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Abstract
Morning glory disc anomaly is a congenital abnormality of the optic disc and peripapillary retina reported as an isolated condition
or associated with various anomalies, including basal encephaloceles and moyamoya vasculopathy. However, the co-occurrence
of these three entities is extremely rare and the pathogenesis is still poorly understood. Moreover, data on the surgical manage-
ment and long-term follow-up of the intracranial anomalies are scarce. Here, we describe the case of a 11-year-old boy with
morning glory disc anomaly, transsphenoidal cephalocele, and moyamoya vasculopathy, who underwent bilateral indirect
revascularization with encephalo-duro-myo-arterio-pericranio-synangiosis at the age of 2 years, and endoscopic repair of the
transsphenoidal cephalocele at the age of 6 years. A rare missense variant (c.1081T>C,p.Tyr361His) was found inOFD1, a gene
responsible for a X-linked ciliopathy, the oral-facial-digital syndrome type 1 (OFD1; OMIM 311200). This case expands the
complex phenotype of OFD1 syndrome and suggests a possible involvement ofOFD1 gene and Shh pathway in the pathogenesis
of these anomalies.
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Introduction

Morning glory disc anomaly (MGDA) is a congenital abnor-
mality of the optic nerve characterized by an enlarged and
funnel-shaped excavation of the peripapillary fundus with gli-
al tissue overlying the center of the disc, an annulus of
chorioretinal pigment, and spoke-like vessels radiating

outward from the edge of the anomalous disk [1]. Most cases
are isolated and unilateral, affecting females twice than males.
A constellation of associated anomalies has been described,
including midline craniofacial defects, cephaloceles, agenesis
of the corpus callosum, renal malformations, and intracranial
vascular anomalies [2, 3]. In particular, subjects with MGDA
may present an increased prevalence of intracranial fetal var-
iants, arterial agenesis, or moyamoya disease [2, 4].
Moyamoya vasculopathy is characterized by steno-occlusive
changes at the terminal portion of the internal carotid arteries
with formation of an abnormal vascular network at the base of
the brain [5–9]. Recently, Brodsky et al. suggested that there
may be a common denominator between MGDA and
moyamoya vasculopathy, since the absence of central retinal
vasculature in MGDA gives rise to compensatory
collateralization of chorioretinal anastomoses acting as a
“moyamoya” bypass system within the distal optic nerve
[10]. Of note, moyamoya syndrome is different from primary
or idiopathic moyamoya disease as it develops secondary to
an underlying disorder such as Down syndrome, sickle cell
disease, PHACE syndrome, neurofibromatosis or other
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RASopathies, or may occur after brain radiation therapy [5,
11]. Accordingly, the surgical management of Moyamoya
syndrome might be complex, since the long-term clinical
course may be complicated by the frequently unpredictable
natural history of the associated disorder [7, 11, 12].

Another interesting association of MGDA is with basal
cephaloceles, raremalformations characterized by evagination
of intracranial structures through a congenital defect of the
anterior skull base and dura [13]. In particular, MGDA are
associated with sphenoidal cephaloceles and milder midline
cranial defects rela ted to the persis tence of the
craniopharyngeal canal [3, 4, 14, 15]. The craniopharyngeal
canal is a well-corticated defect through the midline of the
sphenoid bone from the sellar floor to the anterosuperior na-
sopharyngeal roof, likely originating from incomplete closure
of the Rathke pouch, the precursor of the adenohypophysis
[16]. Recently, the persisting embryonal infundibular recess, a
funnel-shaped liquoral space of the third ventricle floor ex-
tending into the pituitary stalk, has also been reported in asso-
ciation with MGDA [17]. Intriguingly, this malformation
might be considered the mildest form of Rathke pouch’s de-
fective closure.

Of note, the co-occurrence of MGDA, moyamoya vascu-
lopathy, and basal cephalocele is extremely rare with only
three patients described so far [18–20]. The pathogenesis of
these combined anomalies is poorly understood, and the ge-
netic cause is still unknown. Moreover, data on the surgical
management and long-term follow-up of moyamoya vascu-
lopathy and basal cephalocele in MGDA are scarce. Notably,
information on the optimal timing and long-term effects of
surgical revascularization in these subjects might have impor-
tant counseling implications for parents.

Here, we describe the clinical, neuroimaging, and genetic
features of an 11-year-old boy with MGDA, mild midfacial
defects and digital anomalies, who underwent bilateral indi-
rect revascularization for moyamoya vasculopathy at the age
of 2 years and transsphenoidal repair of a spheno-
nasopharyngeal cephalocele at the age of 6 years.

Clinical report

The boy is the first child to a healthy Brazilian mother and an
Italian father. He was born full-term without perinatal compli-
cations. During the neonatal period, rotational nystagmus was
noted in both eyes. Fundus examination revealed bilateral
MGDA. Brain MRI and head CT performed at 6 months of
age showed bilateral MGDA associated with a small
transsphenoidal cephalocele (Fig. 1a–c). At that time, no ce-
rebral vascular anomalies were found, except for the presence
of right persistent trigeminal artery and fetal origin of the left
posterior cerebral artery. The abdominal ultrasound was nor-
mal. At the age of 2 years, he presented with acute drowsiness,

transient right hemiparesis, gait disturbances, and
hyperreflexia. Brain MRI with arterial MR angiography
(MRA) depicted an acute ischemic infarct in the left posterior
medial frontal and parietal lobes and bilateral moyamoya vas-
culopathy with involvement of both anterior and posterior
circulation (Fig. 1d, e). Continuous heparin infusion
(15UI/kg/h) was immediately started and then switched to
antiplatelet therapy (aspirin dose 4 mg/kg die). A digital sub-
traction angiography confirmed the diagnosis of a Suzuki
stage IV moyamoya vasculopathy (Fig. 1f, g).

Three weeks after the ischemic event, the patient
underwent left indirect revascularization with encephalo-du-
ro-myo-arterio-pericranio-synangiosis (EDAMPS), followed
3 months later by right EDAMPS. The patient showed a good
recovery and regression of neurological symptoms. Serial
follow-up brainMRI andMRAwith perfusion studies showed
bilateral development of pial collateralization in the sites of
surgical revascularization with marked improvement of brain
perfusion (Fig. 2).

At the age of 6 years, the patient started complaining of
headache with no other neurological symptoms or endocrine
deficits. Brain MRI and MRA did not show new ischemic
lesions, vascular changes, or worsening of the brain perfusion,
while the transsphenoidal cephalocele was increased in size.
Therefore, transsphenoidal repair of the spheno-
nasopharyngeal cephalocele was performed. In details, using
endoscopic endonasal approach, the sac was isolated and par-
tially removed, and the defect was reconstructed with a
nasoseptal flap to prevent the risk of cerebrospinal fluid leaks.
The postoperative course was uneventful, and the headache
resolved. The postoperative brain MRI demonstrated marked
reduction of the cephalocele volume.

Two years after surgery, the patient showed reduced
growth velocity with low IGF1 levels (30 ng/ml, n.v. 61–
356). Glucagon stimulation test showed a GH peak value of
0.38 ng/ml, compatible with GH deficiency. Treatment with
recombinant human growth hormone (rhGH) was therefore
started. At the age of 9 years, TSH level was found to be
low and treatment with levothyroxine was started.

At last evaluation, at the age of 11 years, his height was
98 cm (< 3rd centile), his weight was 18.5 kg (75th centile),
and he had an OFC of 48.5 cm (< 3rd centile). On physical
examination, he presented rotational nystagmus, ptosis,
hypertelorism, a pit in the midline of the philtral groove, short
neck, brachydactyly, clinodactyly of the V digit bilaterally,
short toes, broad hallux bilaterally, and micropenis (Fig. 3).
Brain MRI and MRA demonstrated stable vascular features
and brain perfusion. Psychomotor evaluation revealed a nor-
mal IQ (104) according to Wechsler Preschool and Primary
Scale of Intelligence (WPPSI). Array-CGH detected a de novo
1.39 Mb duplication on 11q14.1 band of chromosome 11
(77,888,679–79,278,347x3) (hG19) that was considered not
pathogenic. Given the midline defects of skull base and
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philtrum associated with minor anomalies of hands and feet,
reminiscent of the oral-facial-digital syndrome type 1 (OFD1;
OMIM 311200), target sequencing of OFD1 was carried out.
A n o v e l h e m i z y g o u s m i s s e n s e v a r i a n t ,
c.1081T>C,p.Tyr361His (NM_003611.2), was detected in
the boy and in his healthy mother. This variant has never been
reported in the literature or in any public database, including
gnomAD. The p.Tyr361His is a change of an evolutionary
conserved amino acid and is predicted deleterious by several
predictive tools (PolyPhen, SIFT, FATHMM, CADD,
DANN, GERP, LRT, Provean, MetaLR, MetaSVM,
MutationAssessor). Although c.1081T>C,p.Tyr361His is
classified as a variant of uncertain significance according to
the American College of Medical Genetics and Genomics
(ACMG) guidelines, it holds two criteria, namely PM2 (ab-
sent in gnomAD) and PP3 (multiple lines of computational
evidence supporting a deleterious effect) that suggest a possi-
ble pathogenic role. However, given the lack of other clinical
features of OFD1 and the finding of MGDA and moyamoya

vasculopathy never reported before in this syndrome, we per-
formed whole-exome sequencing (WES) through a trio-based
approach to seek other possible pathogenic variants. Data
were processed using in-house analytical pipelines that in-
clude publicly available tools and custom scripts. We looked
at non-synonymous exonic and splicing variants with a minor
allele frequency ≤ 0.001 in gnomAD database and we did not
identify any possible deleterious variants in any other genes.

Discussion

The etiology of MGDA, basal cephaloceles, and moyamoya
vasculopathy is poorly understood, also due to the lack of
genetic testing in subjects with this peculiar phenotype.
Here, we describe the case of an 11-year-old boy with
MGDA, mild midfacial defects, digital anomalies, moyamoya
vasculopathy, and sphenoid cephalocele, who harbored a new
rare missense variant in OFD1. This gene is responsible for

Fig. 1 Preoperative imaging findings of the patient. a, bBrainMRI and c
CT scan performed at 6 months of age. d, e Brain MRI. f, g Digital
subtraction Aagiography performed at 2 years of age. Sagittal T2
heavily weighted (DRIVE) (a) and T1-weighted (b) images reveal a
spheno-nasopharyngeal cephalocele with herniation of the pituitary gland
and third ventricle through a sphenoid bone defect. The pituitary gland is
flattened against the clivus (arrowhead, b). The optic chiasm is distorted
and displaced downward (arrowhead, a). c 3D CT scan, sagittal MPR
reconstruction demonstrates a large craniopharyngeal canal (empty ar-
row). d Axial diffusion-weighted imaging performed at 2 years of age
demonstrates an acute ischemic infarct in the left medial parietal and

frontal lobes (thin arrows). e Axial T2-weighted image shows multiple
tiny flow voids in the basal cisterns consistent with moyamoya vascular
collaterals (empty arrow). Note the bilateral optic nerve funnel-shaped
excavations with associated abnormal soft tissue and discontinuity of
the normal uveoscleral coat at the optic nerve insertions, in keeping with
MGDA (arrowheads). Preoperative digital subtraction angiography, fron-
tal views, internal carotid artery injections (f) and left vertebral artery
injection (g) confirm the diagnosis of moyamoya disease with bilateral
stenosis of the supraclinoid carotid arteries, anterior cerebral arteries, and
left posterior cerebral artery, and the typical “puff of smoke” sign due to
the presence of compensating vascular networks (arrowheads)
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Fig. 2 Brain MRI studies with MRA and arterial spin labeling (ASL)
perfusion acquired before (a–c) and 1 year after surgery (d–f). a Axial
FLAIR image reveals linear high signal intensity along the cortical sulci
in both cerebral hemispheres, in keeping with diffuse prominent
leptomeningeal collaterals. b Arterial MRA shows bilateral moyamoya
vasculopathy with stenosis of distal portion of both internal carotid arter-
ies (arrows), severe stenosis of right middle cerebral artery, posterior
circulation involvement, and basal moyamoya collateralization (asterisk).

c ASL perfusion map reveals hypoperfusion of both middle cerebral
artery territories, in particular of the right frontal lobe and left parietal
lobe. d Axial FLAIR image after surgery demonstrates resolution of the
leptomeningeal collaterals. e Postoperative MRA demonstrate develop-
ment of pial collateralization in the sites of surgical revascularization
(arrowheads). f ASL perfusion map unravels marked improvement of
the CBF in the middle cerebral artery territories after surgery (thick ar-
rows). Color bar indicates ml/min/100 g for ASL-CBF.

Fig. 3 Clinical findings of the
patient. a, b Ptosis, hypertelorism,
a pit in the midline of the philtral
groove. c Bilateral brachydactyly
and clinodactyly of the V digit
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the oral-facial-digital syndrome type 1 (OFD1; OMIM
311200), a X-linked-dominant male-lethal ciliopathy charac-
terized by malformation of face, oral cavity and digits, cystic
kidney disease, and a wide spectrum of brain malformations
[21]. Of note, OFD1 mutations have recently been associated
to novel phenotypes outlining the wide phenotypic spectrum
of ciliopathies [22]. However, sphenoidal encephalocele,
MGDA, and moyamoya vasculopathy have never been asso-
ciated with OFD1 mutations. To date, the majority of OFD1
mutations are small insertions or deletions, whereas missense
mutations are rarely reported [22]. Therefore, we hypothesize
that the missense variant in our patient might have contributed
to the milder clinical features, as the function of the resulting
protein might not be critically damaged.

As for other ciliary proteins, it has been demonstrated
in vivo and in vitro that Ofd1 inactivation leads to defective
sonic hedgehog (Shh) [23]. Interestingly, the phenotypic anal-
ysis of Ofd1-/- mouse demonstrates a crucial role of Shh sig-
naling in the closure of the craniopharyngeal canal [24]. In
mammals, the craniopharyngeal canal (also known as
buccohypophyseal canal) usually closes in the early stages
of development. Remarkably, Ofd1-/- mutant mouse show a
wide basisphenoid defect with inferiorly displaced pituitary
tissue [24]. Moreover, a small sphenoid ossification defect
below the pituitary gland and an incomplete median cleft of
the upper lip similar to the present case have been observed in
a patient carrying an OFD1 mutation [24]. Taken together,
these data suggest that missense OFD1 variants may lead to
midline cranial defects, such as the persistence of the
craniopharyngeal canal and transsphenoidal cephaloceles. Of
note, hedgehog signaling also regulates optic fissure and stalk
formation during vertebrate eye morphogenesis [25]. Ofd1
inactivation by injection of antisense morpholinos in zebrafish
causes the incomplete fusion of the choroid fissure of the eye
resulting in a retinal coloboma similar to MGDA [26].
Interestingly, retinal atrophy and thin optic nerves have been
detected in a small cohort of females withOFD1 variants [27,
28]. Therefore, we speculate that OFD1 might also indi-
rectly interfere in the closure of the posterior aspect of
the fetal optic fissure, leading to MGDA. Finally, dis-
ruption of the Shh signaling may also be implicated in
moyamoya vasculopathy, taking into account the pivotal
role of this gene in vessel formation and remodeling.
Indeed, an increased vascularization of neuroectoderm
after Shh overexpression has been reported [29]. On
the other hand, the attenuation of Shh response by
blocking Shh signal causes hemorrhage and damage in
branching and remodeling of the aortic arches [30].
Interestingly, moyamoya vasculopathy has been de-
scribed in other ciliopathies, such as autosomal domi-
nant polycystic kidney disease and Kartagener syndrome
[31, 32], indicating that primary cilia have important
roles in cardiovascular diseases [33].

Regarding the clinical and neuroimaging features of this
patient, it is noteworthy that the first brain MRI performed at
the age of 6 months did not reveal any vascular abnormality,
except for two fetal variants. Subsequently, the rapid onset
and progression of moyamoya vasculopathy lead to a cerebral
ischemic infarct at the age of 2 years of age. This raises an
important point related to the screening and surveillance of
intracranial vascular anomalies in individuals with MGDA
and basal cephaloceles. Indeed, moyamoya arteriopathy is as-
sociated with the highest odds of having recurrent ischemic
strokes in children, with relevant consequences for the clinical
outcome and quality of life [34]. Moreover, early-onset
moyamoya vasculopathy demonstrates rapid disease progres-
sion and results in poorer clinical outcomes [35]. Therefore, as
suggested by Seung-Ki Kim [35], early surgery seems indi-
cated for young patients with moyamoya vasculopathy, al-
though controlled studies with long-term follow-up monitor-
ing are needed to define the actual benefits of revasculariza-
tion in these cases. In the present case, we decided to perform
bilateral revascularization surgery considered both the ische-
mic complication and the extended bilateral reduction of ce-
rebral blood flow identified at brain MRI perfusion studies
[36]. Due to the inadequate caliber of the superficial temporal
artery, instead of a combined direct-indirect revascularization,
we opted for EDAMPS, which was bilaterally performed with
a 3-month interval. Indeed, it has been demonstrated that in-
direct revascularization improves cerebral hemodynamics and
reduces the incidence of subsequent ischemic events in chil-
dren with moyamoya vasculopathy [8, 37, 38]. Accordingly,
in the present case, we noted regression of the ivy sign on
FLAIR images and marked improvement of cerebral blood
flow on ASL studies after surgery. Of note, these results were
stable 9 years after direct revascularization, and the patient did
not experience additional cerebral ischemic infarcts.

Headaches may arise from intra and/or extracranial pain-
sensitive structures such as skin, muscles, blood vessels, dura
mater, and cranial nerves. In the present case, the onset of head-
ache at 6 years of age was not associated with worsening of the
moyamoya vasculopathy and/or brain perfusion. Conversely, an
increase in size of the transsphenoidal cephalocele was observed,
in the absence of endocrinological problems. Of note, headache
has been reported in subjects with transsphenoidal cephaloceles,
likely related to the mass effect or the traction on adjacent struc-
tures, such as the optic chiasm and pituitary gland [39].
Moreover, in a retrospective study, Fleseriu et al. demonstrated
improvement of intractable headache after surgery of small sellar
lesions, such as pituitary microadenomas or Rathke cleft cysts
[28]. Therefore, we decided to repair the spheno-nasopharyngeal
cephalocele using a transsphenoidal approach. Indeed, despite
the continuous advancement of technical surgeries,
transsphenoidal approach is still considered the gold standard
for skull base surgery [40–43]. According to Yang et al., the
transsphenoidal approach may be the optimal treatment for the
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management of many symptoms related to transsphenoidal
cephaloceles, and patients with milder preoperative symptoms
have a better prognosis [43]. In the present patient, the headache
resolved after transsphenoidal surgery. On the other hand, pitui-
tary hormone deficiency emerged 2 years after the intervention.
We cannot exclude that hypopituitarism might be related to the
surgical intervention. However, the long interval from surgery
and the onset of similar symptoms in non-operated subjects in-
dicate that hormonal problems are part of the natural history of
sphenoidal cephaloceles, as previously reported [44].

Conclusion

In conclusion, this case provides insights on the potential role
of OFD1 in MGDA, basal cephalocele, and moyamoya vas-
culopathy. However, functional studies are needed to shed
light on the role of this gene and Shh signaling in the patho-
genesis of this rare triad. Regarding the clinical and surgical
management, this case underlines the importance of screening
and surveillance of moyamoya vasculopathy in individuals
with MGDA and basal cephaloceles, especially considered
the possibility of early revascularization that might improve
the clinical outcome. Finally, surgical management of the bas-
al cephalocele might be pondered in the presence of symp-
toms that may not be attributed to other causes.

Abbreviations MMD, Moyamoya disease; MGDA, Morning glory disc
anomaly; OFD, Oral-facial-digital; WPPSI, Wechsler Preschool and
Primary Scale of Intelligence; BHC, Buccohypophyseal canal; GH,
Growth hormone; TSS, Transsphenoidal surgery; MRI, Magnetic reso-
nance imaging; TSH, Thyroid-stimulating hormone; FLAIR, Fluid-atten-
uated inversion recovery; EDAMPS, Encephalo-duro-myo-arterio-
pericranio-synangiosis; MRA, Magnetic resonance angiography
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