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Abstract: Introduction: Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring
fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous
system involvement has recently been demonstrated, although actual lung involvement is considered
the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests
are not sensitive enough to be used for screening purposes, thus they should be flanked by other
clinical examinations; however, this would lead to a risk of overtesting, with considerable costs for
the health system and an unnecessary burden for the patients. To this extent, Machine Learning (ML)
algorithms could represent a useful add-on to the current clinical practice for diagnostic purposes
and could help retrieve the most useful exams to be carried out for diagnostic purposes. Method:
Here, we retrospectively collected high resolution computed tomography, pulmonary function
tests, esophageal pH impedance tests, esophageal manometry and reflux disease questionnaires
of 38 patients with SSc, applying, with R, different supervised ML algorithms, including lasso,
ridge, elastic net, classification and regression trees (CART) and random forest to estimate the most
important predictors for pulmonary involvement from such data. Results: In terms of performance,
the random forest algorithm outperformed the other classifiers, with an estimated root-mean-square
error (RMSE) of 0.810. However, this algorithm was seen to be computationally intensive, leaving
room for the usefulness of other classifiers when a shorter response time is needed. Conclusions:
Despite the notably small sample size, that could have prevented obtaining fully reliable data, the
powerful tools available for ML can be useful for predicting early lung involvement in SSc patients.
The use of predictors coming from spirometry and pH impedentiometry together might perform
optimally for predicting early lung involvement in SSc.

Keywords: artificial intelligence; esophageal dilatation; HRCT chest; machine learning; systemic sclerosis

1. Introduction

Systemic sclerosis (SSc) is a systemic immune-mediated disease, characterized by
fibrosis of skin and organs, featuring one of the greatest mortality ratios among rheumatic
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diseases [1]. Recent studies have demonstrated the involvement of peripheral and auto-
nomic nervous systems in SSc, in turn featuring white matter lesions in patients, even when
asymptomatic, so that the involvement of smaller branches and perforating arteries was
hypothesized [2]. However, lung involvement is deemed to be the leading cause of death
in SSc, overall. Indeed, as with the skin, lungs are also affected by fibrosis and interstitial
lung disease (ILD), with non-specific interstitial pneumonia (NSIP) on high resolution
computed tomography (HRCT) being the most common manifestation, without the need
to undergo lung biopsy in such cases [3]. As a whole, ILD—often recognized as being
the first cause of SSc-related death [4]—consists of a group of diseases that affects lung
interstitium, involving alveolar epithelium, pulmonary capillary endothelium, basement
membrane and perivascular and perilymphatic tissues. A complex interplay between
innate and adaptive immunity, endothelial dysfunction, small vessel abnormalities and
inflammation plays a fundamental role in the onset and maintenance of fibrosis. Within
this frame, the damage to the alveolar and vascular endothelial epithelial cells, and the
consequent profibrotic stimuli that induce the differentiation of pulmonary fibroblasts to
the myofibroblast phenotype, represents the trigger of the pathogenesis of SSc-ILD [5–8].

Notably, from the clinical point of view, one of the most important challenges in the
management of this pathology is represented by the risk stratifications of complications
and, ultimately, death; as a matter of fact, although no disease-modifying drugs have been
found in SSc, early screening and management of patients improves survival [3]. However,
elective tests for large-scale screening of SSc-ILD, represented by pulmonary function tests,
are not sensitive enough to be used for screening purposes [9], in turn raising a significant
problem in the definition of affordable and reliable screening methods for this specific
diagnostic question.

To this extent, technological advances can help the clinicians screening the most
functional diagnostic methods to be picked up, supporting diagnosis and, in some instances,
clinical decision.

In this framework, Artificial intelligence (AI) will probably play the starring role in
the future of medicine. Indeed, increasing growth in the interest towards AI is seen in (bio)-
medical research, driving valuable outputs in the framework of the “p4 medicine” [10].
Notably, Machine learning (ML) is one of the most exciting fields of research in AI and
computer science and it is increasingly used in medical research. The main characteristic of
ML is that the computer is given the ability to learn without being explicitly programmed
to do it. ML algorithms can use a large amount of data and extract meaningful results from
them. As such, ML can be used in several applications: for classifying patients, predicting
future outcomes and even individualize patients’ treatment [11–13].

Specifically, within the field of immune-mediated diseases and, more in depth, con-
sidering the SSc as the reference model, the application of AI for supporting the diagnosis
of SSc can confirm that the possibility exists for the early prediction of ILD, anticipating
functional signs shown by the spirometry and pH-impedentiometry. This would eventually
enlarge the indication of HRCT foreseen in the International guidelines [14,15].

Considering the existing literature in the field, ML was employed in identifying
SSc in electronic records. Notably, Jamian and colleagues [16], using rule-based and
ML techniques, applying classification and regression tree (CART) and random forest
(RF) for algorithm development, were able to identify SSc from a large Electronic Health
Record with an overall accuracy of up to 90%; however, it was lacking portability and
generalizability according to the authors. Skin biopsies were otherwise used by Franks
and colleagues [17] to classify patients with SSc depending on their intrinsic molecular
subsets. The task was performed using supervised classifiers and resulted in a successful
result in over 85% of cases in the case of the multinomial elastic net (GLMnet), displaying
the highest classification values of all, with the authors trying to cope at best with the
limitations derived from having a small sample size with a significant number of features
to be included in the model. However, as observed [18], the authors used multiple, small
and not always comparable datasets for the test set that, added to the likely overfitting
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issues normally experienced in the presence of small amounts of data (particularly on low
number of patients), would make the results not necessarily reliable and generalizable.

The association between biomarkers and phenotype of the disease using AI was inves-
tigated in some works published to date, displaying overall good outcomes, but leaving
room for further investigation, especially in terms of the amount of the biomarkers taken
into account. More specifically, Huang and colleagues [19] applied conditional random
forests (CRF) coupled with gene set enrichment analysis (GSEA) to identify variables from
flow cytometry, which were effective in classifying ILD patients and stochastic simulation
to train and validate ILD screening tools.

In light of the growing demand from the clinical world, and considering the current
diagnostic gaps experienced in the specific applications of the SSc, in the present research
we used ML to predict early lung involvement in SSc from both clinical and instrumental
data—for the first time using together both these categories—evaluating this promising
approach for early diagnosis in the framework of personalized medicine.

2. Methods
2.1. Patients

We retrospectively evaluated 38 patients at the Department of Internal Medicine,
University of Genoa, and at the Radiology Unit, IRCCS Policlinico San Martino, Genoa. All
patients signed written informed consent in compliance with the regulations of the host
institution and were treated in accordance with the Declaration of Helsinki.

We collected clinical data from esophageal evaluation (esophagogastroduodenoscopy,
esophageal pH impedance test, esophageal manometry and reflux disease questionnaire)
and pulmonary evaluation (pulmonary function tests) once for each patient. Of note, the
reflux disease questionnaire (RDQ) allowed the evaluation of reflux esophagitis, collect-
ing information about the frequency and severity of upper gastrointestinal symptoms
(heartburn, regurgitation and non-cardiogenic chest pain).

Radiological data concerning esophageal diameter and severity of lung involvement
were also collected on HRCT images. The widest esophageal diameter (dmax) and the
widest esophageal area (area max) were calculated by placing a freehand region of interest
(ROI) upon the esophageal contours on para-axial images perpendicular to esophageal
lumen where the widest esophageal sectional area was visually assessed. Esophageal
diameter and area measurements were also conducted at 30 mm (D3), 50 mm (D5) and
70 mm (D7) from lower esophageal sphincter (LES), corresponding to the points on which
the impedance pH test is conducted. LES position was conventionally set at the level of the
diaphragmatic plane.

Lung severity assessment was evaluated by a radiology resident blinded to the pul-
monary function tests. The Warrick score (WS), a semiquantitative score based on pul-
monary anomalies on HRCT [20], was used, and represented the (continuous) outcome
of the supervised ML techniques trained in the present work. WS is calculated on the
appearance of HRCT anomalies and their extent. Severity was scored from 0 to 5 for each
pulmonary segment, while extension was scored for every detected anomaly from 1 to 3
(1 representing 1–3 segments involved, 2 representing 4–9 segments involved and 3 repre-
senting more than 9 segments involved). The total extension was calculated as the sum
of the extension of every single anomaly. The final WS was calculated as the sum of the
severity score and the extension score (from 0 to 30).

Pulmonary involvement was defined upon the presence of signs of interstitial lung
disease on HRCT with 6 out of 24 patients having interstitial lung disease on HRCT.

The overall dataset employed, with means and standard deviations (SDs), ranges and
distribution type of the 23 variables, including the outcome, is shown in Table 1.
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Table 1. Dataset variables characteristics (DLCO: diffusing capacity for carbon monoxide; FEV1: forced expiratory volume
in the 1st second; FVC: forced vital capacity; GERD: gastro-esophageal reflux disease; LES: lower esophageal sphincter;
MNBI3: mean nocturnal basal impedance at 3 cm; MNBI5: mean nocturnal basal impedance at 5 cm; MNBI7: mean
nocturnal basal impedance at 7 cm; RDQ: reflux disease questionnaire; TLC: total lung capacity).

Feature (u.m.) Type Mean ± SD Range (Min-Max) Normal Distribution

Gender Dichotomous N/A N/A N/A

Age (years) Continuous 63.5 ± 11.7 35–89 Yes

pH < 4 tot (%) Continuous 7.5 ± 10.0 0–38.9 No

pH < 4 rec (%) Continuous 8.8 ± 16.2 0–72.1 No

MNBI3 (Ω) Continuous 1166.7 ± 974.9 135.6–4345.9 No

MNBI5 (Ω) Continuous 1337.1 ± 1180.6 133–4490.3 No

MNBI7 (Ω) Continuous 1385.5 ± 1239.3 114.6–4507.7 No

LES (mmHg) Continuous 15.4 ± 11.6 −3–+55 No

FVC (%) Continuous 104.3 ± 30.3 0–158 Yes

FEV1 (%) Continuous 96.7 ± 27.0 0–140 No

TLC (%) Continuous 87.2 ± 29.3 0–151 No

DLCO (%) Continuous 69.2 ± 23.1 0–134 Yes

d3 (mm) Continuous 8.1 ± 8.3 0–30 No

d5 (mm) Continuous 6.8 ± 7.5 0–25 No

d7 (mm) Continuous 8.3 ± 8.4 1–30 No

Max area (mm2) Continuous 122.2 ± 127.1 1.3–625 No

Max diameter (mm) Continuous 14.5 ± 6.9 1–34 Yes

RDQ frequency (score) Continuous 8.8 ± 8.2 0–30 No

RDQ severity (score) Continuous 11.1 ± 9.3 0–28 No

Eckhard score (score) Ordinal 0.97 ± 0.97 0–3 No

Esophagitis (Y/N) Dichotomous N/A N/A N/A

GERD (Y/N) Dichotomous N/A N/A N/A

Warrick score (score) Continuous 9.3 ± 7.7 0–27 No

2.2. Machine Learning

As briefly mentioned above, the Machine Learning part was aimed at identifying how
the clinical variables were predictive of the clinical outcome, calculated as the WS defined
in the previous paragraph, and suggestive of the severity of the clinical condition.

To setup the ML approach, we programmed the R language and used the open source
RStudio (Boston, MA, USA), version 1.3.1093 for Windows, available with the GNU Affero
General Public License.

The dataset employed for ML was complete, without occurrence of not-a-number
(NaN) items, therefore not requiring any kind of mitigation measure for missing values.
Prior to the ML training phase, we identified the dataset outliers, defined as the values
outside the physiological ranges for each variable. After outlier removal, resulting missing
data were imputed using the multiple imputation by chained equation (MICE) method.
As highlighted by Table 1, the vast majority of the variables considered had a non-normal
distribution; therefore, and in order to avoid feature selection biases, a data normalization
step for all non-normal variables was performed.

Given the relatively low number of subjects involved in the study, and in order to
comply with the basic “rule of thumb” [21,22] applied to ML problems, foreseeing at
least 10 observations for each variable of the dataset, we decided to add some further
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observations stemming from the original ones and added random noise to them, a proce-
dure demonstrated to be particularly useful in the presence of small samples [23]. This
procedure, applied limitedly to the training set, was performed using the MATLAB (The
MathWorks, Inc., Natick, MA, USA)-based function randn.

With the restructured dataset, we drafted and trained five different ML models, all of
them supervised, which are briefly reported below. All the models were implemented using
the R-based caret package [24], a powerful package able to manage different ML models
using the same basic options, therefore allowing for a fair comparison between them. The
choice for these specific models was performed since the dataset was complete of both
predictors (22 variables) and clinical outcome (the WS), therefore requiring a “supervised”
approach to ML; in addition, among supervised models, we selected some of the simplest,
less computationally burdensome, and widely used algorithms that can be implemented
using the caret package in order to provide a reliable comparison between the different
models using the same training strategy, the same seed for splitting data into a training
and test set and the same conditions for training the net.

Prior to the model training, the dataset, composed of 23 variables, including the
outcome, and 228 observations, was randomly divided into a fully independent training
and test set, with a percentage of 90 and 10% of data, respectively. A 10-fold cross vali-
dation was employed in order to obtain robust data with respect to eventual overfitting
phenomena (Figure 1).
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The models were compared in terms of regression capability according to the root
mean square error (RMSE) and to the R-squared, calculated over the test set (and also
verified over the training set to evaluate the good quality of training algorithms) with
respect to the outcome, and for each ML algorithm, the best model selected was not the
one with the lowest RMSE or R-squared, but the simplest acceptable one, represented by
the simplest model within one standard error from the lowest RMSE. This choice was
performed under two main principles: (i) in order to cope with the trade-off between
simplicity and accuracy of the model, and (ii) to further avoid overfitting issues that could
eventually decrease the generalizability of the model.

2.2.1. LASSO

The least absolute shrinkage and selection operator, mostly known as LASSO, rep-
resents a regression analysis method, often used in the ML framework, performing both
variable selection and regularization aimed at enhancing the prediction accuracy and
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interpretability of the resulting model. Introduced in the ML universe by Tibshirani [25], it
becomes particularly useful in the presence of datasets with several variables hypothesized
as not being useful for the prediction.

2.2.2. RIDGE

Ridge regression is a widely used technique for analyzing multiple regression data
severely affected by multicollinearity problems [26]. If multicollinearity occurs, least
squares estimates are completely unbiased, although their variances are large, making
them far from their true value. By adding a degree of bias to the regression estimates, ridge
regression is able to reduce the standard errors. Conversely to LASSO, with whom it shares
several common features, RIDGE regression shrinks all the coefficients to a non-zero value.

2.2.3. Elastic Net

Merging characteristics of both LASSO and RIDGE methods, the elastic net seeks to
put together the advantages of both techniques making a blend of them [27]. Its main
regularization parameter, named α, can be continuously varied between 0 and 1, with the
lower limit making the model equal to RIDGE and the upper one to LASSO. A 0.5 value
indicates a 50/50 blend between the two regression models.

2.2.4. CART

Classification and regression trees (CART) are useful and commonly used ML models,
based on the deconstruction of the overall sample into smaller groups, performed through
repeated, binary splits of the patient sample, considering one exploratory variable at a
time [28].

Their advantages are manifold, including the ease of adaptation to different data,
including cross sectional, longitudinal, survival data, the possibility to use different types
of response variables, and the fact they do not need to make any assumptions in terms of
the normality of the data distribution. The main limitations of CART models include their
sensitivity to data changes and their somewhat limited interpretability.

2.2.5. Random Forest

Random forest (RF) are learning methods particularly useful for classification and
regression, operating by building up a series (forest) of decision trees at the training and
outputting the class that is the mode of the classes, for classification, or the mean prediction,
for regression, of the individual trees [29].

With respect to the classical decision trees, RF represent an improvement in terms
of overfitting issues for the training set. They carry on several advantages, including the
performance of implicit on-the-run feature selection, the provision of accurate indicators of
feature importance, the absence of need for particular data preparation prior to the applica-
tion of the ML model, the opportunity for them to handle binary, categorical, numerical
features without any need for scaling, normalization or standardization. They are also
relatively quick to train and versatile, although their interpretability is often cumbersome.

3. Results
Prediction Accuracy

The five ML methods mentioned above were compared in terms of prediction accuracy,
using the RMSE as the main evaluation metrics.

The results obtained are displayed in Table 2.
As displayed, the random forest, which is trained by the R-based caret package relying

on 500 trees, has the best performances, outperforming the other classifiers, three of
which (LASSO, RIDGE and elastic net) display very similar error values performing the
regression task.
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Table 2. Classifiers comparison in terms of RMSE with respect to the test set, for the selected model, deviating 1SE from the
minimum error.

Classifier Hyper-
Parameter(s)

Hyper-Parameter(s)
Value(s) Range

Hyper-Parameter(s)
Optimal Value(s) RMSE R-Squared

Test Set Training Set Test Set Training Set

LASSO fraction 0–1 0.718 4.091 4.074 4.102 4.095

RIDGE lambda 0–1 0.012 4.090 4.013 4.111 4.042

Elastic net fraction,
lambda 0–1 0.765 (fraction), 0

(lambda) 4.074 4.033 4.121 4.123

CART cp 0–1 0.004 2.169 2.264 7.810 7.533

Random forest mtry 1–22 7 0.810 0.425 0.619 0.485

However, the models were also evaluated depending on other parameters, including
the time elapsed for the full training of the regressor, the memory used, and the num-
ber of variables included within the model (out of the 22 variables available within the
dataset inputs).

Table 3 displays this information.

Table 3. Classifiers comparison in terms of time elapsed, memory used, number of variables included
in the optimal model.

Classifier Time Elapsed (s) Memory Used (MB) Number of Variables

LASSO 34.09 0.303 20

RIDGE 655.06 11.5 2

Elastic net 108.14 11.6 20

CART 143.92 1.49 9

Random forest 1422.39 5.99 7

The random forest model when trained achieved the best performances using a
relatively low number of variables (n = 7), making it useful also as a predictive tool for
the clinician.

A plot of the related RMSE, based on the number of variables included in the model,
is displayed in Figure 2.
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According to the results obtained, the optimal number of predictors for minimizing the
regression error is between 7 and 16, with a minimum of the RMSE reached for 11 variables.
However, the choice to use the value of 7 for the optimal model aims at managing the
trade-off between model complexity and prediction accuracy, without particular risks
concerning overfitting and, therefore, poor generalizability to new datasets.

For the knowledge and use of the clinician, the 7 parameters estimated to have the
greater classification importance among the 22 inputs of the current dataset include (in
order of importance): (i) total lung capacity (TLC); (ii) mean nocturnal basal impedance at
3 cm (MNBI3); (iii) diffusing capacity for carbon monoxide (DLCO); (iv) forced expiratory
volume in the first second (FEV1); (v) forced vital capacity (FVC); (vi) mean nocturnal basal
impedance at 5 cm (MNBI5); (vii) mean nocturnal basal impedance at 7 cm (MNBI7).

As mentioned above, the caret package used for training allows building up the
random forest based on 500 trees, but the result obtained suggests an overall stabilization
of the RMSE already at around 150 trees, suggesting that even simpler models, with
respect to the one used for the present investigation, would enable a similarly precise
regression given the inputs of the present dataset. Therefore, although the employment of
the caret package was aimed at comparing the different classifiers, other R-based packages,
allowing the use of simpler classifiers, can be applied in case of computational constraints
eventually occurring.

4. Discussion

ILD is the leading cause of death in patients with SSc. Lung fibrosis is present in
80% of patients with SSc; among them, 25–30% develops a progressive ILD. ILD generally
presents during the first 4–6 years after the onset of scleroderma [3]. Since ILD is a life
threatening and early complication and a new therapeutic approach can be used [30], early
screening tests are needed. Generally, a baseline HRCT is used to detect ILD in newly
diagnosed SSc. The most frequent HRCT pattern of lung involvement in SSc is NSIP, with
bilateral ground glass opacities as a dominant feature, along with fibrotic reticular changes
and traction bronchiectasis; less frequently, a usual interstitial pneumonia (UIP) pattern is
observed [31–33]. Some authors also questioned if interstitial lung abnormalities (ILAs),
subclinical abnormalities detectable on HRCT, may help to diagnose ILD in an earlier phase.
ILAs have been studied in rheumatoid arthritis [34]. One study in early SSc-associated
ILD demonstrated ground glass opacities that later progressed to an NSIP pattern [35].
Although HRCT is an essential tool for the diagnosis of ILD, it exposes patients to radiation;
a too close follow-up in asymptomatic patients can expose them to a high radiation risk,
notably for younger patients. Low-dose computed tomography (CT) may be used for this
purpose but should be validated in large cohorts. A crucial point is that patients with early
ILD may have normal lung volumes, even those who show radiological abnormalities on
HRCT. Two studies found that over 60% of patients with SSc and ILD who were diagnosed
using HRCT had normal spirometry [36,37]. Therefore, pulmonary function tests cannot
be used as a screening test for asymptomatic patients [38]. Since pulmonary function tests
(PFT) are not sensitive enough in early SSc to be chosen as a screening procedure and
HRCT exposes patients to radiation risk, a sensitive and risk-free procedure is needed
to diagnose early ILD in SSc patients, so that prognostic evaluation can be made and
appropriate therapies can be started in high-risk patients; ML may be the optimal solution
in the future. To this extent, in order to prove its usefulness in this specific clinical domain,
we used ML to predict early lung involvement in asymptomatic SSc patients. Some other
works already applied this approach to the clinical question, with positive outcomes
suggesting the possibility to enhance the application of such methodology in the specific
field of SSc diagnosis. Clinical data were used by Jamian and colleagues [16], who were
able to detect the presence of SSc in a large dataset derived from an electronic health
record. On the other hand, biochemical markers, including skin biopsies, were employed
in other works (e.g., [17]), further demonstrating AI usefulness in SSc diagnosis, but at the
same time leaving room for some improvement in terms of the type of data collected and
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merged to train ML algorithms. Similar to our approach, a recent work found DLCO as an
independent predictor for ILD, checked by lung ultrasound, at one year, even if their work
was limited to building a multivariate regression model rather than trying different ML
algorithms, which were, however, the scope of the present investigation [39].

With respect to the majority of published works, our data were extracted by a sin-
gle dataset, thus avoiding possible “batch effects” due to different data sources for the
training and test set. Obviously, as SSc is a rare disease, whose incidence accounted for
7.2–33.9 cases per 100,000 individuals in Europe [40], it is rather difficult to obtain larger
datasets from a single center. On the other hand, the recruitment of patients from different
clinical institutions would represent an additional bias similar to what has been stated
above, therefore being undesirable at this stage. Therefore, we had to manage the trade-off
between possible biases and the availability of a smaller dataset, which would have car-
ried out further issues including likely overfitting and, lastly, low generalizability, which
remained as the main limitations of our approach. Furthermore, clinical and instrumental
data were employed here to this extent for the first time. Notably, to our results, total
lung capacity was estimated to be the best element to predict lung involvement, especially
when other spirometry parameters are also studied, including the FEV1 and FVC, as well
as the diffusing capacity for carbon monoxide, the latter found to be predictive also by
Pitsidianakis and colleagues [39]. As such, useful information can also be extracted from
impedance pH monitoring, notably for the estimation of MNBI3, MNBI5 and MNBI7. Such
results would enable the clinician to pick the exams with the highest predictive values,
excluding ones with worse characteristics, saving time and money and reducing the burden
or annoyance brought to the patient.

In terms of ML, the application of supervised algorithms was methodologically needed
due to the presence of a known output driving the algorithm to learn the possible input-
output associations. Overall, one of the main limitations of our study is represented by
the small number of patients included in the dataset. Indeed, despite having applied
a resampling method with random observations added to the dataset, it is essential to
report that ML algorithms are more efficient when a high number of data are available for
training and testing. Future works should then make profitable use of larger datasets for
this purpose.

From the model’s point of view, taking into account their pros and cons, random
forest was seen to ensure good performances in terms of prediction error, performing
the regression task on a relatively low number of variables, making the overall model
simple enough to be used by the clinician. However, its higher computational burden
with respect to the other models make it poorly usable in cases where fast response times
are requested, or where computational load might represent a significant constraint. In
this regard, once established that the model owns optimal properties in terms of correct
classification (or regression) with respect to other methods, the usage of R-based packages
and libraries other than caret, including the tidymodels library, would allow the data scientist
to reduce the complexity of the classifier, in turn saving time and computational resources
in constrained use cases.

5. Conclusions

The present work was carried out investigating a small cohort of subjects with SSc and
attempted to predict early lung involvement according to clinical and instrumental tools via
the application of ML models. According to the results obtained, ML models can be used
for predicting early lung involvement in SSc patients. Thanks to this approach, we found
that spirometry parameters could predict ILD in our cohort. This was even more accurate if
used along with impedance pH monitoring. Risk-free and sensitive screening methods are
needed for early detection of lung involvement in SSc patients and ML could be the answer
to this question in the future: indeed, ML could help to diagnose interstitial lung disease in
SSc patients in early stages and could be a useful tool to identify the patients who may need
early therapy, improving their quality of life and reducing hospitalizations or unnecessary
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exams, with a consequence of saving money for the national health systems and burden
reduction for the patients. In addition, future studies can be performed applying ML
to classify SSc with respect to other autoimmune disorders or medical conditions with
somewhat similar clinical characteristics.
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