
INTERPRETABLE ANOMALY DETECTION USING A GENERALIZED MARKOV JUMP
PARTICLE FILTER

Giulia Slavic, Pablo Marin, David Martin, Lucio Marcenaro, Carlo Regazzoni

University of Genova (Italy), University Carlos III de Madrid (Spain)

ABSTRACT
When performing anomaly detection on sensory data of an au-

tonomous vehicle, it is fundamental to infer the cause of the found
anomalies. This paper proposes a method for learning prediction
models and detecting anomalies by decomposing the evolution of
the state of an agent into its different motion-related parameters.
A filter is introduced, based on the concept of Generalized Filter-
ing, with the objective of increasing the interpretability of the results
with respect to previous methods. The proposed anomaly detection
method is tested on data from a real vehicle. We also consider the
case in which multiple models are learned, how to extract the salient
discriminatory features of each, and use the proposed anomaly de-
tection method to perform behavior classification.

Index Terms— Anomaly detection, Kalman Filter, Particle Fil-
ter, Interpretable Machine Learning

1. INTRODUCTION

The learning of a model describing how the state of an agent evolves
across time has many purposes: using the model to perform short-
time or long-time prediction; classifying an agent based on what
model it follows; performing anomaly detection distinguishing when
the rules of the model are broken or when they are respected. Such
applications are of interest in a variety of fields, from autonomous
driving [1], to self-aware radios [2], to video surveillance [3], to
weather forecasting [4], to medical image analysis [5].

When considering anomaly detection applied in particular to
the self-aware agents’ field, another important concept can be in-
troduced, i.e., the concept of interpretability. It is to observe that
there is no strict, universally recognized definition of interpretabil-
ity, which is often also associated with explainability. In [6], inter-
pretability is defined as answering the question “How does the model
work?", and explainability as answering the question “What else can
the model tell me?”. It is interesting to note the desiderata and prop-
erties of interpretable research defined by [6], which include causal-
ity, decomposability of the individual parameters, and algorithmic
transparency. Among the interpretable algorithms also fall Bayesian
models such as Dynamic Bayesian Networks (DBNs) [7, 8], which
are the method used in our paper.

For the case of anomaly detection, it is not only desirable to de-
termine where or when an abnormal event was, but also to determine
its cause, e.g., what model rules were broken. Hierarchical models
are apt for this purpose, as they allow to distinguish variables that
are more directly related to the observation from the sensors (at the
lowest levels of the hierarchy) or to more conceptual representations
(at the highest levels of the hierarchy). Therefore, this allows distin-
guishing where the anomaly is located in the hierarchy too. Methods
of this type are the Markov Jump Particle Filter (MJPF) [9] and the
Rao-blackwellized Particle Filter [10], with the first of the two offer-
ing clearer and more reusable semantics than the second one.

Bio-inspired theories as the ones of Friston, Haykin and Dama-
sio [11–14] have guided the field of self-aware agents. In particu-
lar, Friston proposed the use of Hierarchical Generalized State Fil-
ters and introduced the concept of linear attractors [11]. Two types
of motions are considered: the one in the direction of the attractor
and the one in the orthogonal direction. The first type of motion
can be described as the motivation that the agent pursues and how
it moves along the direction to the attractor. In contrast, the sec-
ond type of motion can be connected to the modality with which
the agent reaches the attractor along the orthogonal direction, e.g.,
smoother when the agent is an expert in its task, and oscillating when
it is uncertain. Therefore, the features related to the two directions of
motion can be used to identify a particular behavior and to determine
the abnormality of that behavior w.r.t. an unknown one. When mul-
tiple behavior models are known, the discriminatory features of each
behavior can be extracted and anomalies used for classification. An
application example is driver behavior analysis, a field with a wide
literature [15–17] and with one of the main objectives of distinguish-
ing risky and dangerous drivers from safe ones. Oscillating and un-
certain drivers fall into the risk category of driving behaviors [15].

In this paper, we propose an extension of the MJPF presented
in [9], with the objective of creating more precise rules describing
the evolution of the state of an agent and the objective of treating the
study of the evolution along the direction of motion together with the
evolution along its orthogonal direction. Tests are conducted on two-
dimensional real data. Consequently, the paper’s main contributions
are the following: i) the tracking of parameters at the base of the
vehicle’s motion and their use to predict the next state. This allows
to improve the interpretability of the model, increasing the decom-
posability; ii) the extraction of the features related to the direction
perpendicular to motion using the concept of vorticity and their us-
age to define an anomaly related to driver experience/uncertainty; iii)
the recognition of discriminatory features of a behavior class and the
use of the extracted anomalies for behavior classification purposes.

The rest of the paper is organized as follows: Section 2 briefly
summarizes related work, Section 3 describes the proposed method,
Section 4 discusses the used datasets and the obtained results and
Section 5 draws the conclusions and suggests future developments.

2. RELATED WORK

The method proposed in this paper is an extension of the one de-
scribed in [9]. In [9], a DBN architecture was learned from a train-
ing dataset. DBNs [7] are a type of Probabilistic Graphical Model
(PGM) enabling to learn the causal relationships between variables
at consequent time instants (inter-frame dependencies) and at the
same time instant (intra-frame dependencies). In particular, MJPF
synthesizes a two-level DBN as the one displayed in Fig. 1a : the
evolution of the continuous state X̃k related to a sensor observation
Zk is tracked on the lower level, whereas discrete variables S̃k are
used to switch from one linear dynamical model for continuous state
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Fig. 1: (a): DBN structure of MJPF proposed in [9]. Inter-slice links
are shown in orange; temporal-links are colored in blue. (b): DBN
structure of proposed G-MJPF.

prediction to another one. The tracked state X̃k is a Generalized
State (GS), according to Friston’s definition [11]. GSs contain infor-
mation about the states per se and about their higher-order dynamical
features, i.e., their motion, velocity, acceleration, etc.. In the MJPF
proposed in [9] (from here on referenced as base MJPF), the GS is
composed by the state and its velocity. The relationship between an
observation Zk and a GS X̃k at time instant k is defined as:

Zk = HX̃k + νk, (1)

where νk is assumed to be a zero-mean Gaussian distribution rep-
resenting the observation noise. The dynamical model, used to per-
form prediction at the continuous level, is defined as:

X̃k+1 = FX̃k +BUSk + ωk, (2)

where FX̃k takes the state-space information from X̃k and makes
null its time derivatives. BUSk encodes the time derivative informa-
tion (actions) of the agent at time k. USk depends on the variable
Sk, which corresponds to the active cluster at the time k. The vari-
able ωk is a zero-mean Gaussian distribution representing the noise
of the dynamical modeling.

The MJPF uses a set of Kalman Filters (KFs) at state level, gov-
erned by Eq. 1 and by Eq 2, and a Particle Filter (PF) at the cluster
level. It is used to perform anomaly detection on a variety of ap-
plications [2, 9, 18]. This paper extends the previous work to build
a more flexible and interpretable model based on a four-level DBN.
We call this model Generalized-MJPF (G-MJPF).

3. METHOD DESCRIPTION

General architecture. We can divide the description of the
method into two parts: i) given a first dataset (i.e., a training dataset),
we apply on it a Null Force Filter (NFF), which supposes that the
tracked object is not affected by any force and continues to move
with the same speed. We extract the GSs and the model errors and
use them to perform clustering and learn a DBN architecture and
a new filter adapted to the dataset. We also extract the prediction
error of this filter along the orthogonal direction of motion and build
a base MJPF, which allows us to track the information related to
how the agent is oscillating around the expected motion. We call the
overall obtained model a G-MJPF; ii) then, given a second dataset
(i.e., a testing dataset), we apply the G-MJPF to detect anomalies
w.r.t. the learned model. The description of the method is shown in

Fig. 2a. Additionally, we consider using the learned filters and the
found anomalies for the application on behavior classification, i.e.,
we consider the case in which multiple models are present and the
recognition of their salient interpretable features.

3.1. Training phase

Generalized States. Let us suppose to be given a training dataset
composed of K consequent observations {Z̃k}k=1...K from a sen-
sor. The Generalized Observations (GOs) are composed by the ob-
servations (e.g. position data) and by their generalized coordinates
of motion. For simplicity, we consider as generalized coordinate of
motion the first-time derivative Żk only. Consequently, we can de-
fine Z̃k = [Zk Żk]. Starting from the GOs, we can link GSs and
GOs through Eq. 1, where H is an identity matrix. As in [9], we can
define the GS as X̃k = [Xk Ẋk]ᵀ.

Null Force Filter. As initial step, we track the evolution of the
GSs {X̃k}k=1...K , using a NFF, a KF that supposes that the agent is
not affected by any force and continues in its motion with unmodi-
fied speed w.r.t. the previous time-steps. The dynamic model sup-
posed by the NFF can be expressed through the following equation:

X̃k+1 = AX̃k + ωk, (3)

whereA = [A1, A2], withA1 = [Id,d, 0d,d]ᵀ andA2 = [Id,d, Id,d]ᵀ,
being Id,d the identity matrix with d rows and columns, where d is
the observation dimension. In the case of the trajectory data, d = 2.

Therefore, at each time step in which the NFF is applied, we
can extract the desired motion parameters µ̃k, which allow us to cor-
rect our model, coherently with the free energy principle defined by
Friston [12]. Eq. 3 could be corrected as:

X̃k+1 = AX̃k + (Φ + Ψ)X̃k + Ψ̇ + ωk, (4)

where Φ represents a rotational correction and Ψ an acceleration
correction. Φ + Ψ can be modeled as:

Φ + Ψ =

0 0 1− cosθk + txk 0
0 0 0 1− sinθk + tyk
0 0 1− cosθk 0
0 0 0 1− sinθk

 , (5)

being θk the rotation angle. Ψ̇ can instead be modeled as Ψ̇ =
[0d/2,d/2, tk]ᵀ, being tk = [txk, tyk], i.e. the accelerations to add
along the d dimensions. We extract the rotation angle first, and then
we estimate the acceleration from the remaining error present in the
model. In this way, we have extracted the parameters that define our
rule of motion over X̃k, i.e., µ̃k = {θk, t̃k}.

Clustering of GSs and parameters. After performing testing
with the NFF, and obtaining the GSs and parameters of motion along
the direction of attraction, i.e., {X̃k, µ̃k} , we use the Growing Neu-
ral Gas (GNG) [19] algorithm to cluster them. Therefore, clusters
group together similar states characterized by similar rules of mo-
tion. To each cluster S̃ = 1 . . . C is associated a mean value M (S̃)

and a covariance Q(S̃). A transition matrix T describes the proba-
bility of transitioning between clusters. Additionally, for each clus-
ter S̃, the rotation center r(S̃) and the mean velocity norm v(S̃) are
extracted; r(S̃) being obtained by supposing to move for each X̃k

using a θk equal to the mean θk of the cluster. Consequently, the
prediction model can be reformulated again: instead of using Eq. 4
to predict how X̃k will evolve in the next time instant, the normal to
the line between r(S̃) and Xk is found and v(S̃) is projected along
it and summed to Xk. The prediction equation can consequently be
reformulated through a non-linear function f written as follows:
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Fig. 2: (a): Training and Testing phases of G-MJPF. (b): Geometric representation of the used variables. (c): Driver behavior classification.

X̃k+1 = f(X̃k, r
(S̃), v(S̃)) + ωk, (6)

This model allows considering the possibility of having a primary
direction of rotation while not depending on the velocity at the pre-
vious time instant, as in Eq. 4, which made the model sensible to
noise and less robust for anomaly detection purposes. To note that
r(S̃) is extracted after clustering performance and not during it, to
avoid a noisy measurement of it. If clusters with similar motions
and in close positions happen to have different rotation points, clus-
tering can be refined, considering r(S̃) as additional clustering input.

Extraction of model for orthogonal space. Through the defi-
nition of the clusters and their respective type of motion, the features
related to the motivation that guides the agent have been extracted,
i.e., to find element v‖k in Fig. 2b. Based upon [11], also the mo-
tion orthogonal to the direction towards the attractor can be modeled.
These features are not related to an attractor but rather to the type of
agent performing the motion, e.g., how expert or uncertain it is. We
define this oscillation in the direction perpendicular to motion with
the name of vorticity, inspired by the homonym concept used in flu-
idodynamics.

For each time instant k of training data, based on the assigned
clusters, prediction is performed using r(S̃) and v(S̃) as defined in
Eq. 6. Consequently, the predicted velocity of the agent towards
the attractor is found, i.e., v‖k+1|k. The error related to this predic-
tion is extracted and projected along the orthogonal direction R̂k to
v‖k+1|k. We define this orthogonal error as ε⊥k. A Generalized Er-
ror (GE) is defined from it by considering its first time order deriva-
tive ε̇⊥k, i.e., ε̃⊥k = [ε⊥k, ε̇⊥k]ᵀ. The geometric representation of
the described variables is shown in Fig. 2b.

Clustering using GNG is then performed on the GEs. Conse-
quently, a set of V clusters S̃⊥ = 1 . . . V is extracted, each asso-
ciated with a mean value M S̃

⊥ and a covariance Q(S̃)
⊥ . A transition

matrix T⊥ is calculated too. To summarize, we build a model for the
orthogonal error using a base MJPF.

3.2. Testing phase

During the testing phase, anomaly detection is performed on a test-
ing dataset. In [9], as described in Section 2, a MJPF was used for the
purpose of anomaly detection. In this paper, we propose a modified
version of the MJPF, with more precise clustering and general mo-
tion rules, allowing the separation and combined tracking of motion

along the direction of attraction and along its normal. In the follow-
ing description, we will consequently concentrate on the differences
between the two algorithms.

DBN description. During the training phase, the vocabulary for
our G-MJPF has been learned; this can be assimilated to the learning
of a DBN. Fig. 1b displays the learned DBN: in black, we show the
variables related to the motion along the direction to the attractor,
highlighting in green the parameters at the base of motion; in orange,
we display the variables connected with the normal to the direction
towards the attractor; the writings in blue define the filter used to
perform prediction at the considered level. To note that the level
related to tk is reported below the one related to θk, as we suppose
for rotation angle θk to be extracted first, and acceleration tk to be
derived as remaining error.

MJPF description. As in the base MJPF, two steps are per-
formed: prediction and update.

During the prediction phase, at each time instant k, based on
the cluster associated to each particle of the Particle Filter (PF), we
perform a prediction of the GSs X̃k+1|k as seen in Eq. 6 for mean
value prediction, and the GSs-related rows and columns in Q(S̃) as
prediction covariance Q. As in the base MJPF, prediction at the clus-
ter level is performed using the transition matrix T , which is here,
however, built through a clustering over both GSs and parameters.

During the update phase, at each time instant k + 1, the mo-
tion parameters θk+1 and tk+1 are estimated as in the NFF, and the
state prediction X̃k+1|k is corrected based on the sensor observation,
similarly to how performed in [9]. Anomalies are extracted. Addi-
tionally, the orthogonal error εk is found for each particle prediction.
The error of the particle with the highest weight is given as input
to the parallel MJPF for tracking along the orthogonal direction R̂k.
Filtering in this MJPF is performed exactly as in [9].

Anomaly detection. During the update phase of the two par-
allel MJPFs, anomalies can be extracted on all levels of the hierar-
chical DBN. Using direct mean subtraction between prediction and
update or probabilistic measures based on the Bhattacharya distance
as in [9], anomalies on X̃‖k, θk, tk and ε̃k can be extracted. Us-
ing Kullback-Leibler Divergence as in [2], an anomaly at the cluster
level can be found. By decomposing the motion along its different
directions and parameters, it is now possible to explain the variable
at the base of each anomaly signal.
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Fig. 3: Anomalies at state level and cluster level (above) and at parameters level and orthogonal direction level (below) for AM (a), U-turn
(b) and ES (c) case.

Table 1: Comparisons between base MJPF [9] and G-MJPF

Prediction
model

Parameters
(µ̃k) filtering

Orthogonal
(ε̃⊥k) filtering Clustering

Base
MJPF [9] linear absent absent based on

GSs only

G-MJPF rotational
present for
improved

interpretability

present for
improved

interpretability

based on
GSs & motion

parameters

3.3. Behavior classification

The learned model and anomaly detection method can be used for
behavior classification as displayed in Fig. 2c. If we suppose to be
provided with N training datasets Zset

1 . . . Zset
N , one per behavior

class, we can learn a G-MJPF on each of them. The found clusters
of each set constitute a graph, as observed in [20]. Consequently,
we haveN GraphsG1 . . . GN . A Graph Matching procedure can be
performed on each graph couple to find which clusters correspond
to each other in the two graphs and to detect the clusters that are
discriminatory of a class. In this paper we consider a very simple
method to perform this task: when comparing a source graph Gs

with one of the N − 1 targets graphs Gt,1 . . . Gt,i . . . Gt,N−1, we
match the corresponding clusters by finding, for each cluster of Gs,
the cluster of Gt,i with smallest euclidean distance. Being Cs the
number of clusters of Gs, a set of Cs euclidean distances are found.
The mean is calculated over the sets obtained from all Gt,i, finding
the normalized cluster distances ds = {ds

S̃
}S̃=1...Cs

of Gs, with
s = 1 . . . N . The highest distances in the set represent clusters that
are more specific to the corresponding source graph, i.e., to the class.

When given a new dataset to perform classification, the N G-
MJPFs are applied in parallel on it, and the corresponding anomalies
at the different levels are extracted. The sequence of winning clus-
ters is also memorized, i.e., the clusters with the highest weight in
the PF at each time instant k. Each anomaly ak related to G-MJPF
s is modified as ak = ak ∗ (ds

S̃k
/max(ds) ∗ α + β). The use of

the cluster’s distances allows giving more importance in the classi-
fication to those clusters that have been identified as specific of the
particular class, providing interpretability also when multiple classes
are present. For each G-MJPF, anomalies across levels are normal-
ized and averaged over all time instants. The G-MJPF displaying the
lowest final anomaly corresponds to the final estimated class.

4. RESULTS

4.1. Dataset description

To test the proposed method, we use different datasets:
ICab data [21]: a dataset from a real vehicle called iCab, per-

forming Perimeter Monitoring (PM) of a closed environment during
training, and being hindered by the presence of pedestrians during

testing. Testing scenarios include Pedestrian Avoidance (PA), U-
turn, and Emergency Stop (ES). Fig. 3 displays the obtained anoma-
lies in the three cases.

UAH-DriveSet dataset [22]: a dataset for driver behavior anal-
ysis composed of various car sensory data from six drivers perform-
ing two routes (motorway and secondary road) with three types of
behaviors (normal, drowsy, and aggressive). In this paper, we used
the GPS and accelerometer data of five drivers from the dataset’s
motorway road. Due to GPS having a sampling rate of 1 Hz only,
we used a KF combining GPS and accelerometer data (10 Hz), to
obtain a 10 Hz estimation of trajectory data.

4.2. Results description

Anomaly detection on ICab data. We use PM data as training
and perform anomaly detection on AM, U-turn, and ES cases. Fig.
3 displays, above, the state and cluster anomalies. To note how state
anomalies are noisy, whereas cluster anomalies (KLDA) are better
but do not carry specific information about the cause of the anomaly.
Using the anomalies on the parameter space, it is now possible to
infer that angle of rotation anomalies are present in the avoidance
zone in Fig. 3a (in blue), in the U-turn motion and in the curves in
the opposite direction in Fig. 3b (in blue/red). Changes in acceler-
ation generate the noisy anomalies at the state level. Additionally,
in 3b, the very high anomalies at cluster level in the U-turn zone,
not corresponding to rotation or acceleration anomalies, are due to
performing motion in the opposite direction to that of training and,
therefore, to crossing clusters in an abnormal order. Anomalies on
the orthogonal direction are also displayed, corresponding to zones
where the vehicle oscillates (e.g., when performing avoidance).

Driver behavior classification on UAH-DriveSet dataset. For
each of the considered three driver behavior classes, we perform
training of the corresponding G-MJPF and extraction of cluster dis-
tances, excluding each time one of the five trajectories. We repeat
this for each trajectory. Then, each trajectory is used during testing
against the three models that did not include it. To perform classifi-
cation, we used five anomaly distances on the state along its direc-
tion of motion and on the motion parameters, setting α = 100 and
β = 2. Obtained accuracy was 73.33%.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a method to learn prediction models of the state
of an object along the direction towards its motivation and along the
orthogonal direction. A G-MJPF is developed to perform anomaly
detection and is additionally used for driver behavior classification.

Future work includes extending the proposed model to higher di-
mensional data, e.g., data from the combination of different sensors
or video data.
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