCRD20]
and [CR21] for developments and applications in broader contexts. In restriction
to Cremona maps, the article [HS12] was, as far as we know, the first work to
consider specifically (plane) determinantal Cremona maps by studying numerical
properties of their base locus. The starting idea is that the graph Γf is the proj

ProjR(If ) of the Rees algebra R(If ) = ⊕
k>0

Ikf t
k ⊂ R[t] of If . The surjection



Sym(If ) � R(If ) defined by the natural maps I⊗kf � Ikf provides thus an em-
bedding Γf = ProjR(If ) ⊂ Proj Sym(If ) = P(If ) of Γf in the residual scheme
P(If ) = Proj Sym(If ) of If where the equations of P(If ) in Pnk ×Pnk are the entries
of the line matrix (

y0 . . . yn
)

Φf

where y0, . . . , yn are the variables of the second factors of Pnk × Pnk . The ideal If is
said to be of linear type if P(If ) = Γf and this latter property is characterized by
the codimension of the ideals of the t-minors It(Φf ) of Φf for t ∈ {1, . . . ,min(n,m)}
[RS01, (3),beginning of 2.1]. Provided that the ideal If is of linear type, see [RS01]
or [SUV94], the jacobian dual criterion characterizes the fact that f is a Cremona
map and, assuming that f is determinantal, a refinement of the latter criterion
provides a very effective way to check if f is a Cremona map or not, see [DHS12].

Focusing on the graph Γf of a determinantal Cremona map f : Pnk 99K Pnk
(whose base ideal If is of linear type or not), [HS17, Th.3.7] provides a bound on
the degree of the generators of If if Γf is Cohen-Macaulay (assuming k infinite), a
structuring conditions on the generators and the syzygies of the ideal of Γf in Pnk ×
Pnk , see [BH93] for a definition of Cohen-Macaulay schemes. Regarding specifically
the equations of the graph, our starting point, in addition to [KPU11], is [BCRD20]
where the three authors described, inter alia, the equations of a determinantal
Cremona map f : P2

k 99K P2
k defined by an almost linear Hilbert-Burch matrix Φf

characterized in the same way as the Hilbert-Burch matrix defining quarto-quartic
maps of P3

k in [DH17]. The result in [BCRD20] take its roots in [CHW08] and,
more generally, in Jouanolou’s duality describing the equations of the graph Γf of
a determinantal map f : Pnk 99K Pnk via inertia forms, see [Jou97] and [BCJ09] for
more explanations and results about Jouanolou’s duality.

Parallel to those initial results about (determinantal Cremona) maps, let us
also quote a last influencial result about monomial Cremona maps i.e. maps whose
base ideal is monomial. In [DS16], the two authors describe some key properties
of monomial Cremona maps. Let us however already clear up that determinantal
Cremona maps do not behave as one could expect from the monomial case. For
instance, [CS12a] or the more recent [DS16], established that the inverse of a
monomial Cremona map is a monomial map and one can naively wonder if the
inverse of a determinantal Cremona map is also a determinantal map.

Problem 3. Is the inverse of a determinantal Cremona map determinantal?

The answer to this latter question is no as for instance:

Example 4. Let f : P3
k 99K P3

k be the map defined by the 3-minors of the matrix

Φf =


0 x0 x2

0

x0 0 x0x2 − x2
2 + x1x3

x2 x1 −x2
2 + x1x3

x3 x2 x0x1 + x0x2

 .

Then applying for instance the following Macaulay2 code using the package
Cremona[Sta17]:



loadPackage "Cremona"

k = QQ

R = k[x_0..x_3]

Phif = matrix{

{ 0 ,x_0, x_0^2 },

{x_0, 0 , x_0*x_2-x_2^2+x_1*x_3 },

{x_2,x_1, -x_2^2+x_1*x_3 },

{x_3,x_2, x_0*x_1+x_0*x_2 }

};

f = toMap(minors(3,Phi)); projectiveDegrees f

one has that f is a determinantal Cremona map. Moreover, adding the following
command

g = inverseMap f; Ig = ideal(g(x_0),g(x_1),g(x_2),g(x_3));

syz gens Ig

one can observe that the minimal syzygy matrix of the base ideal If−1 of f−1 is a
4×4 matrix which, as we will explain below, shows that f−1 is not a determinantal
map.

Given these initial developments and results, let us now sum up our contribu-
tions about determinantal Cremona maps that we will develop in the body of this
manuscript.

Contents of the manuscript

Part I is dedicated to define formally the projective degrees d0(f), . . . , dn(f) of
a rational map f : Pnk 99K Pnk and to illustrate in this context their estimations
via the residual scheme P(If ) = Proj Sym(If ) where If is the base ideal of f , see
Chapter 2 and Chapter 3.

The knowledge of the bidegrees of the generators of the ideal IΓf of the graph
Γf of f and the bidegree of all the successive syzygies of IΓf (i.e. the knowledge of
a bigraded free resolution of IΓf ) provides a universal definition of the projective
degrees of f which coincides with the previous definition of projective degrees
assuming that the ground field is algebraically closed, see Chapter 1. It emphasizes
the importance of estimating IΓf .

As a first application of this point of view, we describe in Section 1.2, a very

simple construction of a glued determinantal map [g|g′] : Pm+m′

k 99K Pm+m′

k start-

ing with two initial determinantal maps g : Pmk 99K Pmk and g′ : Pm′k 99K Pm′k . The
Hilbert-Burch matrix Φ[g|g′] is the concatenation of the Hilbert-Burch matrices Φg
and Φg′ of, respectively, g and g′ and our starting result, which assumes that the
graph of [g|g′] has the expected bigraded free resolution, reads:

Proposition 5. Let m,m′ > 1, Rm = k[x0, . . . , xm], Rm′ = k[xm, . . . , xm+m′ ]
and R = k[x0, . . . , xm+m′ ] and let g : Pmk 99K Pmk (resp. g′ : Pm′k 99K Pm′k ) be
a determinantal map such that Ig (resp. Ig′) is the m-minors ideal of a matrix

Φg ∈ R
(m+1)×m
m (resp. the m′-minors ideal of Φg′ ∈ R

(m′+1)×m′
m′ ).



Put




Φg

0m×m′

0m′×m Φg′

m

m′ + 1

m m′

m+ 1

m′

Φ[g|g′] = ∈ R(m+m′+1)×(m+m′)

and assume that the ideal of (m+m′)-minors of Φ[g|g′] is the base ideal of a map

[g|g′] : Pm+m′

k 99K Pm+m′

k .
Suppose that the tensor product Fg ⊗ Fg′ of a free resolution Fg of the graph of

g and a free resolution Fg′ of the graph of g′ provides a free resolution of the graph
of [g|g′]. Then, given any k ∈ {0, . . . ,m+m′}

dk([g|g′]) =

k∑
p=0

dp(g)dk−p(g
′) (1)

with the convention that dp(g) = 0 (resp. dp(g
′) = 0) if p > m (resp. p > m′).

As we will develop it in Proposition 1.2.3, Lemma 1.2.1 shed also some lights
on the distribution of the projective degrees of the standard Cremona map

τn = (x1 · · ·xn : x0x2 · · ·xn : . . . : x0 · · ·xn−1) : Pnk 99K Pnk

which can be interpreted as the gluing of n standard Cremona maps τ
(1)
1 = (x1 :

x0) : P1
k 99K P1

k, τ
(2)
1 = (x2 : x1) : P1

k 99K P1
k, . . ., τ

(n)
1 = (xn : xn−1) : P1

k 99K P1
k.

Indeed, Iτn is the n-minors ideal of the (n+ 1)× n matrix

Φτn =



x0 0 . . . . . . 0

−x1 x1

. . .
.
.
.

0 −x2

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

.

.

.
. . .

. . . xn−1

0 . . . . . . 0 −xn


which is the concatenation of the presenting matrices Φ

τ
(1)
1

=
(
x0

−x1

)
, . . . , Φ

τ
(n)
1

=(
xn−1

−xn

)
of, respectively, I

τ
(1)
1
, . . . , I

τ
(n)
1

completed with zeros entries. Even if our

results are far from being complete regarding the description of the graph of glued
maps, it gives however new perspectives about maps with palindromic projective
degrees and among which cubo-cubic and quarto-quartic determinantal maps, see
Conjecture 1.2.4. It motivates also our study of glued maps via indirect approach
in Part II.

Leaving our hopes to fully determine bigraded free resolution of the ideal of
the graph of determinantal Cremona maps in Chapter 1, we focus specifically in



Chapter 2 and Chapter 3 on the generators of the ideal of the graph of a determi-
nantal map starting from the equations of those of the residual scheme associated
to the base ideal. Let us point out another time that by the jacobian dual criterion,
see [SUV94], one can determine if a determinantal map is a Cremona map via its
Hilbert-Burch matrix. It explains why we focus on the equations of the residual
scheme.

Chapter 2 falls under this approach in the context of rational maps that are
defined by the polar of projective hypersurface. Recall that given a hypersurface
H = V(h) ⊂ Pnk for a given homogeneous polynomial h ∈ k[x0, . . . , xn], the polar
fh of H is the map

fh = (h0 : . . . : hn) : Pnk 99K Pnk
where, given i ∈ {0, . . . , n}, hi = ∂h

∂xi
is the i-th partial derivative of h. The

hypersurface H and the polynomial h are called homaloidal if fh is a Cremona map.
Over C, a result of I.V. Dolgachev states that the complex homaloidal polynomials
in three variables, i.e. the homaloidal complex curves are of degree at most three.
Answering [DHS12, Question 3.7], we describe homaloidal polynomials in three
variables of arbitrarily large degree in positive characteristic, namely:

Theorem 2.0.4. Let k be a field of characteristic p and let n ∈ N>0 be a multiple
of p. Then the near-pencil arrangement of n+ 1 lines is homaloidal.

From the point of view of determinantal maps, the relevance of such a result
comes from its proof. It consists in studying the reduction modulo p of the Hilbert-
Burch matrix of the base ideal of fh which are determinantal in all the cases we
will consider, see the developments in Chapter 2. In addition to this result, we also
provide the classification of homaloidal line arrangements at the end of Chapter 2.

In line with [KPU11] and [DH17], Chapter 3 is dedicated to the equations of
the graph Γf of a Cremona map f : P3

k 99K P3
k whose 4 × 3 Hilbert-Burch matrix

Φf is almost linear. This work was lead under the supervision of B.Ulrich and
C.Polini at Purdue University in winter 2020. Following [KPU11], the approach is
to express Γf as a divisor on the complete intersection scheme, denoted Xf only in
this introduction, defined by the n − 1 equations of bi-degree (1, 1) (meaning the
equations of degree 1 in the variables x0, . . . , x3 and 1 in the variables y0, . . . , y3)
among the entries of the line matrix(

y0 . . . y3

)
Φf .

When the divisor class group Cl(Xf ) is cyclic, a condition that we will explicit in
the development, the cycle [Γf ] ∈ Cl(Xf ) defined by Γf is then the symbolic power
of the generator of Cl(Xf ), a property that provides an effective insight on all the
equations of Γf . Via the normal form of the 4 × 2 matrices with linear entries in
R = k[x0, . . . , x3], a classification of the possible divisor class, cyclic or not, can be
obtained, see Subsection 3.1.2. The strength of such an approach is that it gives a
clear insight about all the possible ideals of graphs of Cremona maps f : P3

k 99K P3
k

with an almost linear Hilbert-Burch matrix and whose associated scheme Xf has
a cyclic divisor class group. More precisely:

Proposition 3.0.1. Let f : P3
k 99K P3

k be a dominant determinantal map such
that:



(i) the Hilbert-Burch matrix Φf of f reads

Φf =


x0 x3 φ03

x1 0 φ13

0 x0 φ23

0 x2 φ33


with φi3 ∈ (x0, x1)d−1 of degree d for all i ∈ {0, . . . , 3}. Then the ideal of Γf
is minimally generated by one element in the following bi-degree:

(d, 1), (d− 1, 2)(d− 2, 3), . . . , (1, d)

and two extra other generators in bidegree (1, 1).

(ii) The Hilbert-Burch matrix Φf of f reads

Φf =


x0 x2 φ03

x1 x3 φ13

0 x0 φ23

0 x1 φ33


with φi3 ∈ (x0, x1)d−1 of degree d for all i ∈ {0, . . . , 3}. Then the ideal of Γf
is minimally generated by the elements in the following bi-degree if d is even:

(d, 1), 2(d−1, 2), 3(d−2, 3), . . . ,
d

2
(
d

2
+1,

d

2
),
d

2
(
d

2
,
d

2
+1), . . . , 2(2, d−1), (d, 1)

and two extra other generators in bidegree (1, 1) (here m(d1, d2) means that
the component of degree (d1, d2) of the ideal of Γf is minimally generated by
m elements). If d is odd, Γf is minimally generated by the elements in the
following bi-degree:

(d, 1), 2(d− 1, 2), 3(d− 2, 3), . . . ,
d+ 1

2
(
d+ 1

2
,
d+ 1

2
), . . . , 2(2, d− 1), (d, 1)

and two extra other generators in bidegree (1, 1).

These two possible behaviors in the case of P3
k have to be compared with its

analogue in P2
k, see [BCRD20, Th.5.12], in which case only one possible behavior

is possible.
Part II is dedicated to studying specifically the projective degrees of determi-

nantal Cremona maps using tools from convex geometry applied to the resolution
of polynomial systems. When interested in the topological degree d0(f) of a de-
terminantal map f = (f0 : . . . : fn) : Pnk 99K Pnk , remark that two polynomial
systems can be considered. An initial one, in the end the main object of this work,
is defined by f itself: given y = (y0 : . . . : yn) ∈ Pnk in the target space of f , one
wants to find the pre-images x ∈ Pnk of y, i.e. wants to solve the polynomial system

f(x) = y⇔


y0 = f0(x0, . . . : xn)

...

yn = fn(x0, . . . : xn)



Expressing y as the intersection of n hyperplans in the target space of f and
assuming that y is general enough, Bézout theorem then asserts that d0(f) =
#f−1({y}) 6 dn where d = dn−1(f) is the common degree of the polynomials
fi generating the base ideal If = (f0, . . . , fn) of f . An intermediate polynomial
system is moreover defined by a presentation matrix Φf of If . Indeed, by definition
of Φf , one has (f0 . . . fn)Φf = 0 so the polynomial system

(y0 . . . yn)Φf = 0 (A)

whose number of equations is the number of columns of Φf , contains by definition
f−1({y}). Now consider the situation where f is a determinantal map of (n+1)×n
Hilbert-Burch matrix Φf = (φij) 06i6n

16j6n
(n + 1) × n and such that the residual

scheme P(If ) of If is a complete intersection in its embedding in Pnkk×Pnk defined
by Φf , a special situation in which case we will say that f is Koszul-determinantal
in reference to the fact that the ideal of P(If ) is generated by a regular sequence.
Thus the system (A) is 0-dimensional in Pnk and it’s number of solutions is described
by Bézout theorem. Our observation is that in case the entries of Φf are sparse
polynomials that all verify the same algebraic constraints on their coefficients,
one can refine the bound on the number of solutions of (A) by using Bernstein’s
theorem on sparse polynomials. It then gives a combinatorial translation, via the
computation of mixed volumes associated to the polynomial entries of Φf , to the
problem of detecting determinantal Cremona maps. Our motivation was here to
understand the degrees of Koszul-determinantal maps defined by an almost linear
Hilbert-Burch matrix starting from the polytopes defined by Φf , thus providing
an alternative approach to the ones in Part I. It provides in particular a common
view on cubo-cubic and quarto-quartics maps that one can interpret as specific
instances of glued maps. Our result in this direction being:

Proposition 5.3.3. Let d > 2 and let Φ[g|g′] = (φij) 06i62+n
16j62+n

be such that:

• all the entries φi1 of the 1-st column of Φ[g|g′] are general linear combinations
of x0 and x1,

• all the entries φi1 of the 2-nd column of Φ[g|g′] are general linear combinations
of the generators of the ideal

(x0, x1)d−1 · (x0, x1, x2) = (xd0, x
d−1
0 x1, x

d−1
0 x2, . . . , x

d−1
1 x2, x

d
1),

• for all l ∈ {3, . . . , 2 + n}, all the entries φil of the l-th column of Φ[g|g′] are
general linear combinations of x2, . . . , x2+n.

Then the glued map [g|g′] : P2+n
k 99K P2+n

k whose base ideal I[g|g′] is the (m+n)-
minors ideal Φ[g|g′] is a determinantal Cremona map and moreover:

∀k ∈ {0, . . . , 2 + n}, dk([g|g′]) =

(
n

n− k

)
+ (d+ 1)

(
n

n− k + 1

)
+

(
n

n− k + 2

)
with the convention that

(
j
i

)
= 0 if i < 0 or i > j. In particular, the projective

degrees of [g|g′] is a palindromic sequence.



Let us precise that, even if we did not find any trace of the previous construction
in the litterature, other processes of building Cremona maps starting from an
initial one in a smaller space have already been described for instance in [CS12b].
Our work can also be put in line with another aspect of [CS12b] or [DS16] and
the Newton complementary dual construction presented therein : the composition
of two maps. Indeed, under restrictions, the composition of two determinantal
Cremona maps is a determinantal Cremona map, see Proposition B.1.1 in the
annex.

Chapter 4 provides the basic material about convex geometry and mainly fol-
lows [CLO05]. The main observation, labeled Proposition 5.1.6, is that given a
Koszul-determinantal map f : Pnk 99K Pnk of Hilbert-Burch matrix Φf , and pro-

vided that the scheme P(If )\Γf is contained in the axis
n
∪
i=0

V(xi), the projective

degrees d0(f), . . . , dn(f) of f are computed by the mixed volumes associated to the
polytopes defined by Φf , using notations and assumptions of Proposition 5.3.3, re-
sults of convex geometry, in particular [ST10, Lemma 6] (see Lemma 4.2.5 below),
provide then formulas to compute the mixed volumes of the polytopes defined by
the glued Hilbert-Burch matrix Φ[g|g′], emphasizing that the projective degrees are
controlled by the same Kunneth-like formulas as in Proposition 5.

In addition to apply convex geometry to the definition and study of glued map,
we use the tools provided by the mixed volumes to study determinantal plane
Cremona maps with non almost linear Hilbert-Burch matrix, see Section 5.2 which
leads for instance to the following result:

Example 5.2.6. The determinantal map f : P2
k 99K P2

k of Hilbert-Burch matrix

Φf =

 0 x0(x0x2 − x0x1)2

x0x2 − x0x1 x1(x1x2 − x0x2)2

x1x2 − x0x2 0


is a Cremona map (d(f) = (1, 7, 1)).

See Proposition 5.2.3 and Proposition 5.2.5 for our extended results.
In Chapter 6, we focus on determinantal Cremona map f : Pnk 99K Pnk which are

not Koszul-determinantal or, equivalently, such that the associate residual scheme
P(If ) is not a complete intersection. We provides examples of such maps and we
explain how convex geometry still sheds some lights on their projective degrees.

The annex is dedicated to the study of pfaffian Cremona maps i.e. maps Pnk 99K
Pnk (n > 4 odd) whose base ideal is defined by the n-pfaffians of a (n + 1) ×
(n + 1) skew symmetric matrix Φf whose non zero entries are polynomials of the
same degree. With the definitions we use in this manuscript, such maps are not
determinantal but, by [BE77], the free resolution of their base ideal is characterized
in an analogue way as in the case of determinantal base ideal, provided some natural
technical conditions. It seemed thus relevant to add the analysis of the projective
degrees of some of the pfaffian maps. In particular, we will explain how residuality
and especially results in [KU92] provides a description of the projective degrees of
pfaffian Cremona maps defined by an (n+1)×(n+1) skew symmetric matrix whose
entries are general linear polynomial which, as far as we know, was not written in
the existing literature. For instance:



Proposition A.0.1. The projective degrees (d0(p), d1(p), d2(p), d3(p), d4(p)) of a
pfaffian map P4

k 99K P4
k defined by the 4-pfaffians of a 5 × 5-matrix Φp whose

subdiagonal is filled with general linear homogeneous polynomials reads

(1, 3, 22, 2, 1).

We end this manuscript by summarizing some of the questions that arose while
we studied determinantal maps and are still open to us, see Appendix B.



Part I

Computation of the projective
degrees of a determinantal map
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Chapter 1

Resolution of the graph of a map

1.1 Background about bigraded free resolutions

In this section, we introduce the basic notions and material about the projective
degrees of a map, especially in the determinantal case. As previously explained in
[MS05, Chapter 8], the theory of multigraded Hilbert series is the best context for
defining and studying the multidegree of subschemes in multiprojective spaces. We
adapt here previous expositions as in [MS05] or the more recent one in [CR21] to
the following bi-graded context: given a map f = (f0 : . . . : fn) : Pnk 99K Pnk with
base ideal If = (f0, . . . , fn) ⊂ R = k[x0, . . . , xn] the symmetric algebra Sym(If )
of If is Z2-graded, as we will explain. The point of this section is to clarify the
contribution of the torsion of the symmetric algebra to the computation of the
projective degrees of f provided f is determinantal.

For the rest of the section, we let n > 2 be an integer, k be any field (unless
further assumptions are specified), R = k[x0, . . . , xn] and S = R[y0, . . . , yn] be
the Z2-graded polynomial ring with the standard graduation deg(xi) = (1, 0) and
deg(yi) = (0, 1) for all i ∈ {0, . . . , n}. Given a bi-graded algebra B, we let BiProj(B)
be the set of bi-graded prime ideals of B. Thus, a subscheme X of BiProj(S) ' Pnk×
Pnk is defined by a bi-graded ideal A ⊂ S and one associates to X = BiProj(S/A)
its bi-variate Hilbert series

HS/A(T0, T1) =
∑

(n0,n1)∈Z2

(length(S/A)(n0,n1)T
n0
0 Tn1

1 .

Then, writing HS/A(T0, T1) =
NumS/A(T0,T1)

(1−T0)n(1−T1)n and assuming that the scheme X =

BiProj(S/A) has codimension c, the coefficients of the homogeneous component of
NumS/A(1− T0, 1− T1) of total degree c define the multidegree of X.

Definition 1.1.1 (multidegree of a subscheme in Pnk × Pnk ). Let A be a bi-graded
ideal of S and assume that X = BiProj(S/A) has codimension c in BiProj(S) '
Pnk × Pnk .

Given k ∈ {0, . . . , c}, define degc−k,kP X as the coefficient of the monomial of
bi-degree (c− k, k) of NumS/A(1− T0, 1− T1).

The multidegree degP X of X is the c+ 1-uple

degP X =
(

degc,0P X, . . . ,deg0,c
P X

)
.
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Example 1.1.2 (multidegree of complete intersection in P3
k × P3

k). Put n = 3, fix
three positive integer d1, d2, d3 > 1 and consider a matrix Φ = (φij) 06i63

16j63
such that

deg(φij) = (dj , 0) for all i ∈ {0, . . . , 3}, j ∈ {1, . . . , 3} (i.e. the entries of Φ do not
depend on the y-variables).

Let J be the ideal generated by the entries of the line matrix(
y0 y1 y2 y3

)
Φ

and assume that X = BiProj(S/J) has codimension 3 as it is for instance the case
if given j ∈ {1, 2, 3} and i ∈ {0, . . . , 3}, φij is a general polynomial of degree dj .
The subscheme X being thus a complete intersection, the Koszul complex on the
entries of

(
y0 y1 y2 y3

)
Φ provides a bi-graded free resolution of S/J [Eis95,

Chapter 16]:

0 S(−
3∑
k=1

dk,−3) ⊕
k<k′

S(−dk − dk′ ,−2)
3
⊕
k=1

S(−dk,−1) S

from which we can compute that

NumS/J(T0, T1) = 1−
3∑
k=1

T dk0 T1 +
∑
k<k′

T
dk+dk′
0 T 2

1 − T
d1+d2+d3
0 T 3

1 .

So, focusing on the component of total degree 3 of NumS/J(1−T0, 1−T1), one has
that:

deg3,0
P X = σ3,3(d1, d2, d3) = d1d2d3,

deg2,1
P X = σ2,3(d1, d2, d3) =

∑
k<k′

(dk + dk′),

deg1,2
P X = σ1,3(d1, d2, d3) =

3∑
k=1

dk,

deg0,3
P X = σ0,3(d1, d2, d3) = 1

where for k ∈ {0, . . . , 3}, σk,3(u1, u2, u3) =
∑

{i1,...,ik}⊂{1,2,3}
ui1 . . . uik is the k-th

elementary symmetric polynomial in 3 variables.

Remark 1.1.3. As it is explained for instance in [Har92, Proposition 7.16] or
[CR21, Theorem 4.7], the multidegree degP X =

(
degc,0P X, . . . ,deg0,c

P X
)

of a c-
dimensional subscheme X ⊂ Pnk × Pnk has the following geometric interpretation.
Since the Chow ring A(Pnk × Pnk ) (see [EH16, Chapter 1]) of Pnk × Pnk is isomorphic
to the ring Z[ξx, ξy]/(ξn+1

x , ξn+1
y ) [EH16, Theorem 2.10] where ξx (resp. ξy) is the

pull-back of the hyperplane class of Pnk via the first (resp. second) projection map
Pnk × Pnk → Pnk , the class [X] of X in Ac(Pnk × Pnk ) satisfies the relation

[X] =

n∑
k=c−n

(degc−k,kP X)ξn−kx ξn−c+ky



Hence, assuming the base field k is algebraically closed and letting k ∈ {0, . . . , c},
we have:

degc−k,kP X = length(Hk
x ∩ X ∩Hc−k

y )

where Hk
x = V(l1,0, . . . , lk,0) is the zero locus of k general linear forms l1,0, . . . , lk,0

in the x-variables (that is deg(li,0) = (1, 0) for all i ∈ {0, . . . , k}) and Hk
y =

V(l0,1, . . . , l0,c−k) is the zero locus of c − k general linear forms l0,1, . . . , l0,c−k in
the y-variables.

Let us now define the projective degrees of a rational map.

Definition 1.1.4 (projective degrees of a map). Let f : Pnk 99K Pnk , regular on a

dense open subset U ⊂ Pnk , and let Γf = {
(
x, f(x)

)
, x ∈ U} ⊂ Pnk×Pnk be the graph

of f . It is of pure dimension n so, for k ∈ {0, . . . , n}, define the k-th projective
degree of f , written dk(f), by

dk(f) := degn−k,kP Γf

.

Following Remark 1.1.3, observe that d0(f) = 1 if and only if f is an isomor-
phism between two dense open subsets of Pnk in which case f is called birational
or, equivalently in this case, is a Cremona map.

Remark 1.1.5. Following [Tru01, After Th.4.6], let us point out that the k-th
projective degree dk(f) of a map f = (f0 : . . . : fn) can be equivalently defined as
the multiplicity of the ring R/(a1, . . . , ak : I∞f ) where a1, . . . , ak are general linear
combinations of f0, . . . , fn and (a1, . . . , ak : I∞f ) stands for the saturation of the
ideal (a1, . . . , ak) by If = (f0, . . . , fn). In this context, the quantities dk(f) are
usually called the mixed multiplicities of If , see also below for more explanations
about this algebraic definition of the projective degrees.

Algebraically, the graph Γf of a map f = (f0 : . . . : fn) : Pnk 99K Pnk is the Proj

of the Rees algebra R(If ) = ⊕
k>0

Ikf t
k of the base ideal If of f and the embedding

of Γf in Pnk 99K Pnk is defined by the surjection S� R(If ) sending the variables yi
to fit. In practice, the kernel J of the latter surjection may be difficult to compute
and an approximation of J is more accessible by considering the symmetric algebra
of If , this is a classical approach that we now summarize briefly in our context of
rational maps, see [Vas05] for an introduction in a broader context and pointers to
references about this procedure. The presentation matrix Φf of If , by definition
verifying the following short exact sequence:

Rm Rn+1 If 0,
φ (f0 ... fn)

defines an embedding of P(If ) = Proj
(

Sym(If )
)

in Pnk 99K Pnk whose ideal J1 is
generated by the m entries of the line matrix (y0 . . . yn)φ (here we consider that
φ is a matrix both in R and S = R[y0, . . . , yn]). Now, since the natural surjection
Sym(If ) � R(If ) factorizing the maps I⊗kf � Ikf defines an embedding of Γf in
P(If ), one has that J1 ⊂ J, i.e. J1 provides some equations of Γf and the ideal If
is of linear type precisely when J1 = J.



At the level of the projective degrees, assuming that P(If ) has codimension n,
the inclusion J1 ⊂ J provides moreover the following estimations:

∀k ∈ {0, . . . , n}, dk(f) 6 degn−k,kP P(If ). (1.1.1)

Let us now present a first special feature of determinantal rational maps after
presenting basic facts about them.

Definition 1.1.6 (Hilbert-Burch matrix of a (Koszul)-determinantal map). Given
that the base ideal If = (f0 : . . . : fn) ⊂ R of f verifies codim

(
V(If )

)
> 2 and

that If is the n-minors ideal of a (n+1)×n-matrix, Hilbert-Burch theorem [Eis95,
Theorem 20.15] states that If is the n-minors ideal of its presentation matrix Φf ,
i.e. the presentation of If reads:

0 Rn Rn+1 If 0.
Φf (f0 ... fn)

It motives why the matrix Φf is called the Hilbert-Burch matrix of f in the follow-
ing.

Actually, when keeping track of the graduation in the previous short exact
sequence

0
n
⊕
k=1

R(−dk) Rn+1 If (d) 0
Φf (f0 ... fn)

where d =
n∑
k=1

dk, we will call the positive integer d1, . . . , dn > 1 the syzygetic

degrees of f .
At this point, observe also from the equations (y0 . . . yn)Φf defining the em-

bedding of P(If ) in Pnk × Pnk that the conditions:

∀k ∈ {1, . . . , n− 1}, codimV
(

Ik(Φf )
)
≥ n+ 1− k (1.1.2)

are the required conditions in order that codim
(
P(If )

)
has codimension n in which

case P(If ) is a complete intersection and a minimal free resolution of its coordinate
ring is the Koszul complex on the entries of (y0 . . . yn)Φf . Thus from now on, a
Koszul-determinantal map f = (f0 : . . . : fn) : Pnk 99K Pnk is a map such that the
following two conditions are verified:

• a minimal presentation of If = (f0, . . . , fn) reads:

0 Rn Rn+1 If 0.
Φf (f0 ... fn)

• the conditions (1.1.2) are satisfied.

Remark 1.1.7. As it is stated for instance in [RS01, Subsection 2.1], If is of linear
type if

∀k ∈ {1, . . . , n}, codimV
(

Ik(Φf )
)
≥ n+ 2− k

so studying Koszul-determinantal maps is a first step toward understanding deter-
minantal Cremona maps not necessarily of linear type.

Remark also that the notion of determinantal and Koszul-determinantal map
coincide in the plane case n = 2.



Proposition 1.1.8. Let f = (f0 : . . . : fn) : Pnk 99K Pnk be a Koszul-determinantal
map of syzygetic degree d1, . . . , dn > 1, then for all k ∈ {0, . . . , n},

dk(f) 6 σn−k,n(d1, . . . , dn) =
∑

{i1,...,ik}⊂{1,...,n}

di1 . . . dik (1.1.3)

where σk,n(u1, . . . , un) is the k-th symmetric polynomial in n variables.

Proof. Letting Φf be the (n+1)×n Hilbert-Burch matrix of f , the ideal J1 of P(If )
in Pnk ×Pnk is generated by the n entries φ1, . . . , φn of the line matrix (y0 . . . yn)φ.
Since conditions (1.1.2) are moreover satisfied, P(If ) has codimension n in Pnk ×Pnk
so P(If ) is a complete intersection and the Koszul complex on φ1, . . . , φn ∈ S

0 S(−
n∑
k=1

dk,−n) . . .
2
∧
( n
⊕
k=1

S(−dk,−1)
) n

⊕
k=1

S(−dk,−1) S

provides a minimal bi-graded free resolution of the coordinate ring of P(If ). As
it was done in Example 1.1.2, we compute the numerator NumS/ J1

(T0, T1) of the
Hilbert series of S/ J1 from which we extract the component of total degree n of
NumS/ J1

(1− T0, 1− T1):

∀k ∈ {0, . . ., n},

degn−k,kP P(If ) = sn−k,n(d1, . . . , dn) =
∑

{i1,...,ik}⊂{1,...,n}

di1 . . . dik .

The conclusion of the proposition follows then from (1.1.1).

We point out that the conclusion of Proposition 1.1.8 is classical and had been
established in more general context of maps f : Pnk 99K Pn′k with n 6 n′, see
for instance [CR21, Theorem 5.7]. It explains however why, when interested in
determinantal Cremona maps, one has also to consider base ideal not of linear
type or else, if the base ideal is of linear type, the entries of the presentation
matrix can only contain linear polynomials (case d1 = . . . = dn = 1 of the previ-
ous proposition). In other words, one has to consider the kernel of the surjection
Sym(If ) � R(If ) in order to understand the level of approximations of the in-
equalities (1.1.3). This kernel is the R-torsion of Sym(If ) [Mic64] described by the
Fitting ideals of If , i.e. by the ideals Ik(Φf ) of k-minors of the presentation matrix
Φf of If for k ∈ {1, . . . , n− 1}, see [Vas05, Prop. 1.1 and below] and [BCJ09]. In
our context of determinantal base ideal If , these ideals of k-minors of Φf have an
expected codimension [RS01, Subsection 2.1]:

∀k ∈ {1, . . . , n}, codimV
(

Ik(Φf )
)
≥ n+ 2− k,

conditions ensuring that If is of linear type (see also Remark 1.1.7). Accordingly,
let us now describe for each k ∈ {1, . . . , n}, the contribution of the possible defect
codimV

(
Ik(Φf )

)
= n+ 1− k on the projective degrees of f .

Proposition 1.1.9. Let f : Pnk 99K Pnk be a Koszul-determinantal rational map of
Hilbert-Burch matrix Φf and let

j0 := min{j ∈ {1, . . . , n}, codimV
(
Ij(Φf )

)
> n+ 2− j}.



Then:
∀k ∈ {j0 − 1, . . . , n}, dk(f) = degn−k,kP P(If ).

Moreover if j0 > 1, dj0−2(f) < degn−j0+2,j0−2
P P(If ).

Proof. First, since the computation of the projective degrees of a map depends on
the free resolution of the coordinate ring of its graph Γf and since the multidegree
are invariant when taking the algebraic closure k of k, we can assume that k is
algebraically closed. Thus, to show Proposition 1.1.9, we consider the geometric
interpretation of the projective degrees of f as described in Remark 1.1.3.

Now remark that P(If ) decomposes is set-theoretically the union Γf ∪P(If )\Γf
where P(If )\Γf is the closure of P(If )\Γf in the Zariski topology. This decom-
position is a consequence of the fact that P(If ) is a complete intersection and

that Γf is residual to the torsion in P(If ). In addition, P(If )\Γf is supported on
the zero locus Proj

(
S/ Ij0−1(Φf )

)
⊂ Pnk × Pnk defined by Ij0−1(Φf ) (as an ideal in

S = R[y0, . . . , yn]).
But by assumption, since codim Proj

(
S/ Ij0−1(Φf )

)
> n − j0 + 2, for any k ∈

{j0−1, . . . , n}, the intersection Hn−k
x ∩V

(
Ij0−1(Φf )

)
⊂ Pnk ×Pnk and consequently

the intersection Hn−k
x ∩ P(If )\Γf are empty for any general linear space Hn−k

x of
codimension n − k in the x-variables (i.e. Hn−k

x = V(l1,0, . . . , lcnk,0) ⊂ Pnk × Pnk
is the zero locus of n − k general linear forms l1,0, . . . , lc−k,0 in the x-variables).
Hence, for all k ∈ {j0 − 1, . . . , n}, the intersection Hn−k

x ∩ Γf and Hn−k
x ∩ P(If )

coincide so dk(f) = degn−k,kP P(If ).
Actually, since codim Proj

(
S/ Ij0(Φf )

)
= n − j0 + 1, the intersection Hj0−2

x ∩
Proj

(
S/ Ij0(Φf )

)
and the intersection Hn−k

x ∩ P(If )\Γf are not empty for any
general linear space Hn−k

x of codimension n−j0 in the x-variables. The intersection
Hj0−2

x ∩ Γf is thus strictly included in Hj0−2
x ∩ P(If ) so

dj0−2(f) < degn−j0+2,j0−2
P P(If )

which shows the last assertion in case j0 > 1.

From the geometric intuition, assuming j0 > 2, one could believe that for all
k ∈ {0, . . . , j0−2}, dk(f) < degn−k,kP P(If ) but it may happen that the torsion has
an actual impact only on one term, as illustrated by the following example:

Example 1.1.10. Let f : P3
k 99K P3 be the rational map whose Hilbert-Burch

matrix is

Φf =


x0 0 x0x1

x1 x0 x2
0

0 x1 x0x3

x2 x3 x1x2

 .

Then codimV
(
I2(Φf )

)
= 2 < 3 and codimV

(
I3(Φf )

)
= 4. Hence, by Propo-

sition 1.1.9, d1(f) < deg2,1
P P(If ) = 5, however in this example one has also

d0(f) = deg3,0
P P(If ) = 2, the complete multidegree being

d(f) = (2, 4, 4, 1),

degP P(If ) = (2, 5, 4, 1)

as it can be computed from a computer system as Macaulay2.



In fact, assuming that the coordinate ring of the defect P(If )\Γg is Cohen-
Macaulay [Eis95, Chapter 18], one can compute directly the bi-graded free resolu-
tion of the graph of a map f starting from the bi-graded free resolution of P(If )

and the bi-graded free resolution of P(If )\Γg. Thus, assuming that the coordinate
ring of the torsion is Cohen-Macaulay, one can compute algebraically the projective
degrees of f without geometric interpretation. This latter remark relies on [Eis95,
Exercise 21.23] and we give it an illustration now.

Example 1.1.11. Let f : P3
k 99K P3

k be the determinantal map whose Hilbert-
Burch matrix reads:

Φf =


x0 0 x2

0

x1 0 x2
1

0 x2 x0x1 − x1x2

0 x3 x0x2

 .

From the fact that I2(Φf ) = (x0, x1), one can read from the matrix Φf that the

ideal It of the torsion P(If )\Γf is equal to (x0, x1, x2y2 + x3y3) and hence it is
arithmetically Cohen-Macaulay (as it is perfect i.e. the length of its resolution is
equal to its codimension [BH93, Definition 1.4.15]). From the minimal bi-graded
free resolution of P(If )

0 S(−4,−3)
S(−2,−2)
⊕

S(−3,−2)2

S(−1,−1)2

⊕
S(−2,−1)

S

and the minimal bi-graded free resolution of It

0 S(−3,−1)
S(−2, 0)
⊕

S(−2,−1)2

S(−1, 0)2

⊕
S(−1,−1)

S

one can construct the following free resolution of Γf as a mapping cone of the
previous two, see [Eis95, Exercise 21.23]

0 S(−3,−3)2

S(−3,−2)
⊕

S(−2,−2)3

⊕
S(−2,−3)

S(−2,−1)
⊕

S(−1,−1)2

⊕
S(−1,−2)

S

from which one has that d(f) = (1, 4, 4, 1) is palindromic (for more about Cremona
maps whose graph has a Cohen-Macaulay coordinate ring, see for instance [HS17]).

1.2 A first application: the projective degrees of some
glued maps

Notation 6. When recalling generalities about rational maps, we consider a
positive integer n ∈ N∗, R = k[x0, . . . , x0], Pnk = Proj(R) and a rational map
f : Pnk 99K Pnk .



When considering glued maps, we let m,m′ > 1, Rm = k[x0, . . . , xm], Rm′ =
k[xm, . . . , xm+m′ ], R = k[x0, . . . , xm+m′ ] and we always consider that Rm and Rm′

are embedded in R. Let also g : Pmk 99K Pmk (resp. g′ : Pm′k 99K Pm′k ), where

Pmk = Proj(Rm) (resp. Pm′k = Proj(Rm′)). The associated glued map is denoted

[g|g′] : Pm+m′

k 99K Pm+m′

k where Pm+m′

k = Proj(Rm+m′).

Now let us clarify in which embedding we consider the graphs Γg and Γg′ of,

respectively, a map g : Pmk 99K Pmk and g′ : Pm′k 99K Pm′k see Notation 6. Denote
by Sm = Rm[y0, . . . , ym], Sm′ = Rm′ [ym, . . . , ym+m′ ], S = R[y0, . . . , ym+m′ ] and

IΓg ⊂ S (resp. IΓg′ ⊂ S) be the ideal of the graph Γg ⊂ Pm+m′

k × Pm+m′

k of g

(resp. Γg′ ⊂ Pm+m′

k × Pm+m′

k of g′) where Γg ⊂ Pm+m′

k × Pm+m′

k = BiProj(S).
Geometrically, Γg (resp. Γg′) is thus the cone of vertex Γg ∩ Pmk × Pmk (resp.

Γg′ ∩ Pm′k × Pm′k ) where Pmk × Pmk = BiProj(Sm) (resp. Pm′k × Pm′k = BiProj(Sm′).
Proposition 5 follows from the following results about Γg ∩ Γg′ .

Lemma 1.2.1. Assume that the tensor product Fg ⊗ Fg′ , of a bigraded free res-
olution Fg of Γg with a bigraded free resolution Fg′ of Γg′ , is a free resolution of
Γg ∩ Γg′ . Then for any k ∈ {0, . . . ,m+m′}:

dk([g|g′]) =

k∑
p=0

dp(g)dk−p(g
′).

Proof. By assumptions, the numerator NumS/ IΓg∩Γ
g′

(T0, T1) of the Hilbert series

of S/ IΓg∩Γg′ is the product Numg(T0, T1) Numg′(T0, T1) of the numerators of the
Hilbert series of respectively S/ Ig and S/ Ig′ .

Focusing on the homogeneous component of total degree m + m′ of the poly-
nomial Num[g|g′](1− T0, 1− T1), we thus have:(

NumS/ IΓg∩Γ
g′

(1− T0,1− T1)
)
m+m′

=
(

Numg(1− T0, 1− T1) Numg′(1− T0, 1− T1)
)
m+m′

=
(

Numg(1− T0, 1− T1)
)
m

(
Numg′(1− T0, 1− T1)

)
m′

the last equality holds because
(

Numg(1−T0, 1−T1)
)
m

(resp.
(

Numg′(1−T0, 1−
T1)
)
m′

) is also the homogeneous component of smallest total degree of Numg(1−
T0, 1− T1) (resp. Num′g(1− T0, 1− T1)) as Γg, being the cone over the graph of g,
is irreducible of codimension m (resp. Γg′ is irreducible of codimension m′).

Given these preliminaries and before proving Proposition 5, let us briefly un-
derline why we restrict to inputted determinantal maps g and g′ when building
a glued map [g|g′], see Definition 1.1.6 for their definition. If the gluing is as in
Lemma 1.2.1, the (m+m′)-minors ideal of the concatenated matrix Φ[g|g′] always

defines a map Pm+m′

k 99K Pm+m′

k and, if codimV
(

Im+m′(Φ[g|g′])
)

= 2, the base
ideal I[g|g′] of [g|g′] is equal to Im+m′(Φ[g|g′]). Let us mention here that a glued
map [g|g′] can also be defined when g and g′ are not necessarily determinantal

however in this case [g|g′] is not necessarily a map from Pm+m′

k to Pm+m′

k .



When f is determinantal of Hilbert-Burch matrix Φf ∈ R(n+1)×n, the kernel
of Sym(If ) � R(If ) is the R-torsion of Sym(If ) [Mic64] and are described by the
Fitting ideals of If , i.e. by the ideals Ik(Φf ) for k ∈ {1, . . . , n − 1} of k-minors
ideals of the presentation matrix Φf of If , see [Vas05, Prop. 1.1 and below] and
[BCJ09]. Hence, the irreducible components of P(If ) are the graph Γf of f and
eventual additional pieces lying above closed strict subschemes of the source space
Pnk of f .

With all these facts, let us now show Proposition 5.

Proof of Proposition 5. Assume that codimV
(

Im+m′(Φ[g|g′])
)

= 2 so the base ideal

I[g|g′] of the glued map [g|g′] : Pm+m′

k 99K Pm+m′

k is the (m+m′)-minors ideal of the
matrix Φ[g|g′]. It is clear that Γ[g|g′] is included in Γg ∩ Γg′ . Indeed, by definition,
Γ[g|g′] ⊂ P(I[g|g′]) = P(Ig) ∩ P(Ig′) so Γ[g|g′] ⊂ P(Ig) (resp. Γ[g|g′] ⊂ P(Ig′)) and
since Γ[g|g′] cannot be included in a component of P(Ig) (resp. P(Ig′)) lying above

a closed strict subscheme of Pm+m′

k , it is necessarily included in Γg (resp. Γg′).
Now, since, by assumption, Fg⊗Fg′ is a resolution of Γ[g|g′] and Γ[g|g′] ⊂ Γg∩Γg′ ,

one has Γ[g|g′] = Γg ∩ Γg′ .
The conclusion of Proposition 5 follows then from Lemma 1.2.1.

Note that, as sets, Γ[g|g′] and Γg ∩Γg′ are not always equal as illustrated by the
following example.

Example 1.2.2. Let Φg =

x2 0
x1 x0x2

0 x2
1

 and Φg′ =

x3 0
x4 x2x3

0 x2
4

 and Φ[g|g′]

be the concatenate matrix of Φg and Φg′ as in Proposition 5. Then, as it can be
checked by direct computation on a computer algebra system such as Macaulay2,
one has that codimV

(
Φ[g|g′])

)
> 2 and that d([g|g′]) = (1, 6, 10, 6, 1), d(g) =

d(g′) = (1, 3, 1) and

d2([g|g′]) = 10 < 11 = d0(g)d2(g′) + d1(g)d1(g′) + d2(g)d0(g′).

In this example Fg⊗Fg′ provides a bigraded free resolution of Γg∩Γg′ and Γ[g|g′] (
Γg ∩ Γg′ .

Let us also mention that there exist situations where the ideal of Γg ∩ Γg′

decomposes as the intersection of the ideal of Γ[g|g′] and the ideal of embedded
components, so that Γ[g|g′] and Γg ∩ Γg′ are not scheme-theoretically equal but
have the same projective degrees.

Even if it might seem a bit artificial (since the results about the standard
Cremona maps are well known, in particular its projective degrees, and computable
by other means, see [GSP06]), we illustrate an application of Proposition 5 in the
example of the standard Cremona maps τm+m′ = [τm|τm′ ].

Proposition 1.2.3. Following Notation 6, let

τm = (x1 · · ·xm : . . . : x0 · · ·xm−1) : Pmk 99K Pmk
τm′ = (xm+1 · · ·xm+m′ : . . . : xm · · ·xm+m′−1) : Pm

′

k 99K Pm
′

k

with associated Hilbert-Burch matrices Φτm ∈ R
(m+1)×m
m and Φτm′ ∈ R

(m′+1)×m′
m′ .

Let also Φ[τm|τm′ ] ∈ R(m+m′+1)×(m+m′) be as in Proposition 5. Then:



(1) codimV(Im+m′
(
Φ[τm|τm′ ])

)
= 2,

(2) the ideal of P(I[τm|τm′ ]) is minimally resolved by Fτm ⊗ Fτm′ which is the
Koszul complex on the entries of the line matrix(

y0 . . . ym+m′
)

Φ[τm|τm′ ].

(3) P(I[τm|τm′ ]) = Γ[τm|τm′ ] and, consequently, for any k ∈ {0, . . . ,m+m′}

dk(τm+m′) =

k∑
p=0

dp(τm)dk−p(τm′) =

(
m+m′

k

)
. (1.2.1)

Proof. Let m,m′ > 1 and

Φτm+m′ =



x0 0 . . . . . . 0

−x1 x1

. . .
.
.
.

0 −x2

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

.

.

.
. . .

. . . xm+m′−1

0 . . . . . . 0 −xm+m′ .


(1.2.2)

Since
Im+m′(Φ[τm|τm′ ]) = (x1 · · ·xm+m′ , . . . , x0 · · ·xm+m′−1),

one has that codimV
(

Im+m′(Φ[τm|τm′ ])
)

= 2 (since the generators of the ideal
Im+m′(Φ[τm|τm′ ]) do not share a common factor) and thus Item (1) is verified.

The proof of Item (2) and Item (3) relies on an induction on m and m′. The
inductive step consists in first showing that the tensor product Fτm ⊗ Fτm′ of a
free resolution Fτm of P(Iτm) and a free resolution Fτm′ of P(Iτm′ ) provides a free
resolution of P(Iτm) ∩ P(Iτm′ ) = P(I[τm|τm′ ]). The second step consists in showing
that P(I[τm|τm′ ]) is irreducible or, in other words, that IP(Iτm ) + IP(Iτ

m′
) is prime.

This latter property insures that

Γτm ∩ Γτm′ = P(Iτm) ∩ P(Iτm′ ) = P(I[τm|τm′ ]) = Γ[τm|τm′ ]

and Equation (1.2.1) follows then from a direct application of Proposition 5.

• Initial case: Item (2) and Item (3) are verified in the case m = 1, this follows
from the fact that P(Iτ1) = V(x0y0 − x1y1) whose minimal free resolution
is the Koszul complex on the single irreducible polynomial x0y0 − x1y1 ∈
k[x0, x1, y0, y1].

• Inductive step: let m,m′ > 1 and assume that Item (2) and Item (3) hold for
τm and τm′ . In particular the ideal Im of P(Iτm) = Γτm (resp. the ideal Im′ of
P(Iτm′ ) = Γτm′ ) is minimally resolved by the Koszul complex Fτm on the en-
tries of the line matrix

(
y0 . . . ym

)
Φτm (resp. by the Koszul complex Fτm′

on the entries of the line matrix
(
ym . . . ym′

)
Φτm′ ). We show Item (2) and

Item (3) via classical methods involving Gröbner bases and we refer to [AL94]



for the definitions associated to this argument. Remark that Fτm ⊗ Fτm+m′

is the Koszul complex on the entries of
(
y0 . . . ym+m′

)
Φ[τm|τm′ ] and one

has that Fτm ⊗ Fτm′ resolves the ideal of P(I[τm|τm′ ]) if and only if

∀i > 1,Ti
(
S/Im,S/Im′

)
= 0,

S being the polynomial ring k[x0, . . . , xm+m′ , y0, . . . , ym+m′ ]. Actually, by T
rigidity, the latter conditions are verified if and only if

T1
(
S/Im,S/Im′

)
= Im ∩ Im′/Im · Im′ = 0.

To show this last condition, i.e. to show that

Im ∩ Im′ = Im · Im′ ,

we compute Im ∩ Im′ by eliminating t in the ideal tIm + (1 − t)Im′ ⊂ S[t]
see [AL94, Prop. 2.3.5] for this standard use of Gröbner bases. Using the
graded reverse lexicographic order, the variable t being bigger than the x and
y variables, and denoting

∀i ∈ {0, . . . ,m− 1}, gi = t(xiyi − xi+1yi+1),

∀j ∈ {m, . . . ,m+m′}, gj = (1− t)(xjyj − xj+1yj+1).

and G = {g0, . . . , gm+m′}, a direct computation shows that for any i ∈
{0, . . . ,m − 1} and j ∈ {m, . . . ,m + m′} one has that S(gi, gj) reduces to
(xiyi − xi+1yi+1)(xjyj − xj+1yj+1) ∈ Im · Im′ modulo g0, . . . , gm+m′ (where
S(gi, gj) is the S-polynomial associated to gi and gj). Since S(gi, gi′) reduces
to 0 modulo g0, . . . , gm+m′ if i, i′ are both elements of {0, . . . ,m− 1} or both
elements {m, . . . ,m + m′} and since S(gi, S(gi′ , gj)) reduces to 0 modulo
g0, . . . , gm+m′ , S(g0, gm), . . . , S(gm−1, gm+m′−1), one has then that

(tIm + (1− t)Im′) ∩ S ⊂ Im · Im′

which concludes the first step and shows Item (2).

We show that the ideal Im+m′ of P(I[τm|τm′ ]) (which is generated by the

entries
(
y0 . . . ym+m′

)
Φ[τm|τm′ ]) is prime again by computing Gröbner

basis. More precisely, a direct computation shows that the set H = {h0 =
x0y0 − x1y1, . . . , hm+m′ = xm+m′−1ym+m′−1 − xm+m′ym+m′} is a Gröbner
basis of Im+m′ (all S-polynomials in the hi reduces to 0 modulo h0, . . . ,
hm+m′−1). We then show that Im+m′ is prime by applying the primality
test [AL94, Algoritm 4.4.1] since, given i ∈ {0 . . . ,m + m′ − 1}, hixiyi −
xi+1yi+1 is irreducible in k′[xi] where k′ is the quotient field of the ring
k[xi+1, . . . , xn, y0, . . . , yn]/(hi+1, . . . , hm+m′−1).

The last equality (1.2.1) follows then from applying classical formulas between
binomial numbers.

Let us emphasize again that all the previous results are well known and could
be summed up by the fact that the base ideal of the standard Cremona maps is of



linear type (see for instance [RS01, Subsection 2.1]). However the scheme of our
proof of Proposition 1.2.3, could virtually be applied to more general situations.
Even if it is at the moment out of our reach, let us present the kind of situations we
have in mind and that we verified experimentally in all the examples we considered.

Conjecture 1.2.4. Following Notation 6 about glued maps, assume moreover that
k is algebraically closed, and let




Φg

0m×m′

0m′×m Φg′

m

m′ + 1

m m′

m+ 1

m′

Φ[g|g′] = (Φij) 06i6m+m′+1

16j6m+m′
= ∈ R(m+m′+1)×(m+m′)

be the matrix defined by the following data:

• for any j ∈ {1, . . . ,m}, let kj > 2, λ1,j , . . . , λkj ,j ∈ Rm = k[x0, . . . , xm] ⊂ R
and:

– for i ∈ {1, . . . ,m + 1}, let Φij ∈ |λ1,j , . . . , λkj ,j | be a general linear
combination of λ1,j , . . . , λkj ,j,

– for i ∈ {m+ 2, . . . ,m+m′ + 1}, Φij = 0.

• for any j ∈ {m + 1, . . . ,m + m′}, let kj > 2 and λ1,j , . . . , λkj ,j ∈ Rm′ =
k[xm, . . . , xm+m′ ] ⊂ R and:

– for i ∈ {1, . . . ,m}, Φij = 0,

– for i ∈ {m + 1, . . . ,m + m′ + 1}, let Φij ∈ |λ1,j , . . . , λkj ,j | be a general
linear combination of λ1,j , . . . , λkj ,j.

Let also Φg = (Φij) 06i6m+1
16j6m

∈ R
(m+1)×m
m and Φg′ = (Φij)m+16i6m+m′+1

m+16j6m+m′
∈ R

(m′+1)×m′
n

and [g|g′] : Pm+m′ 99K Pm+m′ , g : Pm 99K Pm and g′ : Pm′ 99K Pm′ be the deter-
minantal maps defined by Φ[g|g′], Φg and Φg′ (where Pm = Proj(Rm) ⊂ Proj(R) =

Pm+m′ and Pm′ = Proj(Rm′) ⊂ Proj(R) = Pm+m′).
Then for all i ∈ {0, . . . ,m+m′}:

dk([g|g′]) =

k∑
p=0

dp(g)dk−p(g
′). (1.2.3)



Chapter 2

Construction of homaloidal plane
curves via syzygies

Introduction

Given a homogeneous polynomial h ∈ k[x0, . . . , xm] over a field k, the polar map
fh : Pmk 99K Pmk of h is the rational map defined by the polynomials ∂h

∂x0
, . . . , ∂h

∂xm
.

The polynomial h and the associated hypersurface H = V(h) of Pnk are called
homaloidal if the polynomials ∂h

∂x0
, . . . , ∂h

∂xm
do not share a common factor and fh

is birational.
It was established by I.V. Dolgachev [Dol00, Theorem 4] that if k = C, the

homaloidal polynomials in three variables are either of degree 2, defining a smooth
conic in the projective plane, or of degree 3, defining either a union of three lines
in general position or a union of a smooth conic with one of its tangents. These
polynomials remain homaloidal when the base field k has characteristic greater
than 2. This leads to the following question which is a generalization of [DHS12,
Question 3.7].

Problem 2.0.1. Over a field k of positive characteristic, are there other homaloidal
polynomials than the ones in Dolgachev’s classification?

In [BC18, Proposition 4.6], a first example of a homaloidal polynomial of degree
5 over a field of characteristic 3 was produced, answering both Problem 2.0.1 and
[DHS12, Question 3.7]. Very recently, the following example of a homaloidal curve
of degree 5 in characteristic 3 was also described.

Example 2.0.2. In characteristic 3, the polynomial h = x0(x2
1+x0x2)(2x2

1+x0x2),
whose zero locus is the union of two conics intersecting with multiplicity two in
two distinct points with the tangent at one intersection point, is homaloidal.

The negative answer to Problem 2.0.1 leads to the following question.

Problem 2.0.3. Does there exist homaloidal polynomials in three variables of ar-
bitrary large degree over fields of arbitrarily large characteristic?

We answer this question in this chapter, see Theorem 2.2.4 for our expanded
result. Following the designation in [Hir83] we say that a union of n distinct lines
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through a given point z0 with another line not passing through z0 is a near-pencil
arrangement of n+ 1 lines. In addition, given a reduced projective curve H = V(h)
which is the zero locus V(h) in P2

k of a homogeneous polynomial h, we say that H
is homaloidal if h is homaloidal.

Theorem 2.0.4. Let k be a field of characteristic p and let n ∈ N>0 be a multiple
of p. Then the near-pencil arrangement of n+ 1 lines is homaloidal.

This result provides an answer to Problem 2.0.3. For instance, let n ∈ N>0

be such that n ≡ 0 mod 5 and let k be a field of characteristic 5. Then the
near-pencil arrangement in Theorem 2.0.4 has degree n + 1 and is homaloidal.
Moreover, given a prime number p, a field k of characteristic p and a positive
integer m, Theorem 2.0.4 gives a homaloidal curve of degree mp+ 1, so homaloidal
curves (and homaloidal polynomials) exist in arbitrarily large degree and in any
prime characteristic.

Remark that the base ideal Ifh = (h0, . . . , hn) of the polar map fh defines the
singular locus of the curve H = V(h) ⊂ P2

k. In this direction, the proof given by
I.V.Dolgachev about the classification of homaloidal complex polynomials relies on
the Jung-Milnor’s formula over C relating several invariants of singularities [Dol00,
Lemma 3]. In contrast, our proof of Theorem 2.0.4 relies on the study of the torsion
of the symmetric algebra of the base ideal of fh, an approach that fits in line with
previous works such as [RS01], [DHS12], and [BC18]. We emphasize that most of
the polynomials we consider in this note define free curves i.e. curves such that
the base ideal of their polar map is determinantal [Dim17a, Def 2.1]). We specially
focus on this case since, when the base ideal has a linear syzygy, free curves are
the curves whose singular schemes have maximal length [Dim17a, Cor 1.2].

Contents of the chapter

In the first section, we recall briefly the relations between the symmetric algebra
of the base ideal of a plane rational map f and the graph of f .

The second section constitutes the heart of our work. As a central idea, one can
study the reduction modulo p of the presentation matrix of the base ideal in order
to predict a drop of the topological degree of the polar map, see Subsection 2.2.1.
The next step is then to evaluate this drop. We carry on this evaluation by de-
scribing the generic fiber of the residual scheme and thus describing the generic
fiber of the graph itself. This implies in particular that the polynomials hn are
homaloidal (Lemma 2.2.3). We end this section by providing another example of a
polynomial of degree 5 which is homaloidal in characteristic 3. Its zero locus in P2

k

is the union of the unicuspidal ramphöıd quartic and the tangent cone at its cusp
(Example 2.2.6).

In the third section, we focus on line arrangements and we show that, over an
algebraically closed field of characteristic p > 0, the only homaloidal line arrange-
ments are the ones defining unions of three general lines or near-pencil of lp+1 lines
for any l > 1, see Proposition 2.3.1. This classification follows from the description
of the singularities defined by line arrangements.

The explicit computations given in this paper were made using basic functions
of the software systems Polymake and Macaulay2 with the Cremona package
[Sta17] associated.



2.1 Graph and residual scheme

In this section, all the fields are assumed to be algebraically closed and denoted by
the same letter k.

Let f = (f0 : f1 : f2) : P2
k 99K P2

k be a rational map with base ideal If =
(f0, f1, f2) in the coordinate ring R = k[x0, x1, x2] of P2

k. Recall that the epi-
morphism Sym(If )� R(I) between the symmetric algebra Sym(If ) of If and the
Rees algebra R(If ) := ⊕i≥0 Iif t

i ⊂ R[t] of If defines the embedding of the graph

Γf = ProjR(If ) of f in the residual scheme P(I) = Proj
(

Sym(I)
)
⊂ P2

k×P2
k. More-

over the ideal of P(If ) is generated by the entries of the matrix
(
y0 y1 y2

)
Φf

where S = R[y0, y1, y2] stands for the coordinate ring of P2
k×P2

k and Φf stands for
a presentation matrix of If ⊂ R, see Chapter 1 for more details.

Example 2.1.1. Let f = (f0 : f1 : f2) : P2
k 99K P2

k be a determinantal map whose
3 × 2-Hilbert-Burch matrix Φf is such that all its entries in the first column are
homogeneous of degree a and all its entries in the second column are homogeneous
of degree b. Hence a free resolution of If reads:

0 R2 R3 If 0.
Φf (f0 f1 f2)

and P(If ) is the intersection of two divisors of P2
k × P2

k of bidegree (a, 1) and
(b, 1) respectively, see Definition 1.1.6 for more details. If If is of linear type, the
projective degrees of f are then given by Proposition 1.1.8 and Proposition 1.1.9:

d0(f) = deg2,0
P P(If ) = ab

d1(f) = deg1,1
P P(If ) = a+ b

d2(f) = deg0,2
P P(If ) = 1.

(2.1.1)

The complement subscheme T = P(I)\Γ of Γ in P(If ) is moreover supported on⋃
x∈V
(

Fitt2(If )
){x} × P2

k (2.1.2)

where Fitt2(If ) is the second Fitting ideal of I [Eis95, Corollary-Definition 20.4], by
definition generated by the entries of Φf , see [BC18, Corollary 1.4] for a reference.

Example 2.1.2. If If is not of linear type in Example 2.1.1, we still have that
deg2,0

P P(If ) = ab

deg1,1
P P(If ) = a+ b

deg0,2
P P(If ) = 1.

because P(I) is still a complete intersection. However, there is an extra part T =
P(I)\Γ in P(I) with support as in (2.1.2) such that

deg2,0
P P(If ) = deg2,0

P Γf + deg2,0
P T = d0(f) + deg2,0

P T
deg1,1

P P(If ) = deg1,1
P Γf + deg1,1

P T = d1(f) + deg1,1
P T

deg0,2
P P(If ) = deg0,2

P Γf + deg0,2
P T = d2(f) + deg0,2

P T.



So the topological degree d0(f) is strictly smaller than deg2,0
P P(If ) because deg2,0

P T
is greater or equal to length

(
V
(

Fitt2(I)
)

which is non zero. The quantity d0(f) =

deg2,0
P P(If ) − deg2,0

P T depends moreover on the scheme structure of T and is the
object of Subsection 2.2.2.

2.2 Contribution of the torsion

In this section, following the situation described in Example 2.1.2, we illustrate
first on an example how to estimate the drop of the topological degree in positive
characteristic compared to characteristic 0. We analyze then in greater generality
how this modification impacts the computation of the topological degree of Φ.

2.2.1 Reduction of the presentation matrix modulo p

In what follows, for a homogeneous ideal I of R = k[x0, x1, x2] and an integer t,
we denote by It the homogeneous piece of I of degree t. Let n ∈ N>1 and let Hn
be the union of n distinct lines through a point z0 ∈ P2

k with any other line not
passing through z0. We can reduce to the situation where V(x2) is the latter line
and two lines among the nth firsts are V(x0) and V(x1) so that z0 = (0 : 0 : 1). We
can consequently assume without loss of generality that an equation of Hn reads
h = x0x1l2 · · · ln−1x2 where, for all i ∈ {2, . . . , n − 1}, li belongs to (x0, x1)1 (set
h = x0x1x2 if n = 2). The ideal Ifh of partial derivatives of h is then equals to

Ifh = (x1l2 · · · ln−1x2+x0x1
∂

∂x0
(l2 · · · ln−1)x2,

x0l2 · · · ln−1x2 + x0x1
∂

∂x1
(l2 · · · ln−1)x2, x0x1l2 · · · ln−1).

Lemma 2.2.1. A minimal presentation matrix of Ifh reads

Φfh =

 x0 0
x1 x1l2 · · · ln−1

−nx2 −l2 · · · ln−1x2 − x1
∂
∂x1

(l2 · · · ln−1)x2


Proof. The ideal Ifh has depth 2 for otherwise the first two generators of Ifh would
be divisible by either x0, x1 or li for i ∈ {2, . . . , n − 1} which is excluded by the
assumption that all the lines in Hn are distinct. A direct computation shows that

x1x2l2 . . . ln−1 + x0x1x2
∂
∂x0

(l2 . . . ln−1) = Φ1

x0x2l2 . . . ln−1 + x0x1x2
∂
∂x1

(l2 . . . ln−1) = Φ2

x0x1l2 . . . ln−1 = Φ3

where, given j ∈ {1, 2, 3}, Φj stands for (−1)j times the minor obtained from Φfh
by leaving out the jth row (in order to check these equalities, remark that, for any
i ∈ {2, . . . , n− 1}, li = x0

∂li
x0

+ x1
∂li
x1

). Hence Ifh is a determinantal ideal given by
the 2-minors of Φfh . Since it has the expected depth, the Hilbert-Burch theorem
asserts that a free resolution of Ifh reads:

0 R2 R3 Ifh 0.
Φfh



Moreover, since it does not have constant entries, Φfh is a minimal presentation
matrix of Ifh .

Proposition 2.2.2. Let n ∈ N>1 and k be an algebraically closed field such that
p = char(k) does not divide n. Then Ifh is of linear type and the polar map fh of
h has multidegree (n− 1, n, 1).

Proof. Since Φfh has one column of linear entries and one column of entries of degree
n, the naive multidegree is (n− 1, n, 1), see Example 2.1.1. Moreover Fitt2(Ifh) =
(x0, x1, x2) is not supported on any point of P2

k so, by (2.1.2), I is of linear type.
Hence Γ = P(Ifh) coincide, so

d0(fh) = deg2,0
P P(Ifh)

d1(fh) = deg1,1
P P(Ifh)

d2(fh) = deg0,2
P P(Ifh).

We consider now the case where char(k) divides n in a more general situation.

2.2.2 Weight of the torsion

In all the section, we put n ∈ N>1, k be any field unless otherwise specified,
R = k[x0, x1, x2] and we consider the ideal I generated by the 2-minors of the
matrix

Φ =

λ0 p0

λ1 p1

λ2 p2


with entries in R = k[x0, x1, x2] such that for all j ∈ {0, 1, 2}, λj belongs to
(x0, x1)1 and pj belongs to (x0, x1)n−2

n−1, the homogeneous piece of degree n − 1 of
the ideal (x0, x1)n−2. We assume moreover that I has height 2 and that there exists
j ∈ {0, 1, 2} such that pj ∈ (x0, x1)n−2

n−1\(x0, x1)n−1
n−1.

In S = R[y0, y1, y2], consider now the ideal

IP(I) = (λ0y0 + λ1y1 + λ2y2, y0p0 + y1p1 + y2p2)

of the embedding of P(I) in P2
x × P2

y generated by the entries of the matrix(
y0 y1 y2

)
Φ. Following the computation in Example 2.1.1, P(I) being a com-

plete intersection of two divisors of bidegree (1, 1) and (n− 1, 1), one has(
d0(P(I)), d1(P(I)), (d2(P(I))

)
= (n− 1, n, 1).

Moreover since all the entries of Φ are in the ideal (x0, x1), the radical
√

Fitt2(I)
of the ideal Fitt2(I) of entries of Φ is contained in (x0, x1). Actually, since I has
height 2 and the polynomials in the first column of Φ are linear in x0 and x1 one has
Fitt2(I) = (x0, x1). Hence, as previously stated in (2.1.2), P(I) = V(IP(I)) ⊂ P2

x×P2
y

is the union of a torsion part T supported on V(x0, x1) = {(0 : 0 : 1)} × P2
k, and of

the graph Γf = P(I)\V(x0, x1) of the map f whose base ideal is the 2-minors ideal
I of Φ. The next result is a consequence of [BCRD20, Theorem 5.14] but we will
give a self-contained proof.



Lemma 2.2.3. Under the previous conditions on Φ, the torsion component T of
P(I) has multidegree (n− 2, 0, 0) and the graph Γf of f has multidegree (1, n, 1).

Proof. We analyze separately each element of the multidegree
deg2,0

P Γf = d0(f)

deg1,1
P Γf = d1(f)

deg0,2
P Γf = d2(f).

• Case i = 0. Take a general point y ∈ P2
k as the intersection of two general

lines H1, H2 of P2
k and consider the intersection

P(I)y = P(I) ∩ p−1
2 (H1) ∩ p−1

2 (H2) ⊂ P2
y.

Under our assumptions, this intersection is a complete intersection of a
line and a curve of degree n − 1 in P2

y. Moreover, since λj ∈ (x0, x1)1

for all j ∈ {0, 1, 2} and since there exists j ∈ {0, 1, 2} such that pj ∈
(x0, x1)n−2

n−1\(x0, x1)n−1
n−1, this complete intersection decomposes as the union

of the point V(x0, x1)y ∈ P2
y with multiplicity n − 2 and of another point

with multiplicity 1. By the generality assumption on y, we can assume
that the subscheme P(I) ∩ P2

y is defined by the ideal
(
x1, x

n−2
0 (x0 + α)

)
for

some α ∈ k\{0}. Since Γ = P(I)\V(x0, x1) is defined by the saturation
[IP(I) : (x0 : x1)∞] of the ideal IP(I) of P(I) by the ideal (x0, x1) = Fitt2(I),
see (2.1.2), the only points of P2

k over which the fiber of P(I) contributes to
d0(Γ) are those different from V(x0, x1). Thus the other point is the only
element in Γ ∩ p−1

2 (H1) ∩ p−1
2 (H2). Hence

deg2,0
P Γf = length

(
Γf ∩ p−1

2 (H1) ∩ p−1
2 (H2)

)
= 1

and
deg2,0

P T = deg2,0
P P(I)− deg2,0

P Γf = n− 2.

• Case i = 1. Since I has height 2, the linear system defined by the 2-minors
of M does not have fixed components so deg1,1

P Γf = deg1,1
P P(I) = n and thus

deg1,1
P T = 0.

• Case i = 2. The torsion component T being supported over V(x0, x1), the
intersection T ∩ p−1

1 (H1) ∩ p−1
1 (H2) of T with inverse images of general lines

in P2
k is empty so deg0,2

P T = 0 and deg0,2
P Γf = deg0,2

P P(I)− deg0,2
P T = 1.

To sum up, T has multidegree (n− 2, 0, 0) and Γf has multidegree

(n− 1, n, 1)− (n− 2, 0, 0) = (1, n, 1).

We have the following extension of Theorem 2.0.4.

Theorem 2.2.4. (1) Let n ∈ N>1 and assume that p = char k divides n, then
the near-pencil arrangements of n+ 1 lines is homaloidal.



(2) Let n ∈ N>1 and assume that p = char k divides n(n− 1)− 1, then the curve
Gn = V

(
x0x1(xn−1

1 + xn−2
0 x2)

)
is homaloidal.

Proof. (1) By Lemma 2.2.1, a presentation matrix of the ideal I of partial deriva-
tives of h verifies the conditions of Lemma 2.2.3. Hence fh is birational and
since the associated linear system has no fixed component, the polynomial h
and Hn = V(h) are homaloidal.

(2) Let n ∈ N>1. The ideal

Ifg = (xn1 + (n− 1)xn−2
0 x1x2, nx0x

n−1
1 + xn−1

0 x2, x
n−1
0 x1)

of partial derivatives of g = x0x1(xn−1
1 + xn−2

0 x2) has presentation matrix

Φ =

 nx0 0
−x1 xn−2

0 x1

−(n(n− 1)− 1)x2 −nxn−1
1 − xn−2

0 x2

 ,

Indeed, Ifg has height 2 for otherwise x0 or x1 would divide xn1 + (n −
1)xn−2

0 x1x2 and nx0x
n−1
1 + xn−1

0 x2 which is not the case. Moreover
xn1 + (n− 1)xn−2

0 x1x2 = M1

nx0x
n−1
1 + xn−1

0 x2 = M2

xn−1
0 x1 = M3,

where given j ∈ {1, 2, 3}, Φj is equal to (−1)j times the minor obtained from
Φ by leaving out the jth row. Hence Ifg is a determinantal ideal and, by
application of Hilbert-Burch theorem, Φfg is a minimal presentation matrix
of Ifg . Now, if p divides n(n − 1) − 1, the matrix M verifies the conditions
of Lemma 2.2.3. Thus, in this case, fg is birational so g and Gn = V(g) are
homaloidal.

Remark 2.2.5. The method of reduction modulo p we just described also applies
to Example 2.0.2 and to the quintic Q5 = V

(
x0(x2

1 + x0x2)(x2
1 + x0x2 + x2

0)
)

described in [BC18].

2.2.3 Limits and perspectives

The fact that the presentation matrix of the ideal of partial derivatives reduces
well modulo p does not always occur, as illustrated by the following example.

Example 2.2.6. Let h = x2(x4
1 − 2x0x

2
1x2 + x2

0x
2
2 − x1x

3
2) ∈ k[x0, x1, x2]. Its zero

locus in P2
k is the union of the unicuspidal ramphöıd quartic with the tangent cone

at its cusp, see [Moe08]. Over a field k of characteristic 0, a computation with
Macaulay2 shows that a presentation matrix of the ideal I of partial derivatives
of h reads: 15x2

1 + 3x0x2 72x0x1 + 15x2
2

8x1x2 2x2
1 + 30x0x2

−2x2
2 −8x1x2

 .



We can a priori not expect to apply Lemma 2.2.3 after reduction modulo p. How-
ever, after reducing modulo 3, a presentation matrix of the reduction of I modulo
3 reads  0 x3

1 − x0x1x2 − x3
2

x1 x0x
2
2

−x2 −x1x
2
2

 .

This implies that the polar map of h is birational by Lemma 2.2.3 (here, remark
that the torsion is supported on V(x1, x2) and that the maximal power of x0 is 1 is
the second column). By application of Hilbert-Burch theorem, we also have that
the induced linear system does not have fix components so h is actually homaloidal.

Remark 2.2.7. As pointed out by Example 2.2.6 and Item (2) of Theorem 2.2.4,
the classification of homaloidal plane curves in any characteristic seems to be a
challenging problem, especially by only looking to the reduction modulo p of the
syzygies of the jacobian ideal. One can however restrict first to the classification
of homaloidal line arrangements and this is the object of next section.

2.3 Classification of homaloidal line arrangements in
positive characteristic

As a guideline for the section, let us state first our result about the classification
of homaloidal line arrangements.

Proposition 2.3.1. Given an algebraically closed field k of characteristic p > 0,
the only homaloidal line arrangements are:

(i) the union of three general lines,

(ii) the near-pencils of n+ 1 lines where p divides n.

Our proof of Proposition 2.3.1 mainly relies on the observation that, as far
as the topological degree of the polar map of an arrangement is concerned, the
only quantity to consider is the numbers of lines defining the singularities of the
arrangement. More precisely, a singularity z of a line arrangement A = V(h)
being the intersection of r > 2 lines of A, the numerical contribution of z in
the computation of d0(fh) only depends on whether the characteristic p divides
r or not, see Lemma 2.3.2 for our complete result. Given this fact, the proof of
Proposition 2.3.1 aims to characterize combinatorially near-pencils of p + 1 lines
among all arrangements of p+1 lines and this combinatorial characterization follows
from [dBE48, Th.1].

In the following, given an integer d > 4, we let h = l1 · · · ld be the product of d
homogeneous linear polynomials l1, . . . , ld ∈ k[x0, x1, x2] and A = V(h) be the line
arrangement defined by h. Moreover, using the designation in [Hir83], a point z in
the singular locus of A which is the intersection point of r lines is called a r-fold
point.

The field k being algebraically closed, the topological degree d0(fh) of fh is the
degree of the fiber of a generic point of P2, that is:

d0(fh) = degV(Ig : I∞)



where I = ( ∂h
∂x0

, ∂h∂x1
, ∂h∂x2

) is the jacobian ideal of h, Ig = (a ∂h
∂x0

+b ∂h∂x1
+c ∂h∂x2

, α ∂h
∂x0

+

β ∂h
∂x1

+γ ∂h
∂x2

) is the ideal defined by two generic linear combinations of ∂h
∂x0

, ∂h∂x1
, ∂h∂x2

and Ig : I∞ stands for the saturation ideal of Ig by I, see [Dol11, 7.1.3] for this
computation of the topological degree. Since V(Ig : I∞) is set-theoretically equal
to V(Ig)\V(I), one has thus:

d0(fh) = (d− 1)2 −
∑
z∈V(I)

mz (2.3.1)

where mz is the multiplicity of z in the scheme V(Ig) (note that this latter ex-
pression of d0(fh) is true for any reduced plane curve V(h) and not only for line
arrangements). Over the field of complex numbers C, by [Dim17b, 4.2], given an
r-fold point z ∈ V(I) one has

mz = µh,z = (r − 1)2

where µh,z stands for the local Milnor number of A at z, see [Dim17b, Definition
2.17] for the definition of Milnor numbers. Over a field of positive characteristic,
the relation between d0(fh) and Milnor numbers of the singularities of A is much
blurred, in particular because Milnor number is not an invariant under contact
equivalence anymore (see [HRS19] for the definition of contact equivalence and
more precision about the definition of Milnor number in positive characteristic).
In other words, over a field k of positive characteristic, Equation (2.3.1) is still valid
by definition but the numbers mz cannot be interpreted as the Milnors numbers of
the singularities defined by h (even if we won’t need it, let us however precise that
the numbers mz appeared to be related to the Milnor number of a hypersurface
µ(Oh), a contact equivalent invariant defined in [HRS19, end of section 3]. We also
point out that typical behaviors of singularities in positive characteristic prevent
the classification of homaloidal polynomials via Dolgachev’s approach in [Dol00,
Lemma 3] over C, see [MHW01] and [Ngu16] for instances of such behaviors when
reducing modulo p).

Lemma 2.3.2. Let p = char(k) and z an r-fold point of a line arrangement
A = V(h), h = l1 · · · ld. Denote by mz the multiplicity of z in V(Ig) as in Equa-
tion (2.3.1):

(1) if p divides r, then mz = (r − 1)2 + (r − 2),

(2) if p does not divide r, then mz = (r − 1)2.

Proof. To describe mz, we first explain why it is enough to make the computation
in the case that A is a near-pencil of r+1 lines such that z is the intersection point
of r lines. Once we have our local model for z, we use Theorem 2.2.4 to compute
mz.

Let A = V(h), h = l1 · · · ld, write z = (0 : 0 : 1) by choosing coordinates of P2
k

and label the linear polynomials l1, . . . , ld defining A such that l1, . . . , lr ∈ (x0, x1)
and lr+1, . . . , ld ∈ (x0, x1)c, (x0, x1)c being the complementary of the ideal (x0, x1).



Now, by applying the elementary rules of derivations, one has that a generic
linear combination a ∂h

∂x0
+ b ∂h∂x1

+ c ∂h∂x2
of ∂h

∂x0
, ∂h∂x1

, ∂h∂x2
reads:

a
∂h

∂x0
+ b

∂h

∂x1
+ c

∂h

∂x2
= (

r∑
j=1

(l1 · · · lj−1(a
∂lj
∂x0

+ b
∂lj
∂x1

)lj+1 · · · lr)(lr+1 · · · ld)

+(l1 · · · lr)(
d∑

j=r+1

(lr+1 · · · lj−1(a
∂lj
∂x0

+ b
∂lj
∂x1

+ c
∂lj
∂x2

)lj+1 · · · ld)

In the localization k[x0, x1, x2](x0,x1) of k[x0, x1, x2] at the prime (x0, x1), remark

that (
d∑

j=r+1

(lr+1 · · · lj−1(a
∂lj
∂x0

+b
∂lj
∂x1

+c
∂lj
∂x2

)lj+1 · · · ld) is a unit since (a : b : c) ∈ P2
k

is generic.
Hence denoting v ∈ k[x0, x1, x2](x0,x1) the localization of v ∈ k[x0, x1, x2] at the

prime (x0, x1), one has:

a
∂h

∂x0
+ b

∂h

∂x1
+ c

∂h

∂x2
= u×

(
(

r∑
j=1

(l1 · · · lj−1(a′
∂lj
∂x0

+ b′
∂lj
∂x1

)lj+1 · · · lr)lr+1

+c′(l1 · · · lr)
)

where u is a unit of k[x0, x1, x2](x0,x1). In other words, (Ig)(x0,x1) is equal to

(a′ ∂h
′

∂x0
+ b′ ∂h

′

∂x1
+ c′ ∂h

′

∂x2
, α′ ∂h

′

∂x0
+ β′ ∂h

′

∂x1
+ γ′ ∂h

′

∂x2
)(x0,x1) where

h′ = l′1 · · · l′rl′r+1

such that l′1 · · · l′r ∈ (x0, x1) are distinct lines passing by z = (0 : 0 : 1), l′r+1 ∈
(x0, x1)c and (a′ : b′ : c′), (α′ : β′ : γ′) are generic in P2

k.
Hence, to compute the multiplicity mz of the component supported at the r-

fold point z = (0 : 0 : 1) of V(Ig), it is enough to consider that z is the r-fold point
of a near-pencil of r + 1 lines.

We treat now the case r = 2. The near-pencil A′ = V(l1l2l3) has three singular
point z, z2, z3 and is always homaloidal, thus:

d0(fl1l2l3) = 4−mz −m2 −m3 = 1

and since mz,m2,m3 > 1, one has thus mz = m2 = m2 = 1. This ends the proof
of Lemma 2.3.2 in the case r = 2 whether p = 2 or not.

Consider now the case r > 2. Put A′ = V(h′) for the near-pencil of r + 1 lines:

(1) By Theorem 2.2.4, if p|r, then

d0(fh′) = r2 −mz −
r∑
i=1

mzi = 1

where z1, . . . , zn are the r singularities defined by the intersection of the r
lines of the pencil and the other extra line. These r singularities are all
2-fold points so, from the case r = 2, mzi = 1 for all i = 1, . . . , r and
mz = r2 − r − 1 = (r − 1)2 + (r − 2).



(2) If p - r, then d0(fh′) = r − 1 by Proposition 2.2.2 (case n = r of Proposi-
tion 2.2.2). Hence

d0(fh′) = r2 −mz −
r∑
i=1

mzi = r − 1

where z1, . . . , zn are the r singularities defined by the intersection of the r
lines of the pencil and the other extra line. As in the previous case mzi = 1
for all i = 1, . . . , r so mz = (r − 1)2.

Proof of Proposition 2.3.1. As it is stated at the beginning of [Hir83], given any
line arrangement A = V(h) of d lines, one has the combinatorial identity:

d(d− 1)

2
=

d∑
r=2

tr
r(r − 1)

2

where tr is the number of r-fold point defined by A. This identity can be re-write
as:

(d− 1)2 −
d∑
r=2

tr(r − 1)2 −
d∑
r=2

tr(r − 2) = 1 + (

d∑
r=2

tr − d) (2.3.2)

Hence, assuming that the characteristic p of k divides all r > 3 such that tr 6= 0,
one has by Lemma 2.3.2:

d0(fh) = 1 + (

d∑
r=2

tr − d).

Remark that a near-pencils of d lines verifies
d∑
r=2

tr = d so, if p divides all r > 3 such

that tr 6= 0, showing Proposition 2.3.1 aims to show that the identity
d∑
r=2

tr = d

characterizes near-pencils of d lines among all arrangements of d lines and this fact
is established in [dBE48, Theorem 1] (see also [Beu95, Theorem 5.1] for a more
recent treatment).

In case p does not divide at least one r > 3 such that tr 6= 0, then by Item (2) of
Lemma 2.3.2, Equation (2.3.2) implies that d0(fh) > 1 so h is not homaloidal.





Chapter 3

Equations of the graph of
determinantal Cremona maps
defined by an almost linear
Hilbert-Burch matrix

Introduction

In this chapter, we focus on determinantal maps f : Pn 99K Pn whose Hilbert-
Burch matrix Φf is almost linear i.e. Φf a (n + 1) × n matrix such that all but
one columns are filled by homogeneous linear polynomials, the remaining column
being filled by homogeneous polynomials of degree d > 2.

As we already mentioned in the introduction, the equations of the graph of a
determinantal plane map f : P2 99K P2 defined by an almost linear Hilbert-Burch
matrix can be computed via a determinantal procedure starting from the equations
of the Proj P(If ) = Proj

(
Sym(If )

)
of the base ideal If of f , provided that the

presentation matrix Φf of If has a prescribed form, see [CHW08] and [BCRD20].

We present now another approach describing the equations of the graph of
almost linear determinantal maps. Recall that we always consider P(If ) embedded
in Pn × Pn by the mean of Φf in which case the equations of P(If ) ⊂ Pn × Pn
are the entries in the line matrix (y0 . . . yn)Φf , y0, . . . , yn being the variables
of the target space Pn of f . Denoting Φ′f the (n + 1) × (n − 1) sub-matrix of
Φf defined by the columns of linear entries of Φf , the idea consists in expressing
the graph Γf of f as a divisor on the complete intersection BiProj(A) where A =
R[y0, . . . , yn]/(y0 . . . yn)Φ′f and (y0 . . . yn)Φ′f is the ideal generated by the entries
in the line matrix (y0 . . . yn)Φ′f . In good cases, that is when the divisor class group
Div(A) of BiProj(A), which is the group of all divisors of BiProj(A) identified via
rational equivalence, is cyclic, Γf as a divisor is thus a multiple of the generator of
Div(A). As we will explain, it completely describes the equations of Γf .

This approach was developed in [KPU09] and in [KPU11] where were in partic-
ular described the graph of maps P1 99K Pn. In this present work, this method is
adapted in order to have an insight on the equations of the graph of almost linear
determinantal spatial maps f : P3 → P3. As we will see, it is particularly well
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suited because one can classify the linear part Φ′f ∈ R4×2 of the matrix Φf ∈ R4×3

via normal forms of pencil of matrix. From a detailed analysis of all the cases,
it leads then to the classification of all associated divisor class groups. However,
contrary to the case of determinantal plane maps P2 99K P2 or P1 99K Pn defined
by an almost linear Hilbert-Burch matrix Φf , we will see that one has also to deal
with non cyclic divisor class groups. In this latter case, a complementary informa-
tion from the non linear column of Φf has to be added in order to describe the
equations of the graph of f and we will give several examples of this situation.

Let us already precise that, even in restriction to cyclic divisor class groups, a
main surprise was to describe two different classes of ideals of graphs of determi-
nantal Cremona maps defined by an almost linear Hilbert-Burch matrix. A result
we summarize as follow.

Proposition 3.0.1. Let d > 2 and let f : P3 99K P3 be a dominant determinantal
map such that:

(i) the Hilbert-Burch matrix Φf of f reads

Φf =


x0 x3 φ03

x1 0 φ13

0 x0 φ23

0 x2 φ33


with φi3 ∈ (x0, x1)d−1 of degree d for all i ∈ {0, . . . , 3}. Then the ideal of Γf
is minimally generated by one element in the following bi-degree:

(d, 1), (d− 1, 2)(d− 2, 3), . . . , (1, d)

and two extra other generators in bidegree (1, 1).

(ii) the Hilbert-Burch matrix Φf of f reads

Φf =


x0 x2 φ03

x1 x3 φ13

0 x0 φ23

0 x1 φ33


with φi3 ∈ (x0, x1)d−1 of degree d for all i ∈ {0, . . . , 3}. Then the ideal of Γf
is minimally generated by the elements in the following bi-degree if d is even:

(d, 1), 2(d−1, 2), 3(d−2, 3), . . . ,
d

2
(
d

2
+1,

d

2
),
d

2
(
d

2
,
d

2
+1), . . . , 2(2, d−1), (d, 1)

and two extra other generators in bidegree (1, 1) (here m(d1, d2) means that
the component of degree (d1, d2) of the ideal of Γf is minimally generated by
m elements). If d is odd, Γf is minimally generated by the elements in the
following bi-degree:

(d, 1), 2(d−1, 2), 3(d−2, 3), . . . ,
d+ 1

2
(
d+ 1

2
,
d+ 1

2
),
d

2
+1), . . . , 2(2, d−1), (d, 1)

and two extra other generators in bidegree (1, 1).



This result has to be compared to the description of the graph of determinantal
plane Cremona map f : P2 99K P2 whose Hilbert-Burch matrix is almost linear:

Proposition. [BCRD20, Th.5.12] Let f : P2 99K P2 be an almost linear determi-
nantal map whose Hilbert-Burch matrix Φf is almost linear and reads

Φf =

x0 φ02

x1 φ12

0 φ22


with φi2 ∈ (x0, x1)d−1 of degree d for all i ∈ {0, . . . , 2} and such that it exists
i ∈ {0, 1, 2} such that φi2 /∈ (x0, x1)d.

Then the ideal of Γf is minimally generated by one element in the following
bi-degree:

(d, 1), (d− 1, 2)(d− 2, 3), . . . , (1, d)

and one extra other generators in bidegree (1, 1).

In another words, from the planar case, one might have only expected Item (i)
in Proposition 3.0.1 with only one generator by bi-degree. As we will explain,
Item (i) can also be described from a determinantal procedure as in [BCRD20].
Moreover, by applying the jacobian dual criterion [SUV94] or [RS01, Proposition
2.1], one has that the maps considered in Proposition 3.0.1 are Cremona maps.

Contents of the chapter

In Section 3.1, we recall briefly the main notions we need about the divisor class
group of a scheme. We recall also Kronecker’s results about the normal forms of
pencils of matrix and we explain how they lead to a classification of the linear
submatrices Φ′f of the almost linear determinantal maps. In the end, a description
of the divisor class group can be done in all the cases and not only in the cyclic
cases. However, for a more concise presentation, we only focus on the matrix
Φ′f associated to cyclic divisor class group in Section 3.2 resulting in the proof of
Proposition 3.0.1. In the last section, we briefly set foot on the non cyclic cases
in order to describe a last non expected ideal of an almost linear determinantal
Cremona map, see Example 3.3.1.

Let me mention again my gratitude to Claudia Polini and Bernd Ulrich with
who was carried out this work at the end of winter 2020. Let me also mention that
I chose to present here only a part of the all the results and conclusion obtained
during this collaboration, especially regarding the non cyclic cases.

3.1 Divisor class groups and their description

3.1.1 Generators of divisor class groups

We follow here the presentation given in [BH93, p315]. Let A be a Noetherian
normal domain. Recall that a fractionary ideal I of A is a submodule of the field
of fraction Frac(A) of A for which there exists a non zero elements a ∈ Frac(A)
such that aI ⊂ A (see [HS06, Def. 2.4.4] for this definition of fractionary ideal)



and that a fractionay ideal is divisorial if it is a reflexive A-module (one has that
p ∈ Spec(A) is divisorial if and only if codim(p) = 1).

The divisor class group Cl(A) of A is the set of isomorphism classes of frac-
tionary ideal I, denoted [I], with law group:

∀[I], [J ] ∈ Cl(A), [I] + [J ] = [(IJ)∗]

where −∗ denotes the A-dual Hom(−,A).
One has [I] = 0 if and only if I is principal (note that the right to left implication

can be directly deducted from the law group) so in particular, A is factorial if and
only if Cl(A) = {0} using the property that any codimension 1 ideal of a factorial
domain is principal[Eis95, Corollary 10.6].

For the computation we will carry out, a central tool is the following result:

Theorem 3.1.1 (Nagata’s theorem). If S ⊂ A is a multiplicative closed subset of
A, then assignments [I] → [IAS−1] maps Cl(A) surjectively onto Cl(AS−1); the
kernel of this map is generated by classes [p] of the divisorial prime ideals p with
p ∩ S 6= ∅.

Notice that, assuming Cl(A) =< g >= {ng, n ∈ Z} is cyclic generated by
an element g ∈ Cl(A), the definition of the law group implies to not consider the
embedded components of the ordinary power of g, that is:

∀n ∈ Z, ng︸︷︷︸
n times g

= g(n)

where g(n) stands for the n-th symbolic power of g. Recall that the n-th symbolic
power of prime ideal P in a Noetherian ring is the P -primary component of Pn

and the n-th symbolic power of an ideal I is the intersection of the n-th symbolic
powers of the minimal primes associated to I (see [Eis95, 3.9] and [DdSH+18] for
more about symbolic powers of ideals). As we are going to explain in Section 3.2,
the two main behaviors we describe in Proposition 3.0.1 are direct consequences of
the facts the generator g of the class group verifies g(2) = g2 or g(2) 6= g2.

3.1.2 Classification of rational normal scrolls via normal forms
of matrices’ pencils

For the rest of the section, we focus on 4×2 matrices φ′ ∈ R4×2 with homogeneous
linear entries (R = k[x0, x1, x2, x3]).

Given two extra indeterminates T0, T1, remark that we can write(
T0 T1

)
(φ′t) =

(
x0 x1 x2 x3

)
M

where M ∈ k[T0, T1]4×4 is a 4×4-matrix with homogeneous linear entries in T0, T1.
In other words

M = y0M
′ + y1M

′′

where M1,M2 ∈ k4×4 is a pencil of matrix that has a Kronecker canonical form
(see [KPU11] and [BTW16, Th. 4.2]), that is it exists common changes of basis of



k4 such that the linear map defined by M ′ and M ′′ have matrix M1 and M2 which
are block-diagonal with blocks of the following forms:

T0 Id +T1J, T0N + T1 Id T0K + T1L, T0K
t + T1N

t

where for k ∈ {0, . . . , 4},

Id =


1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1


︸ ︷︷ ︸

k

k

N =



0 . . . . . . . . . 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0



︸ ︷︷ ︸
k

k J =



λ 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . . . . 0 λ



︸ ︷︷ ︸
k

k

K =


1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0


︸ ︷︷ ︸

k

k − 1 L =


0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1


︸ ︷︷ ︸

k

k − 1

Regarding a classification of the linear submatrices Φ′f ∈ R4×2 in the almost

linear Hilbert-Burch matrix Φf ∈ R4×3, these canonical forms are a good way to
distinguish between the associated determinantal maps f since the linear changes
of basis involved do not modify the properties of the associated maps.

Let us present the classification of matrices Φf with respect to the codimension
of the subscheme V

(
I1(Φ′f )

)
defined by the entries of Φ′f . We set aside the case

codim(V
(

I1(Φ′f )
)

= 2 since all the associated maps f are not dominant so in
particular not Cremona. Indeed, if only two variables, say x0, x1 appear in Φ′f ,
there is at least one generator of degree 0 in the x-variables generating the ideal of
the graph Γf of f by [KPU11] so f cannot be dominant.

We describe now the cases corresponding to codimV
(

I1(Φf )
)

= 3. Via the left
action (resp. right action) of Gl4(k) (resp. Gl2(k)) on Φ′f , only three variables

appears in Φ′f . Hence one can write M =

(
µ

0 0 0 0

)
where µ is a 3 × 4 matrix of

the canonical form in the following table where we write on the right the associated
matrix Φ′f via the relation (x0 x1 x2 x3)M = (T0 T1)Φtf . When possible we do
another change of basis in order to have x0 (resp. x1) as the first (resp. second)
entry of the first column of Φf .



µ Φ′f

3.a

T0 T1 0 0
0 T0 T1 0
0 0 T0 T1



x0 0
x1 x0

x2 x1

0 x2


3.b

T0 T1 0 0
0 0 T1 0
0 0 T0 T1



x0 0
x1 x2

0 x0

0 x1


3.c

T0 T1 0 0
0 0 T0 + λT1 T1

0 0 0 T0 + λT1



x0 0
0 x0

x1 λx1

x2 x1 + λx2

 λ ∈ k

3.d

T0 T1 0 0
0 T0 T1 0
0 0 0 αT0 + βT1



x0 0
x1 x0

0 x1

αx2 βx2

 α, β ∈ k

3.e

T0 T1 0 0
0 0 αT0 + βT1 0
0 0 0 δT0 + εT1



x0 0
0 x0

αx1 βx1

δx2 εx2

 α, β, δ, ε ∈ k

Observe that the transpose of the previous matrices N provides canonical form
such that codimV

(
I1(Φf )

)
= 4. We begin by these matrices the following classifi-

cation of cases such that codimV
(

I1(Φf )
)

= 4.

M Φ′f

4.a


T0 0 0 0
T1 T0 0 0
0 T1 T0 0
0 0 T1 0



x0 x1

x1 x2

x2 x3

0 0


4.b


T0 0 0 0
T1 0 0 0
0 T1 T0 0
0 0 T1 0



x0 x2

x1 x3

0 x1

0 0


4.c


T0 0 0 0
T1 0 0 0
0 T0 + λT1 0 0
0 T1 T0 + λT1 0



x0 x1

x2 x3 + λx2

x3 λx3

0 0

 λ ∈ k

4.d


T0 0 0 0
T1 T0 0 0
0 T1 0 0
0 0 αT0 + βT1 0



x0 x1

x1 x2

αx3 βx3

0 0

 α, β ∈ k

4.e


T0 0 0 0
T1 0 0 0
0 αT0 + βT1 0 0
0 0 δT0 + εT1 0



x0 x1

αx2 βx2

δx3 δx3

0 0

 α, β, δ, ε ∈ k



M Φ′f

4.f


T0 0 0 0
0 T1 0 0
0 0 αT0 + βT1 0
0 0 0 δT0 + εT1



x0 0
0 x1

αx2 βx2

δx3 εx3

 α, β, δ, ε ∈ k

4.g


T0 + λT1 T1 0 0

0 T0 + λT1 0 0
0 0 αT0 + βT1 0
0 0 0 δT0 + εT1



x0 λx0

x1 x0 + λx1

αx2 βx2

δx3 εx3

 α, β, δ, ε, λ ∈ k

4.h


T1 0 0 0
T0 T1 0 0
0 0 αT0 + βT1 0
0 0 0 δT0 + εT1



x1 x0

0 x1

αx2 βx2

δx3 εx3

 α, β, δ, ε ∈ k

4.i


T0 + λT1 T1 0 0

0 T0 + λT1 0 0
0 0 T0 + νT1 0
0 0 0 T0 + νT1



x0 λx0

x1 x0 + λx1

x2 νx2

x3 νx3

 λ, ν ∈ k

4.j


T0 + λT1 T1 0 0

0 T0 + λT1 0 0
0 0 T1 0
0 0 T0 T1



x0 λx0

x1 x0 + λx1

x3 x2

0 x3

 λ ∈ k

4.k


T1 0 0 0
T0 T1 0 0
0 0 T1 0
0 0 T0 T1



x0 x2

x1 x3

0 x0

0 x1


4.l


T0 + λT1 T1 0 0

T0 T0 + λT1 T1 0
0 0 T0 + λT1 0
0 0 0 αT0 + βT1



x0 λx0

x1 x0 + λx1

x2 x1 + λx2

αx3 βx3

 λ, α, β ∈ k

4.m


T0 0 0 0
T1 0 0 0
0 T0 T1 0
0 0 T1 T1



x0 x3

x1 0
x2 x1

0 x2


4.n


T1 0 0 0
T0 T1 0 0
0 T0 T1 0
0 0 0 αT0 + βT1



x1 x0

x2 x1

0 x2

αx3 βx3

 α, β ∈ k

4.o


T0 0 0 0
T1 0 0 0
0 T0 T1 0
0 0 0 αT0 + βT1



x0 x1

x2 0
0 x2

αx3 βx3

 α, β ∈ k

4.p


T0 T1 0 0
0 0 T0 0
0 0 T1 T0

0 0 0 T1



x0 0
0 x0

x1 x2

x2 x3


4.q


T0 T1 0 0
0 T0 T1 0
0 0 T0 T1

0 0 0 T0



x0 0
x1 x0

x2 x1

x3 x3


4.r


T1 0 0 0
T0 T1 0 0
0 T0 T1 0
0 0 T0 T1



x1 x0

x2 x1

x3 x2

0 x3





From this classification, an analysis depending on the parameters has to be
lead to compute the divisor class group Div(A) of the complete intersection of
coordinate ring A = S/(y0 . . . ; y3)Φ′f . Focusing on the cyclic divisor class group
we only treat the cases written in blue in the previous tabular.

Remark 3.1.2. Let us point out here that all the algebras A = S/(y0 . . . ; y3)Φ′f
considered in the following are normal so that we can apply Nagata’s theorem
(Theorem 3.1.1) to describe their divisor class group. Indeed, their are Cohen-
Macaulay so checking their normality is equivalent to checking that their are regular
in codimension at least 2. This last condition is verified since the 2-minors ideal of
the jacobian matrix of (y0 . . . ; y3)Φ′f has codimension greater or equal to 4 > 2.
Indeed, the jacobian matrix of (y0 . . . ; y3)Φ′f decomposes into two submatrices of
size 2×4 each one involving separate set of variables (namely one depends only on
x and the the other one depends only on the y) and the 2-minors ideals of these
two 2 × 4-matrices have codimension 2 by construction (this can also be verified
via a computer in each case).

3.2 Almost linear determinantal spatial maps associated to
cyclic divisor class groups

With respect to the previous table of canonical forms M and associated matrices
Φf , let us consider the following cases:

(i) Case 3.a: Φ′f =


x0 0
x1 x0

x2 x1

0 x2



(ii) Case 4.a: Φ′f =


x0 x1

x1 x2

x2 x3

0 0



(iii) λ = β = 0 and another change of variables in Case 4.g: Φ′f =


x0 x3

x1 0
0 x0

0 x2



(iv) λ = 0, α 6= 0 and another change of variables in Case 4.g: Φ′f =


x0 0
x1 x0

0 x2

0 x3



(v) α = β = δ = ε = 1 in Case 4.h: Φ′f =


x0 0
x1 x0

x2 x2

x3 x3





(vi) Case 4.m with another change of variables: Φ′f =


x0 0
x1 x0

0 x1

x2 x3



(vii) α = 0, β = 1 and another change of variables in Case 4.n: Φ′f =


x0 x2

x1 x0

0 x1

0 x3


Let us denote by A = S/(y0 . . . y3)Φ′f (S = R[y0, . . . , y3]) the complete inter-

section whose ideal is generate by the entries in the line matrix (y0 . . . y3)Φ′f .

Proposition 3.2.1. Let Φ′f be one of the preceding seven matrices from Item (i)
to Item (vii). Then the divisor class group Cl(A) of A is cyclic generated by a
prime ideal P of codimension 1 verifying:

∀n ∈ N∗, P (n) = Pn.

Our proof or the fact that symbolic powers are equal to the ordinary powers
in Proposition 3.2.1 relies on a result about the Cohen-Macaulayness of the Rees
algebra of ideals having small analytic deviation in complete intersection algebra
[HS92, Cor. 2.21]. Recall that the analytic deviation ad(I) of an ideal I is the
quantity:

ad(I) := `(I)− codim(I)

where `(I) is the analytic spread of I (that is the Krull dimension of the special
fiber ring of I, let us refer here to [HS06, Def. 5.1.5] and [HS06, Chapter 8] for
alternative definition of the analytic spread). Let us also remind [HS92, Cor. 2.21]
for self-completeness.

Lemma 3.2.2. [HS92, Cor. 2.21] Let A be a Cohen-Macaulay local ring and P be
a prime ideal of A. Assume that ad(P ) = 1 and A/P is nonsingular in codimension
1. Then the following are equivalent.

(i) depth(A/P ) > dim(A/P )− 1

(ii) the Rees algebra of P is Cohen-Macaulay.

Using the implication Item (i) ⇒ Item (ii) showing that the Rees algebra of P
is Cohen-Macaulay, we use then the equivalence:

P (n) = Pn ⇔ `(PQ) < codimQ.

as stated in [HS92, p.386].
As pointed out by one referee of this work, let us also mention that another

argument applies in order to show that the Rees algebra of P is Cohen-Macaulay:
indeed, P is Cohen-Macaulay of deviation 2 so it is strongly Cohen-Macaulay (i.e.
the Koszul homology modules of P are all Cohen-Macaulay) of deviation at most 2
by [AH80, Supplement] which is enough to provide that R(P ) is Cohen-Macaulay
by [Hun83, Th.4.2].



Proof of Proposition 3.2.1. We give the complete proof Proposition 3.2.1 in the
case Item (iii):

Φ′f =


x0 x3

x1 0
0 x0

0 x2

 ,

the other cases follow by applying the exact same arguments. Let L1 := y0x0+y1x1

and L2 := y0x3 + y2x0 + y3x2.
Apply first Nagata’s theorem (Theorem 3.1.1) by localizing A at the prime (y0).

Hence:

0 {p prime of A, p ∩ (y0) = {0}} Cl(A) Cl(Ay0
) 0.

In Ay0
, one has that: x0 = −y1x1

y0
using L1 and x3 = −

− y1y2x1
y0

+y3x2

y0
using

L2. Hence Ay0
= k(y0)[x1, x2, y1, y2, y3] is factorial (being a polynomial ring) so

Cl(Ay0
) = 0 implying that Cl(A) = {p, p ∩ (y0) = {0}}.

Computing then the primary decomposition of (L1, L2)/y0 (for instance via
a software system), one has then that Cl(A) is generated by P = (y0, x1) and
P ′ = (y0, y1). Moreover

PP ′ = (y2
0 , y0y1, x1y0, x1y1) = y0(y0, y1, x1, x0)

is principal so P ′ = P−1 in Cl(A) and Cl(A) is thus cyclic generated by P =
(y0, x1).

We now explain why for any n ∈ N, P (n) = Pn. In our case, since 2 > `(P ) >
codim(I) = 1 and `(I) cannot be equal to 1 or else P would be principal whereas
it is not, `(P ) = 2 and

ad(P ) = 1.

Moreover, as it can be checked for instance from a software system, the ideal
of 2-minors of the jacobian matrix of Spec(A) has codimension 3 so A is regu-
lar in codimension 2. It is the condition we need to apply Lemma 3.2.2. Since
depth(A/P ) > dim(A/P )− 1 (as it can also be directly computed with a software
system), the Rees algebra of P is Cohen-Macaulay. The sufficient condition

`(PQ) < codimQ (3.2.1)

for the symbolic powers of P to be equal to the ordinary powers of P has only to
be checked at the primes describing the primary decomposition of the non regular
locus of A. But since the ideal of 2-minors of the jacobian matrix of Spec(A) has
codimension 3, the condition in (3.2.1) is automatically verified hence:

∀n ∈ N∗, P (n) = Pn.

In the other cases, the same arguments apply mutatis mutandis:

Item (i) Φ′f =


x0 0
x1 x0

x2 x1

0 x2

, P = (x0, y
2
2 − y1y3) and P−1 = (x0, x1, x2) (inverse x0 to

apply Nagata’s theorem).



Item (ii) Φ′f =


x0 x1

x1 x2

x2 x3

0 0

, P = (y0, x
2
2 − x1x3) and P−1 = (y0, y1, y2) (inverse y0).

Item (iv) Φ′f =


x0 0
x1 x0

0 x2

0 x3

, P = (x0, y1) (inverse y1).

Item (v) Φ′f =


x0 0
x1 x0

x2 x2

x3 x3

, P = (x0, y1) (inverse y1).

Item (vi) Φ′f =


x0 0
x1 x0

0 x1

x2 x3

, P = (y3, y
2
1 − y0y2) and P−1 = (x0, x1, y3) (inverse y3).

Item (vii) Φ′f =


x0 x2

x1 x0

0 x1

0 x3

, P = (x1, y0) (inverse y0).

We describe now a case where symbolic powers differ from the ordinary powers.

Proposition 3.2.3. Let Φ′f =


x0 x2

x1 x3

0 x0

0 x1

 and A = S/(y0 . . . y3)Φ′f . Then Cl(A)

is cyclic generated by P = (y0, x1). In addition:

RS(P ) = A[Pt, ft2]

where RS(P ) stands for the symbolic Rees algebra ⊕i>0P
(i)ti of P and f = y0x0−

y2x1.

In particular,


P (2) = (P 2, f)

P (2n) = (P 2, f)n ∀n > 1

P (2n+1) = P (P 2, f)n ∀n > 1

Proof. Following the same path as in the proof of Proposition 3.2.1, remark that
an application of Nagata’s theorem (Theorem 3.1.1) by localizing at the prime (y0)
shows that Cl(A) is generated by P = (y0, x1).

However, contrary to the cases in Proposition 3.2.1, one has that the ideal of 2-
minors of the jacobian matrix of Spec(A) has codimension 2. Actually, via a direct



computation of the primary decomposition, one has that the only codimension
2 minimal prime associated to the 2-minors ideal of the jacobian matrix is Q =
(x0, x1, y0, y1). Hence the defect RS(P )/R(P ) is only supported at Q since away
from Q, the same arguments as in the proof of Proposition 3.2.1 applies.

Let us compute now a presentation of A[Pt, ft2] via the presentation of the

Rees algebra R(P ) of P . Since a presentation of P reads ΦP =

(
x0 x1

y1 −y0

)
, one

has
R(P ) = Sym(P ) = A[S, T ]/(l1, l2)

where l1 = Sx0 + Ty1, l2 = x1U − Ty0 using that the latter ring is a domain (one
can show that the ideal (l1, l2) is prime via a direct computation).

Furthermore P 2 : f = Q so, via a computation of the syzygies of fQ + P 2,
define in

(
A[S, T ]/(l1, l2)

)
[U ]:

• l3 = x0U − x2ST − y3T
2

• l4 = x1U − x3ST + y2T
2

• l5 = y0U − x3S
2 + y2ST

• l6 = y1U + x2S
2 + y3ST .

By computation, one has that (l3, l4, l5, l6) is included in the kernel of the map(
A[S, T ]/(l1, l2)

)
[U ] A[Pt, ft2]

U ft2.

This latter map is actually surjective because, via a computation by computer, the
ideal E = (l1, l2, l3, l4, l5, l6) is prime in A[S, T, U ] (considering here that l3, l4, l5, l6
are in A[S, T, U ]). Since, via another computation by computer, codimA[S,T,U ]/E Q =
2 > 1, one has that A[Pt, ft2] = RS(P ) = A[S, T, U ]/E.

Proof of Proposition 3.0.1. Given d > 2, consider now a matrix

Φf =


x0 x3 φ03

x1 0 φ13

0 x0 φ23

0 x2 φ33


with φi3 ∈ (x0, x1)d−1 for all i ∈ {0, . . . , 3} and let f : P3 99K P3 be the determi-
nantal map whose Hilbert-Burch matrix is Φf .

Writing A = S/(y0x0 +y1x1, y0x3 +y2x0 +y3x2), since Cl(A) is cyclic generated
by P = (x1, y0), the class [Γf ] of the graph Γf of f reads

[Γf ] =
H

L
P (ν)

for given ν ∈ Z and H,L ∈ A (this expression a priori in Frac(A) actually makes
sense in A by definition of Cl(A)).



Using that P (ν) = P ν = (yν0 , y
ν−1
0 x1, . . . , x

ν
1) by Proposition 3.2.1, one has that

H
L shifts the bidegree of the generators of P (ν). Actually, since L3 = y0φ03 +
y1φ13 + y2φ23 + y3φ33 is a generator of the Rees algebra (as the generator of the
component of bidegree (∗, 1) of the Rees algebra) we know that the bidegree is (d, 1)
has to appear as the bidegree of a generator of P (ν) and since there is no generator
of bidegree (0, ∗) in the graph of f , because f is dominant, one has necessarily
L3 = H

L x
ν
1 so

H

L
=
L3

xν1
.

Hence ν = d− 1 and

[Γf ] =
L3

xd−1
1

P (d−1).

Now, by chasing the bidegree of the generators in L3

xd−1
1

P (d−1), one obtains the

result about the bidegree of the generators the graph of f .

The argument is the same in the case Φf =


x0 x2 φ03

x1 x3 φ13

0 x0 φ23

0 x1 φ33

 with φi3 ∈

(x0, x1)d−1 of degree d for all i ∈ {0, . . . , 3}. The only difference comes from
the expression of

P (d−1) = (yd−1
0 , yd−2

0 x1, y
d−3
0 f, yd−4

0 x1f, . . . , y0x
d−2
1 , fxd−3

1 , xd−1
1 )

where f = y0x0 − y2x1 by Proposition 3.2.3 which explains the number of each
minimal generators in each bidegrees.

Remark 3.2.4. Let Φf =


x0 x3 0
x1 0 x3

0

0 x0 x2
0x2

0 x2 x2
1x3

 and let f : P3 99K P3 the associated

Cremona map. By Proposition 3.0.1, we know that the graph Γf of f is minimally
generated by one generator in the following bidegrees:

(3, 1), (2, 2), (1, 3)

and two of bidegree (1, 1). Actually the generator of bidegree (3, 1) is L3 = y1x
3
0 +

y2x
2
0x2 + y3x

2
1x3 (up to scalar) and the two generators of bidegree (1, 1) are L1 =

y0x0 +y1x1 and L2 = y0x3 +y2x0 +y3x2. Remark that one can compute the other
generators of the ideal of the graph of f using the equality:

[Γf ] =
L3

x2
1

P (d−1) =
L3

x2
1

(y2
0 , y0x1, x

2
1)

where P = (y0, x1) is the generator of the divisor class group Cl(A) of A =
S/(L1, L2).

For instance in A:

L3

x2
1

y0x1 =
(y1x

3
0 + y2x

2
0x2 + y3x

2
1x3)y0y1

x2
1

=
−y2

1x
2
0x

2
1 − y1y2x0x

2
1x2 + y0y3x

3
1x3

x2
1

= −y2
1x

2
0 − y1y2x0x2 + y0y3x1x3



which provides a minimal generator of bidegree (2, 2) of Γf .

Remark 3.2.5. Let Φf =


x0 x2 0
x1 x3 x4

0

0 x0 x3
0x2

0 x1 x3
1x3

 and let f : P3 99K P3 the associated

Cremona map. One can still use the Sylvester form to compute recursively some
minimal generators of the graph of the graph of f . For instance:∣∣∣∣x3

0y1 + x2
0x2y2 x2

1x3y3

y0 y1

∣∣∣∣ = x3
0y

2
1 + x2

0x2y1y2 − x2
1x3y0y3∣∣∣∣x2

0y
2
1 + x0x2y1y2 −x1x3y0y3

y0 y1

∣∣∣∣ = x2
0y

3
1 + x0x2y

2
1y2 + x1x3y

2
0y3∣∣∣∣x3

0y
2
1 + x2y

2
1y2 x3y

2
0y3

y0 y1

∣∣∣∣ = x0y
4
1 + x2y

3
1y2 − x3y

3
0y3

although this computation only provides a part of the equations since it lacks one
other generator in bidegree (3, 2), for instance:

x2
0x2y

2
1 + x0x

2
2y1y2 − x1x

3
3y0y3 − x3

0y1 + (−x2
0x2 + x2

1x3)y1y3

x0x2y
3
1 + x2

2y
2
1y2 + x2

3y
2
0y3 − x2

0y
2
0y3 − x1x3y0y2y3 − x0x2y1y2y3

3.3 The ideal of the Rees algebra in the non cyclic case:
some examples

In the cases where the divisor class group is non cyclic (from 3.b to 3.e, from 4.b
to 4.f, 4.i, 4.j, 4.l, from 4.o to 4.r in the table page 48), the description of the ideal
of the Rees algebra is not so direct because one has to take into account the last
column of the almost linear matrix Φf which has non linear entries. In this section,
we only illustrate the impact of this last column in an example.

Example 3.3.1. Let Φf =


x0 x2 x3x

3
0 + x2x

3
1

x1 x0 x4
0 + x4

1

0 x1 x3
0x2

0 0 x3
1x3

 and let f : P3 99K P3 be the

associated Cremona map. Via a computation using a computer software, one can
see that d(f) = (1, 6, 6, 1) and the ideal of the graph of f is minimally generated
by one element in the following bidegree:

(4, 1), (2, 2), (1, 4), (1, 1).

Actually in this case, denoting L1 = y0x0 + y1x1, L2 = y0x2 + y1x0 + y2x1

and A = S/(L1, L2) one has that Cl(A) is generated by P1 = (x1, y0, y1), P2 =
(x1, x0, x2), P3 = (x1, x

2
0, y

2
0) and P1 +P2 +P3 = 0Cl(A) so that Cl(A) is difficult to

compute (the class [Γf ] of Γf is then a combination of two of these generators).
Hence, contrary to cyclic cases, changing the last column of entries of degree 4

may change the list of bidegrees of the generators of the ideal of the Rees algebra



of the associated map. For instance, let now Φf =


x0 x2 x3

1x3

x1 x0 x3
0x1

0 x1 x4
0 + x3

1x3

0 0 x4
1 + x3

0x1

 and let

f : P3 99K P3 be the associated Cremona map (it has bidegree (1, 5, 6, 1)). The
ideal of the graph of f is minimally generated by one element in the following
bidegree:

(4, 1), (2, 2), (1, 3), (1, 1).





Part II

Detecting determinantal Cremona
maps via convex geometry
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Chapter 4

Bernstein theorem’s bound on the
number of solutions of a zero
dimensional polynomial system

From now on, we let k = C be the field of complex number and let n ∈ N∗.
As explained in the introduction, given a determinantal map f : Pnk 99K Pnk , we
study the polynomial systems defined by the residual scheme P(If ) of If via convex
geometry. Section 4.1 is dedicated to briefly present the basic material about convex
geometry and mainly follow [CLO05, Chapter 7]. This approach precises also the
notion of genericity, a polynomial being generic with respect to a given polytope.
We additionally use Bernstein theorem to compute intersection multiplicity in order
to translate the detection of plane determinantal Cremona maps as an interpolation
problem in Section 5.2.

4.1 Preliminaries in convex geometry

Following [CLO05, 7. Section 4], a set C ⊂ Rn is convex if it contains any segments
between two points in C and the convex hull Conv(S) of a subset S ⊂ Rn is the
smallest convex set containing S. A polytope is the convex hull Conv(A) of a finite
set A ⊂ Rn and the polytopes which are the convex hull of points with integer
coordinates are called lattice polytopes.

Definition 4.1.1. Given φ =
∑
α∈Nn

cαx
α ∈ k[x1, . . . , xn] where xα = xα1

1 . . . xαnn ,

the Newton polytope of φ, denoted NP(φ), is the lattice polytope NP(φ) = Conv{α ∈
Nn, cα 6= 0}.

A polytope P ⊂ Rn has an n-dimensional volume Voln(P ).

Example 4.1.2. Let φ = x3
0 + x2

0x1 + x0x
2
1 + x3

1 + x2
0 + x0x1 + x2

1, then NP(φ) =
Conv{(3, 0), (0, 3), (2, 0), (0, 2)} and Vol2

(
NP(f)

)
= 2 + 1

2 = 5
2 .

Polytopes P ⊂ Rn have special subsets defined as follows. Given a vector
ν ∈ Rn\{0}, an affine hyperplane is defined by an equation m · ν = −a and
denoting aP (ν) = −min

m∈P
{m · ν}, the hyperplane of equation m · ν = −aP (ν) is
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called a supporting hyperplane of P in which case ν is called an inward pointing
normal. Actually, Pν := P ∩ {m ∈ Rn, m · ν = −aP (ν)} 6= ∅ [CLO05, 7.1, Ex.13]
and P lies in the half space {m ∈ Rn, m · ν > −aP (ν)}, Pν is then called the face
of P . The dimension of a polytope Q being the dimension of the affine space it
generates, vertices (resp. edges, facets) of P are faces of P of dimension 0 (resp.
1, dim(P ) − 1). A facet lies on a unique supporting hyperplane and hence has a
unique inward pointing normal up to a positive multiple so, provided P is a lattice
polytope, an inward normal νF of a facet F of P can be re-scaled so that νF has
integer coordinates which are moreover relatively prime. It follows that F has a
unique such primitive inward normals νF ∈ Zn.

Example 4.1.3. The polytope NP(φ) and its primitive inward normals in Exam-
ple 4.1.2.

x1

x0

NP(f)

ν3

ν4

ν1

ν2

Let us mention that the volume of an n-dimensional lattice polytope can be
computed using its facets, namely, putting P = ∩

F
{m ∈ Rn, m · νf > −af} where

the intersection is taken over all the facet F of P whose supporting hyperplane
with primitive inward normal νf is written m · νf = −af , one has:

Voln(P ) =
1

n

∑
F

aF Vol′n−1(F ) (4.1.1)

where the sum is taken over all facets in P and where Vol′n−1(F ) = Voln−1(F )
‖νF ‖ is

the normalized volume of F and ‖νF ‖ is the euclidean length of νf , see [CLO05,
7.Proposition 4.6]

4.2 Mixed volumes and their computations

Given two polytopes P,Q ⊂ Rn and a real number λ > 0, the Minkowski sum of
P and Q, denoted P +Q is the set

P +Q := {p+ q, p ∈ P, q ∈ Q}

where p+q denotes the usual vector sum in Rn and the λP stands for the polytope
{λp, p ∈ P} where λp is the usual scalar multiplication in Rn.



Example 4.2.1. Given d > 1, let P1 = Conv{(1, 0), (0, 1)} and P2 = Conv{(d, 0),
(d−1, 0), (0, d−1), (0, d)}. Then P1 +P2 = Conv{(d+ 1, 0), (d, 0), (0, d), (0, d+ 1)}
The polytope NP(f) and its primitive inward normals in Example 4.1.2.

(0, 1)

(1, 0)

x1

x0

P1

(d− 1, 0)

(0, d)

(d, 0)

x1

x0

P2

(d, 0)

(0, d)

(0, d+ 1)

(d+ 1, 0)

x1

x0

P1 + P2

Now given any collection P1, . . . , Pr ⊂ Rn and r non negative scalar λ1, . . . , λr ∈
R, then Voln(λ1P1 + . . . λrPR) is a homogeneous polynomial of degree n in the λi
[CLO05, 7. Prop.4.9].

Definition 4.2.2 (mixed volume of a collection of polytopes). The n-dimensional
mixed volume MVn(P1, . . . , Pn) of given polytopes P1, . . . , Pn is the coefficient of
the monomial λ1, . . . , λn in Voln(P1, . . . , Pn).

For this present work and all the actual computations of mixed volumes we
present, all the material we need is contained in [CLO05, 7. Th.4.12] so let us
briefly re-state this toolbox:

Theorem 4.2.3. [CLO05, 7. Th.4.12]

(i) The mixed volume MVn(P1, . . . , Pn) is invariant if the Pi are replaced by
their images under a volume-preserving transformation of Rn (for example,
a translation).

(ii) MVn(P1, . . . , Pn) is symmetric and linear in each variable (multilinearity of
the mixed volume).

(iii) MVn(P1, . . . , Pn) > 0.

MVn(P1, . . . , Pn) = 0 if one of the Pi has dimension zero (i.e. if Pi consists
of a single point).

MVn(P1, . . . , Pn) > 0 if every Pi has dimension n.

(iv) MVn(P1, . . . , Pn) =
n∑
k=1

(−1)n−k
∑

I⊂{1,...,n}
|I|=k

Voln(
∑
i∈I
Pi) where

∑
i∈I
Pi is the Min-

kowski sum of polytope.



Example 4.2.4. Let P1 and P2 the polytopes of Example 4.2.1. Then:

MV2(P1, P2) = Vol2(P1 + P2)−Vol2(P1)−Vol2(P2)

=
1

2

(
− d(d+ 1) + (d+ 1)(d+ 2)

)
− 1

2

(
− (d− 1)d+ d(d+ 1)

)
= 1

Let us quote a last tool for computing mixed volumes.

Lemma 4.2.5. [ST10, Lemma 6] Let n,m ∈ N∗ and let P1, . . . , Pm be polytopes
in Rm+n and Pm+1, . . . , Pm+n be polytopes in Rm × {0Rn} ⊂ Rm+n. Then:

MVm+n(P1, . . . , Pm+n) = MVm(P1, . . . , Pm) MVn(πn(Pm+1), . . . , πn(Pm+n))

where πn : Rm+n → Rn stands for the projection on the last n coordinates.

See [ST10, Lemma 6] for the proof of Lemma 4.2.5. Let us now give an illus-
tration of this result:

Example 4.2.6. Let d > 1 and let P1 = Conv{(1, 0, 0), (0, 1, 0)}, P2 = Conv{(d, 0, 0),
(d−1, 0, 0), (0, d−1, 0), (0, d, 0)} and P3 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Then:

MV3(P1, P2, P3) = MV2(P1, P2) MV1

(
π1(P3)

)
= 1× 1 = 1.

4.3 Number of solutions of a generic polynomial system
and Bernstein theorem

Following [CLO05, 7 Section 5], let us first define the genericity of a polynomial
with respect to a polytope.

Definition 4.3.1 (genericity with respect to a polytope). Given finite set A ⊂
Zn, put L(A) := {

∑
α∈Ai

cαx
α ∈ k[x1, . . . , xn]} and remark that each L(A) can be

considered as an affine space k#Ai with the coordinate cα as coordinates.
A polynomial

∑
α∈Ai

cαx
α is said to be generic with respect to L(A) if its coeffi-

cients are generic in L(A).
Given k > 1 and finite sets A1, . . . , Ak ∈ Zn, a property is said to hold generi-

cally for polynomials (φ1, . . . , φn) ∈ L(A1)× . . .×L(Ak) is there is a non zero poly-
nomial in the coefficients of the φi such that the property holds for all φ1, . . . , φn for
which the polynomial is non vanishing, in particular if every φ1, . . . , φn is generic
with respect to its own polytope L(A1), . . . , L(Ak).

Theorem 4.3.2 (Bernstein theorem). Given n polynomials in n variables φ1, . . . ,
φn ∈ k[x1, . . . , xn] with finitely many common zeroes in (k∗)n, let Pi = NP(φi).
Then the number of common zeroes in (C∗)n is bounded above by the mixed volume
MVn(P1, . . . , Pn). Moreover if each φi is generic with respect to Pi, the number of
common zero solutions is exactly MVn(P1, . . . , Pn).



Let us refer to [CLO05, Proof of 7. Th. 5.4] and the references therein for
highlights about Bernstein theorem.

Remark 4.3.3. Let d1, d2, d3 ∈ N∗ and consider j polynomials φ1, φ2, φ3 such that
for any j ∈ {1, 2, 3}, φj is generic with respect to the polytope

Pj = Conv{(0, 0, 0), (dj , 0, 0), (0, dj , 0), (0, 0, dj)} = djS3

where S3 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} is the unit simplex of R3.
In this case, using the multilinearity of the mixed volume Theorem 4.2.3.

Item (ii), one has:

MV3(P1, P2, P3) = d1d2d3 MV3(S3, S3, S3) = d1d2d3.

Thus, the system defined by φ1, φ2, φ3 has d1d2d3 distinct common zeros all lying
in (k∗)3.

Consider now the Hilbert-Burch matrix Φf = (φij) 06i63
16j63

∈ R4×3 (R = k[x0, . . . ,

x3]) of a determinantal map f : P3
k 99K P3

k where for any j ∈ {1, 2, 3}, every en-
tries φij of the j-th column is generic with respect to Pj (that is to say, the
de-homogenization of φij with respect to a variable is generic with respect to Pj).
When interested in the topological degree d0(f), remark that considering a gen-
eral point y ∈ P3

k in the target space of f is equivalent to take three polynomials
generic with respect to the unit simplex S3 (that is three polynomials whose de-
homogenization with respect to a variable is generic with respect to S3). More-

over, denoting φ
(y)
1 , φ

(y)
2 , φ

(y)
3 the entries of the line matrix (y0 . . . y3)Φf ⊂ S =

R[y0, . . . , y3], remark that for any j ∈ {1, 2, 3}, φ(y)
j is then generic with respect to

the polytope P
(6)
j = Pj × {0R3}+ {0R3} × S3 ⊂ R3 × R3 and that

e := MV6(P
(6)
1 , P

(6)
2 , P

(6)
3 , {0R3} × S3, {0R3} × S3, {0R3} × S3)

provides a bound to the number of solution x ∈ P3
k with non zero coordinates to the

system f(x) = y. In this case, using the multilinearity of the mixed volume Theo-
rem 4.2.3. Item (ii), projection formula Lemma 4.2.5 and the vanishing condition
Theorem 4.2.3. Item (iii), one has that

e = MV3(P1, P2, P3) MV3(S3, S3, S3) = d1d2d3

which is precisely the topological degree d0(f) of f .





Chapter 5

Applications: projective degrees vs
mixed volumes of determinantal
maps

Introduction

The mixed volumes of the polytopes defined by the entries of Φf provide an original
perspective on the computation of all the sequence of projective degrees

d(f) =
(
d0(f), d1(f) . . . , dn(f)

)
of f . Since Bernstein theorem states that the mixed volumes associated to a
polynomial system (E) compute the solutions of (E) with non zero coordinates,
see [CLO05, 7. Th. 5.4] or Theorem 4.3.2 below, the starting observation of this
work is the following

Proposition 5.1.6. Let f : Pnk 99K Pnk be a Koszul-determinantal map and denote
by Φf = (φij) 06i6n

16j6n
the presenting matrix of the base ideal If of f . Then:

∀k ∈ {0, . . . , n}, dk(f) = MV2n(Sx
n , . . . , S

x
n︸ ︷︷ ︸

k

, Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n−k

)

⇔ P(If )\Γf ⊂ V(
n

Π
i=0
xi) ⊂ Pnk × Pnk

where for l ∈ {1, . . . , n}, Py
l ⊂ Rn ×Rn is the Newton polytope of the l-th entry of

the matrix (y0 . . . yn)Φf , Sx
n = Sn×{0Rn} ⊂ Rn×Rn, Sy

n = {0Rn}×Sn ⊂ Rn×Rn
and Sn is the unit simplex of Rn (see below for our convention describing the
Newton polytope in Rn×Rn of a bi-homogeneous polynomial in x and y-variables).

Moreover, using tools of combinatorial convex geometry, and in particular the
projection formula Lemma 4.2.5 ([ST10, Lemma 6]) decomposing some mixed vol-
umes as the product of mixed volumes in smaller dimension, we describe a glued
determinantal Cremona maps [g|g′] : Pm+n

k 99K Pm+n
k starting from two determi-

nantal Cremona maps g : Pmk 99K Pmk and g′ : Pnk 99K Pnk of smaller projective
spaces. In this framework, we are able to describe the projective degrees of some
determinantal maps whose Hilbert-Burch matrix is almost linear:
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Proposition 5.3.3. Let d > 2 and let Φ[g|g′] = (φij) 06i62+n
16j62+n

be such that:

• all the entries φi1 of the 1-st column of Φ[g|g′] are general linear combinations
of x0 and x1,

• all the entries φi1 of the 2-nd column of Φ[g|g′] are general linear combinations
of the generators of the ideal

(x0, x1)d−1 · (x0, x1, x2) = (xd0, x
d−1
0 x1, x

d−1
0 x2, . . . , x

d−1
1 x2, x

d
1),

• for all l ∈ {3, . . . , 2 + n}, all the entries φil of the l-th column of Φ[g|g′] are
general linear combinations of x2, . . . , x2+n.

Then the glued map [g|g′] : P2+n
k 99K P2+n

k whose base ideal I[g|g′] is the (m+n)-
minors ideal Φ[g|g′] is a determinantal Cremona map and moreover:

∀k ∈ {0, . . . , 2 + n}, dk([g|g′]n) =

(
n

n− k

)
+ (d+ 1)

(
n

n− k + 1

)
+

(
n

n− k + 2

)
with the convention that

(
j
i

)
= 0 if i < 0 or i > j. In particular, the sequence of

projective degrees of [g|g′] is palindromic.

Contents of the chapter

In Section 5.1, we show how the computation of mixed volumes can be used to
study the linear type case of determinantal maps. In this ground situation, we
only show known result about the projective degrees of such maps and we shed
some lights on their distribution, see for instance Example 5.1.2.

In Example 5.1.2, we focus on non linear type cases of plane determinantal
Cremona map and we show how their projective degrees can still be estimated
and, in some specific situations, computed by the mixed volumes associated to their
Hilbert-Burch matrix, see for instance Proposition 5.2.3 and Proposition 5.2.5.

Section 5.3 is dedicated to the definition of some glued map defined via poly-
topes. The gluing is different as the one explained in Section 1.2 and we explain
how the properties of the mixed volumes allow to describe the distribution of the
projective degrees of some of such maps, see Proposition 5.3.3.

5.1 Projective degrees of Koszul-determinantal maps
defined by sparse polynomials

Following Remark 4.3.3, let us first precise our notation. Given a homogeneous
polynomial φ ∈ R = k[x0, . . . , xn], the Newton polytope NP(φ) ⊂ Rn associated to
φ is the Newton polytope of the de-homogenization of φ with respect to a variable
xi (omitted when irrelevant) and, reciprocally, given a polytope P ⊂ Rn, we denote
φ ∈ P for a homogeneous polynomial φ ∈ k[x0, . . . , xn] whose de-homogenization
with respect to the variable xi is in P . Furthermore, we consider more general
Newton polytopes P ⊂ Rn × Rn corresponding to bi-homogeneous polynomials
φ ∈ S = R[y0, . . . , yn], that is the bi-de-homogenization of φ with respect to one
fixed variable xi and one fixed variable yj (i, j ∈ {0, . . . , n}) is in P .



Let us also denote by Sn = Conv{(0, . . . , 0︸ ︷︷ ︸
n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

), . . . , (0, . . . , 0︸ ︷︷ ︸
n−1

, 1)} ⊂ Rn

the unit simplex of Rn and let Sx
n := Sn×{0Rn} ⊂ Rn×Rn and Sy

n := {0Rn}×Sn ⊂
Rn × Rn.

Proposition 5.1.1. Let f : Pnk → Pnk be a determinantal map of Hilbert-Burch ma-
trix Φf = (φij) 06i6n

16j6n
of syzygetic degree (d1, . . . , dn). Then for all k ∈ {0, . . . , n}:

dk(f) 6 MV2n(Sx
n , . . . , S

x
n︸ ︷︷ ︸

k

, Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n−k

) 6 σn−k,n(d1, . . . , dn)

where for l ∈ {1, . . . , n}, Py
l ⊂ Pnk × Pnk is the Newton polytope of the l-th entry of

the matrix (y0 . . . yn)Φf and σk,n is the k-th symmetric polynomial in n-variables.

Proof. As explained in Remark 1.1.3, for all k ∈ {0, . . . , n}, degn−k,kP P(If ) is the
number of common zero solutions in ⊂ Pnk × Pnk of the polynomials

l1,0, . . . , lk,0, φ1, . . . , φn, l0,1, . . . , l0,n−k (5.1.1)

where l1,0, . . . , lk,0 (resp. l0,1, . . . , l0,n−k) are generic with respect to Sx
n (resp.

generic with respect to Sy
n) and φ1, . . . , φn ∈ S = R[y0, . . . , yn] are the entries of

the matrix (y0 . . . yn)Φf (the associated polynomial system being 0-dimensional
by definition of a determinantal map, see Definition 1.1.6).

In this setting, by Theorem 4.3.2 in the generic case, the quantity

MV2n(Sx
n , . . . , S

x
n︸ ︷︷ ︸

k

, Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n−k

)

is the number of solutions of (5.1.1) whose coordinates are all non zero which shows
the right hand side inequality of Proposition 5.1.1 since the number of common
zero of (5.1.1) is equal to σn−k,n(d1, . . . , dn).

The set of common zeros of (5.1.1) contains moreover the set

Hk
x ∩ Γf ∩Hn−k

y ⊂ Pnk × Pnk

where Hk
x = V(l1,0, . . . , lk,0) is the zero locus of l1,0, . . . , lk,0, Γf is the graph of f

and Hn−k
y = V(l0,1, . . . , l0,n−k). However, by the genericity assumptions, remark

that the points of Hk
x ∩ Γf ∩Hn−k

y have all non zero coordinates which shows the
left hand side inequality of Proposition 5.1.1.

As illustrated by the following example, the inequality of the right hand side of
the estimations in Proposition 5.1.1 is an equality in ”naive” generic cases. This is
nothing but expected since the bound provided by the mixed volume in Bernstein
theorem say no more than the bound of Bézout theorem in those ”naive” generic
cases, see [CLO05, 7. Section 5. Ex.2].

Example 5.1.2. Put momentarily n = 3, let d1, d2, d3 ∈ N∗ and Φf = (φij) 06i63
16j63

(R = k[x0, . . . , x3]) be the Hilbert-Burch matrix of a determinantal map f where
for j ∈ {1, 2, 3} each entry φij of the j-th entry of Φf is generic with respect to the
polytope djS3.



x0

x1

x2

(0, 0, 0)

(dj , 0, 0)

(0, dj , 0)

(0, 0, dj)

NP(φij)

Denoting P
(6)
j := djS3×{0R3}+{0R3}×S3 ⊂ R3×R3 and using the multilinearity

of the mixed volume (Theorem 4.2.3. Item (ii)), projection formula (Lemma 4.2.5)
and the vanishing condition (Theorem 4.2.3. Item (iii)), one has:

(a) MV6(P
(6)
1 , P

(6)
2 , P

(6)
3 , Sy

3 , S
y
3 , S

y
3 ) = d1d2d2 = σ3,3(d1, d2, d3)

(b) MV6(Sx
3 , P

(6)
1 , P

(6)
2 , P

(6)
3 , Sy

3 , S
y
3 ) =

MV6(Sx
3 , d2S3 × {0R3}, d2S3 × {0R3}, Sy

3 , S
y
3 , S

y
3 )

+ MV6(Sx
3 , d1S3 × {0R3}, d3S3 × {0R3}, Sy

3 , S
y
3 , S

y
3 )

+ MV6(Sx
3 , d1S3 × {0R3}, d2S3 × {0R3}, Sy

3 , S
y
3 , S

y
3 )

=d2d3 MV3(S3, S3, S3) + d1d3 MV3(S3, S3, S3) + d1d2 MV3(S3, S3, S3)

=d2d3 + d1d3 + d1d3 = d1 + d2 + d3 = σ2,3(d1, d2, d3)

(c) MV6(Sx
3 , S

x
3 , P

(6)
1 , P

(6)
2 , P

(6)
3 , Sy

3 ) = d1 + d2 + d3 = σ1,3(d1, d2, d3)

(d) MV6(Sx
3 , S

x
3 , S

x
3 , P

(6)
1 , P

(6)
2 , P

(6)
3 ) = MV6(Sx

3 , S
x
3 , S

x
3 , S

y
3 , S

y
3 , S

y
3 )

= 1 = σ0,3(d1, d2, d3).

Let us now isolate two technical facts that rely on Lemma 4.2.5:

Lemma 5.1.3. Let P1, . . . , Pn ⊂ Rn be n polytopes and for j ∈ {1, . . . , n} put
Py
j := Pj × {0Rn}+ {0Rn} × Sy

n ⊂ Rn × Rn.
Then

MV2n(Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n

) = MVn(P1, . . . , Pn).

Proof. It suffices to apply the multilinearity of the mixed volume (Theorem 4.2.3.
Item (ii)), the projection formula (Lemma 4.2.5) and the vanishing condition (The-
orem 4.2.3. Item (iii)) on the left member of the equality to obtain:

MV2n(Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n

) = MVn(P1, . . . , Pn) MVn(Sn, . . . , Sn︸ ︷︷ ︸
n

)

= MVn(P1, . . . , Pn).

Lemma 5.1.4. In addition to n ∈ N∗, let m ∈ N∗ and:

• P1, . . . , Pm ⊂ Rm × {0Rn} ⊂ Rm × Rn,



• Pm+1, . . . , Pm+n ⊂ {0Rm} × Rn ⊂ Rm × Rn

be n+m polytopes and for j ∈ {1, . . . ,m+ n} put:

Py
j := Pj × {0Rm+n}+ {0Rm+n} × Sy

m+n ⊂ Rm+n × Rm+n.

Then for all k ∈ {0, . . . ,m+ n},

MV2(m+n)(S
x
m+n, . . . , S

x
m+n︸ ︷︷ ︸

m+n−k

, Py
1 , . . . , P

y
n+m, S

y
m+n, . . . , S

y
m+n︸ ︷︷ ︸

k

)

=

k∑
p=0

[( ∑
{l1,...,lp}⊂
{1,...,m}

MVm(Sm, . . . , Sm︸ ︷︷ ︸
m−p

, Pl1 , . . . , Plp)
)
×

( ∑
{l1,...,lk−p}⊂
{m+1,...,m+n}

MVn(Sn, . . . , Sn︸ ︷︷ ︸
n+p−k

, Pl1 , . . . , Plk−p)
)]

Proof. The formula follows from by decomposing first Sx
m+n ⊂ Rm+n×Rm+n (resp.

Sy
m+n) as the sum Sx

m×{0Rn}×{0Rm+n}+{0Rm}×Sx
n×{0Rm+n} ⊂ Rm+n×Rm+n

(resp. as the sum {0Rm+n}×Sy
m×{0Rn}+ {0Rm+n}× {0Rm}×Sy

n ×{0Rm+n}) and
then applying the multilinearity of the mixed volume (Theorem 4.2.3. Item (ii)),
the projection formula (Lemma 4.2.5), the vanishing condition (Theorem 4.2.3.
Item (iii)) and eventually Lemma 5.1.3.

We now describe a situation where the right hand side inequality in Proposi-
tion 5.1.1 is strict.

Example 5.1.5. Let d > 1 and let f : P3
k 99K P3

k be a determinantal map of
Hilbert-Burch matrix Φf = (φij) 06i63

16j63
∈ R4×3 (R = k[x0, . . . , x3]) such that for

all i ∈ {0, . . . , 3}, φi1 is generic with respect to P1 = Conv{(1, 0, 0), (0, 1, 0)}, φi2
is generic with respect to P2 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and φi3 is
generic with respect to P3 = Conv{(d, 0, 0), (d − 1, 0, 0), (0, d − 1, 0), (0, d, 0)} (let
us moreover precise that we only consider here the de-homogenization of φij with
respect to x2).

(0, 1, 0)

(1, 0, 0)
x0

x1

x3

P1

x0

x1

x3

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

P2

(d− 1, 0)

(0, d)

(d, 0)

x1

x0

P3

x3



Using Lemma 5.1.3 one has

MV6(Py
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 , S

y
3 ) = MV3(P1, P2, P3)

= MV2

(
π2(P1), π2(P3)

)
MV1

(
π1(P2)

)
= 1

where the first equality follow from applying the projection formula Lemma 4.2.5
since P1, P3 ⊂ R2 ⊂ R2 × R (π2 : R2 × R → R2 and π1 : R2 × R → R being the
first and second projection) and the second equality follows from Example 4.2.6.

Hence, in this example

d0(f) 6 MV6(Py
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 , S

y
3 ) = 1 < σ3,3(1, 1, d) = d.

Additionally one can say even more about the estimation of d0(f) in this ex-
ample. Indeed, remark that under our genericity assumption on the entries of
Φf , one has that codimV

(
I2(Φf )

)
= 2 and codimV

(
I1(Φf )

)
> 4 so the only

defect preventing If of being be of linear type comes from I2(Φf ). Actually,

in this example, one has even that all the points P(If )\Γf ∩ H3
y ⊂ P3

k × P3
k

for H3
y = V(l01, l02, l03) (l01, l02, l03 generic with respect to Sy

3 ) lie on the 4-
space V(x0, x1) ⊂ P3

k × P3
k so P(If ) and Γf coincide away of the coordinate axis

V(x0x1x2x3). Since MV6(Py
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 , S

y
3 ) is the number of solutions of

P(If ) ∩ H3
y away from V(x0x1x2x3), it means that the number of solutions of

Γf ∩H3
y away from V(x0x1x2x3) is also equal to MV6(Py

1 , P
y
2 , P

y
3 , S

y
3 , S

y
3 , S

y
3 ).

Hence, in this example d0(f) = MV6(Py
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 , S

y
3 ) = 1 and f is a

determinantal Cremona map.
Actually, the same argument shows that:

d1(f) = MV6(Sx
3 , P

y
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 ) = d+ 2 < σ2,3(1, 1, d) = 2d+ 1. (5.1.2)

Remark that the actual computation of MV6(Sx
3 , P

y
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 ) shed light

on the defect in the right hand side inequality in (5.1.2). Namely, using the mul-
tilinearity of the mixed volume (Theorem 4.2.3. Item (ii)), the projection formula
(Lemma 4.2.5) and the vanishing condition (Theorem 4.2.3. Item (iii)), one has:

MV6(Sx
3 , P

y
1 , P

y
2 , P

y
3 , S

y
3 , S

y
3 ) = MV3(P2, P3, S3) + MV3(P1, P3, S3)

+ MV3(P1, P2, S3)

= d+ 1 + 1

and the defect is due to MV3(P1, P3, S3) since here it is equal to 1 whereas it is
equal to d for instance if P1 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0)} (in which case If is
of linear type).

In the end, d(f) = (1, d+ 2, d+ 2, 1) is palindromic.

The discussion in the end of Example 5.1.5 prove more generally:

Proposition 5.1.6. Let f : Pnk 99K Pnk be a Koszul-determinantal map of Hilbert-
Burch matrix Φf = (φij) 06i6n

16j6n
. Then:

dk(f) = MV2n(Sx
n , . . . , S

x
n︸ ︷︷ ︸

k

, Py
1 , . . . , P

y
n , S

y
n , . . . , S

y
n︸ ︷︷ ︸

n−k

)

⇔ P(If )\Γf ⊂ V(
n

Π
i=0
xi) ⊂ Pnk × Pnk



where for l ∈ {1, . . . , n}, Py
l ⊂ Rn ×Rn is the Newton polytope of the l-th entry of

the matrix (y0 . . . yn)Φf .

Hence, to know the actual term dk(f) of the projective degrees of a determinan-
tal map f , the computation of the associated mixed volume has to be completed
by a preliminary control on the support of the successive ideal of minors of Φf .
We illustrate such a control in the next subsection.

5.2 Plane Cremona maps as solutions of an interpolation
problem

Following the discussion at the end of the previous section, we describe now plane
determinantal Cremona maps using the theory on sparse polynomials. We focus
on plane determinantal maps since, given such a map f : P2

k 99K P2
k of syzygetic

degree (d1, d2) ∈ N2 and Hilbert-Burch matrix Φf = (φij) 06i62
16j62

∈ R3×2 (R =

k[x0, x1, x2]), there is nothing to control but the topological degree d0(f) of f
which only depend on the single ideal I1(Φf ) of 1-minors of Φf (by definition of
a determinantal map, d1(f) = d1 + d2 and codimV(If ) = 2, see Definition 1.1.6).
Remark that codimV

(
I1(Φf )

)
> 2 so V

(
I1(Φf )

)
is set-theoretically an intersection

of points p1, . . . , pl (if non empty) and one has moreover that for any k ∈ {1, . . . , l},
{pk} × P2

k ⊂ P(If ) as set.

Recall also Proposition 5.1.1 and Lemma 5.1.3 that if for any j ∈ {1, 2}, all the
entries φij of the j-th column of Φf are generic with respect to a given polytope
Pj ⊂ R2, one has then:

d0(f) 6 MV2(P1, P2).

Moreover if the zero locus V
(

I1(Φf )
)

of the 1-minors ideal I1(Φf ) of Φf is included
in V(x0x1x2), then the latter inequality is is actually an equality, see Proposi-
tion 5.1.6. A starting example for this situation being the map f where P1 and
P2 are the polytope of Example 4.2.1 (almost linear determinantal case). In this
example, V

(
I1(Φf )

)
= (0 : 0 : 1) ∈ P2

k so this construction answer the case d1 = 1
and d2 = d with one point p1 = (0 : 0 : 1) of multiplicity d − 1 in the interpola-
tion problem we are now going to define. We refer to [EH16, Chapter 1] for the
definition of multiplicity of a component in a intersection of two schemes.

Definition 5.2.1 (Interpolation for plane determinantal Cremona maps). Let
two integer d1, d2 ∈ N∗ and a matrix Φ = (φij) 06i62

16i62
∈ R3×2 such that for

any i ∈ {0, 1, 2} and j ∈ {1, 2}, φij is homogeneous of degree dj and such that
codimV

(
I2(Φ)

)
= 2.

Does it exist l > 0 points p1, . . . , pl ∈ P2
k and a l-uple m = (m1, . . . ,ml) ∈ (N∗)n

verifying

(1)
l∑

k=1

mi = d1d2 − 1

(2) V
(

I1(Φ)
)

= {p1, . . . , pl}



(3) for all k ∈ {1, . . . , l}, ({pk} × P2
k) ∩H2

y ∈ P2
k × P2

k has multiplicity mj in the
intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic

with respect to Sy
2 ?

If such a matrix Φ exists, the determinantal map f : P2
k 99K P2

k whose Hilbert-
Burch matrix is Φ is a Cremona map and we say that such a map answer the
interpolation problem with [d1, d2, (p1,m1), . . . , (pm,ml)].

Remark 5.2.2. Let c, c′ ∈ R = k[x0, x1, x2] be two generic cubic polynomials with
respect to the polytope Conv{(0, 0), (3, 0), (0, 3)} and denote by p1, . . . , p9 ∈ P2

k the
nine distinct point of the intersection V(c) ∩ V(c′). Choosing eight points among
p1, . . . , p9, say p1, . . . , p8, the interpolation problem with [3, 3, (p1, 1), . . . , (pm, 1)]
have a negative answer. Indeed if Φ = (φij) 06i62

16j62
is composed by cubic polyno-

mials all vanishing at p1, . . . , p8 then {p1, . . . , p8} ⊂ V
(

I1(Φ)
)

and, by Chasles’

theorem [EGH96, Theorem CB3], V
(

I1(Φ)
)

= {p1, . . . , p9} cannot be just equal
{p1, . . . , p8. It emphasize that sometimes the interpolation problem we defined in
Definition 5.2.1 can depend on the given configuration of points p1, . . . , pl.

Let us now present positive answer to some interpolation problem.

Proposition 5.2.3. The interpolation problem [2, 2, (p1, 1), (p2, 1), (p3, 1)] has a
positive answer.

Proof. For every i ∈ {0, 1, 2} and j ∈ {1, 2}, let φij ∈ R be generic with re-
spect to P = Conv{(0, 1), (1, 0), (1, 1)}. Then Φ = (φij) 06i62

16j62
is a solution to

[2, 2, (p1, 1), (p2, 1), (p3, 1)] where p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 :
1).

x0

x1

(0, 1)

(1, 0)

(1, 1)

P

Indeed, each entry φij of Φ is a generic linear combination aijx1x2 + bijx0x2 +
cijx0x1 for coefficients aij , bij , cij ∈ k so V

(
I1(Φ)

)
= {p1, p2, p3}. Moreover, by

the symmetry of the construction, each ({pk} × P2
k) ∩H2

y ⊂ P2
k × P2

k has the same
multiplicity a in the intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic with

respect to Sy
2 which provide the equation:

d0(f) + 3a = 4.



Since by Proposition 5.1.6, d0(f) = MV2(P, P ) = 1, one has furthermore

a = 1.

Example 5.2.4. The determinantal map f : P2
k 99K P2

k whose Hilbert-Burch

matrix is Φf =

x1x2 x0x2

x0x2 x0x1

x0x1 x1x2

 is a Cremona map (d(f) = (1, 4, 1)).

Proposition 5.2.5. Given d > 1, the interpolation problem

[2, 2d+ 1, (p1, d+ 1), (p2, d), (p3, d), (p4, d)]

has a solution.

Proof. Choose two polynomials q1, q2 ∈ R generic with respect to the polytope
P1 = Conv{(0, 1), (1, 0), (1, 1)}. These two polynomials vanish along foor common
points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1) and p4, say p4 = (α : β : γ)
with α 6= 0, β 6= 0, γ 6= 0.

Now for all i ∈ {0, 1, 2}, let

φi1 = ai,1q1 + bi,1q2

be a generic linear combination of q1 and q2 and let

φi2 = (ai,2x0 + bi,2x1)

d∏
k=1

(ai,k,2q1 + bi,k,2q2)

be the product of a generic linear combination (ai,2x0 + bi,2x1) of x0 and x1 with
the product of d generic linear combinations of q1 and q2.

x0

x1

(0, 1)

(1, 0)

(1, 1)

P1

(d+ 1, d)

(0, d+ 1)

(d+ 1, 0)

(d, d+ 1)
x1

x0

P2

By construction, V
(

I1(Φ)
)

is set theoretically equal to {p1, p2, p3, p4} and by
symmetry, ({p2} × P2

k) ∩ H2
y, ({p3} × P2

k) ∩ H2
y, ({p4} × P2

k) ∩ H2
y have the same

multiplicity a in the intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic with

respect to Sy
2 . Moreover, the multiplicity of ({p1} × P2

k) ∩ H2
y = ({(1 : 0 : 0)} ×



P2
k)∩H2

y has moreover multiplicity a+ 1 in the previous intersection since there is
just one additional general line passing through ({p1} × P2

k) in P(If ) compared to
({pk} × P2

k) for k ∈ {2, 3, 4}. All this fact together provide the equation:

4a+ 1 + d0(f) = 2(2d+ 1) = 4d+ 2

where f is the determinantal map with Hilbert-Burch matrix Φ.
Since moreover α 6= 0, β 6= 0, γ 6= 0, one has the additional equation

a+ d0(f) = MV2(P1, P2)

where P2 = Conv{(d+1, 0), (d+1, d), (d, d+1), (0, d+1)}. Since after computation
MV2(P1, P2) = d+ 1, we have a = d which concludes the proof.

Example 5.2.6. The determinantal map f : P2
k 99K P2

k of Hilbert-Burch matrix

Φf =

 0 x0(x0x2 − x0x1)2

x0x2 − x0x1 x1(x1x2 − x0x2)2

x1x2 − x0x2 0


is a Cremona map (d(f) = (1, 7, 1)).

Proposition 5.2.7. Given d > 2, the interpolation problem

[2, 2d, (p1, d), (p2, d), (p3, d), (p4, d− 1)]

has a solution.

Proof. Choose two polynomials q1, q2 ∈ R generic with respect to the polytope
P1 = Conv{(0, 1), (1, 0), (1, 1)}. These two polynomials vanish along four common
points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1) and p4, say p4 = (α : β : γ)
with α 6= 0, β 6= 0, γ 6= 0.

Now for all i ∈ {0, 1, 2}, let

φi1 = ai,1q1 + bi,1q2

be a generic linear combination of q1 and q2 and let

φi2 = qi2

d−1∏
k=1

(ai,k,2q1 + bi,k,2q2)

be the product of a polynomial qi2 generic with respect to Conv{(0, 1), (1, 0), (1, 1)}
with the product of d− 1 generic linear combinations of q1 and q2.

x0

x1

(0, 1)

(1, 0)

(1, 1)

P1

(d, d)
(0, d)

(d, 0)

x1

x0

P2



By construction, V
(

I1(Φ)
)

is set theoretically equal to {p1, p2, p3, p4} and by
symmetry, ({p1} × P2

k) ∩ H2
y, ({p2} × P2

k) ∩ H2
y, ({p3} × P2

k) ∩ H2
y have the same

multiplicity a in the intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic with

respect to Sy
2 . Moreover, the multiplicity of ({p4} × P2

k) ∩ H2
y = ({(1 : 0 : 0)} ×

P2
k)∩H2

y has moreover multiplicity a− 1 in the previous intersection since, by the
genericity assumptions, there is just one general line less passing through ({p4} ×
P2

k) ∩ H2
y in P(If ) compared to ({pk} × P2

k) ∩ H2
y for k ∈ {1, 2, 3}. All this fact

together describe the system:{
3a+ (a− 1) + d0(f) = 2× 2d = 4d

(a− 1) + d0(f) = MV2(P1, P2)

where P2 = dP1 and f is the determinantal map with Hilbert-Burch matrix Φ.
Since MV2(P1, P2) = dMV2(P1, P1) = d after computation, we thus have a = d
which concludes the proof.

Example 5.2.8. The determinantal map f : P2
k 99K P2

k of Hilbert-Burch matrix

Φf =

 0 x0x2(x0x2 − x0x1)2

x0x2 − x0x1 x1x2(x1x2 − x0x2)2

x1x2 − x0x2 x0x1(x1x2 − x0x1)2


is a Cremona map (d(f) = (1, 8, 1)).

Let us finish this section by presenting two sporadic constructions.

Proposition 5.2.9. Given d > 2, the interpolation problem

[3, 5, (p1, 6), (p2, 2), (p3, 2), (p4, 2), (p5, 1), (p6, 1)]

has a solution.

Proof. Choose two polynomials c1, c2 ∈ R whose de-homogenization with respect
to x2 is generic with respect to P1 = Conv{(2, 0), (2, 1), (1, 2), (0, 2)}. Assume
moreover that c1 and c2 are generic under the condition that they vanish at the
point (1 : 1 : 1) that is, the coefficients are generic with respect to a hyperplane of
L({(2, 0), (2, 1), (1, 2), (0, 2)}) in the notation of Definition 4.3.1.

By construction, V(c1) and V(c2) intersect set theoretically at 6 points p1 =
(0 : 0 : 1), p2 = (1 : 0 : 0), p3 = (0 : 1 : 0), p4 = (1 : 1 : 1), p5 = (α5 : β5 : γ5), p6 =
(α6 : β6 : γ6) where α5 6= 0, β5 6= 0, γ5 6= 0, α6 6= 0, β6 6= 0, γ6 6= 0. In addition p1

has multiplicity 4 in this intersection when p2, p3, p4, p5, p6 have multiplicity 1.
Now for all i ∈ {0, 1, 2}, let

φi1 = ai,1c1 + bi,1c2

be a generic linear combination of c1 and c2 and let

φi2 = qi2(ai,2c1 + bi,2c2)



be the product of a general linear combination qi2 = li2(x1x2− x0x2) + l′12(x0x2 −
x0x1) of x1x2 − x0x2 and x0x2 − x0x1 with the product of a generic linear combi-
nation of q1 and q2.

(2, 1)

(0, 2)

(2, 0)

(1, 2)

x1

x0

P1

(3, 2)

(0, 3)

(3, 0)

(2, 3)
x1

x0

P2

By construction, V
(

I1(Φ)
)

is set theoretically equal to {p1, . . . , p6} and ({p2}×
P2

k)∩H2
y, ({p3}×P2

k)∩H2
y, ({p4}×P2

k)∩H2
y have multiplicity 2 and ({p5}×P2

k)∩H2
y,

({p6} × P2
k) ∩H2

y have multiplicity 1 in the intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic with

respect to Sy
2 . Denoting a the multiplicity of ({p1} × P2

k) ∩H2
y in P

(
I2(Φ)

)
∩H2

y,
one has the system:{

a+ 3× 2 + 2× 1 + d0(f) = 3× 5 = 15

4 + d0(f) = MV2(P1, P2)

where P2 is the polytope P1 + Conv{(0, 1), (1, 1), (1, 0)}. Since MV2(P1, P2) = 5
after computation, one eventually finds a = 6 as expected.

Example 5.2.10. The determinantal map f : P2
k 99K P2

k of Hilbert-Burch matrix

Φf =

 0 (x2
0x2 − x0x

2
1)(x0x2 − x0x1)

x2
0x2 − x0x

2
1 (x2

0x1 − x2
1x2)(x1x0 − x1x2)

x2
0x1 − x2

1x2 0


is a Cremona map (d(f) = (1, 8, 1)).

Proposition 5.2.11. Given d > 2, the interpolation problem

[4, 6, (p1, 6), (p2, 6), (p3, 6), (p4, 2), (p5, 1), (p6, 1), (p7, 1)]

has a solution.

Proof. Let c1 = x2
1x

2
2−x2

0x
2
2, c2 = x2

0x
2
2−x2

0x
2
1, q1 = x1x2−x0x2, q2 = x0x2−x0x1

and for all i ∈ {0, 1, 2}, let
φi1 = ai,1c1 + bi,1c2

be a generic linear combination of c1 and c2 and let

φi2 = (ai,2c1 + bi,2c2)(a′i,2q1 + b′i,2q2)



be the product of a general linear combination of c1 and c2 with the product of a
generic linear combination of q1 and q2.

By construction, V
(

I1(Φ)
)

= {p1, p2, p3, p4, p5, p6, p7} where p1 = (1 : 0 :
0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1), p5 = (1 : −1 : 1), p6 =
(1 : 1 : −1), p7 = (1 : −1 : −1). In addition ({p4} × P2

k) ∩H2
y have multiplicity 2

and ({p5}×P2
k)∩H2

y, ({p6}×P2
k)∩H2

y ({p6}×P2
k)∩H2

y have multiplicity 1 in the
intersection

P
(

I2(Φ)
)
∩H2

y

where H2
y = V(l0,1, l0,2) is the zero locus of 2 polynomials l0,1, l0,k generic with

respect to Sy
2 . The points ({p1} × P2

k) ∩H2
y, ({p2} × P2

k) ∩H2
y ({p3} × P2

k) ∩H2
y

have moreover the same multiplicity a in P
(

I2(Φ)
)
∩H2

y that satisfies the following
conditions: {

3a+ 5 + d0(f) = 3× 5 = 24

5 + d0(f) = MV2(P1, P2)

where f is the determinantal map whose Hilbert-Burch matrix is Φ and where
P1 = 2 · Conv{(1, 0), (0, 1), (1, 1)} and P2 = 3 · Conv{(1, 0), (0, 1), (1, 1)}

(2, 2)
(0, 2)

(2, 0)

x1

x0

P1

(3, 3)
(0, 3)

(3, 0)

x1

x0

P2

Since after computation, one has MV2(P1, P2) = 6, a = 6 as expected.

Example 5.2.12. The determinantal map f : P2
k 99K P2

k of Hilbert-Burch matrix

Φf =

 0 (x2
0x

2
2 − x2

0x
2
1)(x0x2 − x0x1)

x2
0x

2
2 − x2

0x
2
1 (x2

1x
2
2 − x2

0x
2
2)(x1x2 − x0x2)

x2
1x

2
2 − x2

0x
2
2 0


is a Cremona map (d(f) = (1, 10, 1)).

Let us end the descriptions of examples since, as we will see in the next section,
there exists procedures which provides new examples of determinantal Cremona
maps starting from old ones.

5.3 Glued determinantal Cremona maps: a polytopal
approach

We now focus on the construction of a glued determinantal map [g|g′] : Pm+n
k 99K

Pm+n
k , where n,m ∈ N∗, starting from two determinantal Cremona maps g : Pmk 99K

Pmk and g′ : Pnk 99K Pnk . Actually, if last subsection fits into the previous studies
such as [DS16] where the two authors described the composition with the standard



Cremona map via a polytopal construction, the Newton complementary dual, the
results we are going to present fits into the the previous study in [CS12b, Propo-
sition 2.4] where the two authors presented the construction of a Cremona map
g̃ : Pn+1

k 99K Pn+1
k starting from a Cremona map g : Pnk 99K Pnk (see also [Dol11,

Prop. 7.2.8] for a similar procedure). Let us emphasize that this latter process is
qualitative in the sense that it applies to any Cremona map g : Pnk 99K Pnk whereas
the process we are going to present involves generic arguments due to the polytopal
approach it is based on (hence being closer to a quantitative process).

The goal behind this glued construction is to approach combinatorially the
projective degrees of the almost linear determinantal map in order to eventually
extend in greater dimension previous works such as [DH17].

Proposition-Definition 5.3.1 (glued map). Given any j ∈ {1, . . . ,m + n}, let
lj ∈ N∗ and let:

• ψ(j)
1 , . . . , ψ

(j)
lj
∈ Rm = k[x0, . . . , xm] if j ∈ {1, . . . ,m}

• ψ(j)
1 , . . . , ψ

(j)
lj
∈ Rn = k[xm, . . . , xm+n] if j ∈ {m+ 1, . . . ,m+ n}.

Let also Φg = (φ
(g)
ij ) 06i6m

16j6m
∈ R

(m+1)×m
m , Φg′ = (φ

(g)
ij ) 06i6n

m+16j6m+n
∈ R

(n+1)×n
n and

Φ[g|g′] = (φij) 06i6m+n
16j6m+n

∈ R
(m+n+1)×(m+n)
m+n where Rm+n = k[x0, . . . , xm+n] be such

that:

• for any j ∈ {1, . . . ,m}, each entry φ
(g)
ij =

lj∑
k=1

λ
(ij)
k ψ

(j)
k of the j-th column of

Φg is a general linear combination of ψ
(j)
1 , . . . , ψ

(j)
lj

.

• for any j ∈ {m + 1, . . . ,m + n}, each entry φ
(g′)
ij =

lj∑
k=1

λ
(ij)
k ψ

(j)
k of the j-th

column of Φg′ is a general linear combination of ψ
(j)
1 , . . . , ψ

(j)
lj

.

• for any j ∈ {1, . . . ,m+ n}, each entry φij =
lj∑
k=1

λ
(ij)
k ψ

(j)
k of the j-th column

of Φ[g|g′] is a general linear combination of ψ
(j)
1 , . . . , ψ

(j)
lj

.

Assume that codimV
(

Im(Φg)
)

= codimV
(

In(Φg′)
)

= 2, then necessarily one has

that codimV
(

Im+n(Φ[g|g′])
)

= 2 and we define the glued map [g|g′] : Pm+n
k 99K

Pm+n
k as the map whose base locus I[g|g′] is the (m+ n)-minors ideal of Φ[g|g′].

In the following, under the notation of Proposition-Definition 5.3.1 and under
the assumption that codimV

(
Im(Φg)

)
= codimV

(
In(Φg′)

)
= 2, we let g : Pmk 99K

Pmk (resp. g′ : Pnk 99K Pnk ) be the map whose base locus Ig is equal to Im(Φg) (resp.
Ig′ = In(Φg′)).

Proof. Assume that codimV
(

Im(Φg)
)

= codimV
(

In(Φg′)
)

= 2 and suppose by

contradiction that codimV
(

Im+n(Φ[g|g′])
)
< 2. Then there is a common factor

to each m + n minors of Φ[g|g′], so, after operation on columns, one column of
Φ[g|g′] have all its entries sharing a common factor. But it is impossible under the
genericity assumption on the entries of Φ[g|g′].



We emphasize however that the glued map [g|g′] of two Koszul-determinantal
maps g and g′, though determinantal by the previous Proposition-Definition 5.3.1,
may not be Koszul-determinantal, as illustrated by the following example.

Example 5.3.2. Put m = n = 2 and let l1 = l2 = l3 = l4 = 2 with:

• ψ(1)
1 = ψ

(2)
1 = x1, ψ

(1)
2 = ψ

(2)
2 = x2

• ψ(3)
1 = ψ

(4)
1 = x2, ψ

(3)
2 = ψ

(4)
2 = x3.

Then, the maps g : P2
k 99K P2

k and g′ : P2
k 99K P2

k are Koszul-determinantal
but [g|g′] : P4

k 99K P4
k is such that codimV

(
I1(Φ[g|g′])

)
= 3 < 4 (I1(Φ[g|g′]) =

(x1, x2, x3)).

Let us now describe the projective degrees of a glued determinantal map in the
almost linear setting.

Proposition 5.3.3. Let d > 2, put l1 = 2, l2 = 3d, l3 = . . . = l2+n = 1 and

• ψ(1)
1 = x0, ψ

(1)
2 = x1

• ∀k ∈ {1, . . . , 3d}, ψ(2)
k is the k-th generator of the product

(x0, x1)d−1 · (x0, x1, x2) = (xd0, x
d−1
0 x1, x

d−1
0 x2, . . . , x

d−1
1 x2, x

d
1).

• ∀l ∈ {3, . . . ,m+ 3}, k ∈ {2, . . . ,m+ 3}, ψ(l)
k = xl

Then the glued map [g|g′] : P2+n
k 99K P2+n

k whose base ideal I[g|g′] is the (m+n)-
minors ideal Φ[g|g′] is a determinantal Cremona map and moreover:

∀k ∈ {0, . . . , 2 + n}, dk([g|τn]) =

(
n

k − 2

)
+ (d+ 1)

(
n

k − 1

)
+

(
n

k

)
with the convention that

(
j
i

)
= 0 if i < 0 or i > j.

Remark that, following [BCRD20, Remark 5.13], any almost linear determinan-
tal Cremona map Φ of P2

k, can be assumed to verified I1(Φg) = (x0, x1) via a linear
change of variables.

Proof. First, under our generic assumptions, codim I1+n(Φ) = 2 and for all k ∈
{1, . . . , n}, codim Ik(Φ) > 3 +n−k, hence Φf |g is Koszul-determinantal. Moreover

P(I[g|g′])\Γ[g|g′] ⊂ V(
n

Π
i=0
xi) ⊂ Pnk × Pnk hence, by Proposition 5.1.6, we can use the

mixed volumes of the polytopes defined by the polynomials ψ
(j)
i to compute the

projective degrees of [g|g′].



By applying Lemma 5.1.4, given any k ∈ {0, . . . , 2 + n}, one has the formula:

MV2(2+n)(S
x
2+n, . . . , S

x
2+n︸ ︷︷ ︸

2+n−k

, Py
1 , . . . , P

y
2+m, S

y
2+n, . . . , S

y
2+n︸ ︷︷ ︸

k

)

=

k∑
p=0

[( ∑
{l1,...,lp}⊂
{1,...,2}

MV2(S2, . . . , S2︸ ︷︷ ︸
2−p

, Pl1 , . . . , Plp)
)
×

( ∑
{l1,...,lk−p}⊂
{3,...,2+n}

MVn(Sn, . . . , Sn︸ ︷︷ ︸
n+p−k

, Pl1 , . . . , Plk−p)
)]

m

dk(f |g) =

k∑
p=0

[
dp(f)dk−p(g)

]
with the convention that dp(g) = 0 if p > 2 and dk−p(g

′) = 0 if p > k − n.
The result of Proposition 5.3.3 follows from the fact that:

• d(g) = (d0(g), d1(g), d2(g)) = (1, d+ 1, 1)

• d(g′) = (1,
(
n
1

)
, . . . ,

(
n
n−1

)
,
(
n
n

)
) as g′ is general determinantal map, see [GSP06,

Theorem 2]

Let us emphasize that this description of a glued determinantal map lead to
divide determinantal maps between elementary ones, those which cannot be ex-
pressed as the glued determinantal map of two initial ones from smaller spaces,
and non elementary ones. In this perspective, the general determinantal maps
f : Pnk 99K Pnk should be considered as non elementary, being the gluing of n
Cremona maps f1, . . . , fn : P1

k 99K P1
k. The almost linear determinantal Cremona

maps f : Pnk 99K Pnk should also be thought as non elementary as being the gluing
of an almost linear determinantal plane Cremona maps f1 : P2

k 99K P2
k and n − 1

Cremona maps f2, . . . , fn−1 : P1
k 99K P1

k.
Let us finish by giving the example of an elementary determinantal map P3

k 99K
P3

k.

Example 5.3.4. Let L =

(
x0 x1 x2

x1 x2 x3

)
∈ R2×3

3 , (R3 = k[x0, x1, x2, x3]) and

denote by ψ1, ψ2, ψ3 the generator of the 2-minors ideal of L (the equations of the
twisted cubic).

Let Φf = (φij) 06i63
16j63

∈ R4×3
3 be the matrix such that:

• the entries φi1 (resp. φi2) of the first (resp. second) column of Φf are general
linear combinations of ψ1, ψ2, ψ3.

• the entries φi3 of the third column of Φf are general linear combinations of
x0, x1, x2, x3.



Then the determinantal map f : P3
k 99K P3

k whose Hilbert-Burch matrix is Φf is a
Cremona map and d(f) = (1, 5, 5, 1).





Chapter 6

Determinantal but not Koszul
determinantal maps: about the
excess intersection case

Introduction

In this section, we want to highlight another generalization of the quarto-quartic
construction in [DH17]. By using the notation and convention of Chapter 4, let
us present this generalization via polytopes. The quarto-quartic map f : P3 99K
P3 of projective degree (1, 4, 4, 1) described in [DH17] is a determinantal map of
Hilbert-Burch matrix Φf = (φij) 06i63

16j63
∈ R4×3 (R = k[x0, . . . , x3]) whose first and

second column are filled with polynomials of degree 1 and the third column is
filled with polynomial of degree 2. Following Proposition 5.3.3, let us interpret
this construction as follows, our convention here is that the considered polytopes
in R3 represent polynomials of R deshomogenized with respect to x0): given any
i ∈ {0, . . . , 3}:

• φi1 is generic with respect to P1 = Conv{(0, 0, 0), (1, 0, 0)}

• φi2 is generic with respect to P2 = S3 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1)}

• φi3 is generic with respect to P2 = P1 +S3 = Conv{(0, 0, 0), (2, 0, 0), (0, 1, 0),
(1, 1, 0), (0, 0, 1), (1, 0, 1)}

(0, 0, 0)

(1, 0, 0)
x1

x2

x3

P1

x1

x2

x3

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

P2

x2

x1

P3

x3
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And we saw in the previous section how we can generalized this construction
by considering n > 4 polytopes: P1 = Conv{(0, . . . , 0︸ ︷︷ ︸

n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

), P2 = . . . =

Pn−1 = Sn where Sn is the unit simplex of Rn and Pn = dP1 + Sn. In this
latter case, the associated maps are Koszul-determinantal and associated mixed
volumes are the actual projective degrees of the almost linearly presented maps,
see Proposition 5.3.3.

Taking another direction, let d2 and d3 be two integer and consider a Hilbert-
Burch matrix Φf = (φij) ∈ R4×3 (R = k[x0, . . . , x3]) such that given any i ∈
{0, . . . , 3}:

• φi1 is generic with respect to P1 = Conv{(0, 0, 0), (1, 0, 0)}

• φi2 is generic with respect to P2 = (s2 − 1)P1 + S3 where S3 is the unit
simplex of R3,

• φi3 is generic with respect to P2 = (s3 − 1)P1 + S3.

(0, 0, 0)

(1, 0, 0)
x1

x2

x3

P1

x2

x1

P2

x3

(s2, 0, 0)

x2

x1

P3

x3

(s3, 0, 0)

In higher dimension n > 4, one can generalized this latter construction as
follows: let s2, . . . , sn > 1 and a matrix Φf = (φij) 06i6n

16j6n
∈ R(n+1)×n such that for

any i ∈ {0, . . . , n}:

• φi1 is generic with respect to P1 = Conv{(0, . . . , 0︸ ︷︷ ︸
n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

)

• and for all j ∈ {2, . . . , n}, φij is generic with respect to Pj = (sj − 1)P1 +Sn
where Sn is the unit simplex of Rn.

A main difference now is that for every any entry Φij of Φf is in the ideal (x0, x1)
and, consequently, the associated maps defined by the n-minors of Φf are not
Koszul-determinantal (for instance codim I1(Φf ) = 2 < n. However, via an ex-
perimental approach, it seems that the mixed volumes associated to the polytopes
P1, . . . , Pn still describe the projective degrees of those maps. In this direction, our
goal in this section is to provide strong evidences for the following conjecture:

Conjecture 6.0.1. Let n > 3, s2, . . . , sn > 1, Φf = (φij) 06i6n
16j6n

∈ R(n+1)×n such

that for any i ∈ {0, . . . , n}:



• φi1 is generic with respect to P1 = Conv{(0, . . . , 0︸ ︷︷ ︸
n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

)

• and for all j ∈ {2, . . . , n}, φij is generic with respect to Pj = (sj − 1)P1 +Sn
where Sn is the unit simplex of Rn.

Then the projective degrees of the map f defined by the n-minors of Φf reads:

(
1,

(
1

n

)
+

∑
i1∈{2,...,n}

(si1 − 1),

(
2

n

)
+

∑
{i1, i2}⊂

{2, . . . , n}

2∑
j=1

(sij − 1),

(
3

n

)
+

∑
{i1, i2, i3}⊂

{2, . . . , n}

3∑
j=1

(sij − 1), . . . ,

(
n− 1

n

)
+

∑
{i1, . . . , in−1}⊂

{2, . . . , n}

n−1∑
j=1

(sij − 1), 1
)

and are in particular palindromic.

Example 6.0.2. Let us illustrate the previous formula in some examples:

• n = 3, s2 = 2, s3 = 3 and d(f) = (1, 6, 6, 1),

• n = 4, s2 = 2, s3 = 3, s4 = 4 and d(f) = (1, 10, 18, 10, 1),

• n = 5, s2 = 2, s3 = 3, s4 = 4, s5 = 5 and d(f) = (1, 15, 40, 40, 15, 1).

As we will explain, this conjecture is supported by the computation of the mixed
volumes associated to P1, . . . , Pn (see Proposition 6.1.1) and some experiments.
The only result we will be able to actually show is that, given a map f : Pn 99K Pn
as in Conjecture 6.0.1, then dn−1(f) = 1 +

∑n
i=2 si (i.e. f is a determinantal map)

and d0(f) = 1 (i.e. f is a Cremona map), see Proposition 6.1.2.
Following [EH16, Chapter 13], about excess intersection descriptions, we will

also discuss more precisely the (primary) decomposition of the intersection of three
surfaces in P3 along a line which is our starting case.

One could imagine wilder excess intersection situations (see for instance [EH16,
13.6]) so let us refer to the situation in Conjecture 6.0.1 as a linear excess in-
tersection problem emphasizing that the support of the excess intersection is a
(codimension 2) linear space. In the third subsection, we will present other linear
excess intersection situations which also give rise to Cremona maps.



6.1 Estimation/computation of the projective degrees in
the linear excess intersection problem

In this section, we let n > 2, s2, . . . , sn > 1 and, using the notations and results
about convex geometry in Chapter 4, let:

• P1 = Conv{(0, . . . , 0︸ ︷︷ ︸
n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) (with respect to any deshomogeneization,

say x0),

• and for all j ∈ {2, . . . , n}, Pj = (sj − 1)P1 + Sn where Sn is the unit simplex
of Rn

In order to support Conjecture 6.0.1, let us first compute the mixed volumes
associated to P1, . . . , Pn.

Proposition 6.1.1. Let k ∈ {1, . . . , n}, then given any {i1, . . . , ik} ⊂ {1, . . . , n}:

MVn(Pi1 , . . . , Pik︸ ︷︷ ︸
k

, Sn, . . . , Sn︸ ︷︷ ︸
n−k

) =


1 if 1 ∈ {i1, . . . , ik}

1 +
k∑
j=1

(sij − 1) if 1 /∈ {i1, . . . , ik}
.

Consequently:

∑
{i1, . . . , ik}⊂

{1, . . . , n}

MVn(Pi1 , . . . , Pik , Sn, . . . , Sn) =

(
n

k

)
+

∑
{i1, . . . , ik}⊂

{2, . . . , n}

k∑
j=1

(sij − 1) (6.1.1)

Moreover this latter quantity is also equal to:

∑
{i1, . . . , in−k}⊂

{1, . . . , n}

MVn(Pi1 , . . . , Pin−k , Sn, . . . ,Sn) =

(
n

n− k

)
+

∑
{i1, . . . , in−k}⊂

{2, . . . , n}

n−k∑
j=1

(sij − 1)

Proof. First note that Lemma 4.2.5 provides that all mixed volumes involving
more than two P1 terms vanish. Moreover, we denote in the following π1 : Rn =
R1 × Rn−1 → R1 (resp. πn−1 : Rn = R1 × Rn−1 → Rn−1) the first (resp. second)
projection.

Now let k ∈ {1, . . . , n} and {i1, . . . , ik} ⊂ {1, . . . , n}:

• assume that 1 ∈ {i1, . . . , ik}, say i1 = 1. Then using the multilinearity
of the mixed volumes Theorem 4.2.3 Item (ii) and the projection formula
Lemma 4.2.5:

MVn(Pi1 , . . . , Pin , Sn . . . , Sn︸ ︷︷ ︸
n−k

) = MVn(P1, Sn . . . , Sn︸ ︷︷ ︸
n−1

)

= MV1

(
π1(P1)

)
MVn−1

(
πn−1(Sn), . . . , πn−1(Sn)︸ ︷︷ ︸

n−1

)
= MV1(S1) MVn−1(Sn−1, . . . , Sn−1︸ ︷︷ ︸

n−1

) = 1



• Now assume that 1 /∈ {i1, . . . , ik}, then again by the multilinearity of the
mixed volume and the projection formula, one has:

MVn(Pi1 , . . . , ik, Sn, . . . , Sn︸ ︷︷ ︸
n−k

)

= MVn(Sn, . . . , Sn︸ ︷︷ ︸
n

) +

k∑
j

(sij − 1) MVn(Sn, . . . , Sn︸ ︷︷ ︸
j−1

, P1, Sn, . . . , Sn︸ ︷︷ ︸
n−j−1

)

= 1 +

k∑
j=1

(sij − 1).

Consequently, (6.1.1) follows from the identification
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
and

the following development:∑
{i1, . . . , ik}⊂

{1, . . . , n}

MVn(Pi1 , . . . , Pik ,Sn, . . . , Sn)

=
∑

{i2, . . . , ik}⊂

{2, . . . , n}

MVn(P1, Pi2 , . . . , Pik , Sn, . . . , Sn)

+
∑

{i1, . . . , ik}⊂

{2, . . . , n}

MVn(Pi1 , . . . , Pik , Sn, . . . , Sn)

=

(
n− 1

k − 1

)
+

∑
{i1, . . . , ik}⊂

{2, . . . , n}

(
1 +

k∑
j=1

(sij − 1)
)

=

(
n− 1

k − 1

)
+

(
n− 1

k

) ∑
{i1, . . . , ik}⊂

{2, . . . , n}

k∑
j=1

(sij − 1)

The equality(
n

k

)
+

∑
{i1, . . . , ik}⊂

{2, . . . , n}

k∑
j=1

(sij − 1) =

(
n

n− k

)
+

∑
{i1, . . . , in−k}⊂

{2, . . . , n}

n−k∑
j=1

(sij − 1)

follows from a reorganization of the terms in the sums (and the identification(
n
k

)
=
(
n

n−k
)
).

Among the previous numbers, let us now present those for which we can prove
that they are the actual projective degrees of a map f : Pn 99K Pn whose base
ideal is the n-minors ideal of a matrix Φf = (φij ∈ R(n+1)×n such that for all
j ∈ {1, . . . , n} and i ∈ {0, . . . , n}, φij is generic with respect to Pj .



Proposition 6.1.2. Let f = (f0 : . . . : fn) : Pn 99K Pn be the map defined by the
n-minors of the matrix Φf as in Conjecture 6.0.1. Then:

(a) dn−1(f) = 1 +
n∑
j=2

sj (i.e. f is determinantal or, in other words, its base ideal

If is the n-minors ideal of the matrix Φf ),

(b) d0(f) = 1 (i.e. f is a Cremona map).

Proof. (a) Since the polynomials in Φf are generic with respect to the polytopes
P1, . . . , Pn, we can suppose that x

sj
0 and x

sj
1 appear in each entries of the

j-th column of Φf for any j ∈ {1, . . . , n}. Hence the monomials x
1+

∑
sj

0 and

x
1+

∑
sj

1 appear in each n-minor f0, . . . , fn) of Φf so, since there are no com-
mon component to f0, . . . , fn, codim

(
In(Φf )

)
= 2 and f is determinantal.

(b) Let y = (y0 : . . . : yn) ∈ Pn be a general point in the target space of f and
consider the product(

φ1 . . . φn
)

=
(
y0 . . . yn

)
Φf

whose associated zero locus V(φ1, . . . , φn) in the source space of f contains
the actual fiber f−1(y) of y. Via the genericity conditions on the entries of
Φf and the fact that y is a general point of Pn, we can assume that:

φ1 = λ0x0 + λ1x1 for λ1 6= 0.

Consequently, when considering V(φ1, . . . , φn) ⊂ Pn, we can set x1 = −λ0

λ1
x0

so that all the other equations φ2, . . . , φn factor as:

φ2 = x0L2, φ3 = x2
0L3, . . . , φn = xn−1

0 Ln,

where L2, L3, . . . , Ln are general linear equations in x0, x1, . . . , xn. Hence
V(φ1, . . . , φn) decomposes set-theoretically as an extra point x ∈ Pn away
from V(x0, x1) ⊂ Pn and the component V(x0, x1) (note that this set-theoretic
decomposition is different from the scheme-theoretic one as we will explain
in the next subsection). From the genericity assumptions on Φf , x is thus
the only point in the fiber f−1(y) hence d0(f) = 1.

Remark 6.1.3. In addition to computer experiments and the analogy with the
Koszul-determinantal case, let us underline why for any k ∈ {0, . . . , n} the num-

bers
(
n
k

)
+

∑
{i1, . . . , ik}⊂

{2, . . . , n}

∑k
j=1(sij − 1) is the k-th projective degree of a determinantal

map f whose Hilbert-Burch matrix Φf as in Conjecture 6.0.1. In general, given
n polytopes in Rn, Q1, . . . , Qn, the mixed volume MVn(Q1, . . . , Qn) compute the
number of solutions with non-zero coordinated (i.e. out of V(

∏
xi) = ∪V(xi)) of a

generic polynomial system with respect to Q1, . . . , Qn, provided this latter polyno-
mial system is zero dimensional. Hence a priori we do not have any interpretation
of the mixed volumes in the case of polytopes Q1 = P1, . . . , Qn = Pn as in Con-
jecture 6.0.1. However, remark that in this latter case, the excess intersection is



located in the codimension 2 linear space V(x0, x1) which is precisely contained in
∪V(xi). Consequently, if one would know that given any polynomial system generic
with respect to polytopes Q1, . . . , Qn, not necessarily zero dimensional but with a
finite number δ of solutions with non zero coordinates verify MVn(Q1, . . . , Qn) = δ,
then Conjecture 6.0.1 could be promoted to a result.

6.2 Residual intersection of three surfaces intersecting
along a line in P3

A remark about 3264 and all that

Since it appears to be a classical situation, let us focus on the topological de-
gree d0(f) of a determinantal map f defined by a Hilbert-Burch matrix Φf =
(φij) 06i63

16j63
∈ R4×3 (R = k[x0, . . . , x3]) such that for any i ∈ {0, . . . , 3}:

• φi1 is generic with respect to P1 = Conv{(0, 0, 0), (1, 0, 0)},

• φi2 is generic with respect to P2 = (s2 − 1)P1 + S1 (s2 > 1),

• φi3 is generic with respect to P3 = (s3 − 1)P1 + S1, (s3 > 1).

As we already explained in the proof of Proposition 6.1.2 Item (b), d0(f) is the
number of points (necessarily of multiplicity 1) away from the line L = V(x0, x1) in
the scheme V

( (
y0 . . . y3

)
Φf
)
⊂ P3 where (y0 : . . . : y3) ∈ P3 is a general point.

Via the genericity assumptions on the entries of Φf , remark that this computation
aims to describe the points away from L in the intersection S1 ∪ S2 ∪ S3 ∈ P3

where, given i ∈ {1, 2, 3}, Si = V(φi) for a generic polynomial with respect to Pi.
Following the notation in [EH16], write S1 ∪ S2 ∪ S3 = L ∩ Γ where Γ is a zero-
dimensional subscheme in P3 (via the genericity assumptions on S1, S2 and S3,
one can assume that L is the only strictly positive dimensional subscheme in the
intersection S1 ∪ S2 ∪ S3). Actually, [EH16, Chapter 13] establishes an estimation
of Γ, provided Γ and L are disjoints, namely:

deg(Γ) = 1× s2 × s3 − (1 + s2 + s3) + 2,

see the beginning of [EH16, Chapter 13] for the proof of this formula and, more gen-
erally, for the theory about an adapted Bzout’s theorem to the excess intersection
cases.

Our remark is that in our set up defining a Cremona map, L and the residual
scheme Γ = V

(
(φ1, φ2, φ3) : (x0, x1)

)
are not disjoint since deg Γ = 1 × s2 ×

s3 − (1 + s2 + s3) + 2 whereas d0(f) = degV
(
(φ1, φ2, φ3) : (x0, x1)+∞) = 1 (where

(φ1, φ2, φ3) : (x0, x1)∞ stands for the saturation of the ideal (φ1, φ2, φ3) by the ideal
(x0, x1)). In other words, in our case Γ decomposes as (1×s2×s3−(1+s2+s3)+2)−1
points (counted with an eventual multiplicity) on the line L and an extra point (of
multiplicity 1 away from L so that a primary decomposition of Γ ∪ L is:

(φ1, φ2, φ3) = (x0, x1) ∩ I(Γ′) ∩ (φ1, φ2, φ3) : (x0, x1)∞

where I(Γ′) is the ideal of the points of Γ on L (and degV
(

I(Γ′)
)

= (1× s2 × s3 −
(1 + s2 + s3) + 2)− 1).



In more generality, if S1, . . . , Sn ⊂ Pn (n > 2) are hypersurfaces of respective
degree s1, . . . , sn such that he only strictly positive dimensional component of S1∩
. . .∩Sn is a codimension 2 linear space L then we decompose the latter intersection
as follows:

S1 ∩ . . . ∩ Sn = L ∪ Γ

and, using again [EH16, Chapter 13], we have compute the degree of Γ:

deg(Γ) =

n∏
i=1

si +

n−2∑
i=2

(−1)i−1
∑

I ⊂ {1, . . . , n}
|I| = n− i

∏
sI + (−1)n−1(n− 1). (6.2.1)

This expression follows from the description of the Chow ring

C(P̃n) = Z[α, β]/(α2, βn − αβn−1)

of the blow-up P̃n of Pn along a codimension 2 linear space ([EH16, Chapter 9])

and the computation in C(P̃n) of the product
n∏
i=1

(siβ − ε) where ε = β − α is the

class of the exceptional divisor.

In our case, say S1 = V(φ1) with φ1 generic with respect to P1 = Conv{(0, . . . , 0︸ ︷︷ ︸
n

),

(1, 0, . . . , 0︸ ︷︷ ︸
n−1

)} and for i ∈ {2, . . . , n}, Si = V(φi) with φi generic with respect to

Pi = (si− 1)P1 +Sn, the zero-dimensional scheme Γ of the scheme-theoretic inter-
section S1 ∩ . . . ∩ Sn = L ∪ Γ decomposes as 1 point (of multiplicity 1) away from
L and ((6.2.1)-1) points (with eventual multiplicity) over L.

6.3 More linear intersection problems

In this last section, we want to present other classes of determinantal Cremona
maps related to other linear excess intersection problem. In Section 6.2, we focus
on codimension 2 linear excess intersection problem (in P3 and more generally
in Pn), mainly because it is related to classical excess intersection situation such
as the one presented in [EH16]. But what about a codimension 3 linear excess
intersection in P4?

Instead of dealing with not particularly enlightening formulas, let us present
the problem in P3 where there is no excess intersection but where we have a vi-
sual representation of polytopes. Hence let s3 > 1 and consider a matrix Φf =
(φij) 06i63

16j63
∈ R4×3 such that:

• φi1 is generic with respect to P1 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0)},

• φi2 is generic with respect to P1,

• φi3 is generic with respect to P3 = (s3 − 1)P1 + S3, where S3 is the unit
simplex of R3.



(0, 1, 0)

(0, 0, 0)

(1, 0, 0)
x1

x2

x3

P1

(0, 1, 0)

(0, 0, 0)

(1, 0, 0)
x1

x2

x3

P1

x2

x1

P3

x3

(s3, 0, 0)

Proposition 6.3.1. Let f : P3 99K P3 be the map defined by the 3-minors of the
matrix Φf defined just above. Then:

d(f) = (1, 2s3 + 1, s3 + 1, 1).

In particular f is determinantal of Hilbert-Burch matrix Φf and whose projec-
tive degrees are not palindromic.

Proof. Via the generic conditions on the entries of Φf , the only defect of the Fitting
ideals of Φf comes from the ideal (x0, x1, x2) which has codimension 3. Hence
codim

(
I1(Φf )

)
= 3 and codim

(
I2(Φf )

)
, codim

(
I3(Φf )

)
> 2. Thus, f is Koszul-

determinantal and, since the P(If )\Γf = V(x0, x1, x2) ⊂ ∪V(xi), we can compute
the projective degree of f via the mixed volumes associated to P1 and P3, see
Proposition 5.1.6. Namely:

• d0(f) = MV3(P1, P1, (s3 − 1)P1 + S3) = MV3(P1, P1, S3) = 1,

•

d1(f) = MV3(S3, P1, (s3 − 1)P1 + S3) + MV3(P1, S3, (s3 − 1)P1 + S3)

+MV3(P1, P1, S3)

=(s3 − 1) + 1 + (s3 − 1) + 1 + 1 = 2s3 + 1,

• d2(f) = s3 + 1 + 1 = s3 + 2,

• d3(f) = 1.

In order to compute the topological degree d0(f) of f , remark that we could also
follow the proof of Proposition 6.1.2. Indeed, denote φ1 and φ2 two polynomials
generic with respect to P1 and φ3 a polynomial generic with respect to P3. Then,

via the generic assumptions, the system

{
φ1 = 0

φ1 = 0
can be reduced to the system{

x1 = λx0

x2 = µx0

for some λ and µ. When substituted in φ3, the latter identities



provides the equality φ3 = xs3−1
0 l where l is a linear polynomial in x0 and x3

which shows, following the proof of Proposition 6.1.2, that d0(f) = 1.
This latter argument applies in the following situation in P4: let s3, s4 > 1 and

Φf = (φij) 06i64
16j64

∈ R5×4 (R = k[x0, . . . , x4]) such that:

• φi1 is generic with respect to P1 = Conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)},

• φi2 is generic with respect to P1,

• φi3 is generic with respect to P3 = (s3 − 1)P1 + S4, where S3 is the unit
simplex of R4.

• φi4 is generic with respect to P4 = (s4 − 1)P1 + S4.

Via the computation of the the mixed volumes associated with P1, P3, P4, one
can conjecture the following (also supported by experimental computations):

Conjecture 6.3.2. Let Φf = (φij) 06i64
16j64

∈ R5×4 be as just above and f : P4 99K P4

the map defined by the 4-minors of Φf . Then:

d(f) = (1, 2(s3 + s4), 3s3 + 3s4 + (s3−1)(s4−1), 1 + 2s3 + 2s4 + s3s4, s3 + s4 + 2, 1)

As in Section 6.1, Conjecture 6.3.2 would be true if we know that Bernstein’s
theorem could be applied in the situation of a polynomial system with a finite
number of solutions with all non-zero coordinates. However following the proof of
Proposition 6.1.2, we are able to show:

Proposition 6.3.3. Let Φf = (φij) 06i64
16j64

∈ R5×4 and f : P4 99K P4 as in Conjec-

ture 6.3.2, then:

(a) d3(f) = s3 + s4 + 2 (i.e. f is determinantal),

(b) d2(f) = 1 + 2s3 + 2s4 + s3s4

(c) d0(f) = 1 (i.e. f is a Cremona map).

Proof. Let us only focus on d2(f) since we already explained how to handle d3(f)
and d0(f) in the proof of Proposition 6.1.2. Via the generic assumptions on the
entries of Φf , remark that codimV

(
I4(Φf ))

)
> 2 and codimV

(
I3(Φf ))

)
> 3 so that

d2(f) = δ2(f) where δ2(f) is the second projective degree of P(If ) ⊂ Pn × Pn and
is equal to the value σ2,4(1, 1, s3, s4) = 1+2s3 +2s4 +s3s4 of the second symmetric
polynomial in four variables evaluated at 1, 1, s3, s4, see Proposition 1.1.9.

Remark 6.3.4. One can even increase the considered classes of Cremona maps.
Indeed let a codimension k linear space, say V(x0, . . . , xk−1), in Pn, sk, . . . , sn 6 1
and a matrix Φf = (φij) 06i63

16j63
∈ R(n+1)×n (R = k[x0, . . . , xn]) such that for any

i ∈ {0, . . . , n}:

• φi1, . . . , φi,k−1 is generic with respect to

P1 = Conv{(0, . . . , 0︸ ︷︷ ︸
n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

), . . . , (0, . . . , 0︸ ︷︷ ︸
k−2

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k+1

)}

(for a deshomogenization with respect to x0),



• forallj ∈ {k, . . . , n}, φij is generic with respect to P2 = (sj − 1)P1 + Sn
where Sn is the unit simplex of Rn.

By the same consideration as before, one can show that the maps f defined by the
n-minors of Φf are determinantal Cremona maps and one can infer their projective
degrees.
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Appendix A

Characteristic classes of pfaffian
Cremona maps

Introduction

In this section, we focus on pfaffian Cremona maps that is Cremona maps q :
Pn 99K Pn, n > 4 even, whose base ideal Iq is generated by the n-pfaffians of
a (n + 1) × (n + 1) skew-symmetric matrix Φq. If the associated ring R/ Iq is
arithmetically Gorenstein of codimension 3, which will always be the case in this
work, its free resolution is understood in an analogue way that for determinantal
rings, see [BH93, 3.4], so pfaffian Cremona maps are a natural next case to study
after considering determinantal Cremona maps. A natural case that has indeed
been already considered in the literature and let us gather now the result relevant
for our work that we could found:

• in [RS01, Example 2.5, Pfaffians of an odd size skew symmetric matrix ],
the two author establish the main properties (for the scope of our work),
a pfaffian map q : Pn 99K Pn (n > 4 even), given by the n-pfaffians of a
(n + 1) × (n + 1) skew symmetric matrix Φq whose subdiagonal entries are
general linear polynomials in R = k[x0, . . . , xn] (the quoted result is actually
more general but let us restrict to this situation), namely:

· d0(q) = 1,

· d1(q) = n− 1,

· dn−1(q) = n
2 .

The base locus of the inverse q−1 is moreover a codimension 2 arithmetically

Buchsbaum variety of degree (n+1)(n−2)
2 characterized by its minimal free

resolution:

0 R(−n− 1) R(−n)n+1 R(−n+ 1)n+1 R R/ Iq−1 0.

• Even if we will not use it, let us quote [KPU17] describing in particular
the equations of the graph of the base ideal of a pfaffian Cremona whose
subdiagonal entries of its associated skew-symmetric matrix Φf are linear
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polynomials. Actually, looking retrospectively, the strategy developed to
show [KPU17, Prop. 4.2] and compute the topological degree of a pfaffian
rational map q : Pn−1 99K Pd−1 is the one we will outline to compute the
other degrees.

Complementary to the previous results, a reason for this work was to provide
the systematic computation of all the projective degrees of the general pfaffian
Cremona maps i.e. maps whose base ideal is the n-pfaffian ideal of a (n+1)×(n+1)
matrix Φq whose subdiagonal entries are general linear polynomial, our model being
the article [GSP06] performing this description for general determinantal Cremona
maps (i.e. maps whose base ideal is the n-minors ideal of a (n+1)×n matrix filled
with general linear polynomials). We will show in particular:

Proposition A.0.1. (a) the projective degrees (d0(q), d1(q), d2(q), d3(q), d4(q))
of a general pfaffian map of P4 reads

(1, 3, 22, 2, 1),

(b) the projective degrees (d0(q), . . . , d6(q)) of a general pfaffian map of P6 reads

(1, 5, 11, 13, 32, 3, 1),

As it was pointed out by Profesor Daniele Faenzi in his report of this manuscript,
the study of the Chern classes of the cotangent sheaf ΩPnk of Pnk provides formulae
for the projective of general pfaffian maps of Pnk , see Proposition A.1.8.

Contents of the section

To show Proposition A.0.1, we will rely on [KU92, Theorem 10.5] describing a
free resolution of a residual ideal J = (a : Iq) associated to the (Gorenstein of
codimension 3) base ideal Iq of q with respect to an ideal a = (a1, . . . , af ) generated
by 3 6 f 6 n linear combinations of the pfaffians of Φq for f = 3, . . . , n and n = 4
or n = 6 (to fit with the notation in [KU92], q will stand for a map, g will be
the integer n + 1 and f will be an integer between 2 and n). Since Φq is filled
with linear polynomials, (a : Iq) = (a : I∞q ) so the degree of J is the (n − f)-th
projective of q. In the end, the only difficulty here is to identify the maps in the
free resolution of J described in [KU92, Section 2 and 4] and to describe from it a
graded free resolution of J . Let us point out that one could a priori compute the
projective degrees of a general pfaffian Cremona maps in higher dimension n > 8
with this approach. However, as it was explained to us by Profesor Daniele Faenzi,
we will describe those projective degrees via the study of the cotangent sheaf ΩPnk
of Pnk , see Proposition A.1.8.

Let us also underline that our approach via residuality is different, and in some
sense more näıve, than the one developed in [GSP06]. In this latter article, the
authors used the identification between the family of base locus of determinantal
maps with an open and connected subset of the Hilbert scheme of arithmetically
Cohen-Macaulay subscheme of codimension 2 of Pn whose dimension and other
properties were described in [Ell75]. Via a deformation argument, the two authors
showed then that the projective degrees of the general determinantal Cremonan



maps are the same as those of the standard Cremona map which can be com-
puted via standard arguments of toric geometry. We believe that such a strategy
is applicable for general pfaffian Cremona maps, especially because the analogue of
Ellinsgrud’s result was obtain in [KMR98]. It would then remain to find a ”good”
monomial pfaffian Cremona map to actually compute the projective degree of any
general pfaffian Cremona map (but then, one would probably be anyway in diffi-
culty to describe the general formula for those numbers).

In a second time, in Appendix A.2, we focus on excess intersection numbers that
can be attached to the singular locus of the base locus of the standard Cremona
map of Pn and standard pfaffian Cremona maps of Pn. We will show how to
numerically estimate these numbers, see the output of Algorithm A.2.1.

A.1 Projective degrees of the general pfaffian Cremona
maps

In all this section, let n > 4 be an even integer. Before going into the details
of the proof of Proposition A.0.1, let us shortly re-explain its main arguments.
Under the assumption that q : Pn 99K Pn is a general pfaffian Cremona map, its
base ideal Iq is of linear type, see Proposition A.1.1. This initial remark should be
contained in works such as [Mor96] and [KPU17] but we will give it a proof via
a deformation argument in the spirits of [GSP06]. Since Iq is of linear type, the
saturation J = (a : I∞q ) of an ideal a generated by general linear combinations of
the generators of Iq by Iq is the same as the colon ideal (a : Iq), see Corollary A.1.2.
Since [KU92] provides (graded) free resolutions of these latter colon ideals, one can
then deduce the projective degrees of the associated maps.

Proposition A.1.1. Let Φq ∈ R(n+1)×(n+1) (R = k[x0, . . . , xn]) be a skew-symmetric
matrix whose subdiagonal entries are general linear polynomials and let Iq be the
ideal of n-pfaffians of Φf .

Then Iq is of linear type, i.e. the Rees algebra of Iq is equal to the symmetric
algebra of Iq.

We prove Proposition A.1.1 by showing that a particular monomial Gorenstein
ideal of codimension 3 is of linear type and that we can extend this result using
[KMR98].

Proof. We apply [RS01, Crit. (3)], namely, If is of linear type if and only if:

∀t > 1, codim It(Φq) > n− t+ 2. (Crit.(3))

Actually, we only show Equation (Crit.(3)) when Iq is the n-pfaffian ideal of a
particular skew-symmetric matrix

Φq =



0 −x1 0 . . . 0 −x0

x1 0
. . .

. . . 0

0 x2

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0

0
. . .

. . . 0 −xn
x0 0 . . . 0 xn 0


.



In this case, the ideal J of P(Iq) in Pn × Pn reads

J = (y1x1 + ynx0,−y0x1 + y2x2, . . . ,−yn−1xn + yn+1xn+1,−y0x0 − ynxn+1)
(A.1.1)

and one can apply [AL94, Prop. 2.3.5] to show that J is prime. Here let us
not write down the details of the computations by only precising that this step
requires the computation of a Groebner basis of J via Burchberger’s algorithm, see
[AL94]. A Gröbner basis of J contains actually more elements than the generators
appearing in (A.1.1) but the formulas for the new elements of the basis can be
given explicitly.

Hence the Rees algebra and the symmetric algebra of Iq coincide and (Crit.(3))
is verified in this case. But by [KMR98, Th.2.6], since all arithmetically Gorenstein
subscheme of codimension 3 of Pn associated to a skew-symmetric matrix whose
subdiagonal is filled with linear polynomials belongs to the same open subset of
the associated Hilbert scheme, one has:

∀t > 1, codim It(Φq) > codim It(Φq) > n− t+ 2

for any skew-symmetric matrix of size (n+ 1)× (n+ 1) whose subdiagonal is filled
with general linear polynomials. Hence (Crit.(3)) is verified also for those latter
maps whose base ideal is thus of linear type.

Under the hypothesis of Proposition A.1.1, the ideals of minors of successive
size t > 1 of the presentation matrix Φq of Iq have the expected dimension so one
has:

Corollary A.1.2. Under the hypothesis of Proposition A.1.1, let q = (q0 : . . . :
qn) : Pn 99K Pn be the map defined by the n-pfaffians of Φq, then:

∀f ∈ {0, . . . , n}, dn−f (q) = deg J(f,g)

where J(f,g) = (a(f) : Iq) and a(f) is generated by f general linear combinations of
q0, . . . , qn.

The main point in our strategy to show Proposition A.0.1 is that, given f ∈
{2, . . . , n}, a (minimal) graded free resolution of the ideal J(f,g) (so in particular
their codimension and their degree) can be extracted from [KU92, Th.10.5] and
we outline how now. A priori the complexes D0 ([KU92, Figure 4.4]) are only
free resolution of the ideals J(f,g). Hence to obtain a graded resolution of J(f,g)

from D0, one has to chase the graduation of the maps involved in D0 defined in
[KU92, Definition 2.15] (or to recall that the involved maps between free modules
are restriction of differentials of a Eagon-Northcott complex associated to Φq). For
instances, the module

Lij ' (
f
⊕
v=0

Lj−f+v
i+1 (Rg ⊗ ∧vRg)∗

has to be written

Lij '
f
⊕
v=0

R
(
− (j − f + v) + 1

)rkv ⊗ ∧vRf



where the rank rkv are described in [KU92, Formula (2.39)].

Let us now enter in the details of the computation of the free resolution of each
degree. We will divide the proof of Proposition A.0.1 in several lemma each one
focusing on one projective degree at a time, the simplest case being:

Lemma A.1.3. Under the notations and hypothesis of Proposition A.0.1, if n = 4
or n = 6, d0(q) = 1.

Proof. • Case n = f = 4, g = 5. Following [KU92, Th.10.5], a free resolution
of J(4,5) reads:

D0 : 0 L2,9 L1,8 L0,7 Q0 K0,0 0

where the involved free modules are described in [KU92, Prop.2.41] and
[KU92, Definition.2.15]. Hence a graded resolution of J(4,5) reads:

0
(

7
7

)(
6
4

)(
4
0

)
R(−4)

(
6
5

)(
4
3

)(
4
0

)
R(−3)
⊕(

6
6

)(
5
4

)(
4
1

)
R(−4)

(
5
3

)(
2
2

)(
4
0

)
R(−2)
⊕(

5
4

)(
3
3

)(
4
1

)
R(−3)
⊕(

5
5

)(
4
4

)(
4
2

)
R(−4)

(
4
3

)
R(−1)
⊕(

4
1

)
R(−2)

R 0

from which we can extract the following minimal free resolution of J(4,5):

0
(

4
4

)
R(−4)

(
4
3

)
R(−3)

(
4
2

)
R(−2)

(
4
1

)
R(−1) R 0.

Since the latter resolution is nothing but the Koszul complex on four inde-
pendent linear polynomials one has

codim J(4,5) = 4, deg J(4,5) = 1

(which can also be obtained by computing the Hilbert polynomial of J(4,5)

from its graded resolution).

• Case n = f = 6, g = 7. A free resolution of J(6,7) reads:

D0 : 0 L4,13 L3,12 L2,11 L1,10 L0,9

Q0 K0,0 0



where the involved free modules are described in [KU92, Prop.2.41] and
[KU92, Definition.2.15]. Hence a graded resolution of J(6,7) reads:

0
(

11
11

)(
10
6

)(
6
0

)
R(−6)

(
10
9

)(
8
5

)(
6
0

)
R(−5)

⊕(
10
10

)(
9
6

)(
6
1

)
R(−6)

. . .

. . .

(
7
3

)(
2
2

)(
6
0

)
R(−2)
⊕(

7
4

)(
3
3

)(
6
1

)
R(−3)
⊕(

7
5

)(
4
4

)(
6
2

)
R(−4)
⊕(

7
6

)(
5
5

)(
6
3

)
R(−5)
⊕(

7
7

)(
6
6

)(
6
4

)
R(−6)

(
6
5

)
R(−1)
⊕(

6
3

)
R(−2)
⊕(

6
1

)
R(−3)

R 0

from which one can extract the following minimal graded free resolution of
J(6,7):

0
(

6
6

)
R(−6)

(
6
5

)
R(−5) . . .

(
6
2

)
R(−2)

(
6
1

)
R(−1) R 0.

Hence
codim J(6,7) = 6, deg J(6,7) = 1.

Lemma A.1.4. Under the notations and hypothesis of Proposition A.0.1,

• if n = 4, d1(q) = 3,

• if n = 6, d1(q) = 5.

Proof.

Case n = 4, f = 3, g = 5. By [KU92, Th.10.5], a free resolution of J(3,5) reads:

D0 : 0 L1,8 L0,7 Q0 K0,0 0

that can be translate in the following graded free resolution of J(3,5):

0
(

6
6

)(
5
4

)(
3
0

)
R(−4)

(
5
4

)(
3
3

)(
3
0

)
R(−3)
⊕(

5
5

)(
4
4

)(
3
1

)
R(−4)

(
3
3

)
R(−1)
⊕(

3
1

)
R(−2)

R 0

from which one extract the following minimal free resolution of J(3,5):

0 2R(−4) 5R(−3)
R(−1)
⊕

3R(−2)
R 0



so, via the computation of the Hilbert polynomial of J(3,5), one has

codim J(3,5) = 3, deg J(3,5) = 3.

Case n = 6, f = 5, g = 7. By [KU92, Th.10.5], a free resolution of J(5,7) reads:

D0 : 0 L3,12 L2,11 L1,10 L0,9 Q0 K0,0 0

so that, after simplification, a minimal graded free resolution of J(5,7) reads:

0 4R(−6) 19R(−5) 35R(−4) 30R(−3)
R(−1)
⊕

10R(−2)
R 0

and so one has
codim J(5,7) = 5, deg J(5,7) = 5.

Lemma A.1.5. Under the notations and hypothesis of Proposition A.0.1, in the
case n = 6, d2(f) = 11 and d3(f) = 13.

Proof. • Case n = 6, f = 4, g = 7. By [KU92, Th.10.5], a free resolution of
J(4,7) reads:

D0 : 0 L2,11 L1,10 L0,9 Q0 K0,0 0

which can be translated, after simplification, into the following minimal
graded free resolution:

0 6R(−5) 20R(−4) 21R(−3)
4R(−2)
⊕

4R(−3)
R 0

so
codim J(4,7) = 4, deg J(4,7) = 11.

• Case n = 6, f = 3, g = 7. By [KU92, Th.10.5], a free resolution of J(3,7)

reads:
D0 : 0 L1,10 L0,9 Q0 K0,0 0

which can be translated, after simplification, into the following minimal
graded free resolution:

0 4R(−6) 7R(−5)
R(−2)
⊕

4R(−3)
R 0

so
codim J(3,7) = 3, deg J(3,7) = 13.



Now let us treat apart the computation of d2(q), if n = 4 and of d4(q), if n = 6.
Indeed, in those cases, we cannot apply [KU92, Th.10.5] because in both cases, we
are considering the cases f = 2 < 3 = codim Iq which is out of the scope of [KU92,
Th.10.5] (let us point out however that in practice the free complex D0 associated
to J(2,5) or J(2,7) actually resolve those ideals).

Lemma A.1.6. Under the notations and hypothesis of Proposition A.0.1,

• if n = 4, d2(q) = 22,

• if n = 6, d4(q) = 32.

Proof. In both cases n = 4 or n = 6, let a1 and a2 be two general linear combi-
nations of the generators of If . But codim If = 3 and codim(a1, a2) = 2, one has
that (a1, a2) : If = (a1, a2) so that:

• if n = 4, d2(q) = 2× 2 = 22,

• if n = 6, d4(q) = 3× 3 = 32.

Now, following [GSP06, Proposition 5], one can easily compute the Segre class

s
(
V(Iq)

)
=

n∑
k=3

sk[Hk] of V(Iq) in the Chow group of Pn and where [Hk] is the class

of a codimension i linear space of Pn from the projective degree of a Cremona map
q:

Corollary A.1.7. Let Iq be the base ideal of a general pfaffian map q of Pn, then:

• if n = 4, s
(
V(Iq)

)
= −25H4 + 5H3,

• if n = 6, s
(
V(Iq)

)
= −1666H6 + 448H5 − 98H4 + 14H3.

As explained to us by Profesor Daniele Faenzi in his report of this manuscript,
given n > 4 an even integer, the projective degrees d0(f), . . . , dn(f) of a general
pfaffian map f : Pnk 99K Pnk are described by the Chern classes c0(ΩPn(2)), . . . ,
cn(ΩPn(2)) of a twisted copy of the cotangent sheaf ΩPn of Pn. Indeed, the graph
Γf ⊂ Pn×Pn of f is the zero locus of a global section of the bundle E = p∗1(ΩPn(2))⊗
p∗2(OPn) vanishing in the expected dimension and where p1 (resp. p2) is the first
(resp. second) projection of Pn×Pn. For each i ∈ {0, . . . , n}, looking at the degree
of the intersection p∗1(Hi

1) ∩ Γf ∩ p∗2(Hn−i
2 ) where Hi

1 is a general linear space of
Pn of codimension i and Hn−i

2 is a general linear space of Pn of codimension n− i,
aims to compute the number

∫
Pn×Pn [p∗1(Hi

1)] ·Γf · [p∗2(Hn−i
2 )] which is equal to the

degree of ci
(
ΩPn(2)

)
(where [X] stands for the class defined by X in the Chow

group A(Pnk × Pnk ) of Pn × Pn, see [EH16, Chapter 1] for the associated notations
and background). By standard computations with Chern classes, see [EH16, Ex.
5.14 and 5.5.1], one obtains thus:



Proposition A.1.8. Let n > 4 be an even integer and f : Pn 99K Pn be a general
pfaffian map, then for any i ∈ {0, . . . , n}:

di(f) =

i∑
j=0

(−1)i−j2j
(
n− i+ j

j

)(
n+ 1

i− j

)
.

Looking back, the Chern classes of ΩPn provide thus a clear understanding of
the projective degrees of general pfaffian maps. We have however let our initial
approach via residuality in the case n = 4 and n = 6 since it gave an application
of classical results about pfaffian ideals.

Proof of Proposition A.1.8. In the following, we identify a Chern class in the Chow
group A(Pn) ' Z of Pn with its degree (it is a classical identification since A(Pn) '
Z).

First, for all l ∈ {0, . . . , n}, cl(ΩPn) = (−1)l
(
n+1
l

)
. Indeed, one computes the

Chern polynomial ct(ΩPn) = c0 + c1t+ . . .+ cnt
n from the Euler sequence

0 OPn OPn(1)n+1 TPn 0

where TPn is the tangent sheaf of Pn and the fact that ct(ΩPn) = c−t(TPn), see
[EH16, Ex. 5.14].

Given now i ∈ {0, . . . , n},

ci
(
ΩPn(2)

)
= ci

(
ΩPn ⊗OPn(2)

)
=

i∑
j=0

(
n− i+ j

j

)
c1
(
OPn(2)

)j
ci−j(ΩPn)

by the formula in [EH16, Proposition 5.17] which concludes the proof.

Example A.1.9. If n = 8, 10 or 12, the projective degrees of a general pfaffian
Cremona map q : Pn 99K Pn read:

• if n = 8, (1, 7, 22, 40, 46, 34, 42, 4, 1),

• if n = 10, (1, 9, 37, 91, 148, 166, 130, 70, 52, 5, 1),

• if n = 12, (1, 11, 56, 174, 367, 553, 610, 496, 295, 125, 62, 6, 1).

After treating these simple cases of general pfaffian Cremona maps, the question
remains to handle/detect other pfaffian Cremona maps whose associated skew-
symmetric matrix is filled with polynomials of degree greater than 1. Let us
point out that this problem seems more difficult as in the determinantal case
because, as far as we know, we cannot use Bernstein’s theorem as we did for
Koszul-determinantal maps. Nevertheless, analogous to the determinantal case,
”non general” pfaffian Cremona maps do exist as illustrated by the following ex-
ample arising by composing two general pfaffian Cremona maps.



Example A.1.10. By a computation with Macaulay2, one has that the map
q : P4 99K P4 defined by the 4-pfaffians of the matrix

Φq =


0 −x1x3 −x0x2 −x1x4 x0x3

x1x3 0 −x1x4 −x0x3 −x2x4

x0x2 x1x4 0 −x2x4 −x1x3

x1x4 x0x3 x2x4 0 −x0x2

x0x3 x2x4 x1x3 x0x2 0


is a pfaffian map and has projective degrees:

d(q) = (1, 9, 16, 4, 1).

The map q is actually the composition q1 ◦ q2 of two pfaffian maps q1 and q2

whose defining matrices are filled with linear polynomial, namely:

Φq2 =


0 −x1 0 0 −x0

x1 0 −x2 0 0
0 x2 0 −x3 0
0 0 x3 0 −x4

x0 0 0 x4 0


and

Φq1 =


0 −x0 −x1 −x2 −x3

x0 0 −x2 −x3 −x4

x1 x2 0 −x4 −x0

x2 x3 x4 0 −x1

x3 x4 x0 x1 0


emphasizing why d(q) = (12, 32, 42, 22, 12) as it is expected to be, see Proposi-
tion B.1.1.

Let us finish by writing down two of our remaining questions concerning pfaffian
Cremona maps:

• Does there exist q : P4 99K P4 a pfaffian Cremona map of matrix Φq such
that

?

{
∀t ∈ {2, 3, 4}, codim It(Φq) > 6− t
codim I1(Φq) = 4

Such a pfaffian Cremona map q : P4 99K P4 would be of algebraic degree
d3(q) greater than 2 and would not be the composition of two pfaffian maps.

• Given two general pfaffian Cremona maps q1, q2 : Pn 99K Pn, q1 ◦ q−1
2 has

palindromic projective degrees. What does characterize its base locus?



A.2 An excess intersection question for standard Cremona
maps

Let us focus now on a problem related to the singularities of the base locus of
standard Cremona maps. To this end, let us explain it in the case of the standard
Cremona map of P3

τ3 = (x1x2x3 : x0x2x3 : . . . : x0x1x2) : P3 99K P3.

The base locus Bτ3 = V(x1x2x3, . . . , x0x1x2) of τ3 is the union of 6 lines L1 =
V(x0, x1), . . . , L6) = V(x2, x3) whose singular locus is the unions of the 4 points
p1 = (1 : 0 : 0 : 0), . . . , p4 = (0 : 0 : 0 : 1).

Now to compute the topological degree of τ3, one has to take three general
linear combinations a1, a2, a3 of x1x2x3, ldots, x0x1x2 and compute the degree of
(a1, a2, a3 : Iτ3) which is equal to one. Now perturb the ideal a = (a1, a2, a3) by
considering an ideal at = a+t(b1, b2, b3) for b1, b2, b3 three general cubic polynomials
and a parameter t ∈ R. By Bézout’s theorem, the zero locus V(at) is a union of
27 distinct points. Consider now the limit V(at) when t → 0. Since (a : Iτ3) is a
degree 1 ideal, 26 of the points in the perturbation V(at) will migrate to Bτ3 (the
remaining one migrating to V(a : Iτ3)). The question is then to know how much of
these 26 points will migrate to the 4 points p1, . . . , p4 and how much will migrate
to the 6 lines L1, . . . , L6 (excluding p1, . . . , p4), see Figure A.1 and Figure A.2.

Bτ3

p0

p2

p3

p4

Figure A.1: The 27 points of the perturb locus V(at)

Via the internal symmetries of Bτ3 none of the four points p1, p2, p3, p4 can be
distinguished between them and none of the lines L1, . . . , L6 can be distinguished
between them. Hence we can translate this ”excess intersection problem” in the



p0

p2

p3

p4

Bτ3

Figure A.2: The limit as t→ 0

following numerical constraint: find the quantity β of points migrating to p1 and
the quantity α of points migrating to L1\{p1, p2}. Actually, in the case of P3, since

26 = 6α+ 4β

we do not have many choices, namely:

(a) either (α, β) = (1, 5),

(b) or (α, β) = (3, 2).

Even if we don’t know a theoretical answer to this question, one can ap-
proach it experimentally by using the package ”NumericalAlgebraicGeometry” of
Macaulay2, see [Ley11], via the following code:

Algorithm A.2.1.
loadPackage "NumericalAlgebraicGeometry"

k = CC

R = k[x_1..x_3]

I = (gens ideal( x_1*x_2*x_3 , x_2*x_3 , x_1*x_3, x_1*x_2) ) *

random( R^{4:0},R^{3:0} )

time J = solveSystem ( toList apply(0..2,i-> ( I )_(0,i)) );

J_0 ----the first component of J is point not on the base locus

of the map

for i from 1 to (length J-1) do (



print toList apply(0..2,j->round abs (coordinates J_i)_j);

);

The output of the last command should be, up to permutation:

{1, 0, 0},{0, 1, 0},,{0, 0, 0},{0, 0, 0},{1, 0, 0},{0, 1, 0},

{0, 1, 0},{0, 0, 1},{0, 0, 1},{1, 0, 0},{0, 0, 1}

where one has to remember that we are in the affine chart {x0 = 1} of P3 so one
has to read:

{1, 0, 0, 1},{0, 1, 0, 1},{0, 0, 0, 1},{0, 0, 0, 1},{1, 0, 0, 1},

{0, 1, 0, 1},{0, 1, 0, 1},{0, 0, 1, 1},{0, 0, 1, 1},{1, 0, 0, 1},

{0, 0, 1, 1}

so that two of the solution are located on (or at least very closed to) p1 = (0 : 0 : 0 :
1), three of the solutions are located on L1 = V(x0, x1), three are on L2 = V(x0, x2)
and three are on L3 = V(x1, x2) which are all numbers that we could expect from
Item (b).

Let us now comment on this code and why it should not be so surprising that
it provides an answer to our excess intersection question. The package ”Numeri-
calAlgebraicGeometry” relies homotopy continuation methods, see [DE05, Chapter
8 of A.J.Sommese, J.Verschelde, C.W.Wampler] for an introduction about these
methods. It computes the solution by approximating an affine polynomial system
by a ”simpler” one and then by tracking the solutions of the simpler system to
the solutions of the initial system. In others words, the command solveSystem

does precisely what we want to answer our problem. Let us point out however
that there are still gaps that we do not understand here. For instance, why the
system does not return an error when applying the command solveSystem in our
case since, the initial polynomial system is not zero-dimensional? Our guess is
that, when defining the three general linear combinations, there are small errors
in the representation of complex numbers so that the initial polynomial system is
zero-dimensional for Macaulay2. This explanation and the related experiments
support the following conjecture:

Conjecture A.2.2. • In P3, the answer (α, β) ∈ N2 to our excess intersection
question:

26 = 6α+ 4β

is (α, β) = (3, 2).

• In P4, the answer (α, β, γ) ∈ N3 to the analogous excess intersection problem:

255 = 10α+ 10β + 5γ

is (α, β, γ) = (16, 8, 3).

• In general, given n > 2, the answer (α2, . . . , αn) ∈ Nn−1 is:

nn − 1 =

n∑
i=2

(
n+ 1

i

)
αi

is αi = nn−i × (i− 1) for i ∈ {2, . . . , n}.



It seems to us that one can ask the same question for other type of Cremona
maps in particular in the case of a monomial pfaffian Cremona map (but even for
any monomial Cremona map). Namely the pfaffian Cremona map q : P4 99K P4

associated to the matrix

Φq =


0 −x1 0 0 −x0

x1 0 −x2 0 0
0 x2 0 −x3 0
0 0 x3 0 −x4

x0 0 0 x4 0


is a monomial pfaffian Cremona map (and in some sense very closed of what could
be a standard pfaffian Cremona map) and its base locus if the union of 5 lines in
P4 and has singular locus p1 = (1 : 0 : 0 : 0 : 0), . . . , p5 = (0 : 0 : 0 : 0 : 1).

Problem A.2.3. What are the solution (α, β) ∈ N2 to the analogous excess inter-
section question

15 = 5α+ 5β

in the case of the previous monomial pfaffian Cremona map?

Let us precise that Algorithm A.2.1 do not provide any consistent answer in
this latter case (the outputted numbers are not integer in mean).



Appendix B

Questions and perspectives

B.1 Generic composition of determinantal Cremona maps

When considering two Cremona maps f = (f0 : . . . : fn) : Pnk 99K Pnk and g =
(g0 : . . . : gn) : Pnk 99K Pnk , a fundamental fact is that the composition f ◦ g is
also a Cremona map. The base ideal If◦g of f ◦ g however differs from the naive
substitution ideal

(
f0(g0, . . . , gn), . . . , fn(g0, . . . , gn)

)
when the zero locus of this

latter ideal has codimension 0 or 1, a basic example being the case of the standard
Cremona f = g = (x1x2 : x0x2 : x0x1) : P2

k 99K P2
k since If◦g = (x0, x1, x2) is

generated in degree 1. In more accurate term, the algebraic degree dn−1(f ◦g) may
not be equal to the product dn−1(f) × dn−1(g) of the algebraic degrees of f and
g. One can however avoid this latter situation by considering the following generic
composition: take a generic element h = (h0 : . . . : hn) : Pnk 99K Pnk ∈ PGln(k),
that is, for all i ∈ {0, . . . , n}, hi = λi,0x0 + . . . + λi,nxn is generic with respect to
the polytope Conv{(0, . . . , 0︸ ︷︷ ︸

n

), (1, 0, . . . , 0︸ ︷︷ ︸
n−1

), . . . , (0, . . . , 0︸ ︷︷ ︸
n−1

, 1)} and define the generic

composition f ◦̂g = f ◦ h ◦ g (we point out that a generic composition is always
defined even if g is not dominant).

Proposition B.1.1. Let f : Pnk 99K Pnk be a map whose base ideal If is the n-
minors ideal of a (n + 1) × n matrix Φf and let g = (g0 : . . . : gn) : Pnk 99K Pnk be
any rational map.

Then the generic composition f ◦̂g = f ◦h◦g, with h = (h0 : . . . : hn) : Pnk 99K Pnk
being a generic element of PGln+1(k), has projective degrees’ vector:

d(f ◦̂g) =
(
d0(f)d0(g), d1(f)d1(g), . . . , dn(f)dn(g)

)
. (B.1.1)

Moreover f ◦̂g is determinantal of Hilbert-Burch matrix Φf ◦̂g equal to the matrix
Φf in which the variables x0, . . . , xn have been substituted by h0(g0, . . . , gn), . . .,
hn(g0, . . . , gn).

Remark B.1.2. When considering Cremona maps, d0(f) = d0(g) = dn(f) =
dn(g) = 1 and (B.1.1) can be rewritten as:

d(f ◦̂g) = (1, d1(f)d1(g), . . . , dn−1(f)dn−1(g), 1).
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Let us also emphasize that even though f ◦̂g is determinantal, it may not be
Koszul-determinantal even if f is Koszul-determinantal. It is for instance the case
for the generic composition τ ◦̂τ where τ is the standard Cremona map of Pnk , n > 3,
in which case codimV

(
I1(Φτ ◦̂τ )

)
= 2 < n. However, this restriction does not apply

to the plane case n = 2 so Proposition B.1.1 provides a tool to build plane Koszul-
determinantal Cremona maps starting from ones with smaller algebraic degree.
Hence, this process leads to solutions of interpolation problem in higher degree.

Proof of Proposition B.1.1. Here we use the geometric computation of the projec-
tive degrees’ vector d(u) = (d0(u), . . . , dn(u)) of a map u : Pnk 99K Pnk as already
explained in Remark 1.1.3, namely:

[Γu] =

n∑
k=0

(degn−k,kP Γu)ξn−kx ξky ∈ A(Pnk × Pnk )

where A(Pnk × Pnk ) ' Z[ξx, ξy]/(ξn+1
x , ξn+1

y ) is the Chow ring of Pnk × Pnk [EH16,
Theorem 2.10] and where ξx (resp. ξy) is the pull-back of the hyperplane class Ξx

(resp. Ξy) of Pnk via the first (resp. second) projection map Pnk × Pnk → Pnk .

Now, let us describe the generic composition f ◦̂g = f ◦h ◦ g as Pn3
f→ Pn2

h◦g→ Pn1
where for i ∈ {1, 2, 3}, Ξi is the hyperplane class of Pni in A(Pni ) ' Z[Ξi]/(Ξ

n+1
i ).

The projective degrees of f , g, and f ◦̂g, can then be expressed as follow [Dol11,
7.1.3]:

∀k ∈ {0, . . . , n}, g∗(Ξn−k2 ) = dk(g)Ξn−k1

f∗(Ξn−k3 ) = dk(f)Ξn−k2

(f ◦̂g)∗(Ξn−k3 ) = dk(f ◦̂g)Ξn−k1

By Kleiman’s theorem [EH16, Th. 1.7], since h is generic in PGln+1(k),

(f ◦ h)∗(Ξn−k3 ) =
(
dk(f)

)
Ξn−k2

for any k ∈ {0, . . . , n} and where the equality is an equality in the Chow ring A(Pn2 )
of Pn2 . Hence

(f ◦ h ◦ g)∗(Ξn−k3 ) = g∗
(
(f ◦ h)∗(Ξn−k3 )

)
= dk(f) · g∗(Ξn−k2 ) = dk(g)dk(f)Ξn−k1

which shows (B.1.1) of Proposition B.1.1.
We show now that the base ideal If ◦̂g is the n-minors ideal of a matrix Φf ◦̂g

equal to the matrix Φf in which the variables x0, . . . , xn have been substituted

by h0(g0, . . . , gn), . . ., hn(g0, . . . , gn). Let Φ̂f be equal to the matrix Φf in which
the variables x0, . . . , xn are substituted by h0(g0, . . . , gn), . . ., hn(g0, . . . , gn) and
remark that there exists a complex

0 Rn Rn+1 If ◦̂g 0
Φ̂f

(B.1.2)

and Hilbert-Burch theorem [Eis95, Theorem 20.15] states that (B.1.2) is exact if
and only if codimV(I2(Φ̂f )

)
= 2 in which case If ◦̂g = I2(Φ̂f ).



We show that (B.1.2) is exact by contradiction. If (B.1.2) is not exact, it means
that the n-minors of Φ̂f share a common factor (this last argument use the fact
that the base ideal of a rational map Pnk 99K Pnk is essentially unique, see [Sim04,
Proposition 1.1 and Definition 1.2]). Hence If ◦̂g is generated in degree smaller than

dn−1(f)dn−1(g) which are the degrees of the n-minors of Φ̂f . But the degree of
the generators of If ◦̂g is the algebraic degree dn−1(f ◦̂g) of f ◦̂g which contradicts
(B.1.1).

Following Proposition B.1.1, the projective degrees of the generic composition
of two Cremona maps is characterize and we wonder if this rigidity has an interpre-
tation at the level of the bi-graded resolution of the graph of the considered map.
Actually this question is not specific to determinantal maps.

Problem A.

Given n > 2, let f : Pnk 99K Pnk and g : Pnk 99K Pnk be two Cremona maps
together with the bigraded free resolution Ff and Fg of their respective
graph Γf and Γg. Can we express the bigraded free resolution Ff ◦̂g of the
graph Γf ◦̂g of the generic composition f ◦̂g as an operation between Ff and
Fg?

Problem A seems already challenging in the case of plane Cremona maps, but,
via an experimental approach, a beginning of answer could start as follows:

Conjecture B.1.3. Assume that f : P2
k 99K P2

k is a general determinantal map
and let g : P2

k 99K P2
k be a (Cremona map) of P2 and let

Fg : . . . ⊕
i,j>0

S(−i,−j)βijk . . . ⊕
i,j>0

S(−i,−j)βij3

⊕
i,j>0

S(−i,−j)βij2 ⊕
i,j>0

S(−i,−j)βij1 S

be a bi-graded free resolution of Γg.
Then a bi-graded free resolution of Γf ◦̂g reads:

Ff ◦̂g : . . . ⊕
i,j>0

S(−i,−j)βijk . . .

⊕
i,j>0

S(−i,−j)βij4
S(−4,−d1(g))

⊕
⊕

i,j>0
S(−2i,−j)βij3

S(−2,−d1(g))3

⊕
⊕

i,j>0
S(−2i,−j)βij2

S(−1,−d1(g))2

⊕
⊕

i,j>0
S(−2i,−j)βij1

S

Another direction in this thematic is to focus on the reciprocal of Proposi-
tion B.1.1: what conditions should we impose to the base locus of f and the base



locus of g−1 in order that each projective degree dk(f ◦ g) of the composition f ◦ g
be the product dk(f)dk(g) of the projective degrees of f and g? When n = 2,
the considered base locus are set-theoretically sets of points and one has that
d1(f ◦ g) = d1(f)d1(g) if and only if V(Ig−1)∩V(If ) = ∅ (a condition verified when
considering a generic composition).

When n > 3, doing a generic f ◦̂g implies that

codimV(If + I(h◦g)−1) = codimV(If ) + codimV(I(h◦g)−1),

the maximum expected, and one could want sharper conditions. Let us emphasize
that such sharper conditions might be difficult to determine, as illustrated by the
following example.

Example B.1.4. Let g = (−x0x1 + x0x2, x0x3,−x0x1 + x1x2, x1x3) : P3
k 99K P3

k

and the determinantal map f : P3
k 99K P3

k defined by its Hilbert-Burch matrix

Φf =


x0 0 0
0 x1 + x2 0
−x2 −x2 −x2

0 0 x0 + x3

 .

After computation with a computer system, one has that codimV(If + Ig−1) =
3 < codim

(
V(If )

)
+ codim

(
V(Ig−1)

)
= 2 + 2 = 4 but d(f) = (1, 3, 3, 1), d(g) =

(1, 2, 3, 1) and d(f ◦ g) = (1, 6, 7, 1).

Let us now outline one consequence of Proposition B.1.1.

Corollary B.1.5. Let g : Pnk 99K Pnk be a rational map and let Φf = (φij) 06i6n
16j6n

∈
R(n+1)×n where for any i ∈ {0, . . . , n} and j ∈ {1, . . . , n},

φij =

n∑
i=0

λ
(ij)
k gk

is a general linear combination of g1, . . . , gn. Then the map u whose base ideal Iu
is the n-minors ideal of Φ has projective degrees:

d(u) =
((n

0

)
d0(g),

(
n

1

)
d1(g),

(
n

2

)
d2(g), . . . ,

(
n

n− 1

)
dn−1(g), 1

)
.

Reciprocally, given a map u whose base ideal is the n-minors ideal of a matrix
Φ = (φij) 06i6n

16j6n
were all the entries φij have the same degree d. Then the map

g = (g0 : . . . : gn) : Pnk 99K Pnk , where for i ∈ {0, . . . , n}, gi =
n∑
j=1

λijφij is a general

linear combination of the entries of the j-th column of Φ, has projective degrees

d(g) =
(d0(u)(

n
0

) =,
d1(u)(
n
1

) , . . . , . . . ,
dn−1(u)(

n
n−1

) , 1
)



Proof. From [GSP06, Theorem 2], any general determinantal map f̃ whose Hilbert-

Burch matrix Φf̃ = (φ
(f)
06i6n
16j6n

) is filled by general linear polynomials has projective

degrees’ vector

d(f̃) = (1,

(
n

1

)
, . . . ,

(
n

n− 1

)
, 1).

The conclusion of Corollary B.1.5 then follows from Proposition B.1.1 by remarking
that u = f̃ ◦ h ◦ g where h a general element of PGln+1(k).

Corollary B.1.5 was a leading result to answer Problem 3 in the sense that it
provides instances of composed map f ◦ g whose base ideal is the 3-minors ideal of
a (4×3)-matrix but where the base ideal of its inverse do not satisfy Hilbert-Burch
theorem.

Example B.1.6. Let g = (x0x3, x1x3, x2x3, x
2
0 − x1x2) : P3

k 99K P3
k (d(g) =

(1, 2, 2, 1)) and the determinantal map f : P3
k 99K P3

k defined by its Hilbert-Burch
matrix

Φf =


x0 x3 x2

x1 x0 x3

x2 x1 x0

x3 x2 x1

 .

After computation with a computer system, one has that d(f ◦g) = (1, 6, 6, 1), If◦g
is the 3-minors ideal of Φf whose variables have been substituted by g0, g1, g2, g3.
However I(f◦g)−1 has minimal free resolution:

0 R(−9)
R(−8)3

⊕
R(−9)

R(−6)4 R

Actually, Problem 3 has a negative answer even in restriction to Koszul-determinan-
tal maps.

Example B.1.7. The Koszul-determinantal Cremona map f : P3
k 99K P3

k whose
Hilbert-Burch matrix Φf is

Φf =


x0 x2 x3

1x3 + x4
1

x1 x0 0
0 x1 0
0 0 (x2

0 − x1x2)2


has its inverse which is not determinantal as it can be computed by a computer
system (and d(f) = (1, 6, 3, 1)).

Despite these previous examples, we still wonder if the inverse of a plane deter-
minantal Cremona map is determinantal:

Problem B.

Is the inverse of a plane determinantal Cremona map f : P2
k 99K P2

k deter-
minantal?



Let us precise that, as for Problem 3, Problem B could be answered by another
elementary example of a plane determinantal Cremona map whose inverse is not
determinantal. Our difficulty in the plane case is that we do not know many non
determinantal plane Cremona map. For instance, we could not construct a non
determinantal Cremona map f of algebraic degree d1(f) equal to 6 even if we
know by [HS12, Th.2.12 (ii)] what would be the free resolution of its base ideal.
In short, we’ve lacked examples of non determinantal plane Cremona maps to test
Problem B.

B.2 Dimension of the families of determinantal Cremona
maps

In addition to answer questions about the bi-graded free resolutions of glued maps
such as Conjecture 1.2.4, we believe that it remains a more fundamental question
about the dimension of the families of determinantal Cremona maps and let us
briefly outline why. Given a 4 × 3 matrix Φ with homogeneous linear entries in
R = k[x0, . . . , x3], and assuming that the 3-minors ideal of Φ defines an arith-
metically Cohen-Macaulay subscheme correspond to a smooth point of the Hilbert
scheme of all arithmetically Cohen-Macaulay subscheme of codimension 2 of P3

k

which has dimension 24 [Ell75, Théorème 2]. Given a 5×5 skew-symmetric matrix
Φ whose subdiagonal is filled with homogeneous linear entries in R = k[x0, . . . , x4],
and assuming that the 4-pfaffian ideal of Φ defines a codimension 3 arithmetically
Gorenstein subscheme of P4

k correspond to a smooth point of the Hilbert scheme of
all codimension 3 arithmetically Gorenstein subscheme of P4

k which has dimension
25 [KMR98, Th.2.6, Rmk 2.8]. Hence, we can associate to any general determinan-
tal map of P3

k (and more generally of Pnk ) and to any general pfaffian Cremona map
of P4

k (and more generally to Pnk for n > 4 odd) a smooth point on a component of
the Hilbert scheme of the associated base ideal.

Problem C.

Can we associate any family of determinantal Cremona maps we build to a
Hilbert scheme? What are the dimension of these families?

Problem C is somehow also related to [DH16] and [DH17] where the two authors
describe the determinantal families of cubo-cubic (resp. of quarto-quartics) in the
set of all Cremona map of degree 3 (resp. degree 4) and give their respective
dimension.

Among the other questions we still have, one concerns the non general pfaffian
Cremona maps, see Example A.1.10 for an example of such a map. Our problem
can be summed up as:

Problem D.

Does it exist a pfaffian Cremona map q : P4
k 99K P4

k whose base ideal Iq is
not of linear type and such that its residual scheme P(Iq) has codimension
4 in P4

k × P4
k?



The conditions on P(Iq) are conditions on the entries of the associated skew-
symmetric matrix Φq and we could not figure out how to build a pfaffian Cremona
map from them. An answer to Problem D should however shed more lights on the
families of pfaffian Cremona maps of high degree.





Bibliography

[AH80] L. Avramov and J. Herzog. The Koszul algebra of a codimension 2 embedding. Math.
Z., 175:249–280, 1980. ↑53

[AL94] W.W. Adams and P. Loustaunau. An introduction to Gröbner bases, volume 3 of
Graduate studies in math. AMS, 1994. ↑30, ↑31, ↑104

[BC18] R. Bignalet-Cazalet. Torsion of a finite base locus. arXiv:1806.00856, 2018. ↑33,
↑34, ↑35, ↑39

[BCJ09] L. Busé, M. Chardin, and J.-P. Jouanolou. Torsion of the symmetric algebra and
implicitization. Proc. Amer. Math. Soc., 137:1855–1865, 2009. ↑10, ↑11, ↑25, ↑29
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[DS16] A. Dória and A. Simis. The Newton complementary dual revisited. J. of Alg. and
its Appli., 2016. ↑11, ↑17, ↑81

[EGH96] D. Eisenbud, M. Green, and J. Harris. Cayley-Bacharach theorems and conjectures.
Bull. of the AMS, 33 (3):295–324, 1996. ↑76

[EH16] D. Eisenbud and J. Harris. 3264 and All That: A Second Course in Algebraic
Geometry. Cambridge University Press, 2016. ↑22, ↑75, ↑89, ↑93, ↑94, ↑108, ↑109,
↑116

[Eis95] D. Eisenbud. Commutative algebra, with a view toward algebraic geometry. Graduate
Texts in Mathematics. Springer, 1995. ↑22, ↑24, ↑27, ↑35, ↑48, ↑116
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