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Abstract— Microcontroller Units (MCUs) are widely used 
for industrial field applications, and are now ever more being 
used also for machine learning on the edge, because of their 
reliability, low cost, and energy efficiency. Due to the MCU 
resource limitations, the deployed ML models need to be 
optimized particularly in terms of memory footprint. In this 
paper, we propose an in-place computation strategy to reduce 
memory requirements of neural network inference. The 
strategy exploits the MCU single-core architecture, with 
sequential execution. Experimental analysis using the CMSIS-
NN library on the CIFAE-10 dataset shows that the proposed
optimization method can reduce the memory required by a NN 
model by more than 9%, without impacting the execution 
performance nor accuracy. The amount of reduction further
increases with deeper network architectures.

Keywords— Microcontroller Units, deep learning, edge 
computing, sequential execution, CMSIS-NN, memory reduction.

I. INTRODUCTION 

Convolutional Neural Network (CNN) are well 
established machine learning (ML) models, particularly used 
for image recognition and classification. Recent advances in 
edge computing have made it possible to ever more move the 
inference task from the cloud to embedded devices on the 
edge. Edge computing offers advantages in terms latency,
bandwidth, energy, privacy [1]. However, edge devices have 
limited computational power and on-chip memory. Several 
solutions have been devised in order to overcome the memory 
size limitation. For example, model compression techniques 
such as parameter pruning and quantization [2], binarization
[3], low-rank factorization [4], and knowledge distillation [5]
are widely used to reduce the model size. Further alternatives 
involve changing the execution order of the network’s 
operations by requiring the inference software to follow a 
specific order [6].

A common class of edge devices is represented by 
microcontroller units (MCUs) [7], that are widely available, 
cheap, and energy efficient [6]. Unlike multicore CPUs and 
GPUs, that can perform multiple computations 
simultaneously [8], MCUs typically have single-core 

processors and sequential execution. Such an execution mode 
requires less memory than parallel execution because only one 
block of the network can be executed per operation. In 
addition, operations in a CNN convolution layer are local, as 
they only depend on the input of that layer. Once the input of 
the layer has been processed the memory can be replaced.
Thus, the memory is reusable among layers. 

In this work, we propose a memory replacement strategy 
that reuses the memory assigned to convolutional layers in 
order to reduce the overall memory usage of the CNN. The
proposed strategy relies on the use of a single input/output 
buffer which is shared among all the layers in the inference 
phase of a CNN, exploiting the sequential execution paradigm 
of single-core processors.

The remainder of this article is organized as follows. 
Sections II and III present the related work and the 
background, respectively. Section IV illustrates the proposed 
methodology, while section V shows the experimental 
analysis of a case study. Section VI provides the conclusions 
on the work.

II. RELATED WORK

The use of neural networks on microcontrollers is an 
active topic in deep learning research, the main challenge 
being the design of effective models for inference, with a 
small memory footprint. To obtain a compact neural network
without significantly lowering performance, some 
compression techniques have been proposed, such as pruning 
and quantization [9]. Memory replacement strategies have 
been investigated as well. Gural and Murmann [10] present 
Memory-Optimal Direct Convolutions (MODC) that 
performs existing convolution operators in place targeting 
KB-size devices at the expense of extra computation and 
slower performance. A comprehensive analysis [11] shows 
that the MODC presented in [10] achieved 65.7% accuracy on 
the CIFAR-10 dataset with less than 60 KB model memory 
consumption, but no experimental analysis is available on 
embedded devices with the achieved inference time. Unlu
[12] proposes two optimizations that provide memory savings
for 2D convolutions and fully connected layers; the first is in-
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place max-pooling, the second is the use of ping-pong buffers 
between layers. The work focuses on memory optimization,
achieving a 74% RAM utilization reduction than the reference
CMSIS-NN implementation [13], but at the expense of a 
significant reduction in execution performance (e.g., 0.26 FPS
on the gray scale MNIST dataset at 352 MHz core clock 
compared to 10.1 FPS on the more complex RGB CIFAR-10 
dataset at 216 MHz) due to the latency caused by fetching data 
from flash and the lack of SIMD (single instruction multiple 
data) instructions. CMSIS-NN [13], that we use as the term 
of comparison also for our work, is a set of efficient neural 
network kernels designed to maximize the performance and 
minimize the memory requirements of neural network 
applications on ARM Cortex-M processors. The CMSIS-NN
implementation uses a total buffer size for the feature maps 
corresponding to the sum of the output size of all the 
convolutional layers. Exploiting memory replacement in 
sequential execution, our approach allocates memory bounded 
by an estimation of the maximum needed without affecting the 
performance nor accuracy.

III. BACKGROUND

In this section, we briefly introduce the convolutional 
neural network class of deep learning, the software kernels
utilized, and the deep learning framework used for training.

A. Convolutional Neural Network
A Convolutional Neural Network (CNN) is a deep 

learning algorithm which is widely used in pattern recognition 
and computer vision tasks. It consists of several building 
blocks such as convolutional layers, pooling layers and fully 
connected layers. A CNN is designed to learn spatial 
hierarchies of features through a backpropagation algorithm 
[14]. This model is particularly suited to image classification 
as it extracts useful features from the image by observing
patterns in the dataset. Other deep learning models are much 
less efficient in this task, requiring a much higher number of 
trainable parameters.

B. CMSIS-NN
Arm’s CMSIS-NN is a state of the art open-source library of 

optimized neural network functions for Cortex-M
microcontrollers that enables the integration of NNs into the 
edge nodes of Internet-of-Things (IoT) applications. These 
optimized kernels are divided into several functions, each 
covering one category: Convolution, Pooling, Activation, 
Fully Connected, Softmax, and Optimized Basic Math [13].
This tool supports models trained with popular frameworks 
such as Caffe [15] or TensorFlow [16]. The model parameters 
(weights and biases) are first quantized into 8-bit or 16-bit 
integers and then deployed to the microcontroller. Fig. 1
shows the structure of the CMSIS-NN kernels. Neural 
networks generated with CMSIS-NN achieve about 4.6X 
improvement in performance and 4.9X in energy efficiency
compared to a baseline version using CMSIS-DSP functions
[13]. Our approach focused on optimizing another key aspect, 
such as memory footprint, as shown in Section IV.

Fig. 1. CMSIS-NN structure.

C. CAFFE
Convolutional Architecture for Fast Feature Embedding or 

CAFFE [15] is a deep learning framework developed at the 
University of California, Berkeley. It is an open-source 
framework written in C++ and released under the BSD 2-
Clause license. Caffe supports different types of deep learning 
architectures (CNN, RCNN, LSTM, and fully connected 
neural networks) focused on image segmentation and image 
classification. It also supports both GPU and CPU-based 
acceleration computational kernel libraries (NVIDIA, 
cuDNN, Intel MKL). In our implementation, we used the 
same model as CMSIS-NN for comparison purposes. The 
model is based on a built-in example provided by the Caffe 
framework.

IV. OPTIMIZATION

Our goal is to optimize memory efficiency in 
convolutional layer computation in CNNs through a 
replacement strategy. State of the art frameworks, such as 
CMSIS-NN, already do in-place (or in-situ) computation in 
the pooling layer, but they allocate memory space for each 
output feature map for each layer. The resulting memory 
footprint is the sum of the output sizes of the feature maps in 
all the convolutional layers. The deeper a network, the higher 
the sum. Our idea is to allocate a single buffer (we call it total
buffer) sized as the maximum needed capacity.

The idea stems from the fact that convolutions are local 
operations; the output feature maps of a convolutional layer 
depend only on the input features of that layer. Therefore, after 
a layer has computed its operations, its memory can be reused 
to store output feature maps of subsequent layers. This 
requires that there is no out of order instruction execution, 
which guarantees that only the feature maps in the currently 
active layer are used in each layer operation. In order 
execution is the case of single-core processors, that cover the 
vast majority of microcontrollers.

The maximum needed capacity is computed as the 
maximum, among all the couples of adjacent layers, of the 
needed buffer size for each couple of adjacent layers (Eq. 1).
TABLE I. reports the needed buffer size for the two most 
common types of layers of CNNs.

total buffer size = maxi∈1, N-1 (needed_buff_size (Li, Li+1)) (1)

A pooling layer can be filled completely in place, since 
each pooling operation produces a single value and destroys 
at least one value. Convolutions, on the other hand, process 
the same input area one time for each filter, thus results cannot 
replace the values in the current layer, but should be put in a 
new buffer. Consequently, the required size for a couple of 
layers of which the second one is a convolutional one is given 
by the sum of their respective sizes.

TABLE I. NEEDED BUFFER SIZE FOR A COUPLE OF ADJACENT LAYERS

Next layer

Convolutional Pooling

Sum of the sizes of current and 
next layer’s feature maps

Size of current layer’s feature 
maps

Fig. 2 shows a typical application case of our optimization. 
3-D tensors are used to represent data and weights, as it is 
common in machine learning frameworks. Please note that, 
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targeting an embedded environment, the CMSIS-NN 
implementation (atop of which we built), differs from this 
representation. Particularly, the weight tensors are transposed 
(reordered) and flattened into a 1-D array with {num. of input 
channels x filter height x filter width x num. of output 
channels} elements. Similarly, each layer’s output is stored in 
a 1-D array with {num. of output channels x feature map
height x feature map width} elements.

Fig. 2. Example of pixels arrangement in memory with the proposed 
replacement strategy.

The example uses two convolutional layers interleaved with 
max-pooling on a 10x10 RGB image. Here we focus on 3D
convolutions with odd square filters (3x3, 5x5, etc.), same 
padding, and stride of 1, which covers the most common cases 
for CNNs in memory-limited applications [10], [12], [13].

The first convolutional layer consists of 5 filters of shape 
3x3x3 and stride of 1 (in the CMSIS-NN implementation, this 
input is a 1-D array of shape {3x3x3x5}). The output size is 
8x8x5, which corresponds to the feature map with width =
(input width - (filter width - 1)), height = (input height - (filter 
height - 1)), and channels = (number of input filters). From 
equation (1) and TABLE I. it appears that the total buffer size 
is equal to the one of the first convolutional layer: 8x8x5,
whose feature maps thus completely occupy the total buffer.
The first 2x2 max-pooling layer takes as input these first 
output feature maps and results in a 4x4x5 second output 
feature maps. The pooling operation is destructive on the 
input; thus no additional memory is needed to store the output. 
Therefore, the second output feature maps are saved in place 
of the input, resulting in many pixels being freed, which we
call stale pixels (8x8x5 - 4x4x5 = 240 pixels out of 320 
allocated for the total buffer are stale). The third layer consists 
of 5 filters of shape 3x3x5 and stride of 1. We should 
emphasize that we used the same number of filters for a better 
graphical representation of our methodology, while using a 
different number is also possible, as in our case study in 
Section V. The input pixels in this layer needs to be preserved

during the convolution operation, therefore the output pixels 
of size 2x2x5 (third output feature maps) should be stored next 
to (not in place of, as it happened for the pooling operation) 
the input pixels, occupying part of the stale pixels. In the last 
layer, the third output feature maps are the only input needed 
for this operation. The output size of this operation is 1x1x5 
(fourth output feature maps), and is stored from the starting 
position given the destructive nature of the pooling operation.
We can observe that, for each layer, there is always enough 
space to store its input and output in the total buffer, thus 
reducing the overall memory footprint.

Two main changes were needed to upgrade the CMSIS-
NN implementation with our memory replacement feature.
First, in the code generated by CMSIS-NN, instead of 
allocating the sum of the output sizes of the convolutional 
layers as scratch buffers before starting the inference, just one 
buffer is allocated (namely, the total buffer), sized as the 
maximum of the output feature maps, is allocated. Second, a 
pointer is created to refer to the first free slot in this buffer
(namely, the p_buffer). As the inference algorithm progresses,
the pointer is updated to place the output of the current 
convolutional layer in its correct position. The implementation 
can be found here: https://github.com/FouadSakr/Memory-
Efficent-CMSIS-NN.

V. CASE STUDY

We tested our approach by implementing our memory 
optimization strategy atop CMSIS-NN kernels on a CNN 
trained on the CIFAR-10 dataset [17]. The latter consists of 
60,000 32x32 RGB images divided into 10 classes. For the 
assessment, we adopted the network architecture that was 
used to test CMSIS-NN [13], which is based on a built-in 
example in Caffe and whose topology is shown in TABLE II. 
This architecture is limited in size and provided good
performance on edge devices. The model, pre-trained by 
Caffe, is quantized to 8-bit integers (one byte/parameter) with 
79.9% accuracy (like the CMSIS-NN model), and then 
translated into source and header files for deployment on the 
microcontroller.

TABLE II. LAYER PARAMETERS

Operation 
Layer

Input 
Shape Stride Padding Output 

Shape

Convolution 3x5x5x32 1 Same 32x32x32

Pooling       
ReLU - 2 - 32x16x16

Convolution 
ReLU 32x5x5x32 1 Same 32x16x16

Pooling - 2 - 32x8x8

Convolution 
ReLU 32x5x5x64 1 Same 64x8x8

Pooling - 2 - 64x4x4

Fully-
Connected 64x4x4x10 - - 10

As explained in the previous section, we first need to 
allocate the total_buffer. Since the activations in our example 
are quantized to int8, each output value corresponds to one 
byte. Thus, the size of the buffer is 32x32x32 or 32,768 bytes,
given by the largest output feature maps, resulting from the 
first convolutional layer. Second, the p_buffer pointer is 
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initialized, in order to place the output of the convolutional 
layer in the correct position after each pooling layer. 

Fig. 3 shows the memory replacement strategy in our case 
study. We are using a 1-D array buffer to store all parameters 
during computation (coherently with the modality in which
CMSIS-NN saves the output, as said in the previous section):

1. Convolution 1: the output of this layer is equal to 
32x32x32 = 32,768 bytes (largest output feature 
maps) and occupies all the memory allocated to the 
total_buffer.

Free space in total_buffer: 0 bytes

2. Pooling 1: the output of this layer is equal to 
32x16x16 = 8,192 bytes. The nature of the pooling 
operation allows the output to be stored in place of the 
input starting from address 0 of total_buffer.

Next p_buffer offset: 8,192

Free space in total_buffer: 32,768 - 8,192 = 24,576 
bytes

3. Convolution 2: the output of this layer is equal to 
32x16x16 = 8,192 bytes. The blue sector represents 
the previously stored 8,192 bytes resulting from the 
pooling operation and they are only needed in the 
current layer during the convolution operation. Thus, 
the output activations of this convolutional layer are 
stored from p_buffer offset 8,192.

Free space in total_buffer: 32,768 – 8,192 – 8,192 =
16,384 bytes

4. Pooling 2: the output of this layer is equal to 32x8x8 
= 2,048 bytes. As indicated in the previous step, the 
blue sector is no longer needed in this layer, so the 
output of the pooling operation can be stored starting 
from address 0 of total_buffer.

Next p_buffer offset: 2,048

Free space in total_buffer: 32,768 – 2,048 = 30,720
bytes

5. Convolution 3: the output of this layer is equal to 
64x8x8 = 4,096 bytes. The blue sector represents the 
previously stored 2,048 bytes resulting from the 
pooling operation and they are only needed in the 
current layer during the convolution operation. Thus, 
the output activations of this convolutional layer are 
stored from p_buffer offset 2,048.

Free space in total_buffer: 32,768 – 2,048 – 4,096 =
26,624 bytes

6. Pooling 3: the output of this layer is equal to 64x4x4 
= 1,024 bytes. As indicated in the previous step, the 
blue sector is no longer needed in this layer, so the 
output of the pooling operation can be stored starting 
from address 0 of p_buffer.

Next p_buffer offset (if additional layers exists): 1,024

free space in total_buffer: 32,768 – 2,048 = 30,720
bytes

As our work focuses only on reducing the required 
memory for the activations, the model parameters (weights 
and biases) in both cases (plain and enhanced CMSIS-NN) are
the same (their size is equal to the sum of the input shape 

column in TABLE II. , i.e., 89,440 bytes). On the other hand, 
the memory needed for the activation (feature maps) in the
original CMSIS-NN case is equal to the sum of the output 
shape column in TABLE II. without adding the rows resulting 
from the pooling layers as pooling operations are performed 
in-place (45,056 bytes). Overall results (TABLE III. ) show 
that our replacement strategy reduces the feature maps’ 
memory footprint by more than 27%. Considering the total 
NN model occupancy (i.e., parameters + activations) is 
reduced by slightly more than 9%.

Fig. 3. Buffer utilization to save output activations throughout the layers.

TABLE III. FEATURE MAPS’ MEMORY UTILIZATION COMPARISON

CMSIS-NN
(bytes)

Proposed Memory 
Replacement Strategy

(bytes)
Reduction

Activations 45,056 32,768 27.27%

Considering the timing performance, we measured the 
inference time using a NUCLEO-H743ZI2 board with an Arm 
Cortex-M7 core running at 216 MHz (max 480 Mhz) [18],
which is the processing speed used in the testing experiment 
on the CMSIS-NN kernels [13]. The results show that the 
runtime is not affected by this optimization and is stable at 
10.1 FPS. This is reasonable, as our solution relies on the 
efficient CMSIS-NN kernels, and the memory required for the 
activations is allocated before the execution starts, in both 
cases. Thus, our proposed memory replacement strategy does 
not affect the execution performance.

A. Experiment with deeper networks
In this section, we are interested in exploring the 

performance of our proposed optimization in the case of 
deeper architectures, with a higher number of filters. Deeper 
networks are capable of learning more abstract and powerful 
patterns of the input and are increasingly being employed.

We thus tested two other CNN architectures, such as the 
following ones:

The first architecture (Model 2) has four
convolutional layers each one followed by a 2x2
max-pooling layer, and a fully connected layer:

1- 32 3x3 kernels, stride = 1, padding = same
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2- 64 3x3 kernels, stride = 1, padding = same

3- 128 3x3 kernels, stride = 1, padding = same

4- 256 3x3 kernels, stride = 1, padding = same

Another deeper architecture (Model 3) has five
convolutional layers each one followed by a max-
pooling layer, and a fully connected layer:

1- 32 1x1 kernels, stride = 1, padding = same

2- 64 1x1 kernels, stride = 1, padding = same

3- 128 1x1 kernels, stride = 1, padding = same

4- 256 1x1 kernels, stride = 1, padding = same

5- 512 1x1 kernels, stride = 1, padding = same

The results using our memory optimization method are shown 
in the bar chart of Fig. 4, which also includes the first model 
in our case study (Model 1).

Fig. 4. Memory comparison bar chart.

Overall, the results show that using our approach 
significantly reduces the amount of memory needed to store
feature maps during computation. Moreover, we can observe
that as the architecture becomes deeper, the reduction 
percentage increases significantly: 46% and 48% for Model 2 
and Model 3, respectively, compared to the first model (27%).

VI. CONCLUSION AND FUTURE WORK

The ever-evolving field of embedded deep learning 
presents several challenges and opportunities. Using 
microcontrollers to run machine learning applications has 
proven to be a viable solution, but is limited by memory
constraints. To alleviate this issue, we have proposed a
memory replacement strategy that minimizes memory 
footprint during inference, while maintaining the same 
performance offered by the state of the art CMSIS-NN 
kernels. Our experiments show that we were able to achieve a
significant reduction in the required memory for feature maps 
compared to the CMSIS-NN implementation (27%,
corresponding to a 9% reduction of the total NN model size),

and the reduction is even higher for deeper networks. This is 
achieved at no expense in terms of accuracy nor timing 
performance.

As initial results are promising, our approach should be 
more extensively tested on other datasets and architectures. 
Moreover, as the analysis shows that also most of the pixels in 
the total buffer tend to stay idle, it would be interesting to 
verify a pipeline approach among different deep learning 
tasks.
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