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We consider the Dirac equation written in polar form, without any external potential but equipped
with a non-zero tensorial connection, and we find a new type of solution that is localized around
the origin with a decreasing exponential behaviour in the radial coordinate.

I. INTRODUCTION

One of the most important problems in mathematical
physics is to study the properies of the Dirac spinor field
equations by assigning a specific potential and finding its
exact solutions, according to various methods [1–13].

Whereas the presence of specific forms of external po-
tentials provides properties of the matter distributions in
those potentials, studying the non-interacting case would
allow to deduce properties about the matter distributions
themselves in the cleanest way. Nontheless, it is generally
believed that in the free case we can only get solutions
such as plane waves, or similarly non-integrable solutions.

Such a belief is based on the argument that the lack of
external potentials is equivalent to the total lack of force
that can keep the matter distribution localized. Nonethe-
less, non-interacting does not necessarily mean to be fully
free. In fact, the above argument fails to contemplate the
situation for which some matter distributions might have
some form of internal tensions that can keep them local-
ized even when no source of any type is to be around.

Mathematically, this can be seen in the fact that Dirac
spinor field equations are defined in terms of frames, that
is objects that form the soldering between diffeomorphic
and Lorentz structures. As it is known, spinors are more
sensitive to the structure of space-time than real tensors
[14] while frames can contain more information than the
metric, it follows that the interplay between spinors and
frames can provide additional information than we would
normally think. By translating everything in polar form,
the form in which spinor components are written as mod-
ules times phases while respecting covariance, frames are
translated in objects called tensorial connections, and in
terms of which the above consideration is clearer. In fact,
the tensorial connections can be seen as the potential of
the Riemann curvature while being a real tensor, and as a
zero Riemann curvature can still be obtained in terms of
non-zero tensorial connection, such tensorial connection
describes a space-time structure where no external force
is present but which nevertheless is not free. In this case,
solutions can be found displaying the character of radial
localization, as we are going to discuss in this work.

∗fabbri@dime.unige.it

II. SPINOR FIELDS IN POLAR FORM

We will use units c=~=1 thoughout the paper.
All along, Clifford matrices are given by γa such that

{γa,γb}=2ηabI with ηab being the Minkowski matrix and
[γa,γb]=4σab will define the infinitesimal generators of a
complex Lorentz algebra (in this paper, we specify onto
the spin-1/2 representation) while 2iσab=εabcdπσ

cd de-
fines the π matrix (this matrix is usually denoted as a
gamma matrix with an index five, but since in space-time
this index has no meaning, and sometimes it may also be
misleading, we use a notation with no index). Tetrads eaν
and metric gµν will describe the metric of the space-time.

With gamma matrices, and the pair of adjoint spinors
ψ and ψ, we construct the bi-linear spinor quantities

Sa=ψγaπψ (1)

Ua=ψγaψ (2)

Θ= iψπψ (3)

Φ=ψψ (4)

which are all real tensors [15]. If Θ and Φ are not at the
same time equal to zero identically, we can always write
the spinor field, in chiral representation, in the form

ψ=φe−
i

2
βπS




1
0
1
0


 (5)

for some complex Lorentz transformation S with φ and
β called module and Yvon-Takabayashi angle, and where
we can appreciate the polar form of each component and
the manifest general Lorentz covariance [16–19]. By con-
sidering the polar form of the spinor field, we have that

Sa=2φ2sa (6)

Ua=2φ2ua (7)

Θ=2φ2 sinβ (8)

Φ=2φ2 cosβ (9)

restricted by uau
a=−sasa=1 and uas

a=0 and showing
that module and Yvon-Takabayashi angle are one scalar
and one pseudo-scalar and the only degrees of freedom of
the spinor field. In fact, the advantage of writing spinors
in polar form is that the 8 real components are rearranged
into that special configuration in which the 2 real scalar
degrees of freedom (φ and β) remain isolated from the 6
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real components (the spatial parts of ua and sa) that can
always be transfered into the frame. This also gives the
interpretation of these mathematical objects, since the 3
spatial parts of ua can always be vanished by means of 3
boosts and therefore ua is the velocity vector. Similarly,
the 3 spatial parts of sa can always be vanished by means
of 3 rotations and so sa is the spin axial-vector (another
way to prove this is to see that sa is proportional to the
Hodge dual of the completely antisymmetric spin of the
spinor field [18, 19]). Borrowing for the case of the plane
waves, or in non-relativistic approximations, one can see
that the module φ represents the overall distributions of
the matter field. The Yvon-Takabayashi angle β is simply
the phase difference of the two chiral parts, and as such it
represents some form of internal dynamics (alternativey
one can see that β is a degree of freedom about internal
dynamics because if non-zero it forbids a non-relativistic
limit even in the frame at rest of the spinor field [19]).

Writing the covariant derivative of the spinor in polar
form, we can prove that it is always possible to write

∇µψ=(− i
2∇µβπ+∇µ lnφI−iPµI− 1

2Rijµσ
ij)ψ (10)

in terms of a vector Pµ and a tensor Rijµ called tensorial

connection because it encodes all information about both
gravity and effects related to non-inertial frames [20].

It is also possible to have the Riemann curvature tensor
written in terms of the tensorial connection according to

Ri
jµν =−(∇µR

i
jν−∇νR

i
jµ+R

i
kµR

k
jν−Ri

kνR
k
jµ) (11)

with the tensorial connection encoding information about
gravity and frames but with the curvature containing in-
formation about gravity alone. If we could find non-zero
solutions of equations (11) after setting the Riemann cur-
vature to zero, they would represent tensorial connections
encoding information related to frames solely [20]. An ex-
ample in spherical coordinates is given according to the

Rrϕϕ=−r(sin θ)2 (12)

Rθϕϕ=−r2 cos θ sin θ (13)

with

Rrtt=−2ε sinhα sin ρ (14)

Rϕrt=2εr sin θ coshα sin ρ (15)

Rθtt=2εr sinhα cos ρ (16)

Rϕθt=−2εr2 sin θ coshα cos ρ (17)

and

r sin θ∂θα=Rtϕθ (18)

r sin θ∂rα=Rtϕr (19)

−r(1+∂θρ)=Rrθθ (20)

r∂rρ=Rθrr (21)

in terms of two functions α=α(r, θ) and ρ= ρ(r, θ) still
not specified while the constant ε has the meaning of an
energy describing some tension of the vacuum [21].

For the dynamics, we take the spinor field subject to

iγµ
∇µψ−mψ=0 (22)

called Dirac equation [22]. In polar form it is given by

Bµ−2P ιu[ιsµ]+∇µβ+2sµm cosβ=0 (23)

Rµ−2P ρuνsαεµρνα+2sµm sinβ+∇µ lnφ
2=0 (24)

with R a
µa =Rµ and 1

2εµανιR
ανι=Bµ [23, 24]. We notice

that (22) are 8 real equations and thus as many as the 2
vector equations (23, 24), which specify all the space-time
derivatives for both Yvon-Takabayashi angle and module
of spinors [23]. Field equations (23, 24) become

r∂rβ+∂θα−
−[2(ε+ E)r coshα−2L sinhα

sin θ
−2mr cosβ] cos ρ=0 (25)

∂θβ − r∂rα−
−[2(ε+ E)r coshα−2L sinhα

sin θ
−2mr cosβ] sin ρ=0 (26)

r∂r ln (φ
2r2 sin θ)+2mr sinβ cos ρ+∂θρ−

−[2(ε+ E)r sinhα−2L coshα
sin θ

] sin ρ=0 (27)

∂θ ln (φ
2r2 sin θ)+2mr sinβ sin ρ−r∂rρ+

+[2(ε+ E)r sinhα−2L coshα
sin θ

] cos ρ=0 (28)

if in parallel to (12-21) we also take

et0=coshα et2=− sinhα (29)

er1=sin ρ er3=− cosρ (30)

eθ1=− 1
r
cos ρ eθ3=− 1

r
sin ρ (31)

eϕ0 =− 1
r sin θ

sinhα eϕ2 =
1

r sin θ
coshα (32)

and

sr=cosρ sθ=r sin ρ (33)

ut=coshα uϕ=r sin θ sinhα (34)

as well as

Pt=E Pϕ=L (35)

in which E and L are constants. In quantum field theory
they are associated to the energy and angular momentum
of the particle, and so they are E=m and L=±1/2 for
particles of rest mass m and spin 1/2 as considered here.

III. NEW TRIAL SOLUTIONS

When dealing with a field equation, one thing to do is
to look for exact solutions. Because this task is generally
quite difficult, one normally picks exact solutions of some
specific form, such as for instance plane waves, so to ease
the search. Because we have recalled how to re-write the
Dirac equations in polar form, our next task would be to
show what is the advantage of having the polar form in
choosing a special type of exact solution. We will see in
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fact that, in polar form, it is much easier to guess a trial
solution, more general than the ones we know so far.

In this last form (25-28), the Dirac field equations seem
to be quite simple but also general enough to account for
exact solutions of specific cases given by the integrable
potentials known in physics, that is the Coulomb poten-
tial and the elastic potential. Nonetheless, these solutions
can do much more, since they share a common structure,
as it can be made manifest by comparing side to side the
solution for the hydrogen atom [20] against the solution
of the harmonic oscillator [24]. Their common form has

sin ρ=
X sin θ√

X2 + (cos θ)2
(36)

cos ρ=−
√
X2 + 1 cos θ√
X2 + (cos θ)2

(37)

sinhα=− sin θ√
X2 + (cos θ)2

(38)

coshα=

√
X2 + 1√

X2 + (cos θ)2
(39)

as well as

sinβ=− cos θ√
X2 + (cos θ)2

(40)

cosβ=
X√

X2 + (cos θ)2
(41)

in terms of X=X(r, θ) in general: case X=
√
1− q4/q2

gives the hydrogen atom [20] while X=(a2−r2)(2ar)−1

is the harmonic oscillator [24]. However, in general X is
a not yet specified function, the only one that has to be
found as solution of the field equations. The substitution
of β, α and ρ into (25-28) gives

r∂rζ+(tan θ tanh ζ∂θζ − 1) +

+2(ε+ E)r cosh ζ + 2L−2mr sinh ζ=0 (42)

r∂rζ−(cot θ coth ζ∂θζ + 1) +

+2(ε+ E)r cosh ζ + 2L−2mr sinh ζ=0 (43)

[(sinh ζ)2+(cos θ)2]r∂rν+2mr(cos θ)2 cosh ζ −
−(∂θζ cos θ sin θ + sinh ζ cosh ζ) +

+[2(ε+ E)r sin θ+2L cosh ζ
sin θ

] sinh ζ sin θ=0 (44)

[(sinh ζ)2+(cos θ)2]∂θν−2mr sinh ζ cos θ sin θ +

+cos θ sin θr∂rζ +

+[2(ε+ E)r sin θ+2L cosh ζ
sin θ

] cosh ζ cos θ=0 (45)

with X=sinh ζ as well as ln (φ2r2 sin θ)=ν for simplicity.
Solutions will be taken as square-integrable, that is

I=

∫∫∫

Ω

φ2dΩ=2π

∫ ∞

0

∫ π

0

φ2r2 sin θdθdr (46)

must be finite, or in other words convergent.

For the integration, it is easy to see that after combin-
ing (42) and (43) one gets

ζ=ζ(r) (47)

such that

ζ′+2(ε+E) coshζ+(2L−1)/r−2m sinhζ=0 (48)

and plugging them into (44) and (45) we get

ν=ln

[√
(sinh ζ)2+(cos θ)2

(sin θ)2L

]
+V (r) (49)

such that

V ′=−2m cosh ζ+2(ε+E) sinh ζ (50)

whose solution would give the module. The equations to
solve are therefore

Z ′+(ε+E−m)Z2+(2L−1)Z/r+(ε+E+m)=0 (51)

V ′=(ε+E−m)Z−(ε+E+m)/Z (52)

where we have set ζ=lnZ for simplicity.
As is clear, the trial solution permitted the integration

of the angular dependence. At this stage one can already
see that to have the convergence of φ2 as defined in (5)
a necessary condition is to have L< 1/2 strictly. To see
this just plug the expression for φ2 in the volume integral
(46) and see that because of (49) we have

I=2π

∫ ∞

0

∫ π

0

√
(sinh ζ)2+(cos θ)2

(sin θ)2L
eV dθdr (53)

where ζ and V are both function of r alone and they are
still undetermined. However, because (cos θ)261 then

I62π

∫ π

0

dθ

(sin θ)2L

∫ ∞

0

cosh ζ eV dr (54)

where the integration in r is still unknown but the inte-
gration in θ can be evaluated. In this case, to have any
hope of convergence, the sin θ function must be brought
at the numerator, and this can only be possible for L60
in general. Because, as we already said, L is the angular
momentum of the Dirac particle with L=±1/2 being its
only possible values, it follows that L=−1/2 is the only
value compatible with our assumptions. In addition, as
we have stated above, E=m will be chosen. As working
hypothesis, we begin by studying the case ε=−|ε| repre-
senting negative tensions, and thus attractive situations.

In this case, which we label with ex for the reason that
will become clearer later, (51) is a Riccati equation [25]
that after the Cole-Hopf transformation [26] like

Zex=− z′ex
zex|ε|

(55)

results into

z′′ex−2z′ex/r−zex|ε|(2m−|ε|)=0 (56)

3

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
58

78
7



so that fixing |ε| < 2m and so |ε|(2m−|ε|)=H2 and then
calling rH=R we get

zex=Ke
−R(R+1) (57)

as the only convergent solution. Therefore

Zex=R(R+1)−1
√
2m/|ε|−1 (58)

so that Zex>0 as it is supposed to be and

Xex=
2R2(m−|ε|)−|ε|(2R+1)

2HR(R+1)
(59)

for the unknown function. Thus

βex=− arctan (cos θ/Xex) (60)

φ2ex=Γ2 (1 +R)R−3e−2R
√
X2

ex+(cos θ)2 (61)

where Γ is a generic integration constant. Clearly, a large
value ofR gives a behaviour for which the volume integral
of φ2ex converges toward infinity. However, there clearly
is a divergence for R→0 rendering the volume integral of
φ2ex divergent in the origin. This means that this solution
should be seen as an external solution. And this is why
this solution has been indicated with the label ex above.

This choice however is not the only possibility, and it
is possible to consider the alternative trial solution which
is obtained by considering (36-39) unchanged but with

sinβ=
cos θ√

X2 + (cos θ)2
(62)

cosβ=− X√
X2 + (cos θ)2

(63)

as a new type of Yvon-Takabayashi angle. Now the Dirac
equation gives the same (47, 49) as above but also

Z ′+(ε+E+m)Z2+(2L−1)Z/r+(ε+E−m)=0 (64)

V ′=(ε+E+m)Z−(ε+E−m)/Z (65)

where we have defined Z again as we have done above.
Such a trial solution also permits the integration of the

angular dependence. And again as above we will specify
to the L=−1/2 case. And similarly, E=m will also be
chosen. For this second solution however, we set ε=0 as
constraint specifying the total lack of space-tme tension.

In this case, labelled in because, complementary to the
above, this is the internal solution, (64) is a Riccati equa-
tion that after the new Cole-Hopf transformation that is
now given by

Zin=
z′in

2mzin
(66)

it results into

z′′in−2z′in/r=0 (67)

which admits the solution

zin=Kr
3 (68)

as the only solution regular at the origin. Then

Zin=3/R̃ (69)

having written 2mr= R̃ for simplicity and

Xin=
9−R̃2

6R̃
(70)

for the unknown. Therefore

βin=− arctan (cos θ/Xin) (71)

φ2in=Q
2R̃

√
X2

in+(cos θ)2 (72)

where Q is a generic integration constant. Now, for small

values of R̃ the volume integral of φ2in converges close to
the origin. Conversely, the volume integral of φ2in fails to
converge at infinity. This means that this solution must
be seen as an internal, as indicated. These two solutions
have two complementary behaviours whether they are at
infinity or close to the origin of the coordinate system.

The explicit expression of the physical observables is

βin=− arctan

(
12mr cos θ

9−4m2r2

)
(73)

φ2in=
1

6
Q2

√
(9−4m2r2)2+(12mr cos θ)2 (74)

for the internal solution, and that is the solution defined
in any ball centred in the origin, and

4
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βex=− arctan




2r(2m−|ε|)
(
r
√
|ε|(2m−|ε|)+1

)
cos θ

2r2(2m−|ε|)(m−|ε|)−2r
√
|ε|(2m−|ε|)−1


 (75)

φ2ex=Γ2e−2r
√

|ε|(2m−|ε|)



 1 + r
√
|ε|(2m−|ε|)

2r4
√
|ε|3(2m−|ε|)5

(
r
√
|ε|(2m−|ε|)+1

)



 ·

·
√

[2r2(2m−|ε|)(m−|ε|)−2r
√
|ε|(2m−|ε|)−1]2+

[
2r(2m−|ε|)

(
r
√

|ε|(2m−|ε|)+1
)
cos θ

]2
(76)

for the external solution, and that is the solution defined
in all the space external to any ball centred in the origin.

These two exact solutions are related to the two possi-
ble different values of the tension |ε| according to whether
it is zero or not. The non-zero value, giving the behaviour
at infinity, can be justified by generality. The null value,
giving the behaviour at the origin, can instead be justified
with more difficulty since we might always wonder why of
all possible values the very peculiar |ε|=0 should in fact
be selected. The answer lies in physical considerations.

If we allowed only the exterior solution, near the origin
it would make all volume integrals diverge, including the
spin and energy density of the field. Thus near the origin
we would no longer be able to maintain the approxima-
tion of vanishing torsion and curvature, and therefore the
problem would become that of finding the solution of an
interacting theory. Alas, this problem is very difficult to
solve, but we do not always need to find exact solutions
in order to know properties of the matter distribution. In
fact, as it has been discussed in [27], a spinor field in its
own torsion-gravity behaves in such a way that at small
scales the spin-torsion interaction provides the dominant
negative potential that reverts the sign of the curvature
around a particle hence averting gravitational singularity
formation. In such case, the space-time would behave as
if it had no effect, and the value |ε|=0 becomes clear.

IV. JUNCTION CONDITIONS

While the two solutions found above correspond to two
different values of the tension of the tensorial connection,
it is nevertheless possible to have them combined into the
single solution obtained whenever φin=φex and βin=βex
in a given boundary r=b then providing the conditions

2b2(2m−|ε|)(m−|ε|)−2Hb−1

(2m−|ε|)(Hb+1)
=

9−4m2b2

6m
(77)

2H3b4me2Hb(1+Hb)−1=Γ2/Q2 (78)

where b is the radius of the boundary where internal and
external solutions are defined. Clearly, the second condi-
tion fixes the ratio of the two integration constants, while
the first condition is a constraint between the parameters.

It is important to notice that (77) is just the expression
of the condition Xin =Xex and it implies that α and ρ
and therefore frames and co-frames are also continuous.

We remark that since the Dirac equation is relativistic,
and thus of the first order derivative, it requires continu-
ity of the solution, but not of its derivatives. However, a
look at equations (51, 52) or (64, 65) makes it clear that
continuity of X implies also the continuity of X ′ and V ′

and therefore the continuity of the derivatives of the so-
lutions. This boot-strap process is precisely due to the
first order in the derivatives of the Dirac equations.

Compared to the non-relativistic case giving discretiza-
tion on the energy, the relativistic case gives discretiza-
tion of the mass. That is to say, once we give the external
conditions on the region of radius b where the tension ε
of the tensorial connection is not zero, relationship (77)
provides a constraint resulting in the discretization of the
mass spectrum. In a general case, writing (77) in terms
of k=b|ε| and x=m/|ε| and then

√
2x−1=y gives

(ky3+4y2+ky+1)(k2y4+k2y2−3ky−3)=0 (79)

and because k and y are always positive the first factor
has no positive solution. As for the second factor, it can
always be solved by employing the quartic formula, al-
though the explicit solutions are much too complicated to
be insightful. But plotting the solution for specific values
of k it is easy to see that in general two solutions are al-
ways complex and one of the real ones is always negative,
so that we have a single real and positive solution. Large
values of k give a y that goes to zero and hence the mass
tends to its limiting value |ε|/2 whereas small values of k
give a y larger and larger and thus a mass that is larger
and larger. The special case k=1 gives y≈1.514 and so
m≈ 1.646|ε| after a quick numerical evaluation. It is in-
teresting to see that in this case the condition b|ε|=1 can
be interpreted by saying that the radius b is of the order
of the Compton length of the tension |ε| of the tensorial
connection, which is what one might have expected.
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V. FINITE INTEGRAL

To check consistency, we assess the square-integrability
by computing the volume integral (46) as

I=2π

∫ b

0

∫ π

0

φ2inr
2 sin θdθdr+2π

∫ ∞

b

∫ π

0

φ2exr
2 sin θdθdr (80)

to be evaluated in the internal and external regions. The
exact evaluation is rather long, but because |cos θ|61 it
is possible to overestimate the intergal with one that has
variable separation and therefore it is easier. Evaluations
are again long in general, but it is possible to see that for
the value k=1 we have that I <17πQ2 which is finite.

As usual, it would be possible to employ the finite value
of the volume integral to normalize the solution, thus fix-
ing the only constant that remained free in the problem.

In [28] our motivation was to find solutions localized at
infinity and regular in the origin, with junction conditions
giving discretization of the mass spectrum. In the present
paper the search for solutions of this type was empowered
by the fact that the solutions we found are more general
than that of [28] as (36-39) are less constraining than the
conditions assumed in the aforementioned paper.

VI. CONCLUSION

In this paper we found two exact solutions correspond-
ing to two different cases of |ε| being it zero or not. The
two solutions have opposite properties of convergence for
their volume integrals whether they are close to the origin
or at infinity, and so we have joined the two well-behaved
branches into a single solution at a given radius b asking
for continuity. Such a continuity gives rise to conditions
on the mass that result into a single possible value given
in terms of |ε|b and which is reminiscent of the conditions
that fix the values of the energy levels in non-relativistic
version of quantum mechanics and quantum field theory.

As clear, more general solutions should be found, and
our method for the integration of the angular and radial
variables expressed by assuming conditions (36-39) may
be helpful in finding solutions in more general situations.

It is also important to remark that our trial solution is
best seen when working with spinors in polar form.

The data that support the findings of this study are
available from the corresponding author upon request.
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