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Abstract- Accurate wind power forecast is very important in order to construct smart electric grids. Nevertheless, this task still 

constitutes a challenge because wind is a very variable and local phenomenon. It is difficult to downscale information coming 

from Numerical Weather Prediction (NWP) models down to wind farm level and this is especially true onshore, in complex 

terrain conditions. Artificial Intelligence often comes at hand, for its power in learning what is hidden inside data: Artificial 

Neural Networks (ANN) are therefore commonly employed for wind power forecast. In this work, a pure ANN method is 

compared against a hybrid method, based on the combination of ANN and a numerical method based on physically-consistent 

assumptions (Computational Fluid Dynamics). Both approaches are validated against the SCADA data of a wind farm sited in 

Italy in a very complex terrain. It arises that the two methods have overall similar performances on average. However, pure 

ANN turns out to forecast better at mid-energy levels and during cut-off events at the highest wind speed, whereas the hybrid 

method forecasts better during low and high wind speed ranges. This makes the two approaches complementary and promising 

for future applications through an ensemble strategy. 

Keywords wind energy, power forecast, Computational Fluid Dynamics, Artificial Neural Network, SCADA control system. 

 

1. Introduction 

The efficiency in the exploitation of renewable energy 

sources passes also through the precision in forecasting how 

much energy shall be fed into the grid. The expected power 

production is very complex to quantify when the source is 

stochastic, as wind is. Nevertheless, wind farm owners are 

usually expected to provide a forecast in the morning for the 

24 hours of the day ahead and this information, if it has a 

good quality, can be crucial to build smart grids [1, 2, 3]. 

Wind power forecast is technically very challenging for 

one main reason: it is very difficult to downscale locally the 

mesoscale conditions [4] coming from Numerical Weather 

Prediction Models (NWP), which are nowadays the only 

available tool to obtain deterministic forecast. This is 

especially true onshore in complex terrain, where the wind 

field can encounter so severe variations in few meters that it 

is even challenging to simulate it locally through numerical 

modelling by Computational Fluid Dynamics [5-10]. Further, 

the interaction between the wind field and the single turbine 

in complex terrain [11] is difficult to model too and it is even 

more challenging to take into account wake interactions 

between nearby turbines [12-18].  

Two are the keystones for circumventing the above 

issues, about wind power forecasting: Artificial Intelligence 

and data. Artificial Neural Networks (ANN) are often used 

for their capability in reconstructing non-linear dependency 

between input and outputs and they are often used to connect 

directly the mesoscale wind conditions to the power output 

of the wind turbines on site [19-23]. The ingredient to feed 

(and train) the ANNs with are data: the inputs (mesoscale) 

and the outputs (typically, the power of the wind turbines). 

For this reason, statistical models for wind power forecast are 

based on the disposal of large data sets describing wind 

turbines in operation. Supervisory Control And Data 

Acquisition (SCADA) data are therefore crucial. Those are, 
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becoming ubiquitous in modern wind turbine technology 

because they conjugate low cost to versatility and 

effectiveness. They can be used for fault diagnosis [24-33], 

for performance assessment [34-42]: these two tasks are 

intimately connected and the border between them is fleeting 

because, for example, unsteady load conditions due to 

extreme winds [43] might make it difficult even to 

distinguish if degraded performances are due to incoming 

faults or not [44].   

As argued above, ANN techniques for wind power 

forecast are characterized by several critical issues, first 

because vast data sets are needed in order for the algorithm 

to learn the relation between inputs and outputs and because 

there might be instabilities, especially in reproducing what 

happens at the tails of wind distributions [45]. The strategies 

to overcome these issues are several: one can point at 

optimizing the machine-learning algorithm: in [46], for 

example, the focus is on the clustering of the events after the 

post processing of three NWPs. In [20], wavelet neural 

networks are employed and the error in the wind power 

forecast is minimized through the maximum correntropy 

approach. In [47], heterogeneous machine learning methods 

are adopted, in [48] a Gaussian mixture model-based neural 

network model is proposed. In [49], a full probabilistic 

density forecast for the wind power for each wind speed 

predicted by time series methods for each lead time, using 

Double Seasonal Holt Winters and conditional density kernel 

estimation. In [50], a wind speed forecasting using feature 

selection method and bagging neural network is proposed.  

In [51], the attention is devoted to the optimal selection of 

meteorological data and the random forest algorithm is 

adopted for hour-ahead wind power forecast. In [52], the 

optimization of the machine-learning algorithm is achieved 

through an improved radial basis function neural network-

based model with an error feedback scheme. In [53], five 

ANN models are formulated and their performances are 

compared. In [54], Elman neural network and Particle Swarm 

Algorithm are proposed to predict wind power. In [55], 

discrete wavelet transform and singular spectrum analysis are 

used to filter out the noises from wind power series and an 

optimized local linear fuzzy neural network is adopted to 

forecast the wind power. A similar approach is proposed in 

[56] and [57], where the combination of variational mode 

decomposition (for cleaning the time series) and machine 

learning is adopted. Pushing to the limits the time scale of 

the forecast is a very interesting issue in the scientific 

literature: in [58], for example, strategies for very short term 

forecast (five minutes ahead) are proposed and tested. In 

[59], a framework is proposed for wind power forecasts, by 

combining a dynamic power curve with a stochastic model 

for wind speed based on stochastic differential equations. In 

[60], the randomness is tackled by using the cloud model. 

Quantifying the impact of uncertainties and minimizing them 

is a very pressing topic in the literature about wind power 

forecast. In [61], day-ahead forecast errors from four Nordic 

countries and the impacts of wind power plant dispersion on 

forecast errors in areas of different sizes are studied. About 

uncertainties in wind power forecast, see also [45], and [62] 

where a conditional probabilistic dependent method of 

modeling wind power forecast error is proposed, and [63] 

where a piecewise exponential distribution model has been 

proposed for analysis of short term wind power forecast 

errors. For a review of the approaches in wind power 

forecast, see [64-67] and for a review of uncertainty analysis 

in wind power forecast, see [68]. 

Another possible approach for improving wind power 

forecast can be retaining, in some sense, a certain degree of 

determinism: physical hybrid methods [69-70] are based on 

targeting wind conditions from the mesoscale on site (at a 

reference point) through ANNs and then transferring them at 

turbine sites through physical methods as CFD is. As arises 

from the above discussion on the state of the art in the 

literature about wind power forecast, this approach has been 

little explored. In [71-72], this hybrid method is proposed 

and in particular the impact of the wake modelling is 

discussed. In [73], a case study like the one of this work is 

proposed: the approach is Weather Research Forecast to 

WindSim software and it is employed for the forecast on a 

Turkish site. On these grounds, the motivations of the present 

work are based: the use of hybrid (ANN+CFD) approach to 

wind power forecast has been very little explored especially 

in complex terrain, where wakes and terrain-induced flow 

acceleration heavily combine [13, 17, 74, 75, 76, 77]. The 

complex environment introduces an additional challenge: the 

interaction between wind field and turbines, occurring 

locally, might be modelled as in the hybrid approach of this 

work, or one might trust the ability of machine-learning 

algorithms in capturing also this issue. It is reasonable to 

expect that the two approaches might capture different 

features of the wind field and of the interaction between wind 

and turbines, and then might provide a good forecast under 

different conditions. 

Summarizing, this work is therefore a comparison of a 

pure ANN and a hybrid ANN + CFD approach for wind 

power forecast: the validation case is very valuable, because 

it is a wind farm sited in complex terrain on a vast layout. 

Further, the philosophy of this work is trying to stretch both 

approaches to their limits and investigate where the added 

value of each method is.  

The structure of the Paper is as follows: in Section 2, the 

approach is described and the details of the computational set 

up and of the data sets are provided. In Section 3, the results 

are collected and discussed. The conclusions and the further 

directions are sketched in Section 4.  

2. Materials and Methods 

      The input for both pure ANN and a hybrid ANN + CFD 

approach, employed in this work, is the same: data coming 

from a NWP model. The selected NWP model is the Weather 

Research and Forecasting (WRF) – Advanced Weather WRF 

(WRF-ARW) model [78], initialised by means of the Global 

Forecast System (GFS) analyses. From WRF simulations, 

time series of wind direction and wind speed at 5 heights (10, 

100, 200, 300 and 400 meters) above ground level are 

extracted and are fed to two post processing methods: 

 In the pure ANN approach, an ANN for each wind 

turbine directly connects the input (mesoscale wind 

conditions) to the power output of the wind turbine (Fig. 1). 
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 In the hybrid method, an ANN connects wind 

conditions at the mesoscale to wind conditions at a reference 

point in the wind farm area. Therefore, in this case the ANN 

is wind – wind. The wind conditions at target site are 

transferred at turbine site using CFD simulations and the 

final output (wind power forecast) is obtained employing the 

theoretical power curve of the wind turbines (Fig. 2) 

 

Fig. 1. Structure of the two ANNs: pure ANN approach. 

 

 

Fig. 2. Structure of the two ANNs: hybrid approach. 

 

In both cases, the ANNs are single layer perceptrons, 

trained by a feed-forward back-propagation method, not 

supervised training. The structures are represented in Fig. 1 

and 2 and the flow chart is shown in Fig. 3; the inner layer 

has tangent transfer function, while the output layer has 

linear transfer function. The ANNs can be set with different 

number of neurons in the inner layer and the performance is 

sensitive to such a setting. Therefore, many configurations 

have been tested and the best performing one has been 

chosen.  

 

Fig. 3. Flow chart of the two methods: pure ANN (left) and 

hybrid (right). 

 

The first approach is purely statistical and it accounts 

implicitly that the same conditions at the mesoscale can 

correspond to different local conditions, different wake 

patterns and different power outputs. Using the pure ANN, 

one trusts that the algorithm might capture all that is hidden 

inside the data. Using the hybrid method, one transports the 

wind conditions at turbine sites through the CFD and takes 

into account different wake patterns explicitly. In this work, 

the Jensen model [79] is adopted. The CFD simulations are 

performed with the WindSim software [80-83].  

The computational set up for the CFD simulations is the 

following: the Reynolds-averaged Navier Stokes (RANS) 

equations are solved using the RNG k-ε turbulence closure. 

RNG k-ε is selected because it is considered superior for 

complex terrain [6]. In order to reduce the computational cost 

of the forecast, a set of idealized simulations is run. 

Logarithmic wind profiles are given at the inlet of the 

domain for different wind directions. A reference point 

inside the domain is selected, where the NWP forecast is 

extracted and used as external forcing to the CFD 

simulations. According to the forecast at the reference point, 

the whole three-dimensional wind field calculated by the 

CFD can be scaled from the idealized simulations through 

appropriate transfer coefficients that are usually defined as 

the ratio between the wind speed at the reference point and 

the wind speed at another whatsoever grid point. Simulations 

have been performed with a wind speed equal to 15 m/s at 

the top of the boundary layer, and 12 wind directions equally 

spaced of 30 degrees. A sector interpolation is performed to 

define the transfer coefficients at intermediate directions. 

The test layout of the test case wind farm is reported in 

Fig. 4. On site, 24 turbines are installed. 18 turbines have 50 

meters of hub height and 42 meters of rotor diameter. 6 

turbines have 55 meters of hub height and 52 meters of rotor 

diameter. The total rated power of the wind farm amounts to 

15.9 MW. To give an idea of the complexity of the terrain, 

consider that the highest point of the wind farm is at 1000 

meters above sea level, while the lowest is at 400 meters. 
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Due to the vastness of the wind farm, it has been divided 

in two computational domains for the CFD simulations. Each 

domain has a refined computational grid in the middle, with 

a minimum horizontal grid resolution down to 40 meters 

along x and y directions. The horizontal resolution decreases 

from 40 m in the middle to 380 m at the boundaries. The 

computational domains are respectively made of 119 × 124 × 

20 and 120 × 130 × 20 cells and the height of the boundary 

layer is 1000 meters in both cases. One position inside each 

domain is selected as reference point to extract the NWP              

wind condition: the met-mast site is selected for domain 1, 

the position of one turbine is selected for domain 2 (blue 

markers in Fig. 4).  

 

 

Fig. 4 The two layouts of the wind farm (layout 1 to the left 

and layout 2 to the right). The blue dots indicate the position 

of the met-mast and the turbine used as reference point for 

the computational domains 1 and 2, respectively. 

SCADA data are another crucial ingredient of the 

method: they are fed to the ANNs for the training and then 

are used in the validation to crosscheck how much simulation 

(and then forecast) resembles reality. For the pure ANN 

method, the power outputs of each turbine are used. For the 

hybrid method, the wind direction and intensity at reference 

points are used. In both cases, the structure of the SCADA is 

the same. SCADA data are stored on 10-minute time basis 

and they are post-processed for this study as follows: the data 

set of each turbine is filtered on the requirement that the 

turbine itself is in production and the data are hourly 

averaged in order to be synchronized to the NWP data. NWP 

and SCADA data are employed half for training and half for 

validation.  

The total data set employed for this work is visualized in 

the following Figs. 5 to 8. On the left of each of the figures, 

the wind rose is shown and, on the right, the wind speed 

frequency distribution and the Weibull best fit are shown. 

This is done for each layout and for the NWP data and the 

SCADA data sets at each reference point.  

 

 

 

 

Fig. 5 The NWP data set for layout 1. Wind rose (left) and 

wind speed distribution (right). 

 

 

Fig. 6 The SCADA data set at the reference point for layout 

1. Wind rose (left) and wind speed distribution (right). 

 

Fig. 7 The NWP data set for layout 2. Wind rose (left) and 

wind speed distribution (right). 

 

 

Fig. 8 The SCADA data set at the reference point for layout 

2. Wind rose (left) and wind speed distribution (right). 

 

The size of the data set is in total seven months and this 

size is fit for the purposes cited in Section 1: stretching 

ANNs to their limits with reasonably short data sets. In order 

to avoid bias due to seasonal effects, the data set is split in 

weeks and weekly subsets are employed alternatively for 

training and validation. To simulate the run of a real day 

ahead, as the forecast has to be done in the morning for the 

day after, 18 hours of each forecast run are cut out and the 

following 24 hours are used. The dependency of the quality 

of the forecast on the time scale has been addressed too: the 

forecast has also been validated on 6-hours spaced intervals 

inside the 24 hours. It arises that the overall quality of the 

forecasted doesn’t vary appreciably and, for this reason, in 

the following, results are reported only on the standard 24 

hours scale. It would be interesting to consider longer 
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intervals too but, in this validation case with short data sets, 

this would compromise the statistical significance of the 

results. It is planned to project on longer time scales as a 

further direction of this work. 

3. Results 

The validation metrics, adopted for evaluating the 

goodness of the forecast, are the normalized mean absolute 

error (NMAE) and the normalized root mean square error 

(NRMSE). In [20], it is argued that these two metrics are 

among the most common and meaningful for evaluating the 

quality of the forecast. Further, they are the same which have 

been selected in [71, 72] and it is therefore interesting to 

compare the order of magnitudes of the metrics, when 

employing basically the same methods and very different 

testing grounds: complex terrain and short data sets, in this 

case. The normalization factor is the nominal power of each 

layout (6.6 MW and 8.7 MW respectively for layout 1 and 

2). Two main issues are investigated: the dependency of the 

quality of the forecast on the height of extraction of the NWP 

data and the behaviour of the forecast, global and at the level 

of time series (hour by hour). The results are reported in the 

following Fig. 9-12. 

 

 

Fig. 9 NMAE for layout 1. 

 

Fig. 10 NMAE for layout 2. 

 

Fig. 11 NRMSE for layout 1. 

 

 

Fig. 12 NRMSE for layout 2. 

     From Figs 9 to 12, it arises the lowest NMAEs are 

obtained with the NWP height of 100 and 200 meters. This is 

reasonable, because the wind field at 10 meters is probably 

too close to the surface of the terrain to capture what happens 

at hub height, whereas 300 and 400 meters of height are 

instead too far from the ground. In general, the performances 

of the two methods are similar: NMAE is about 20% for 

layout 1 and about 16% for layout 2. It is interesting to notice 

that, while the hybrid method is comparable, if not even 

better than the pure ANN as regards NMAE, pure ANN 

performs better than the hybrid method as far as the NRMSE 

is concerned. This is reasonable because the training of the 

ANNs is targeted on minimizing the sum of squares error, 

calculated on the training period. This point ex post supports 

the choice of the metrics for validating the forecast, because 

each of them can capture slightly different features and it is 

therefore interesting to visualize both of them. 

     Further, the CFD in the hybrid method introduces more 

physical information than the statistical approach of the pure 

ANN and, as a drawback, it introduces additional sources of 

uncertainties due to the more complex flow. It is notable that 

the hybrid method averagely performs even better than pure 

ANN, but the results have a larger spread (higher NRMSE). 

From this point of view, therefore, it is necessary to 

investigate the differences between the two approaches hour 

by hour. 

     From the following Fig. 13, a very interesting feature 

arises about this issue. The ANN performs better in 

forecasting mid-energy levels; the hybrid method is better to 

reproduce wind flow acceleration, especially in the ascending 
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ramps. This happens because the CFD simulates properly the 

wind flow accelerations, i.e. speed-up, in complex terrain and 

is therefore more suitable to follow the dynamics of the 

power output oscillation. This shows that even though both 

methods are overall similar on average, they perform quite 

differently hour by hour.  

 

Fig. 13 Plots of measured (black line) and simulated power 

production: ANN (blue lines) and ANN+CFD (red lines), 

corresponding to using the NWP wind field input at 200 m. 

Layout 1. 

     The following Fig. 14 and 15 show the forecasted power 

in three-dimensional view as a function of wind direction and 

wind speed; the speed and the direction are extracted from 

the 200 m. NWP height because it averagely provides the 

best performance. The forecasted power corresponds to the 

complete wind farm production in the considered period. 

     From Fig. 14, it arises that the ANN approach increases 

more slowly and on different “plateaux” with increasing 

wind speed, while the hybrid case has a linear and faster 

increase. Nevertheless, both methods can recognize the 

different behaviour of the wind farm production as a function 

of the direction. 

     Fig. 15 is following the same behaviour of Fig. 14, while 

it is notable that the ANN can catch the decrease of 

production due to extreme winds, i.e. the stop of the turbines 

at the power curve cut-out speed. Actually, for wind 

directions about 230° and 270° and wind speed greater than 

25 m/s, the forecasted power production decreases with 

speed increasing. This highlights an added value of the ANN 

approach: it is able to simulate the real dynamics of the wind 

turbines for high wind speeds, instead of using the theoretical 

power curve as in the ANN+CFD approach. 

 

Fig. 14: Plots of forecasted power per wind speed and 

direction of ANN (left) and ANN+CFD (right), 

corresponding to using the NWP wind field input at 200 m 

for layout 1. 

 

 

Fig. 15: Plots of forecasted power per wind speed and 

direction of ANN (left) and ANN+CFD (right), 

corresponding to using the NWP wind field input at 200 m 

for layout 2. 

 

    The improved awareness on the key points of both 

approaches can improve the overall performance of the 

forecast: in perspective, the idea is a more complex forecast 

where the two approaches concur in an ensemble picking the 

best from each other. 

4. Conclusions 

    This work was devoted to the issue of wind power forecast 

in complex terrain. Complex terrain is a very challenging 

testing ground for forecast methods because the wind can 

encounter severe variations in space: therefore, the 

relationship is very elusive between what happens at the 

mesoscale in terms of wind conditions and what happens at 

each turbine site (and therefore how much power can be 

extracted). In this work, a very valuable validation case was 

proposed: a wind farm sited in Italy in a very complex 

terrain, featuring 24 turbines distributed in two layouts a few 

kilometres far each other. Two forecast methods have been 

compared: a pure ANN method, i.e. an ANN connecting 

directly wind conditions at the mesoscale to power output of 

each wind turbine; a hybrid method, where an ANN wind – 

wind connects the wind conditions at the mesoscale to the 

wind conditions at a selected point in the domain, and the 

wind field is then transferred at turbine site using a 

deterministic CFD method.  

     The two methods resulted in similar overall performances 

as regards NMAE, but their behaviour is different hour by 

hour because they have different advantages: the pure ANN 

method captures better mid-energy level because, being 

purely statistical, it better performs “averagely”. The hybrid 

method better describes the acceleration of wind flow and is 

therefore very promising for reproducing the regime of 

complex dynamics of the wind farm. Further, the hybrid 

method performs better in high and low wind speed range 

and the ANN recognizes cut-off events due to high wind 

speed. Summarizing, the performances of the two methods 

(overall similar, different hour by hour) suggest that the 

approaches could be used reciprocally, for improving the 

performance of the forecast. This is actually the main further 

direction of the present work and one possible idea is 

switching from one method to the other using genetic 

algorithm techniques [84]. A valuable further direction is 

also a most extensive use of SCADA data: as for example in 

[85], the quality of the forecast can be improved by 

modelling the power curve [86] of the wind turbine by 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. Mana et al., Vol.7, No.4, 2017 

 1635 

learning from the SCADA data. This wouldn’t have been 

effective in our test case because the data set was deliberately 

chosen to be reasonably short, but it would be an interesting 

direction to be explored further.   Another very interesting 

further direction is testing the above method on very valuable 

test cases as the ones of the IEA-Task 31 Wakebench project 

for the assessment of microscale flow models [10, 18], which 

are characterized by vast layout, very complex flow 

intertwining with wake effects, not rare occurrence of harsh 

wind regimes with very high turbulence. For a reliable wind 

power forecast in such a testing ground, the missing final 

link in the modelling chain of the present work must 

necessarily be addressed: the role of the technology, i.e. the 

control system of the wind turbine. 
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