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Abstract. This paper focuses on position estimation of a small 

unmanned aerial vehicle (UAV) using a monocular camera. 

Features from Accelerated Segment Test (FAST) descriptors are 

used as a matched pattern to estimate differential change in 

position of the UAV. Visual Simultaneous Localization and 

Mapping (V- SLAM) is a probabilistic filter based method and a 

prominent real time positioning method in robotics. V-SLAM 

performs drift free tracking of the pose of a UAV on long run but 

the prediction states has limited certainty because of using sparse 

number of features used in real time position estimation. Visual 

Odometry (VO) is a deterministic positioning method and is more 

accurate to estimate the relative UAV position from adjacent 

frames without a persistent map. VO gives high drift error on the 

long run because of the accumulation of drift error at each frame 

transformation. Bundle Adjustment (BA) and loop closure are two 

error optimization techniques to reduce drift error in VO.  Due to 

limited computation resources available in the small scale UAV the 

optimization techniques are not appropriate in the small UAV 

positioning. In this work, VO with fractional V-SLAM is proposed 

to reduce the drift error on position estimation from matched 

features. The obtained results show the positioning estimation from 

proposed method works in an outdoor environment and that over 

performs than VO and V-SLAM.  
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1   Introduction 

Small UAVs are used in various application scenarios such as search and rescue, 

monitoring and security, tracking and observation. Due to the applicability of such 

UAVs in civil applications [1], their importance grows day by day. Traffic 

monitoring, fire detection, pipeline/power line inspection, industrial inspections are 

the common civil applications that are performed by UAVs. The performance of 

application scenarios depends on the accuracy of the UAV position. Coordinated 
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search, virtual views and image stitching are usual activities of the small UAV in an 

outdoor environment. In order to cover the interested area in a short duration by 

multiple UAVs, there is a need for coordination. The coordinated search needs 

sharing of position information to neighboring UAVs [2]. Quick generated virtual 

views and 3D reconstruction helps in the analysis of damages from an earthquake. 

Minimum number of images captured by the UAVs to cover interest region makes the 

swiftness in 3D reconstruction [3]. Appropriate position selection of the camera gives 

the full coverage with minimum number of images, which helps quick formation of 

3D map. Mosaicking of images gives a big picture of visual information in a single 

frame. Image mosaicking suffers from metadata error and camera orientation error 

[4]. Accurate location and orientation information of camera helps to reduce metadata 

error in image stitching. These are the motivation to get accurate positioning of the 

UAVs. 

 

Defining an UAVs location and orientation with some reference in 3D space is called 

positioning and requires six parametric values to represent the complete information. 

Positioning can be defined in two ways: relative and absolute positioning. The relative 

positioning deals with comparing to nearby objects or periphery as reference and is 

commonly used in human perception. The absolute positioning is defined with respect 

to some global reference. Remarkable achievement of the computational power in 

small circuits makes it easy to implement visual based positioning in small UAVs. 

Since, there is already a camera in a small UAV; it can be used as a positioning 

sensor. A camera is a passive device in terms of radio interference so useful in passive 

observation. Images and videos are the output data from the camera. Visual 

positioning is the process of calculating differential change in position of the UAV by 

analyzing repeated patterns that appeared on the consecutive image frames. Our 

assumptions for visual position estimation are availability of sufficient illumination in 

the environment; sufficient scene overlap between successive frames and dominance 

of static scene over moving objects. Position sensing is a fairly mature field; however, 

there is a need for research for cost minimization, infrastructure reduction, scalability 

improvement and flexibility on implementation as stated in [5]. 

 

Davisons monocular SLAM [6] and Nisters VO [7] is perhaps the parent of our work, 

and were far ahead of their time. Our contribution in this paper is to adapt the related 

work of Extended Kalman Filter (EKF) based monocular SLAM [6], VO [7], inverse 

depth representation of features [8] and camera centric coordinate system [9] to 

estimate the position of the small UAV. Furthermore, we have incorporated the 

combination of Random sample consensus (RANSAC) with EKF as in [10] to speed 

up the capability to detect and reject a high number of spurious features. 

2   Related works 

The real time VO with low delay was proposed in [7] using the Harris corners. The 

disparity between the matched features depends on the speed of the camera and is 

tested in different ranges. Minimum five matched points in consecutive image frames 



are needed to estimate the six parameters of position from a calibrated camera. In 

practice, more than five points are used for the motion estimation to get robust and 

accurate. More than eight points matching leads to an overdetermined system to solve 

in the least squares sense   and provides a degree of robustness to noise [11]. In [12], 

Scaramuzza and Siegwart demonstrated real-time algorithms for calculation ego-

motion of a ground vehicle relative to the road using an omnidirectional camera. VO 

on the ground plane using only one feature correspondence was tested in [13]. 

Computation time per frame was less than one millisecond and the number of 

iterations for outlier removal was seven.  Circular motion model of two Degrees of 

Freedom (DoF) was used for camera motion. Although the method was fast and 

efficient, it was insufficient to represent all position parameters of the UAV from 

single feature correspondence. VO system based on two-frame estimates of 

instantaneous relative motion can work in constant time, but will inevitably exhibit 

drift because of accumulation of small errors in the inter frame motion estimates. 

Bundle adjustment [14] and loop closure are two error optimization techniques to 

reduce drift error in VO. BA reduces the drift compared to two view VO because it 

incorporates constraints between several frames. The computational complexity of 

BA increases cubically O((qN + lm)3) with number of parameter involve in BA, 

where q represents number of parameters to describe feature points, N represents 

number of feature points, l represents number of camera poses and m represents 

number of parameters to describe camera poses. For this reason, BA is not feasible 

in the small UAV positioning. The loop closer is not always available in outdoor 

UAV missions. 

 

EKF was first successfully applied to the SLAM problem in [15]. In SLAM, the 

update time and computational complexity of maintaining the coupled pose and scene 

covariance of the EKF algorithm scales quadratically O(N2) with increasing the 

number of features (N). This in turn limits the number of feature matches available at 

any instant to that map so position accuracy is limited. SLAM with Compressed EKF 

(CEKF) was implemented in [16] by using a laser scanner in an outdoor environment 

to make computation cost constant until needed to update the whole map. The 

comparative performance evaluations of SLAM algorithms on the basis of position 

accuracy and processing time requirements were done in [17]. Among different 

versions of KF, the CEKF was more efficient for an outdoor environment where a lot 

of features are present. Inverse depth parametrization for features was proposed in [8] 

that can handle both close and distant features within the standard EKF framework. It 

remains well behaved for features at both stages (initialization and tracking) of SLAM 

processing, but has the drawback in computational terms that each point is 

represented by a 6D state vector as opposed to the 3D of a Euclidean XYZ 

representation. Dense scene flow combined with stereo V-SLAM was implemented in 

[18] and considerable positioning error was improved in moving objects. Nearby 

features give less linearization error on position estimation from V-SLAM so a 

camera centric coordinate system was proposed to reduce linearization error in [9]. 

 

In [19], Alcantarilla et al. proposed VO priors for robust EKF-SLAM. Constant linear 

and angular velocity model of the camera was replaced by VO prior. That performed 

quick pose estimation using the two stages RANSAC: a two-point algorithm for 



rotation followed by a one-point algorithm for translation. The result was better than 

constant velocity model in stereo vision model but very good prior information in the 

camera rotation was needed. Hwang and Song [20] used multiple features for stable 

monocular SLAM.  Three types of features such as corners, line and illumination 

were used   to make the landmark state vectors. That test was verified inside the room. 

The stable localization from multiple groups of features can be obtained but the 

arbitrary detection and association of different features on outdoor scenes is difficult   

to realize. Williams and Reid [21], proposed the V-SLAM system with persistent map 

by incorporating the additional information available from VO style measurements 

into the filter. A summary of their work was to produce a VO system using the 

monocular SLAM on each frame. Our objective, in different ways, is to run V-SLAM 

and VO separately and fusion of position information. V-SLAM runs in lower 

frequency than the VO so the computational complexity of maintaining the coupled 

pose and scene covariance become less than the related work. Hernandez et al. [22] 

used V-SLAM with partial odometry information from IMU by using inverse depth 

representation of features. That work was performed in a structured environment with 

uniform landmarks and the range within a meter. 

3   Proposed approach 

 
 

Fig. 1.  Block diagram of visual odometry combined with fractional V-SLAM. 



 

The block diagram of the proposed method is shown in Fig. 1. The camera works as 

the positioning sensor and the image sequences I0:n = {I0, I1, I2, ...., In}  are the input 

of the system.  The VO and V-SLAM are two subsystems of the proposed method and 

run respective algorithms to deduce position information of UAV from image 

sequences. VO uses every consecutive image frame to extract relative change in 

position from 2D-2D transformation. The estimated position from VO is notated as 

Of. V-SLAM uses interleaved image frames for the position estimation to reduce the 

computational burden and the estimated position is notated as Sf. As the interleaved 

distance increases, the computational cost decreases but there is a need for a 

minimum number of matched features to estimate position. For this reason, we cannot 

go beyond the threshold in normal movement of the UAV. The estimated position 

from two subsystems is fused after every interleaved frame by simply averaged and 

notated as Pf. This new value is used as reference to estimate the next position in both 

subsystems. Two statements on proposed approaches can be claimed based on 

hypotheses stated on related works. First one is uncertainty on position estimation in 

our work will be less than V-SLAM because of we have used the more number of 

features than  in [6]. Second, the computational cost will be less in our approach 

than in [21] because of SLAM runs in interleaved input image sequences. 

4   Experimental setup 

The experiment is performed on data available from Library for Visual Odometry 2 

(LIBVISO2)[1], Karlsruhe Institute of Technology. Reason of selecting this data is 

higher feature density, high feature matching speed-up of factor and it supports 

monocular ego motion estimation. Beside dataset those libraries contain camera 

calibration parameters of respective sequences so it makes it easy to test our approach 

in a long outdoor environment. 759 image frames of resolution 1344x391 pixels with 

Portable gray map (.pgm) are used for position estimation. A notebook computer with 

core i5 2.6-GHz processor, 8 GB memory and 64 bit operating system is used to 

perform position estimation from visual data. The proposed approach is processed in 

MATLAB R2011b. Corner features are detected by the FAST descriptor because of 

its short detection and matching time. Minimum number of landmarks used to 

perform visual position in this work is 25, which is more than sparse V-SLAM so this 

leads to more accurate position estimation. Interleaved distance 5 is used and weights 

of fusion are tuned fifty-fifty for VO and V-SLAM by empirical basis. Qualitative 

analysis of various weights on VO and V-SLAM are tested and among them average 

value gives better results. 

 

Accuracy of estimated position is the main evaluating parameter of this work. The 

accuracy of the estimated position depends on the utility of the computation resource 

such as memory, processor and time. Therefore, computation resources are another 

evaluating parameter, which signifies how much computing resource that has been 

spent to achieve a certain accuracy level. Trajectory plot evaluates accuracy of 

estimated position in this work. The estimated position consists of six parameters of 



the UAV location information.  The starting position of the UAV is origin with 

orientation aligned with respective axes. The accuracy of estimated position is 

observed by comparing with the approximated ground truth. Performing the test on 

the same data by varying one parameter and keeping all other fixes give relative 

comparisons. Relative comparison by adjusting the number of features is performed. 

We have compared trajectory evaluation and computing time evaluation of proposed 

approach with V-SLAM and VO without bundle adjustment. The comparison and the 

discussion are discussed in the following section. 

5   Obtained results 

 

  
Fig. 2. Comparison of trajectory by three methods VO, V-SLAM and our approach using the 

same 750 image frames. The top left window shows datasets and the remaining three windows 

show trajectories by three different methods, both axes represent the distance and scaled to 100 

meters on unit scale. 

 

Fig. 2 shows the comparison of trajectory by three different methods. The experiment 

is performed on the Karlsruhe sequences. The top left window shows the dataset, the 

matched inliers features, matched outlier features and unmatched features are pointed 

by three different color red, magenta and blue respectively. The position estimation is 

performed on the basis of matched inliers points. Other three windows show the 

trajectory of the estimated position by three techniques. One unit of axes is scaled to a 

hundred meters. The triangle represents the estimated position of UAV. The black 

straight line shows the approximate ground truth. The camera moves hundreds of 

meters in the forward direction. The top right windows show VO trajectory, the 

bottom left shows V-SLAM trajectory and the bottom right shows our approach. Due 

to deficiency of optimization the estimated position starts to deviate after travelling 



around 75 meter far from origin. The orientation error of the camera greatly increases 

so the heading direction deviates in the wrong direction. Trajectory of the camera 

from V-SLAM is comparatively far better than VO.  Due to the consideration of a 

limited number of features, counted as   25, the trajectory is rough. In our approach 

the trajectory is more smooth and straight compared to the rest of others.  So from this 

result we can say that the accuracy of position estimation from our approach is 

superior to VO without pose optimization and V-SLAM with the same number of 

features. 

 
Table 1.  Computation time with respect to number of features 

 
 Number of features 15 17 19 21 23 25 

 

Computation time (sec) 

VO 14 15 15 16 16 17 

V-SLAM 362 437 522 615 712 830 

Our approach 155 184 218 255 296 341 

 

Table 1. shows the variation of computation time with respect to the number of 

features that are used to perform position estimation by visual odometry, V-SLAM 

and our approach. The comparison is done by using data set from Karlsruhe 

sequences of 1351x374 pixels and 200 frames. Based on the number of features used 

to perform position estimation the computing time is compared. The computation 

time to perform position estimation in VO does not increase significantly with 

varying the number of features from 15 to 25. But in V-SLAM the computation time 

varies from 362 sec to 830 sec if the number of features increases from    15 to 25. 

The rate of increasing shows nonlinearity relation between the computation time and 

the number of features. In these two experiments both VO and V-SLAM run in every 

sequence. In our approach the V-SLAM runs in a fractional manner so the 

computation time is less compared to V-SLAM. By minimizing the number of 

features the computation time by our method is considerably reduced. Our approach 

gives better computing time saving than V-SLAM with the same rate   of varying the 

number of features. In summary, based on the results from Figure 2 and Table I, it can 

be said that our approach over performs than the individual VO and V-SLAM.  

6   Conclusion 

The key information from the above experiments is VO combined with V-SLAM 

works on outdoor environments for position estimation via single camera. The 

proposed approach on this work over performs than the individual VO without 

optimization and V-SLAM. The computing cost of the proposed approach is also less 

than V-SLAM, but there must be sufficient number of matched features in interleaved 

frames. Outdoor environments with less sharp corner features need different image 

features to handle visual positioning. Blur in the image frame and motion of the image 

feature creates a high number of unmatched features so decreasing correlation 

threshold can be a better alternative. There is a need for a different approach in visual 

position estimation if the large portion of scene is moving. 
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