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Abstract: Measurement outliers can severely impact on the performance of conventional state
estimators. The design of state estimators exhibiting enhanced robustness to measurement
outliers is of interest in many areas of systems and control engineering. In marine robotics
applications the issue is particularly relevant for navigation and model identification tasks
exploiting acoustic based positioning and velocity sensors that are subject to relatively high
rates of outliers. A sliding window state estimator is designed by minimizing the Least Median
of Squares cost function evaluated by running a Rauch-Tung-Striebel smoother on the current
window. The resulting estimator is tested on Doppler Velocity Log navigation data acquired
on an underwater robot. Although these are only preliminary results, they confirm that the
approach can be successfully used online.
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone

� This work was partially funded by the EU H2020 projects EU-
MarineRobots (grant agreement ID: 731103) and ROBUST (grant
agreement ID: 690416).

et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
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(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
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Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with
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1. INTRODUCTION

State estimation in the presence of measurement outliers is
a relevant and challenging issue in many applications. Par-
ticularly so in marine robotics and oceanic engineering sce-
narios where acoustic measuring devices are most common.
Multi-path and multi-reflection phenomena in underwater
acoustic propagation may generate outliers in range and
velocity measurements used for marine system navigation
and localization applications. Possible approaches to cope
with outliers in Ultra-Short Base Line and Long Base
Line acoustic positioning systems are addressed by many
authors including, by example, Vaganay et al. (1996),
Bingham and Seering (2006), A. Alcocer (2006), Vasilijevic
et al. (2012), Morgado et al. (2015), and Leonard and Bahr
(2016). Similar problems arise when processing Doppler
Velocity Logger (DVL) data for measuring velocity in
marine vehicles in navigation or identification scenarios.
Specific examples in this area include results by Martin
and Whitcomb (2014), van de Ven et al. (2007), and
Lekkas et al. (2015). Outliers may significantly impact also
on cooperative robotics marine systems as accounted by
Bahr et al. (2009) and Soares et al. (2013) as well as on
underwater vehicle control (Caccia et al. (2003)) or diver
tracking applications (Mišković et al. (2015)). It should
be noticed that measurement outliers in underwater ap-
plications are not limited to acoustic transducers. Indeed,
vision related processing is also potentially affected by
outliers as discussed by Horgan and Toal (2006), Leone
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et al. (2006), and Distante and Indiveri (2011) just to name
a few examples.

Fitting data to models in the presence of outliers as well
as outlier identification are central topics in statistics.
The related literature is extremely wide and interesting:
significant textbooks addressing outlier related issues for
statistical models include the ones by Hawkins (1980),
Rousseeuw and Leroy (2003), and Huber and Ronchetti
(2009). Although many results and ideas derived in the
statistics literature are of paramount relevance in engineer-
ing applications, most of these results refer to static models
and batch data processing approaches: indeed recursive
algorithms as applied to dynamic (state space) models are
basically absent in the statistics literature. An exception
is the paper by Ruckdeschel et al. (2014) suggesting to
saturate the correction term of the Kalman filter in order
to prevent outliers from arbitrarily affecting the Kalman
state estimate. The idea of limiting (i.e. saturating) the
correction term in prediction - correction state estimation
filters to limit the impact of potential measurement out-
liers is a quite common and simple. In marine applications
a similar approach was used by Vike and Jouffroy (2005)
designing a nonlinear diffusion based prediction - correc-
tion filter having an intrinsically limited correction term.
The problem with such approaches as applied to linear
state space estimation (like for the Kalman or Luenberger
filters) is that a saturated correction term can jeopardize
the filter stability, in particular when the state transition
matrix is not stable. This problem was recently studied
and solved by Alessandri and Zaccarian (2018) in the linear
time-invariant system case, both in continuous and dis-
crete time. In particular they designed an estimator with

a correction term with an adaptive saturation threshold
granting global exponential stability to the origin for the
error dynamics.

In this paper a sliding windows approach is discussed: sim-
ilarly to the solution we previously derived in (De Palma
and Indiveri (2017)), the estimate is computed by minimiz-
ing an outlier robust cost function on the moving window.
The novelty here is twofold: the considered cost function
is the Least Median of Squares (LMS); moreover, such
cost function is evaluated using a Rauch-Tung-Striebel
(RTS) smoother (Rauch et al. (1965)) on the window
rather than the pure prediction of the state estimate.
Numerical simulation results suggest that this significantly
improves the performances of the filter as compared to an
implementation computing the cost function on the predic-
tion only. Notice that the proposed filter structure could
be also implemented using alternative outlier robust cost
functions on the sliding window as, by example, the Least
Trimmed Squares (LTS) one. Indeed the idea of exploiting
the structure of the LTS parameter identification approach
for state estimation is also exploited by Alessandri and
Awawdeh (2016) where smoothing is not performed on the
moving window.

2. BACKGROUND AND SETTING

Consider the dynamic linear model given by

xk = Ak−1 xk−1 +Bk−1 uk−1 +wk−1 (1)

yk = Ck xk + εk (2)
where xk ∈ Rn is the state vector, uk ∈ Rq is the known
input vector, yk ∈ Rp is the observation vector, wk ∈ Rn

is the state noise, εk ∈ Rp is the observation noise,
Ak ∈ Rn×n is the state transition matrix, Bk ∈ Rn×q

is the input matrix and Ck ∈ Rp×n is the observation
matrix at time step k. Assume wk and εk to be zero-
mean, Gaussian, white and uncorrelated noise, that is,
wk ∼ N (0, Qk) and εk ∼ N (0, Rk) where Qk and Rk

are the covariance matrices of the state and observation
noise, respectively. Suppose further the initial state x0 to
be a Gaussian random vector x0 ∼ N (x̄0, P0) independent
of wk and εk, where P0 denotes its covariance matrix.

The state estimation problem consists in determining the
state vector xk given the knowledge of the model matrices
(including the noise covariances), the input and output
sequences up to time k. In the stated hypothesis and under
suitable observability conditions Simon (2006), Jazwinski
(2007), Anderson and Moore (2012), the optimal (i.e. with
least estimate covariance) solution is given by the Kalman
filter (KF). Following Anderson and Moore (2012), the
equations of the recursive KF are:

x̂−
k = Ak−1 x̂

+
k−1 +Bk−1 uk−1 (3)

P−
k = Ak−1P

+
k−1A

�
k−1 +Qk−1 (4)

Kk = P−
k C�

k (CkP
−
k C�

k +Rk)
−1 (5)

x̂+
k = x̂−

k +Kk(yk − Ckx̂
−
k ) (6)

P+
k = P−

k −KkCkP
−
k . (7)

where x̂−
k denotes the estimate of xk before processing

the measurements at time k, x̂+
k denotes the estimate

of xk after processing the measurements at time k, P−
k

denotes the covariance of the estimation error of x̂−
k and

P+
k denotes the covariance of the estimation error of x̂+

k .
It should be noticed that the standard Kalman filter
estimates simultaneously both, the state and the error
covariance matrix.

The Kalman filter is highly sensitive to outliers and has
an asymptotic breakdown point of zero Rousseeuw and
Leroy (2003). Indeed, if the assumption of Gaussian mea-
surements noise is violated or the observations are con-
taminated by outliers, the optimality of the filter fails
and its performance can deteriorate significantly. Even a
single outlier in the observed data can compromise the
result of the estimation. A similar situation may occur
in regression and parameter identification scenarios when
measurements include outliers. In such cases one may
consider robust regression approaches as the Least Median
of Squares (LMS) estimator described in Rousseeuw and
Leroy (2003). In short, the LMS parameter estimate θ̂LMS

is obtained by minimizing with respect to the unknown
parameter θ the median of the square residual rk = yk −
ŷk(θ) norms being ŷk(θ) the model estimated measure-
ment. In particular

JLMS(θ) =median
{
‖r1‖2, ‖r2‖2, . . . , ‖rn‖2

}
(8)

θ̂LMS = argminθ JLMS(θ). (9)

The resulting estimator has the highest possible break-
down point, i.e. 50%. For an intuitive interpretation of the
LMS, notice that in case of linear regression of data points
on a line in the plane, the LMS line corresponds to the
center line of the thinnest stripe of the plane containing
half plus one of the data points.

3. LMS BASED ROBUST STATE ESTIMATOR

The proposed estimator consists in performing state esti-
mation by minimizing a least median of square (LMS) cost
function on a sliding window of data, i.e. according to a
moving horizon strategy.

Let be N the size of the sliding window, the proposed
approach is built on the derivation of a state estimate at
the current time k by using the information given by the
measurements and inputs within the window, i.e. yk−N+1,
yk−N+2, . . ., yk, uk−N+1, uk−N+2, . . ., uk with the integer
N ≥ 1. The estimates of xk−N+1, xk−N+2, . . ., xk are
based on such information and on an “estimation” x̂+

k−N
of the state xk−N at the beginning of the moving window.
In the following, the estimates of xk−N+1, xk−N+2, . . ., xk

at time k are denoted by x̂k−N+1|k, x̂k−N+2|k, . . ., x̂k|k,
respectively. This is equivalent to a smoothing problem
within the sliding window that can be solved with the stan-
dard Rauch-Tung-Striebel (RTS) smoother Rauch et al.
(1965). The RTS smoother is implemented by first running
the standard Kalman filter equations (3-7) forward in time
to the current time k, and then implementing the RTS
smoother equations (10-15) backward in time to the initial
time k −N + 1:
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1. Initialize the RTS smoother as follows:

x̂k|k = x̂+
k (10)

Pk|k = P+
k (11)

2. For i = k−1, . . . , k−N+1 execute:

I−
i+1 = (P−

i+1)
−1 (12)

Ki = P+
k A�

k I−
i+1 (13)

Pi|k = P+
i −Ki(P

−
i+1 − Pi+1|k)K

�
i (14)

x̂i|k = x̂+
i|k +Ki(x̂i+1|k − x̂−

i+1). (15)

By seeking inspiration from the algorithms for the compu-
tation of the LMS estimator Rousseeuw and Leroy (2003),
a robust procedure (alogorithm) is proposed by repeatedly
drawing subsamples of measurements in a sliding window
set Yk = {yk−N+1,yk−N+2, . . . ,yk}. Subsamples are de-
noted as Sj

k where k is the current time index and j is
an index running on all possible m subsamples obtained
keeping only L data values out of the N ones in Yk. In
particular m can be computed as the combinations without
repetitions of L elements out of N

m = CN
L =

(
N
L

)
=

N !

L!(N − L)!
.

By example if N = 3 and L = 2 then m = 3 and at time,
say, k = 8 the corresponding subsamples of Y8 would be
S1
8 = {y6,y7, ·}, S2

8 = {y6, ·,y8}, and S3
8 = {·,y7,y8}. For

each subsample Sj
k one can determine the RTS estimates

x̂
Sj
k

k−N+1|k, x̂
Sj
k

k−N+2|k, . . ., x̂
Sj
k

k|k.

These estimates leave out the measurements not belonging
to the subsample. In correspondence of such points, the
standard RTS smoothing equation can still be used by as-
suming that the measurements have a diverging covariance
Ri, namely with R−1

i tending to the zero matrix being i
in the range [k −N + 1, k].

Having computed the RTS estimates, for each subsample
Sj
k one can evaluate the median of the square residuals

cost

J
Sj
k

k (x̂+
k−N ) = median

i=k−N+1,...,k

∥∥∥∥yi − Cix̂
Sj
k

i|k
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2

(16)

and select the subsample Sj∗
k with least median of squares

(LMS) cost, namely

Sj∗
k = arg min

j=1,...,m
J
Sj
k

k (x̂+
k−N ) (17)

that allows to identify the current state estimate x̂∗
k|k and

its covariance P ∗
k|k as x̂∗

k|k := x̂
Sj∗
k

k|k and P ∗
k|k := P

Sj∗
k

k|k .

The LMS criterion to select the subsample Sj∗
k aims at

excluding outliers from the measurement set used in the
RTS smoothing phase. The computational effort of this ap-
proach is strongly dependent on the sliding window size N
and on the number m of subsample sets where to compute
the RTS estimator. If the inliers every N measurements
are actually at least L, the proposed approach has the
potential (albeit with no formal gauarantee) to exclude all
the outliers. Figure 1 reports an example of the described
algorithm with subsamples obtained considering N = 5
and L = 3 (hence m = 10).

The pseudo-code for the proposed outlier robust state
estimation is reported in algorithm 1.

As a side result the proposed approach allows to eventually
rank the measurements according to the number of times
they belong to an optimal subset mimizing the median
of squares. Indeed when the sliding window of size N is
shifted forward N − 1 measurements of the new window
were also included in the previous window. As the window
is shifted further, due to the overlap of successive windows,
a certain number of measurements are re-evaluated mul-
tiple times. One can thus label measurements according
to the number of times they are accepted in the (local)
Least Median of Squares optimal subsets. Measurements
that are more frequently accepted in the local optimal
subsets according to the LMS criteria are candidate inliers.
Eventually such data can be used to run an estimator over
the whole batch of data or over longer windows than the
N data points one used locally as previously described.
Details of this extension are not included in this paper for
the sake of brevity and will be subject to future work.

Algorithm 1 LMS-RTS based estimation algorithm
Require: L, N, x̂+

k−N , P+
k−N , yk−N+1, . . . , yk, uk−N+1,

. . . , uk

Ensure: x̂∗
k|k, P

∗
k|k

1: for j = 1 : m
2: compute the RTS smoothing estimation on mobile

window using (10-15): x̂
Sj
k

k−N+1|k, x̂
Sj
k

k−N+2|k, . . . , x̂
Sj
k

k|k,

P
Sj
k

k−N+1|k, P
Sj
k

k−N+2|k, . . . , P
Sj
k

k|k

3: compute the LMS cost J
Sj
k

k (x̂+
k−N ) using (16)

4: end for
5: Sj∗

k ← argminj=1,...,mJ
Sj
k

k (x̂+
k−N )

6: x̂∗
k|k, P

∗
k|k ← x̂

Sj∗
k

k|k , P
Sj∗
k

k|k
7: return x̂∗

k|k, P
∗
k|k

4. EXAMPLE ON MARINE ROBOTICS
APPLICATIONS.

A specific example relative to the navigation of an un-
derwater robot is reported. The experiment is performed
employing an Underwater Vehicle Manipulator System
(UVMS) developed within the ROBUST project RO-
BUST (2015-2020). The UVMS is composed by three Au-
tonomous Underwater Vehicles (AUVs), each one equipped
with 4 tunnel thrusters (2 vertical and 2 lateral at the
bow and stern of the AUVs rispectively), and 1 main rear
thruster. During the experiment, the UVMS is controlled
to obtain a motion along the surge axes at constant speed,
and its velocity is acquired using a DVL sensor together
with the thrusters commands. The velocity starts from
zero and increases gradually until reaching a steady state
value. The following dynamic equation for surge velocity
is considered:

mv̇ +Dlv +Dqv|v| = τ (18)
where v denotes the surge velocity, m the mass of the
vehicle (including added mass), Dl and Dq the linear and
quadratic surge drag coefficients, τ the surge actuation
term. The latter can be expressed as:
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1. Initialize the RTS smoother as follows:
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k (10)
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2. For i = k−1, . . . , k−N+1 execute:
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�
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(UVMS) developed within the ROBUST project RO-
BUST (2015-2020). The UVMS is composed by three Au-
tonomous Underwater Vehicles (AUVs), each one equipped
with 4 tunnel thrusters (2 vertical and 2 lateral at the
bow and stern of the AUVs rispectively), and 1 main rear
thruster. During the experiment, the UVMS is controlled
to obtain a motion along the surge axes at constant speed,
and its velocity is acquired using a DVL sensor together
with the thrusters commands. The velocity starts from
zero and increases gradually until reaching a steady state
value. The following dynamic equation for surge velocity
is considered:

mv̇ +Dlv +Dqv|v| = τ (18)
where v denotes the surge velocity, m the mass of the
vehicle (including added mass), Dl and Dq the linear and
quadratic surge drag coefficients, τ the surge actuation
term. The latter can be expressed as:
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k = median
i=k−4,...,k
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k

i|k
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k

∗

k|k

Fig. 1. Example of subsamples with N = 5 and L = 3 (m = 10).

τ = G



α1n1|n1|

...
αnnn|nn|


 , (19)

where ni, i = 1, ..., 15 represent the thruster revolutions
per minute (RPM) values, while the matrix G ∈ R1×15 de-
pends on the relative position of each thruster with respect
to the body frame, and on the thruster characteristics.
A quadratic relationship has been assumed between the
thruster’s RPM values and its exerted force, neglecting
other hydrodynamic terms in the thruster modelling de-
pending, by example, on the water flow velocity through
the propeller blades. With regards to the knowledge of the
added mass, hydrodynamic parameters, and coefficients in
(18, 19), we resort to the values estimated and experimen-
tally identified exploiting the method in Ingrosso et al.
(2019). Note that for the sake of simplicity, in order to
approximate the non linear model (18) into a linear one,
the hydrodynamic drag has been modelled with a linear
term only leading to the following equation:

mv̇ +Dv = τ (20)
with D chosen as D = Dl +Dq v̄, being v̄ the mean value
of the vehicle velocity during the experiment. Assuming
to explicitly account for noise, and discretizing the sys-
tem with a sampling time Ts, the equation (20) can be
reformulated in a linear time invariant (LTI) state space
setting:

xk = Axk−1 +Buk−1 + wk−1, (21)

yk = Cxk + εk, (22)
having defined the state as x = v, the input as u = τ , and

A = 1− D

m
Ts, B =

Ts

m
, C = 1. (23)

The covariances of the state and the observations are
Q = (10−3 m/s)2 and R = (5 · 10−3 m/s)2, respectively.
In order to validate the performance of the proposed
algorithm both in absence and in presence of outliers, we
firstly considered an experimental data set free of outliers.
A sliding window of size N = 9 with L = 5 and m = 126

is considered and the proposed LMS-RTS algorithm is
applied. The resulting estimates are shown in figure 2. If
compared with a standard KF, the LMS-RTS algorithm
does not exhibit degraded performances. Then, a data
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Fig. 2. UVMS velocity measured through a DVL and
velocity estimated through the KF and the LMS-RTS
algorithm in absence of outliers.

set corrupted by outlier has been considered. Outliers
can occur, for example, when the vehicle is very close to
the sea bottom due to multi-path phenomena. Figure 3
shows an example of real data set of DVL measurements
acquired from the UVMS, it should be noted that the
measurement outliers occurred when the depth of the
vehicle was maximum, i.e. when the vehicle was close to
the sea bottom.

In order to compare the behaviour of the proposed filter
with the KF estimate in the presence of measurement
outliers, some artificial ones are added to the same data
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set trying to replicate the typical frequency and entity of
outliers in DVL measurements.
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Fig. 3. Example of outliers in a real data set of DVL
measurements acquired from the UVMS and corre-
sponding depth of the UVMS.

The results of this experimental example are plotted in
4. The comparison with the KF estimate confirms the
enhanced ability to cope with measurement outliers at the
cost of an additional computational effort arising from the
implementation of the smoother and the LMS minimiza-
tion. From a computational point of view, Table 1 provides
the amount of time required to compute the Kalman and
RTS-LMS estimates (pseudo-code in Algorithm 1), respec-
tively. The algorithms have been coded in MATLAB®
(version R2017a) on an Apple Laptop with a 3.1 GHz
Intel Core i7 processor, 16 GB RAM, running the MAC
OS X Version 10.11.6 operating system. Also notice that
our MATLAB implementations, for both filters, were not
specifically optimized for execution time. Of course, by
using dedicated hardware and a suitably optimized code,
the execution time can be significantly less.

Time to process Average time
326 time steps [s] per step [s]

Kalman Filter 0.02 6 · 10−5

LMS-RTS Filter 8.6 2640 · 10−5

Table 1. Computational cost of Kalman and
LMS-RTS algorithm.

5. CONCLUSION

A sliding window state estimation filter is designed for
a linear state space model aiming to achieve enhanced
robustness to measurement outliers as compared to con-
ventional Luenberger or Kalman filters. The novel contri-
bution is relative to the use of a Least Median of Squares
cost function on a moving horizon and its evaluation on
the residuals arising from performing smoothing on the
same window rather than estimation only. This allows to
better highlight outlying data as due to smoothing on the
moving window an outlier eventually entering at the cur-
rent time step in the window will affect the past smoothed
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Fig. 4. UVMS velocity measured through a DVL and
velocity estimated through the KF and the LMS-RTS
algorithm in presence of outliers.

state estimates in the window and not only the future
ones. Outlier robustness stems from the fact that not all
measurements are processed on the moving window, but
only the ones such that the median of squared residuals is
minimized on the window. The identification of the specific
subsample corresponding to the least median of squares
cost on the window is performed through an exhaustive
search. This can be quite demanding from a computational
point of view as the number of subsamples to evaluate
rapidly grows with the window size. Window size and the
least number of candidate inliers in the window are tuning
parameters. If the true number of inliers is actually larger
or equal than the expected one, the proposed solution has
the potential to reject all the outliers, otherwise not. The
study is motivated by the need to cope with measurement
outliers frequently arising in marine robotics navigation
and localization scenarios. Numerical results exploiting
experimental DVL measurements are illustrated.
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