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Abstract

Augmented Reality (AR) is a technology that has been growing in interest in
the past decade. Many factors are currently hindering its distribution to the
general public. The heavy processing requirements, hardware limitations, and
the need for an easy to use portable/wearable device are still problems to
be addressed. The AR field is currently split between the use of widespread
devices (smartphones) for easily deployable applications, and the use of high-
end Head Mounted Displays (HMD), which are generally very expensive, and
often require a cumbersome tethered high-end computer rig to the side. In the
next evolution of Wearable devices and Internet of Things, Augmented Real-
ity can play a key role in the human-computer interaction field. The potential
of having access to computational capabilities embedded in a simple pair of
glasses is huge, from professional applications (in medicine, industry, design)
to every-day’s life. Augmented Reality problematics are strictly related to the
way the registration and visualization are performed. During registration, a
model of the environment is obtained through several sensors (often with cam-
eras). The obtained model is then used to digitally augment the image with
additional images before conveying the merged view to the user. This process,
however, is still far from being perfect. The environmental registration is cur-
rently a computationally complex task, which leads to very simplified models,
that often hinder the development space. Different visualization techniques
also have a different impact on the users, due to the introduction of parallaxes
and latencies, which cause several artifacts and perception issues.

To this aim, we developed a registration framework that can be used to
develop augmented reality environments, having all the real (including the
users) and virtual elements co-localized and registered in a common reference
frame. Specifically, several devices are calibrated and aligned in a common ref-
erence frame, and measurements are captured with an external independent
common measurement system. The proposed framework is based on method-
ologies that can be used for any device.

We then used the proposed framework to create AR scenarios, to assess the
optical and perceptual differences of different types of AR HMDs and their
impact on the interactivity. The methodology involves the design of several ex-
perimental sessions under rigorous, repeatable conditions, and the subsequent
evaluation of performances. Residual errors, user experiences end perform-
ances were evaluated considering both quantitative and qualitative metrics
derived from the collection and the analysis of heterogeneous, unbiased data,
and self-assessment questionnaires.

Our results show that depth perception appears to be compressed when
using several AR HMDs, potentially hindering the interaction with AR envir-
onments. The effect is particularly prominent when fewer cues and feedbacks
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are provided. If the users are able to perform a visual alignment between the
real and virtual geometries, however, an effective interaction can be achieved,
even if the overlap is not perfect.
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1
Introduction

Augmented Reality is a multidisciplinary research area which resides in the
human-computer interaction field. To understand the mechanisms behind hu-
man memory, perception and the sensory system, it may be necessary to delve
into several fields, like psychology, neurobiology, and other cognitive sciences.
Some issues are related to ergonomics (both cognitive and physical). Finally,
the hardware and implementation require competences in several computer
science sub-fields, like computer graphics, computer vision, artificial intelli-
gence. Complementary requirements are also knowledge in graphic design
and aesthetics, in order to properly design graphical interfaces that can prop-
erly deal with the information/knowledge visualization.

Augmented Reality has had a widespread success in the last decade, how-
ever, being a constantly evolving sector, research in this area is very rich and
diversified, with lots of open questions, issues to be solved and aspects requir-
ing further investigations, from hardware implementation to graphics, from
user experience to interaction. Furthermore, with the diffusion of this new
technology, the areas of application are multiple and diverse. The following
part, thus, aims at giving the reader a complete overview of the specific con-
text and motivation of the research work presented in this thesis and highlights
its contributions.

1



1.1 context 2

1.1 Context

One of the key aspects of Augmented Reality is achieving a seamless integra-
tion of virtual and real sensory information. This has proven to be all but a
trivial task for pretty much every sensory modality; when considering vision
only, the current commercial solutions are still facing several problematics. A
seamless visual alignment of the AR content requires a perfect knowledge of
the optical model, which includes the user’s vision system (which, of course,
changes for every user) and the distortions introduced by the visualization
device itself. The surrounding environment must also be tracked or recon-
structed, which requires advanced SLAM capabilities, and a non-trivial com-
putational cost. Indeed, to be able to run computationally heavy algorithms,
some devices must be tethered to an external PC, hindering the interactivity
and somewhat going against their wearable nature.

The spread of AR research has led to many different kinds of visualization
devices, such as handheld ones (smartphones, tablets), HMDs, smart glasses,
and so on. Researchers thus started to investigate the differences between dif-
ferent engineering approaches and solutions to convey the visual augment-
ation. Specifically, different visualization devices, having a different optical
model, potentially lead to a different perception of the real-virtual overlap,
which thus also leads to interaction differences within the AR environment.

Experimenting with several different AR devices, however, is not trivial, as
different HMDs usually do not share the same tracking systems, and often lack
a robust spatial tracking system for the user interaction. It is therefore neces-
sary that all the devices are calibrated and aligned (registered) in a common
reference frame, and that measurements are done with an external independ-
ent common measurement system. The current work focuses on the perceptual
differences between optical see-through (OST) and video see-through (VST)
head-mounted displays (HMD), and the implications of those differences in
the perception-interaction loop. The context of this work is thus in a research
setting, but results found can be generalized to any context where multiple
AR devices are required, e.g. in shared (multi-user) AR.

1.2 Motivation

Knowledge workers, technicians, manufacturing employees, are required to
perform data-intensive tasks every day. Accessing, analyzing, and acting on
large quantities of information on several different devices. For employees in a
number of industries, AR has the potential to be a game-changer in how they
can interact with and share information, in a more natural way.

For instance, employees on a factory floor would be able to view instruc-
tions in real-time—when and where it’s contextually appropriate—instead of
flipping through a cumbersome and distracting training manual. Utilizing AR
technology will enable employees to reduce time, cost, and error. According
to the Augmented Reality for Enterprise Alliance [3], "As enterprises begin to



1.2 motivation 3

rapidly develop connected infrastructure, from manufacturing to logistics, and
ultimately to the consumer, massive amounts of data are being collected and
used for analysis. AR can provide a data to human interface, allowing workers,
managers and executives to see the world augmented with a rich dataset."

Forrester Research [30] reports that nearly 14 million workers will utilize a
wearable by 2025, up from 400,000 workers in 2017, representing a 57% growth
per year. A few companies have already started to explore AR’s potential as a
technological investment that will reward in terms of efficiency, productivity,
training, and a number of other relevant use cases.

For those brands who want to deliver richer customer experiences and in-
crease sales, AR offers plenty of opportunities to transform the way that cus-
tomers purchase products. For instance, IKEA leveraged AR’s technology to
enable customers to test drive their products in real-time by providing them
use of an AR catalogue app that allowed them to visualize how a piece of
furniture would look in their home prior to purchase, utilizing the techno-
logy’s immersive capabilities to create a differentiated purchase experience
that’s tailored to customer service needs. Combining improved customer ser-
vice with a technology that removes barriers from the purchase pathway dir-
ectly leads to increased sales.

Another useful ability of AR’s technological potential for the enterprise re-
volves around its 3D technology. Designers and creatives could interact with
highly immersive 3D visualizations that will allow them to refine models in
real-time, ultimately communicating what a finished product is like in a more
realistic manner than the flatness of 2D designs. Businesses in a number of
different industries could benefit from this enhanced model visualization: en-
abling designers, architects, city planners and others to validate design ideas
early and often, ultimately saving these individuals and their companies’ time
and effort.

With this research, I am planning to explore some of the core problematics
tied to this technology. Some of them are caused by the way humans perceive
visual information, and how to adjust the provided stimulus to best fit our
visual system. Then, we have the interaction aspect, thus how to achieve an
affordable interaction taking into account the bio-mechanical restrictions of the
human body and the technological limitations of the devices (e.g. lack of haptic
feedback). Moreover, we must investigate the possible benefits of using this
technology as aB tool for both professional use and general public applications
(e.g. to increase productivity, learning, and so on). The functionalities of AR
devices are also driven by their ability to gather all the required information
through visual data, thus needing vast use of computer vision techniques as
well.
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1.3 Contribution

The main contribution of this thesis is a registration framework that can be
used to develop augmented reality environments, having all the real (includ-
ing the users) and virtual elements co-localized and registered in a common
reference frame. The framework is divided in several modules which handle
the registration of all the devices and tracking systems in the same reference
frame, in such a way that all the data collected can be coherently compared.
All the software modules are provided in a GitHub repository, including the
instructions to setup an experimental scene in Unity, and all the 3D print-
able files and electronic schematics used in this study. The code documenta-
tion, with the explanation of each class parameter and usage instructions, is
provided as appendix to this thesis.

The framework has been validated with quantitative parameters derived
from the analysis of the accuracy and residual error of the different elements
of the setup, i.e. for the OST HMD we considered the residual reprojection
errors of the stereo calibration between the virtual cameras representing the
user’s eyes and the real cameras of a mannequin that wore the HMD to collect
the data, the misalignment error (expressed as Euclidean distance) between
the points a virtual checkerboard and a real (tracked) one, and its distribu-
tion across the plane orthogonal to the optical axis of the user. For the user’s
interaction tracking device, we measured the accuracy and precision of the
tracked finger tip 3D world positions with respect to the baseline obtained
with the (more precise) HTC Vive Lighthouse system. The proposed method-
ologies and modules are independent to each other and can be combined and
generalized to work with different HMD or tracking sensors (e.g. MOCAP).

We then developed several experimental sessions to investigate the perform-
ance and user experience of users of different AR devices. The main research
question was to establish the perceptual differences with the focus on spa-
tial perception (e.g. depth perception) when using different HMDs, and to
establish what cues allow the users to achieve an effective interaction. We con-
sidered three cases: in the first one was based on reaching tasks, to observe
the differences between a monocular VST and a stereo OST HMDs. In this
case, the devices were not synchronized with each other, hindering the ob-
tained data analysis. The second case was a blind reaching task which has
been performed with the proposed framework in a controlled setting. The aim
of this experiment was to isolate the visual perceptual error in the reaching
task by removing the visual alignment cue by using the blind paradigm. The
last case, also carried out with the proposed framework, was an interaction
task, where people had to move objects in a scene containing both real and
virtual elements.

The data obtained during these experimental sessions is composed both of
quantitative and qualitative data such as the positions and rotation of the
user’s hands, head, and fingertips, and self-assessment validated question-
naires. We thus evaluated both the accuracy and precision of the user’s in-
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teraction, and their user experience, in terms of immersion and development
of cyber-sickness and eye fatigue symptoms.

The work presented in this thesis has been the subject of several peer-reviewed
publications. Specifically, the whole study has been published on IEEE Access
[8], with the title ’A Registration Framework for the Comparison of Video and Optical
See-Through Devices in Interactive Augmented Reality’ . The OST HMD registra-
tion, described in Section 3.0.1, has also been published in a separate study
’Assessment of Optical See-Through Head Mounted Display Calibration for Interact-
ive Augmented Reality’ at the proceedings of the IEEE International Conference
on Computer Vision Workshops (2019) [7]. Finally, the experimental setup de-
scribed in Chapter 4.1 has been published at IEEE International Symposium
on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (2018), with the
title ’Perception and action in Peripersonal Space: A Comparison Between Video and
Optical See-Through Augmented Reality Devices’ [9].

1.4 Outline

In the next chapters, first, I will briefly introduce state of the art technologies
and software frameworks currently available for AR, devices and approaches
for interaction, highlighting their pros and cons, potentialities and limitations
(Chapter 2).

Then, I will explain how my research on the development of an AR regis-
tration framework (Chapter 3) has been articulated, with particular attention
to the specifically developed methodologies and software modules, and I will
present obtained results.

Chapter 4 will then describe three studies, performed for the evaluation of
human perception and natural human computer interaction, which have been
designed using the proposed framework described in chapter 3.

Finally, I will discuss the obtained findings with respect to the original re-
search questions (Chapter 5) and will identify some open issues and possible
future developments (Chapter 6).

The devised registration framework is publicly available online [6] licensed
under The Unlicense (a license with no conditions whatsoever which dedicates
works to the public domain [1]): unlicensed works, modifications, and larger
works may be distributed under different terms and without source code. The
repository documentation is provided in the appendix section of this docu-
ment.



2
Background

The following part aims to include all the state of the art necessary to the under-
standing of the research work described in this thesis. As different topics were
involved, i.e. perception and interaction within an augmented environment
and User Experience Assessment, this part incorporates multidisciplinary and
heterogeneous information.

6
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2.1 AR Devices

AR systems started to spread in commercial applications in the past decade,
but the first working prototypes have emerged since the 90’s. AR systems cre-
ate an experience where the real world is enhanced by computer-generated
information, usually with a combination of different sensory modalities such
as visual, auditory and haptic. AR is often confused with Virtual Reality (VR):
the difference is that in a VR experience, the user is immersed in a completely
virtual world, while in an AR experience the computer-generated information
is blended with the physical world. Both technologies reside on the Reality-
Virtuality continuum first introduced by Paul Milgram [60] to disambiguate
between different compositions of virtual and real information. Sometimes AR
and Mixed Reality (MR), which includes the whole spectrum from Augmented
Reality to Augmented Virtuality, are used as synonyms, to simply disambigu-
ate from completely real and completely virtual (VR) experiences.

Figure 1: In the Reality-Virtuality continuum introduced by Paul Milgram, AR resides
in the Mixed Reality area, where the majority of the information comes from
the real physical environment.

AR has also been defined [104] as a system that fulfills three basic features:
a combination of real and virtual worlds, real-time interaction, and accurate
3D registration of virtual and real objects. By that definition, many devices
which are commonly referred as AR (e.g. smart glasses such as Google Glass)
cannot be truly considered AR devices, since they lack any form of environ-
ment registration: the displayed augmentation is completely incoherent with
the real world, thus the benefits over using a normal display are merely the
ability to keep the hands free for other operations (e.g. during surgeries) and
the possibility of keeping focus on the current task (e.g. while driving).

Every AR system that aims at believably blending real and virtual inform-
ation must thus be composed by two main modules: the first one addresses
the environment registration, and thus creates a model of the real world using
measurements from some kind of sensor (e.g. RGB/RGB-D cameras, inertial,
GPS). The second one uses the model obtained during the registration phase
to blend (in the most realistic way possible) digital information to the scene,
aligning the digital information to the model and maintaining the alignment
over time. Real-time interaction can then be performed by leveraging on these
two systems. The model obtained during the environmental registration can
have different forms and complexities, and is not necessarily computed in real-
time. In some cases the model can be as simple as a single plane aligned to the
floor plane or to a tracked QR code, which can both be detected by with a cam-
era. To build more complex AR applications, the full 3D reconstruction of the
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environment (possibly enriched by contextual information) may be required
instead.

The most common sensory modality virtually enhanced in AR is the visual
one, thus the most widespread AR devices for single users are HMDs, hand-
held (e.g. smartphones or tablets), or Heads-up displays (HUDs). Regarding
AR applications where multiple users are involved, current approaches involve
using either several devices registered in the same common reference frame, or
a single system (e.g. a projector) to display the visual information to everybody.
The latter case is usually referred as spatial AR (SAR).

The different devices available for AR differ for several factors, due to the dif-
ferent way the environment is registered and the way the digital information
is blended and conveyed to the user. AR HMDs have been hugely researched
in the past years and still are, at the moment, possibly the only option to
produce AR applications where the user performs complex interactions with
the augmented environment. Depending on the optical system (see Figure 2),
AR HMDs are usually referred either as Optical See-Through (VST) or Video
See-Through (VST).

In OST HMDs, the augmentation is usually projected on semi-transparent
mirror lenses, and the user can see the real world directly through the lenses.
Notable examples are the Microsoft Hololens 2, the Magic Leap One, the
Meta2, or the Epson Moverio BT-300.

In VST HMDs, the video feed of one or more front facing cameras is por-
trayed in a display in front of the user’s eyes, together with the digital aug-
mentation. Most VR HMDs can thus be converted to AR VST HMDs by adding
at least one camera to the HMD. Handheld devices, such as smartphones or
tablets, also works as VST.

Figure 2: The two main techniques used by AR HMDs to blend virtual and real im-
ages: through semi-transparent mirrors (OST) or by displaying the video
feed of a camera to a screen in front of the user eyes (VST).

Since this study is focused specifically on AR HMDs, in the next sections the
differences between VST and OST HMDs will be discussed in detail.
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2.1.1 Optical See-Through Head Mounted Display (OST HMD)

Most manufacturer at the moment are leaning towards OST HMD designs,
such as the Microsoft Hololens, the Meta2 by Metavision, the Magic Leap or
the Epson Moverio BT-200 (See Figure 3).

An advantage of OST HMD is a lower restriction of the user’s field of view
(FoV), which doesn’t necessarily mean the augmentable area is bigger than
VST HMDs: rather, the user can still see through the unaugmentable areas of
the transparent lenses.

Figure 3: Some examples of commercially available OST HMDs: Microsoft Hololens
(top left), Meta2 by Metavision (top right), Magic Leap (bottom left) and
Epson Moverio BT-200 (bottom right).

OST HMDs are also safer to use regarding critical-case scenarios, as a power
or system failure would not completely blind the user. However, the semi-
reflective nature of the lenses blocks some of the light, producing similar view-
ing conditions of sunglasses or tinted shade glasses, which may be undesirable.
Different OST HMDs reflect a varying amount of light (e.g. notice the differ-
ence between the lenses shade between the Hololens and Meta2 in 3). More
reflective lenses are able to better occlude the real world with the projected im-
agery, i.e. holograms are perceived as being less translucent, but blocks more
light from the real environment, and vice versa.

With OST HMDs, the impact of latency is different than VST HMDs: while
in VST the refresh rate of the camera feed is fixed (synchronized) for both the
real and virtual content, on OST HMD the latency obviously affects only the
virtual projection. This may break the spatial blend perceived, until the user’s
head slows down and allow the HMD to catch up, which somewhat causes an
interruption of the achieved suspension of disbelief.

Some OST HMDs needs to be tethered to an external computer due to
several reasons such as computational requirements or heat dissipation (e.g.
Meta2), but the HMDs tracking is usually performed through SLAM (Sim-
ultaneous Localization and Mapping) algorithms performed with the HMD
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sensors alone. Several HMDs (e.g. Hololens, Magic Leap) already evolved to
the fully wearable state, which is a key usability condition for every large scale
AR applications such as in industrial contexts.

An advantage of OST HMDs is that it leads to a lower amount of parallaxes
in the optical system with respect to the VST HMD: indeed, in VST HMDs
the projection of the real world is captured by a camera which does not have
the same optical center neither of the user’s eyes nor of the displays through
which the camera feed is displayed. In OST HMDs, the real world projection
is merely passing through a semi-transparent lens with minimal distortion,
which by itself should lead to a lower impact on the user strain. Assuming the
lens distortion is minimal or comparable to normally worn glasses, only one
parallax can be introduced, if the transformation between the HMD tracking
(e.g. the camera optical center, if it is being tracked visually) and the user’s eye
is unknown (i.e. the HMD is not calibrated). More details on the calibration of
OST HMDs will be discussed later, in section 2.4.

2.1.2 Video See-Through Head Mounted Display (VST HMD)

AR VST HMDs are often considered a natural successor to VR HMDs: in many
cases, such as the ZED mini or Google Cardboard (Figure 4), the enabling tech-
nology is just a VR HMD with one or more attached frontal cameras. This type
of configuration is easily deployable as VR HMDs are much more widespread
than AR ones, which usually are more expensive. For example, in a multi-user
scenario, several cheap VR HMDs can be easily converted into VST AR HMDs
with minimal cost. The trend for specialized AR HMDs manufacturer however
seems to be leading towards the OST approach, especially wearable all-in-one
solution (e.g. Hololens). Whereas VR can be used to train professionals to
handle dangerous situations in a safe environment, AR usually finds its con-
text of application not in simulation but as an assistive tool. Using a VST HMD
in a potentially hazardous scenario poses the additional threat of completely
depriving the user of the visual information, in case of malfunctions of the
HMD. Many VR HMDs, moreover, require an external tracking system or are
tethered to an external PC (e.g. HTC vive, Oculus Rift), completely restricting
the usability in open spaces (e.g. walking inside an industrial complex). Recent
VR HMDs, however, also started to opt for untethered all-in-one solutions (e.g.
Oculus Quest) which may lead to more manufacturers to either make special-
ized AR-only untethered standalone VST HMDs or directly designing VR ones
to be AR-enabled.

Perceptually, VST HMDs are prone to several problematics. First of all, sim-
ilarly to VR HMDs, they are subject to the vergence-accommodation conflict.
This is caused by the mismatch of two depth cues, the disparity of the two
views displayed inside the HMD (which causes the eyes vergence movement),
and the focusing distance (which triggers the eye’s accommodation mechan-
ism), which is fixed to the eye-lenses distance. This can lead to eyestrain, visual
fatigue, and focusing problems. Some studies [41, 43] proposed techniques to
circumvent this conflict, i.e. by using near-eye light field displays, but all of
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Figure 4: Some examples of commercially available VST HMDs: ZED mini with HTC
Vive/Oculus Rift (top left), Google Cardboard (top right), Varjo XR-3 (bot-
tom left), Vive Pro (bottom right).

them are unsuitable for commercial HMDs, as the limitations imposed on the
hardware (such as a lower resolution) would severely limit its usability.

Geometrical aberrations in VST HMDs arise from the parallaxes between the
several optical elements of the user’s eyes-HMD-world model: the projection
of the world is distorted due to the passage through the frontal acquisition
cameras and then through the visualization display before reaching the user’s
eye [15, 19]. Some differences, such as the distortions introduced by the lenses
or mismatches between the intrinsic parameters, can be solved through calib-
ration or by software compensation [56, 57, 72]. The mismatch between the
optical centers of the user’s eyes, the cameras and the lenses, however, will
still be present unless the VST HMD is orthostereoscopic.

In [90], a VST HMD is considered to be orthostereoscopic if the following
conditions are met: the center of projection and optical axes of the cameras
used to capture the video feed must coincide with those of the displays and
the user’s eyes; the distances between cameras, lenses, and the observer’s eyes
must be equal (IPD), and the field of view (FOV) of the cameras must be the
same as the displays.

To mechanically respect these conditions, both the cameras and the lenses
would have to converge to the focus point (toed-in HMD). Currently, commer-
cial VST HMDs use a parallel setup instead, with fixed cameras and lenses as
to obtain an orthoscopic HMD the cameras and the lenses would need to be
motorized and move coherently with the user’s eye movement, which is mech-
anically challenging. This leads to aberrations (e.g. diplopia) that can poten-
tially hinder the interaction [2, 90, 99]. There are studies aimed at developing
orthoscopic VST HMDs [13, 31, 86], or software solutions such as [19], where it
is shown that it is possible to use parallel displays to create quasi-orthoscopic
HMDs, reducing the perspective distortions caused by the parallax by appro-
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priately warping the camera frames with a perspective transformation. This
study, however, will focus on commercially available HMDs. To the author’s
knowledge, a true orthoscopic view (thus, without geometrical aberrations) is
currently unavailable in all commercially available HMDs.

2.2 Perception, Interaction and User Experience
in AR

Several studies already reported an underestimation in perceived egocentric
distances in VR scenes (see [77] for a review). Since there are several possible
causes (which also have interactions among them), the phenomenon is still not
yet fully understood [87]. Moreover, in [36] the authors compared different VR
and AR situations with and without an HMD by reporting an underestima-
tion in all conditions, though the magnitude of the errors varied substantially.
What we currently know is that the human visual system estimates depth on
the basis of several depth cues, which can interact each other to disambiguate
percepts depending on the situation. The same problems that arise with VR
HMDs also applies for VST HMDs, as some depth cues are often hindered or
altogether negated in a similar way. OST HMDs also do suffer from the lack of
some cues, and the effects of distortions caused by the optical system.

To measure the user’s perception, some kind of interaction task is often
required. In the context of VST/OST HMD comparison, several studies have
been performed using different interaction tasks. In [24], the authors compared
the two HMD technologies in the context of text reading, finding that OST
seems to be better for text readability. In [64], the combined effects of two types
of latency in AR (real-world latency and virtual object latency) are analyzed,
although with an AR simulation approach (i.e. the real and augmented por-
tions of the AR training scenarios are simulated in VR). The results confirmed
that latency could play a role in AR applications, and it is something research-
ers have to take into account. Other specific comparisons between VST and
OST devices are about the vergence-accommodation conflict [54] or the sense
of presence for phobia treatment to small animals [49].

Generally speaking, the type of interaction can potentially introduce a bias
in spatial estimation judgements, due to several cognitive factors. According to
the Human Processor Model (MHP) by K.Card et al. [18], the human memory
is split in several interlinked storages (see Figure 5). The perceived stimuli are
first stored in short term memory, which has a quick decay rate (i.e., is quickly
erased), and acts like a buffer (or a RAM). Stimuli perceived through different
senses have different decay rates, i.e. visual short term memory decays faster
than auditory. Interestingly, the senses which store information which typic-
ally requires more memory to be digitally stored (e.g. images/video) have
quicker decay rates than those which encode simpler information (e.g. audio),
suggesting that the decay rate is closely related to the buffer’s size. Remem-
bering a stimuli for longer than its associated decay time is only possible if the
cognitive subsystem is activated, which implies an increased cognitive load.
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Through rehearsal and drawing from the limited reserve of active attention,
the stimuli can then be encoded into long term memory, which acts like the
human version of a hard drive and can be split in several subtypes (e.g. epis-
odic, procedural, semantic, etc.). Long term memory still decays over time if
the rehearsal process is interrupted, and can be warped on each iteration, lead-
ing to false memories. Similarly to its digital counterpart, fetching information
from long term memory is a slower process with respect to short term memory,
and the data encoding process (e.g. the "writing to disk" process) is subject to
interferences and errors. For example, according to Jost’s law of forgetting [47],
if 2 memories are of the same strength but different ages, the older will decay
more slowly than the younger.

Figure 5: The Human Perception Model by K.Card et al. [18]. The perceived stimuli
are stored in the short term memory present in the Perceptual Subsystem
(Visual Image Storage and Auditory Image Storage). Through the working
memory, the stimuli can then be stored into Long Term Memory, but the
process requires rehearsals and active attention, a limited cognitive resource.

The decay half-life of visual image storage is between 90 and 1000 milli-
seconds, and is able to memorize a limited amount of items. The general con-
sensus [61] indicates 7± 2 items, which can be increased by chunking, e.g. try-
ing to remember a 9-digit number is easier if instead of memorizing single
digits the number is split into three triple-digits numbers. Given that short
introduction on the human perception model, it is clear that whenever the per-
ceived stimulus is memorized in short-term memory, the judgement will be
increasingly affected by memory alteration or erasure as the time required for
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the interaction increases. For this reason different interaction protocols will be
discussed in this chapter.

In the next section, the depth cues theory for spatial perception will be dis-
cussed in detail. The subsequent section will make an overview on the interac-
tion techniques used to evaluate the user’s perception, while the final section
of this chapter will discuss the user experience (UX) design implications be-
hind AR applications.

2.2.1 Depth Cues Theory

In the past years, several researchers have addressed the problem of evaluating
such devices’ perceptual issues. In [55], the authors provide a classification
of perceptual issues in augmented reality by considering the advantages and
disadvantages of the different technologies. Depth ordering and perception
are some of the most important issues since depth distortion primarily affects
interaction.

Between the ten depth cues that are recognized to be more important in the
depth estimation process [23, 42, 87] the most prominent in peripersonal space
are binocular disparity, binocular convergence/accommodative focus, relative
size, and occlusions.

To convey binocular disparity, AR HMDs have to render different views for
each eye, which are approximately spaced by an interpupillary distance (IPD)
of 63 mm [26]. However, the exact positions of the virtual cameras that render
the separate views for each eye change depending on the user. As we saw
in 2.1.2, commercially available VST HMDs use a parallel setup, with fixed
cameras and lenses, which introduces aberrations such as diplopic vision [19,
90]. Of course, monocular HMDs such as the Google Cardboard are unable
to provide the binocular disparity cue: the video feed from the frontal camera
of the smartphone is simply replicated for both eyes. Similar problematics are
present in OST HMDs to a lesser extent, as to achieve locational realism, the
position of the user’s eye must be obtained [37]: since eye trackers are still rare
in commercial HMDs, calibration through alignment tasks is usually required.
OST HMDs do not remove this cue for real objects, as users can see through
the transparent lenses, which eventually only add a small distortion due to the
light refraction.

Binocular convergence and accommodative focus, in a real world scenario,
are usually tied together in a single accommodation-convergence reflex. Like
in the previous case, the cardboard-based VST mostly negates the contribution
of these cues, as the user must keep focus on the same image, which is focused
depending on the camera settings. Also in this case, the OST HMD should
perform better for real objects.

The most important monocular depth cue in our context is arguably the
perspective of the scene, and consequently the relative size of objects. It is
demonstrated that if the real size of an object is known, an assumption is
also made on its distance depending on the perceived size. The cardboard-
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based HMD slightly shrinks the captured image, thus partially distorting the
contribution of this depth cue.

Occlusions do have a great importance in depth estimation, but in open-
loop judgment task they can only provide information about the relative posi-
tions of objects in the scene, as motion parallax, not their absolute egocentric
distance. Many other depth cues, such as atmospheric haze, shading, texture
gradient and height in the visual field, are either not applicable in peripersonal
space or are limited in current AR HMD devices.

In a former study [20], a compression of perceived depth when using a VST
HMD for AR was experienced, mostly due to the mismatch between the smart-
phone focal length and the observers’ one. Errors (variable with respect to the
distance) in visually perceived distance judgment tasks, by considering VR
and real world in [67], and by considering a tablet-AR based walking exper-
iment in [88], are also reported. A comparison of closed-loop and open-loop
near-field distance perception in AR is reported in [85], by showing that blind
reaching was significantly underestimated.

In a real-world scenario, binocular convergence and accommodative focus
are usually tied together in a single accommodation-convergence reflex, which
is problematic to preserve in VST HMDs, due to the conflict arising from the
presence of the display focal plane at a fixed distance from the eyes.

Perspective is also a strong monocular depth cue in peripersonal space, as
well as the relative size of observed objects. When familiar objects (thus, with
an approximate known size) are observed, the distance is also estimated de-
pending on the perceived size. Some famous optical illusions exploit this phe-
nomenon by resizing common objects to conceal the object’s real distance.

Finally, occlusions and motion parallax [70] provide a strong cue regarding
the object’s relative positions of objects in the scene.

Several other cues, such as atmospheric haze, shading, texture gradient, aer-
ial perspective, dimensionality (i.e., 2D vs. 3D shapes), and height in the visual
field, are either more related to medium/large distances or currently not con-
veyed through commercially available AR HMDs (e.g., due to limited FOV or
resolution). In [25, 81] the impact of some of these cues on spatial perception
is discussed, and a depth underestimation is always present, suggesting the
HMD is not able to properly convey all the depth cues.

Having established that both OST and VST devices should be calibrated
to be used and that such a calibration should take into consideration human
perception, a still open question is whether there are relevant perceptual dif-
ferences between the two technologies and whether such differences affect in-
teraction, especially in the peripersonal space, i.e., at near reachable distances,
in the context of egocentric interaction. In the literature, the tradeoffs between
optical and video see-through HMDs with respect to technological, perceptual,
and human factors issues have been largely debated [79, 80].
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2.2.2 Interaction in AR

As already introduced, when performing perceptual experiments, the type of
interaction used to express the spatial perception judgement can introduce
bias into the judgement itself. Over the years, several types of interaction have
been used to judge spatial perception.

It is necessary to make a first distinction, to obtain three interaction zones
[23, 65, 66, 73] which are related to the distance with respect to the user: periper-
sonal space, extrapersonal space and vista space. With Peripersonal space we refer to
the space in close proximity to the user (up to about 1.5m), which is commonly
used in reaching, grasping and manipulation tasks. AR perception in extraper-
sonal space (medium distances, up to about 30m) and vista space (large dis-
tances) related to respectively motion, navigation and general context/orienta-
tion, is currently less explored, as most AR applications (with the exception of
handheld AR, e.g. [88]) are often indoor and at close distances.

A second distinction can be made on the presence or absence of a physical
interaction, i.e., the judgement can be expressed either by verbal estimation or
by physical matching, for example by performing a manual alignment task.

Finally, we can split between open-loop and closed-loop interactions, de-
pending on the presence or absence of a control feedback provided to the user.
Below, the most widespread techniques to register the interaction used to ex-
press the perceived spatial perception are briefly introduced.

In blind interactions, a feedback is not provided to the user, which thus
performs the movement control during the judgement in open-loop. Depend-
ing on the interaction zones, it may involve blind walking (for extrapersonal
space), i.e. walking up to the perceived location of an AR generated stimulus,
or blind reaching/pointing (for peripersonal space). In blind tasks, the stim-
ulus is first displayed for a set amount of time, and then disappears before
the user performs the physical alignment, either by walking or by pointing/-
grasping. As we pointed out earlier, the visual short term memory is volatile,
thus absolute depth distance judgements tend to be more imprecise as the
time used to perform the interaction increases. With absolute judgements we
refer to judgements of perceived locations which cannot be inferred from the
geometrical structure of the scene or the relative position of its components,
i.e. there must be no elements which could be used to remember the perceived
stimuli location by linking it to a nearby close persistent object.

In perceptual matching interactions, on the other hand, the user is allowed
to align himself with the perceived stimuli in closed-loop. In this scenario, the
user is able to perform fine adjustments until a perfect overlap is perceived,
thus the noise potentially introduced by memory degradation is isolated even
if the interaction requires an extended amount of time.

Although absolute depth distance judgments tend to be metrically imprecise
as the distance increases [87], relative depth perception (e.g., to discern which
object is closer between two distinct ones) is known to be much more accurate.
Relative depth perception can also be performed either in a blind setting or
not. In this type of setup, the scene usually contains a visible structure which
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can be used as reference, which can be as simple as several items scattered on
a table.

In [87], the authors review and discuss protocols for measuring egocentric
depth judgments in both VR and AR and the well-known problem of depth un-
derestimation in virtual environments. Among the first authors who tried to
evaluate depth perception, they considered three different protocols: percep-
tual matching, blind walking, and verbal estimation. Their work focused on
depth perception at medium and far-field distances, which are important dis-
tances for several compelling AR applications, but not for peripersonal tasks,
which are the focus of this study.

Interestingly, they found evidence for a switch in bias, from underestimat-
ing to overestimating distance, at about 23 meters (see also [89]). In the blind
walking tasks, they found that AR objects’ egocentric depth is underestimated,
but to a lesser degree than previously observed in VR. It is worth noting that
underestimating distances is also reported in natural viewing (or VR or AR),
e.g., in [100] the authors reported a good evaluation for distances only up to
40 cm, by considering an alignment task. In real-world scenarios, in [62] the
authors analyzed distance perception with a pointing task, finding out that
accommodation can act as a source of ordinal distance information in the ab-
sence of other distance cues. Finally, in [46], the authors quantified egocentric
perception, but they considered a walking task, with distances from 2 to 8

meters from the observer.

2.2.3 User Experience

User experience and usability goals (i.e. goals reachability, efficiency, satisfac-
tion) are an important aspect of every interface design and a central discussion
topic for human computer interaction, and AR interfaces are not an exception.

One primary goal of user interface design is to reach certain learning goals,
i.e. sufficient learnability, memorability and safety. Learnability refers to the
difficulty of the training phase required to become proficient with the given
interface: depending on the application, the learning curves assume different
shapes. An interface aimed at professional use tends to have a steeper/logistic
learning curve as there are more functions to learn, while an interface oriented
at casual use should require the least effort possible to learn the most basic
functions. Memorability refers to the difficulty of remembering the training
over time (i.e. retain the proficiency), and is closely related both to the com-
plexity of the system (and thus the length of the training phase) and to the
mediums leveraged during the training (e.g. sounds are remembered more
than visuals). Safety refers to the possibility of recovering from user’s error.

One of the biggest strengths of AR interfaces is the opportunity of decreas-
ing the user’s cognitive load and task interaction cost, by offering a more nat-
uralistic interaction approach with respect to cluttered interfaces with many
gizmos and menus. Indeed, the human’s brain has adapted through millenni-
ums of evolution to interact with its environment through manual interaction
and tools. According to the common coding theory, perceptual and motor rep-
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resentations are closely interlinked, and activating one event triggers the other
and vice versa. As an example, when we look at an object, the brain auto-
matically computes possible interaction routes and grasping positions: this
phenomena is caused by the past ideomotor learning, i.e., remembering the
consequence of a specific set of movements. The ideomotor theory [44, 45, 74],
fueled by the discovery of the mirror neurons [32, 78] present in the premotor
cortex (F5), suggests that this link between ideomotor learning and prediction
works similarly to forward and inverse kinematics computations of control
theories.

Having established that the human brain is deeply adapted to physically
interact with the environment, AR has the advantage of removing abstraction
from current computer interfaces, often based on the WIMP paradigm (i.e.
Windows, Icons, Menus, Pointing device), resulting in a more intuitive inter-
action. According to the Khaneman theory [50], our cognitive system is based
on intuition and reasoning. Intuition is triggered to a subconscious level by
perceived object’s characteristics, while reasoning requires a voluntary action
which requires both working and long-term memory and a sufficient attention.
The presence of two separate cognitive systems is manifested by the dichotomy
between knowing something (theory) and being able to do it (practice). For
example, we can perform very complex tasks without being able to explain
them (walking, running, balancing) or know every detail of a procedure but
not being able to put it in practice, due to the lack of muscle memory. Actions
triggered by the intuition are much quicker to compute and have a much lower
cognitive load than reasoning-based ones.

This further explains the potentiality of AR interfaces. For example, in a
simple raster graphics editor, on a traditional interface we can expect to see a
menu with different stylized icons (e.g. pencil, lazo, magic wand, eraser): even
if those icons are mostly standardized across similar other softwares, their
affordance level is still closely related to the familiarity of the user with similar
systems. In an AR raster graphic editor, those tools can be represented by
actual physical items (e.g. a physical pencil or eraser) which are more likely to
be part of past experiences and also trigger ideomotor learning, thus resulting
more intuitive.

We can thus assume that if an AR experience manages to seamlessly integ-
rate virtual and real content, the obtained interface would satisfy most usabil-
ity goals. One key problem, however, is the enabling technology, i.e. the HMDs.
As we saw in previous sections, achieving locational realism and photorealism
is not a trivial task. The presence of parallaxes, distortions, latencies, the ap-
proximation of the models all lead to perceptual mismatches. The HMDs them-
selves are often cumbersome and convey a varying amount of light directly to
the user’s eyes. The calibration procedures can often be long and tedious.

For these reasons, a few aspects can be taken in consideration to measure
the user’s experience with different HMDs: the cybersickness, the sense of
presence, and the cognitive load.

Cybersickness is an index that has started to be measured for VR systems,
but due to the similarities of the optics and ergonomics of VR and AR HMDs,
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the same principles apply for AR. It can be assessed through self-evaluation
questionnaires or through the analysis of physiological data (e.g. hearth rate,
eye blink rate, skin conductance response, EEG delta wave). Cybersickness can
be defined as the potential development of several disorders such as nausea,
fatigue, focusing difficulties, eyestrain and other general discomfort symptoms
while or after being subject to visual stimulation. It is caused by several factors,
such as the mismatch between the visual information perceived and the mo-
tion information inferred by the vestibular system (which is notoriously evid-
ent in roller coaster simulations in VR), and the presence of latencies which de-
synchronize the movement of the scene with the expected movement inferred
by the self perception of the head’s movements (kinethesis). Even when not dir-
ectly causing sickness symptoms, latencies severely impair proper interaction,
e.g. in [48] it is shown that even a 10ms latency reduces touch performance in
direct-touch pointing tasks.

Past studies have proposed several self-assessment questionnaires to meas-
ure cybersickness. One of the most widespread questionnaires for self-assessment
of cybersickness is the Simulator Sickness Questionnaire (SSQ) [101], which
splits the developed symptoms into four categories: nausea, oculomotor, disor-
ientation and total score. The questionnaire is composed by two sections to be
filled before the use of the HMD (to define a baseline of the user’s conditions)
and afterwards.

The sense of presence, in MR contexts, measures how much the virtual con-
tent is perceived as spatially authentic. Due to its subjective nature, measur-
ing the sense of presence through physiological data is difficult, as commonly
measured indexes (e.g. hearth rate or skin conductance response) would be dif-
ficult to directly relate to the sense of presence experienced, if any sway can be
detected at all. Most of the time the sense of presence is thus measured through
self-assessment questionnaires, like the IGroup Presence Questionnaire (IPQ)
[82], which is based on a set of multiple choice questions split into three macro-
groups (spatial presence, involvement, and experienced realism). The number
of self-assessment questionnaires specifically targeted at measuring the sense
of presence in AR environments (e.g. [75]), however, is still quite low. Most of
these questionnaires are targeted towards purely virtual environments (VR),
thus some of the questions can be more difficult to interpret when transposed
to AR. For example, in the IPQ questionnaire, one of the questions asks if the
virtual world seemed more realistic than the virtual world, i.e., if (while in VR) the
user forgets about the real surrounding environment in favor for the virtual
one. in AR, however, both the virtual and real world will be present at the same
time, and the question becomes harder to interpret: the natural answer will al-
ways disagree, as the augmentation will always be evident or, at most, merged
with the real environment, but the spatial awareness of the real surroundings
will never be lost.
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2.3 Registration

With registration (or image registration) we refer to the process of transform-
ing heterogeneous data into one single common coordinate system. The data
may be heterogeneous for several reasons, such as being obtained from differ-
ent tracking devices (e.g. RGB/RGB-D cameras, IR, sonar, etc), from different
viewpoints, or at different time frames [14]. Generally speaking, for two sets of
data to be compared together, they must be expressed with respect to the same
reference frame (i.e. "observer"), where time can also be considered one of the
coordinates of the frame. When registering heterogeneous data, we define the
position and orientation of a global (or world) reference frame and convert all
other measures to be expressed with respect to the it. The global reference
frame is usually positioned in such a way that measures expressed in its frame
are easily interpreted, e.g. for a manipulator robot it could be positioned on
the end effector, or onto the base, to easily interpret the relative position of
graspable objects in front of the robot, rather than on a random joint of the
arm.

The next sections will briefly introduce to the problematics related to the
registration of the different devices that are commonly present into an AR
setup, and the registration of the user’s interaction with the system.

2.3.1 Multi-device registration

A common scenario in AR is to have several sets of data coming from different
sources and needing to visualize it in a common shared system. In a linear
setting, to transform a point a p expressed e.g. in a reference frame A to a
different reference frame B it is required to know the transformation matrix
B
AT, which is usually expressed either as the combination (Eq.1) of the rotation
matrix R and a translation vector t (Eq. 2) which align the reference frame A
on top of the reference frame B or as homogeneous matrix which represents a
transformation which encapsulates a rotation followed by a translation (Eq. 3).

B
AT = [R | t ] (1)

R =

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 t =

t1

t2

t3

 (2)

B
AT =


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

0 0 0 1

 (3)

If the transformation matrix is expressed as in eq. 3, the point a p expressed
with respect to the reference frame A can be converted to be expressed in



2.3 registration 21

relation to the reference frame B by simply multiplying its coordinates for the
transformation matrix as displayed in eq. 4

b p =B
A T a p (4)

The opposite transformation, i.e. to transform a point b p expressed in the
reference frame B to be expressed in the reference frame A, is simply the
inverse of the transformation matrix B

AT, which is denoted as B
AT−1 (see Eq.5).

a p =B
A T−1 b p (5)

Since the transformation matrix B
AT is a block diagonal matrix, it is always

invertible. The inverse of the rotation matrix R (which always have a matrix
determinant equal to one) is simply the transpose, i.e. R−1 = RT.

In reality, we have also to deal with non-linearities, i.e. we must also take in
account non-linear distortions present in the acquisition(s) system (e.g. tan-
gential or radial distortions introduced by the camera lenses). Those non-
linearities must also be modeled to rectify the system back to an approximate
linear case.

If the transformation matrices between the two frames are unknown, they
can be derived through a calibration process, which requires the knowledge of
the positions of a set of 3D points in both reference frames.

2.3.2 User registration

Interaction is a key aspect of AR experiences, and over the years several tech-
nologies have been developed to enable different interaction techniques to in-
terface with the virtual content. To begin with, we can make a first distinction
between direct and indirect interaction techniques, which mirrors the definition
of direct and indirect locator devices for traditional computer interfaces [29].

In an indirect interaction, the effect or consequence of the user’s movement
is observed in a different location with respect to the original movement. This
is the case, for example, when interacting through the operation of a keyboard
or a controller of unknown 3D position (e.g. a joypad/joystick).

In a direct interaction, the effect of the user’s movement takes place in the
same location of the triggering movement. An example is direct hand manip-
ulation (through hand tracking) or gaze-based interaction.

It must be noted that indirect interaction is always mediated, in the sense that
it requires a process of eye-hand (or body) coordination, thus it always bring a
bigger cognitive load with all the derived consequences: slower response time,
higher failure rate, lower affordance, higher user’s strain.

We can then differentiate depending on the amount of data which needs
to be processed at each time instant. Technologies which requires additional
hardware to be worn in addition to the HMD (wearables, or tool-based) usually
provide a very small stream of stable data (e.g. single keystrokes or button
triggers), while data-hungry methods (such as vision based ones) are much
more computationally heavy but usually do not add additional burdens to the
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user, either thanks to external sensors (e.g. an external RGB-D sensor which
records the user’s movements) or by using the ones embedded in the HMD
(e.g. cameras).

Wearable and tool-based technologies (e.g. keyboards, tracked controllers, or
smart bracelets) usually have a higher consistency, i.e. the outcome of an action
has a much higher predictability than vision-based ones, since the obtained
measures are less subject to noise. Their indirect nature lead to less natural
interactions, as the user needs some training time to learn the outcome of each
input given.

Vision-based methods (e.g. hand pose estimation and tracking) are compu-
tationally heavier, but require a cheaper array of sensors, do not restrain the
user’s movements, and can potentially estimate high DoF kinematic models
(e.g. [16, 17, 84, 103]). The enabled interaction (e.g. bare hand interaction) is
more natural, but low tracking stability and the lack of a haptic feedback can
greatly impact the predictability of the system outcome. Indeed, in [11] the
authors found that people preferred to use controllers instead of a hands-free
interaction based on a Leap Motion tracking device, due to the better system
stability. The given interpretation is that since nowadays we are very famil-
iar with the daily use of tools, machines, keyboards and controllers, the small
increased overhead needed to learn how to use a simple controller is vastly
repaid by the increased system stability. This may no longer be true on more
complex scenarios, however.

In Figure 6 a representation of most widespread technologies used to re-
gister the user’s interaction is displayed, approximately arranged according to
the previous mentioned distinctions. The complexity of the system grows as
any of the two axes grow, both due to the increasingly difficult task of inter-
preting the user’s actions from increasingly more complex types of data (e.g.
button presses against EMG signals) and also due to the increased amount of
raw data which needs to be processed in real-time.

2.4 Device Calibration

Generally, to limit the effects of the geometrical distortions caused by the HMD,
a calibration is required. Calibration estimates the camera’s parameters and
the object models to match the virtual objects with their physical counter-
parts. VST and OST devices are composed of different systems (to track the
real-world environment, the users’ head pose, and to display the augmented
contents) with different reference frames that must be aligned. The calibration
parameters are the optical characteristics of the physical camera as well as the
position and orientation of various entities such as the camera, the trackers,
and the various objects [33].
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Figure 6: Different technologies used for interaction in AR environments. Wearable or
tool-based technologies require the user to interface/wear additional hard-
ware. Externally tracked ones are less invasive to the user, and exploit either
the HMD cameras or external sensors. Indirect methods decouple the input
interface from the spatial occurrence of the outcome, while direct methods
closely resemble interaction with real objects.

2.4.1 OST Calibration

With VST HMDs, the problem of finding the pose of the camera which captures
the video stream can be solved by using the same camera to track the move-
ments of the HMD (e.g.[51]), which is usually what happen with current VST
HMD setups (e.g. ZED mini). With OST HMDs, the virtual camera position
is represented by the user’s eyes, thus a calibration to obtain the eye-display
transformation is required. A recent survey [37] describes several OST devices
calibration methods, classifying them into manual, semi-automatic, and auto-
matic approaches.

Manual calibration methods require the test subject to perform a manual
alignment task, which is needed to compute all the required parameters that
define the projective geometry of the user-HMD system. The problem of manual
calibration methods is that if the HMD slips in a different position than the one
used during the calibration procedure, the obtained parameters are no longer
valid.

Semi-Automatic methods seek to simplify the calibration process by redu-
cing the number of alignments required. This is normally achieved by com-
puting only the parameters that change between different users (e.g. [71]) or
between different sessions for the same user (e.g. [34, 35]). Semi-Automatic
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methods seek to reduce the reprojection error by being less reliant on the user
precision during the alignment task of the calibration. It must be noted that im-
plementing these calibration techniques is usually more elaborate with respect
to traditional Manual methods, and sometimes requires additional hardware.
As an example, in [71] the parameters were split between the eye model and
the display model, which was calibrated separately using a mechanical appar-
atus.

Automatic calibration methods do not require any user input, as they are
able to obtain the 6-DoF pose of the eyes automatically, mostly by using eye
tracker sensors. Of course, Automatic calibration represents the best option
when available, as it accommodates for changes of the geometry during run
time (although with a processing overhead). The presence of an eye tracker
integrated in the HMD also enables enhanced gaze interactions (as opposed
to the fixed crosshair-centered based ones) and more realistic rendering tech-
niques (e.g. foveated rendering). Currently, however, most commercial HMDs
do not provide integrated eye tracking functions, thus implementing Auto-
matic calibration methods can be troublesome due to the difficulties related
with detecting eye movements using external sensors. For this reason, these
methods will not be covered in this study.

Many approaches have been proposed and developed for OST calibration,
starting from considering that a non-accurate calibration hampers users’ abil-
ity to solve tasks in the AR environment [68, 91]. It is interesting to note that
human factors contribute to a significant extent to calibration errors. Even dif-
ferent calibration procedures for the same calibration algorithm yield signific-
antly different accuracy [4]. A study comparing different confirmation meth-
ods for the alignment procedure (keyboard button press, handheld device,
voice activation, and gaze-based or wait-based) show that lower movement
inducing methods lead to a lower reprojection error [58], suggesting that even
minimal sway significantly impacts the calibration process.

The evaluation of methods to calibrate OST HMD devices is often performed
with user studies, e.g., [38, 63], both with quantitative [59] and qualitative
feedbacks.

2.4.2 VST Calibration

There are several studies that aim at reducing geometrical aberrations present
in VST HMD devices through calibration or software solutions [15, 19, 56, 57,
72]. The calibration requirements of a VST AR system have also been described
in [95, 97], although with a monitor setup. One of the main problems with
interacting in AR environments experienced through VST HMD devices is
that the human eye and the camera’s intrinsic parameters are different, thus
hampering a correct estimation of egocentric distances [10, 21].

As described in section 2.1.2 the parallaxes present in non-orthoscopic VST
HMDs also introduce several aberrations such as scale factors and distortions
of horizontal/vertical disparities which is only partially adjustable through
software solutions [19]. Moreover, the HMD lenses introduce non-linear distor-
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tions (e.g. tangential or barrel), which in are compensated by undistorting the
cameras frames and using a pre-distortion function before reprojecting them
onto the HMD display [19, 56, 57, 72]. The problem of geometric consistency
between displayed images and real scenes in AR is specifically addressed by
using a VST handled display or tablet [92]. In that paper, the authors tested the
approach (to approximate user-perspective images rendered by homography
transformation of camera images) with a user study, where people was asked
to rotate a virtual cube to match the pose of a real one.



3
The Registration Framework

This chapter describes the structure of the registration framework designed
and developed1 to bring all the used AR devices and tracking systems in the
same reference frame.

The goal is to have all the devices share the same tracking system, thus
the same reference frame, to coherently compare obtained data. Since the con-
sidered tracking system can track any object’s pose using trackers, we convert
all other devices coordinates by finding their relative transformations with re-
spect to the tracker rigidly attached to each device.

Our setup is composed of two AR HMDs, one VST, and one OST. The OST
is the Meta2 (Metavision), while the VST is the HTC Vive Pro equipped with
ZED mini stereo-cameras. The OST HMD field of view (FoV) is 90

◦ and has
a Quad-HD (QHD) resolution (split between the two eyes), thus 2560×1440

pixels in a 16:9 aspect ratio. The Vive Pro HMD, on the other hand, has 110
◦

FoV and a resolution of 2880x1600 pixels (1440x1600 per eye). The Vive Pro,
while used as an AR device, is further restrained by the ZED Mini used for the
see-through, which has a maximum resolution of 2560x720 pixels and a FoV
of 90

◦ (HxV). The lighthouse-based tracking system of the HTC Vive Pro has
been used for both HMDs, due to its precision [12, 69] and availability.

To track the user finger during the reaching task, a Kinect V2 RGB-D sensor
was used.

Unity 3D (version 2017.4.17f1) was used as the graphic engine. The frame-
work has been tested on a PC with the following specifications: GPU NVIDIA
GeForce GTX 1080, processor Intel(R) Core(TM) i7-8700 @ 3.20 GHz, 32 GB of
RAM, and as an operating system Windows 10 Pro 64 bit.

The proposed registration framework is composed of several modules (Fig-
ure 7). All the devices are registered in the HTC Vive reference frame, for
several reasons. First, the Lighthouse tracking system is precise, robust to oc-
clusion and works in the darkness. The world origin is placed in a controlled,
repeatable position across multiple sessions, in the center of the rectangular
area set during the steamVR room calibration. The availability of Vive Trackers,
which are already tracked in the HTC Vive ecosystem, enables the registration

1 The framework repository is available on GitHub [6], distributed under the Unlicense [1] public
domain equivalent license. The documentation is provided in the Appendix.
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Figure 7: The flowchart encapsulates all the modules of the proposed registration
framework, used during the design of the experiments described in chapters
4.2 and 4.3. Rounded-edge blocks represent 3D points, tracked with respect
to the displayed reference frame and registered in the connected systems.

of any other device, assuming a rigid transformation between the tracker and
the given device is obtainable. Finally, the HTC Vive is much more economical
than most motion capture (MOCAP) systems. Without loss of generality, we
assume the proposed approach to be valid under any other choice of visualiz-
ation devices and tracking systems. Most procedures have been carried out by
using the raw data streams from the different sensors.

The OST Registration Module handles the registration of the OST HMD in
the VST HMD reference frame, by means of a Vive tracker rigidly attached
to the HMD with a 3D printed part. The rigid transformation between the
Vive tracker and the OST HMD inner tracking system origin is first obtained
with several iterations of the Single Point Active Alignment Method (SPAAM)
[96], which gives a first estimation. Each user then performs an alignment
task to deal with the residual alignment error. To avoid conflicts between the
OST HMD SDK and the steamVR SDK, the HTC Vive measures are collected
externally in a separate server program and sent to the client through an UDP
connection.

In our case, the VST HMD was the HTC Vive, which is already tracked in
the Lighthouse tracking system. The VST Registration thus just involves the
calibration of the stereo cameras used for the video-see through. The registra-
tion of any other VST HMD in the HTC Vive system can be performed with
the same approach used in the OST HMD. A custom mount to find, with a
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Vive Tracker, the exact position on the HMD of the ZED mini used for the
video-see through is provided as example.

The Kinect Color Tracking and Registration Modules handle the tracking of
the user fingertip by means of a color filtering. The 3D position of the fingertip
is then converted from the Kinect reference frame into the HTC Vive reference
frame and integrated into Unity through an UDP socket connection.

The framework also includes a Real Case Registration module, which can
be used to display visual stimuli in the real world in such a way that (i) the
displayed stimuli are as coherent as possible as the AR case and (ii) no haptic
feedback is provided if the experiment also involves a reaching task. The struc-
ture used is registered in the HTC Vive reference system, allowing the com-
parison of the perceived positions of the stimuli (obtained through the Kinect
Tracking and Registration modules) and the real positions displayed (which
are in a known position).

3.0.1 OST Registration Module

The Meta2 6DOF pose in the scene can be obtained through its internal SLAM
(Simultaneous Localization And Mapping), which upon initialization asks the
user to perform a short environmental scan by turning the head to collect
enough features to build a 3D mesh of the surroundings through its integ-
rated RGB-D sensors. This feature has been disabled and replaced by the HTC
Vive Pro tracking system, using one Vive Tracker. This step is required as the
Meta2 SLAM system places the origin of the world reference frame in the first
pose registered after initializing. Thus it would be impossible to render objects
in the same position with respect to the real world and compare the collected
data among different users. Thus, the Meta2 HMD serves merely as a visual-
ization device, as no advanced features of the Meta SDK were used. Since the
rendering of the two eyes view is based on the position of the SLAM localiz-
ation system reference frame, the HMD needs to be calibrated to obtain the
transformation between the Vive Tracker reference frame (used to track the
HMD) and its default localization reference frame. A screw rigidly fastens the
HMD Vive tracker to the HMD through a 3D printed support (Figure 8 left),
specifically designed for the Meta2 HMD. Moreover, each user has to calibrate
the HMD each time it is worn, as for a proper AR rendering, the position of
the user’s eyes must coincide with the position of the virtual cameras in the
graphic engine, and the intrinsic parameters of the eye-HMD model must also
be defined.

3.0.1.1 SPAAM

To perform the OST HMD calibration, we used the popular SPAAM technique
[96], as the Meta HMD has no eye-tracking sensors to be used for automatic
calibration methods. For more insight on the SPAAM technique, refer to [7, 96],
since we aim to provide a registration framework that allows having a common
reference frame for different devices and real objects, not to devise a new
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calibration procedure for OST HMDs. Independent of the type of calibration,
the purpose is to find the transformation matrix that can map HMD pixel
coordinates to the user’s eyes’ coordinates.

The Vive tracker attached to the OST HMD will be referred to as the mark
from now on for coherence in our setup [96]; we will use the same notation as
in [96], with a few modifications.

x y

Vive tracker used as
target (3D world 
point), tracked in the 
HMD reference frame

ZHMD

YHMD

XHMD

P = (XW; YW; ZW)Mark/HMD reference
frame (Vive tracker rigidly
attached to the HMD)

G

Vive Lighthouse

World reference frame (Center of steamVR room setup)

T

HMD connection 
through 3D printed 
part

W
M

Figure 8: The OST HMD registration setup. (left) The transformations needed to ob-
tain a common reference frame with respect to the Vive lighthouses tracking
system. Such transformations can be computed off-line, whereas the G mat-
rix is obtained through the visual alignment task (right). The ZED camera
has been temporarily placed on the 3D printed support only to find the Z

CT
fixed transformation, and then removed.

The OST SPAAM calibration technique is based on the pinhole camera model
(Eq. 6) (see [27, 40, 105]), where the projective transformation G maps a 3D
world point (xw, yw, zw) into 2D pixel coordinates (u, v). The G matrix can be
further decomposed as in Eq. 7, where K denotes the intrinsic parameters mat-
rix, and [R | t ] defines the extrinsic parameters that describe the position and
orientation (pose) of the camera.

λ

u

v

1

 = G3×4


xw

yw

zw

1

 (6)

G3×4 = K [R | t ] (7)

K =

 fu s cu

0 fv cv

0 0 1

 (8)

The A system matrix (Eq. 9) which defines the projective transformation
from world coordinates to virtual camera coordinates, where the virtual cam-
era models the combined display system composed of the display and the
human visual system, is formed of a 4× 4 homogeneous transformation mat-
rix (M

W T) which contains the pose of the mark expressed in world coordinates
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and a 3× 4 projection matrix (G) of the eye-tracker transformation (see Figure
8).

A = G M
W T (9)

In our setup, the mark is already tracked in what are considered as world
coordinates, thus, in this case, M

W T represents what is referred to as FC in the
original study. During the calibration, a crosshair is displayed (red cross on
the left lens in Figure 8) and needs to be aligned to the fixed 3D point in the
world, which in our case is tracked with a second Vive Tracker. To obtain the
3× 4 matrix G there are 12 unknown parameters, but the projection matrix is
defined up to a scale factor (λ), thus the number of independent parameters is
reduced to 11. Since each alignment provides two equations, the number n of
calibration points that needs to be measured during the alignment procedure
must be at least 6. The 3D world points of each alignment i can first be brought
in the mark (HMD) reference system. In this way the user’s head movements
are not restrained, as all the computations are carried out with respect to the
current head pose. Hence, let the 3D world points of each alignment i have
coordinates Pw,i = [xw, i, yw, i, zw, i]

T, when expressed with respect to the mark
(HMD) reference system. The pinhole camera model (Eq. 6) can then be written
as in Eq. 10, where the homogeneous image coordinates [ui, vi, wi]

T of the
projected point Pw,i are related to the image coordinates Pi = [xi, yi, 1]T (i.e. the
pixel coordinates on the HMD lenses) through the relation displayed in Eq.11.

ui

vi

wi

 = G3×4


xw, i

yw, i

zw, i

1

 for i = 1, · · · , n (10)

xi = ui/wi

yi = vi/wi
(11)

Assuming the matrix G has a structure as in Eq. 12, the projection model
can be written as in Eq. 13.

G =

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

 (12)

ui = g11 xw, i + g12 yw, i + g13 zw, i + g14

vi = g21 xw, i + g22 yw, i + g23 zw, i + g24

wi = g31 xw, i + g32 yw, i + g33 zw, i + g34

(13)

By substituting the relation of Eq. 11 inside Eq. 13, the projection model
becomes as in Eq. 14. The model can then be rearranged in function of the
unknown parameter vector p = [gij]

t which contains all the twelve entries of
the G matrix (Eq. 12) in a column vector.
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xi(g31 xw, i + g32 yw, i + g33 zw, i + g34) =

g11 xw, i + g12 yw, i + g13 zw, i + g14

yi(g31 xw, i + g32 yw, i + g33 zw, i + g34) =

g21 xw, i + g22 yw, i + g23 zw, i + g24

(14)

The final homogeneous equation to be solved thus takes the form of Eq. 15,
where the matrix B is the matrix constructed by adding two rows for each
alignment performed as shown in Eq. 16. The system can then be solved
through singular value decomposition (SVD) of the matrix B (B = UDVT)
to extract the G matrix from the column of the V matrix which corresponds to
the smallest singular value.

Bp = 0 (15)

B =


...

...
...

...
...

...
...

...
...

...
...

...

xw, i yw, i zw, i 1 0 0 0 0 −xixw, i −xiyw, i −xizw, i −xi

0 0 0 0 xw, i yw, i zw, i 1 −yixw, i −yiyw, i −yizw, i −yi
...

...
...

...
...

...
...

...
...

...
...

...

 (16)

In [96], the 3× 4 projection matrix G (in Hartley and Zisserman [40] notation)
was converted in the 4× 4 projection notation used by OpenGL by pushing
the parameters into a 4× 4 orthographic projection (for more insight on the
procedure, see [94, 96]). In our study, we dissected the camera matrix into its
intrinsic and extrinsic parameters by RQ decomposition, and applied them
separately to a standard camera object in Unity, by using its transform (for the
extrinsic parameters) and physical camera (for the intrinsic) properties to render
the virtual objects correctly.

This calibration method works in the monocular case and can be adapted to
a stereoscopic model by aligning 3D objects instead of points [33]. For simpli-
city, we calibrate separately for each eye.

From preliminary testing, we observed that outliers caused by misalign-
ments during the calibration (due to breathing and small head movements)
could introduce a non-trivial amount of error, thus to reduce the variance
between calibrations, we implemented a RANSAC procedure [28]. We thus
collected n = 15 alignments for each eye between the virtual crosshair and the
fixed 3D point instead of the minimum 6 alignments. An alignment was then
considered an inlier if the reprojection error was under 0.1 mm. We computed
the projected pixel size (0.059 mm) by considering the surface ratio between
the projecting LCD surface and the lenses. The stopping criteria are based on
the number of iterations i, which is updated every time a new model with
more inliers m is found, based on the probability β of finding a better model
(Eq. 17). The value of β was set to 0.001.

i =
log β

log(1− (m/n)k)
(17)

Increasing the number of alignments required in the procedure increases the
calibration precision at the cost of increased user strain. As pointed out in [37],



the registration framework 32

it is advisable to track the workload increase using subjective measurements,
such as NASA TLX [39]. In our case, we did not consider fatigue a limiting
factor during calibration, as we prioritized locational realism. The aim was to
obtain a functional procedure which can be used in experimental settings, not
to assess the usability implications behind the procedure itself.

After the eye-mark projective transformation is found, it is possible to ad-
apt the calibration to any system by finding the M

O T transformation (Eq. 18)
between the mark tracker and the device origin reference frame (see left part of
Figure 8). To do this, we temporarily attached a camera (ZED mini) in a known
M
Z T position with respect to the mark tracker with a 3D printed part (Figure
9). We performed a stereo camera calibration with the HMD camera to find
the Z

CT transformation. The camera can then be removed, as it is contextually
needed only to find Z

CT. The transformation C
OT between the HMD camera and

the device origin is obtained through the manufacturer documentation.

M
O T = M

Z T Z
CT C

OT (18)

Using the mark-eye transformation M
V T (extrinsic parameters extracted from

G), which can be decomposed (Eq.19) into M
O T (mark-device origin transform-

ation) and O
VT (device origin-eye), we can compute O

VT to express the eyes
position in any device reference frame (see Figure 8).

M
V T = M

O TO
VT (19)

Figure 9: Calibration of the ZED camera with the Meta2 camera to obtain the trans-
formation matrix Z

CT.

3.0.1.2 Fine Alignment

Since the full calibration procedure has been proven to be subject to human er-
ror due to the alignment task’s difficulty, a general calibration profile has been
obtained after minimizing the detected residual error over several calibrations.
The OST calibration and validation of the setup have been further discussed



the registration framework 33

in previous studies: for more details, refer to [7, 96]. Each user optical model
will still be slightly inaccurate. Thus the residual drift error has to be adjus-
ted by each user by aligning a virtual checkerboard on top of a checkerboard
attached to a tracked metal table. The task of aligning a grid, as opposed to
aligning several points in a row, decreases the time and fatigue needed for
each calibration session, as it is much easier to fit a plane rather than matching
a point with pixel-wise accuracy. The residual error correction is performed
separately for each eye. The users physically hold the real checkerboard and
move/rotate it in different positions, communicating the needed adjustments
to the experimenter until a correct alignment is maintained through several
roto-translations. A gizmo is displayed to show the virtual checkerboard refer-
ence frame’s axes and simplify the communication of the adjustments needed.
The calibration effects can be seen in Figure 10: the augmented and real objects
are aligned.

Figure 10: The view from inside the OST HMD before (left) and after (right) the
SPAAM and Fine Alignment procedures.

3.0.1.3 OST Registration Residual Alignment Error

The Mean Reprojection Error of the stereo camera calibration between the ZED
left camera and the OST HMD camera, used to find the Z

CT transformation
(section 3.0.1/Figure 8) was of 1.72 pixels.

To quantify the OST residual calibration error, we performed several cal-
ibrations with a mannequin as described in [7] (see Figure 11a). We then con-
sidered (see Figure 12a) the real position of the projected 3D points (blue dots)
with respect to the positions of the corresponding virtual points (red dots) of
the checkerboard used for the OST calibration (Figure 10).

The average Euclidean distance error (thus, along all 3 axes) between per-
ceived and real positions is 23± 11.5 mm, computed over 594 pairs of points
(11 image pairs, 54 points per image). When considering only X and Y axes
without the depth (i.e., the plane orthogonal to the user’s optical axis), the
average 2D Euclidean distance error perceived is 8.5± 4.5 mm.

The heat map (Figure 12b) of the alignment error distribution along the XY
plane (orthogonal to the user’s optical axis) shows that the distortion increases
towards the boundaries of the field of view. The depth misalignment does not
change significantly over distance, with a mean error of 20.5± 12.6 mm.
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Figure 11: The mannequin head used to validate the HMD registration.

X

Y

(a) (b)

Figure 12: (a) The points triangulated in the real (blue dots) and virtual (red dots)
stereo rigs (only the left view is displayed). The 2D misalignment between
the triangulated 3D points can be observed (grid size is 5 cm). (b) Heat map
of the Euclidean distance of alignment error along the plane orthogonal to
the optical axis (colormap measures in mm).

The OST HMD, registered in the HTC Vive system, runs with a frame rate
(computed over 5 minutes with a cumulative moving average) of 74.8 frames
per second (fps), comparable to the 76.3 fps of the VST HMD.

3.0.1.4 OST Registration Module Discussion

The distribution and magnitude of the misalignment over the image plane (Fig-
ure 12) can be used as a metric of the perceived error, which can help define
which areas of the workspace are suitable for egocentric interaction. From the
heat map representation (Figure 12b), we can observe how the error increases
towards the boundaries of the field of view, possibly due to a non-compensated
radial distortion introduced by the OST HMD optics. Moreover, during stereo
camera calibrations, distortions often manifest towards the image boundaries:
since the camera’s views lateral boundaries are usually not overlapped due
to disparity, checkerboard alignments cannot be performed in those areas, in-
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troducing a bias on the reprojection model. Despite a slight constant depth
misalignment, we observed that the misalignment was hardly noticeable: we
assume that the error is compensated by a scale factor introduced by a focal
length drift with respect to the real one. For more details about the OST calib-
ration and validation, refer to [7].

3.0.2 VST Registration Module

The VST HMD, composed of the Vive Pro HMD with a mounted ZED-mini
stereo camera, uses a non-orthoscopic parallel setup. The optical parallaxes
between the user’s eyes and the cameras can cause several possible distortions,
as described in [90], which can influence the user’s perception of spaces.

Since this study aim is not to build an orthoscopic parallax-free VST HMD
but rather assess the usability impact of the distortions caused by currently
available HMDs, we will not address those aberrations. However, we per-
formed some simple adjustments which should reasonably be performed by
every AR HMD utilizer. First, we performed a traditional stereo camera cal-
ibration using MATLAB’s toolbox based on Zhang’s implementation [106], to
ensure the ZED video feed was not distorted.

The ZED Mini stereo cameras are then attached on top of the Vive Pro HMD
using the manufacturer mount, which encapsulates the Vive frontal cameras
with a very tight fit. Our setup is thus the same as a standard user would
have. The last adjustment we made is an IPD tune for each user. To do this, the
position of each eye’s virtual camera was modified in the same way described
in the OST calibration, by aligning a virtual checkerboard over a real one (Fig
10) in several poses, one eye at a time. The users could only translate the
virtual checkerboard on x and y axes, thus modifying only the virtual stereo
camera’s extrinsic parameters for the rendering. The VST HMD can be already
considered in the proposed registration framework’s common reference frame,
as the HTC Vive system is already tracking the HMD, and the ZED camera is
attached with the manufacturer mount.

3.0.2.1 VST Registration Module Discussion

Regarding the VST HMD, only the outer cameras have been calibrated. Thus
perceptual aberrations are expected, as discussed in [19, 22]. As previously
mentioned, we calibrated the OST HMD only to have a framework where all
the obtained data can be coherently compared, but the aim is to assess the
standard performance of the two HMDs as interaction devices (as provided by
the manufacturers, since most users use them without modifications) and the
impact of the optical distortions they introduce on interaction.
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3.0.3 User Tracking: Kinect Color Tracking and Registration
Modules

To detect the user reaching, a Kinect V2 was used. In the unregistered case
study [10] discussed in Chapter 4.1, the reaching position was captured through
the skeleton tracking features provided by the Kinect sensor SDK, which proved
to be subject to several issues. One of them is the sensor’s tracking instability,
which cannot precisely find the hand position due to occlusions. Moreover,
measuring the grasp error is subject to more noise than in a finger reaching
task, as it is not trivial to express the perceived position of a 3D point in space
by using the palm. Thus, here we detect the position of the finger that is used
in the reaching task.

Tk
s

Tz
k

Ts
z

Kinect rigidly
attached to 
a metal bar

HTC Sensor rigidly
attached to a 
metal bar

Camera used to find
relative position 
between the Kinect 
and the Sensor (one 
time-only)

3D printed 
part

Finger cap with green 
led and green cover

Figure 13: A camera (ZED mini) is temporarily placed in a known fixed position S
ZT

with respect to the Vive sensor, through a custom 3D printed part. The cam-
era is then calibrated with the Kinect camera to obtain the transformation
Z
KT, which can then be used to obtain the transformation S

KT, needed to
convert Kinect coordinates into the HMDs reference frame. The finger-cap
tracked by the Kinect contains a green led: a green plastic disk covers the
led and slightly increases the finger cross-section to increase the tracking
reliability.

To track the user’s finger, a color-detection algorithm has been implemented
in C++ with OpenCV. A simple slider-based interface allows us to define the
HSV color ranges, and the settings are saved for future uses. Once binarized
through the HSV filter, the image is processed by a morphological erosion
filter to remove noise and a morphological dilation filter to fill small gaps in
the tracked finger. Since the experiment was conducted in the darkness, the
users were asked to wear a finger-cap with a green led positioned on the
fingertip, which facilitated the segmentation. After the filtering, the binarized
image will contain only the blob representing the source of light on the finger:
the centroid of the blob has been considered as the 3D position of the reaching.
Since the Kinect V2 works on infrared light, it can detect distances in the dark
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without issues. However, it is possible that the image coordinates of the blob
centroid are not mapped in the IR sensor since the RGB camera resolution is
1920x1080 pixels while the IR camera has a 512x424 pixel resolution. Whenever
the correspondence between the RGB and the IR images was not found, the
closest valid pixel was taken instead. To avoid taking ill-measurements due to
the small cross-section of the finger during a reaching task, the finger-cap was
covered by a small green plastic planar circle, which ensured that the Kinect
sensor did not miss the small fingertip surface area (See Figure 13 bottom-
right), and also served to filter out the higher light frequencies components of
the led light, which were casting several rays in the dark image. Several finger-
caps were printed in different sizes to give a tight fit to all the users regardless
of the finger size to maintain reaching precision.

The Kinect sensor was positioned 1.5m in front of the users, fixed with a 1/4"
screw on a metal bar (Figure 24 left). To convert the Kinect data in the same
coordinate system of the HTC lighthouses tracking system, a Vive Tracker was
also placed on the metal bar in a fixed position. The Vive Tracker was thus
rigidly attached to the Kinect sensor up to an unknown transformation. To
find the transformation between the Tracker and the Kinect sensor, the tracker
was fixed on a 3D printed part designed to house a camera (ZED Mini). Then,
the transformation Z

KT between the Kinect sensor and the ZED camera has
been obtained through traditional stereo camera calibration. At the same time,
the transformation S

ZT between the ZED camera and the HTC Vive tracker
(S) is known from the CAD of the 3D printed adapter. By chaining the two
transformations in cascade ( S

KT =S
Z T Z

KT ), we can convert 3D coordinates
expressed in the Kinect reference frame into coordinates expressed in the HTC
reference system, regardless of the position of the Kinect sensor (see Figure 13).
The raw 3D measurements obtained by the Kinect were sent to Unity through
a UDP connection.

In this way, we can compare the user’s finger’s position during the reaching
task (tracked with the Kinect) with the real position of the stimulus, which is
expressed in the HTC reference system, and obtain an error measure.

3.0.3.1 Kinect Residual Tracking Error

The Kinect measurement error in the world reference frame (after the trans-
formations) has been obtained by positioning the rod with the light box in
27 distinct positions, which represent the possible positions that have to be
reached by the user’s finger in the experimental setting described in Chapter
4.2. The positions evenly span over the interaction volume, to obtain an error
measure which directly refers to the experiment performed. Refer to Chapter
4.2 for further details on the experimental setup.

First, we measured the ground truth coordinates by attaching a Vive tracker
on top of the light. Then, we removed the Vive tracker and attached the finger-
cap with the green LED right on top of the correct position, touching the light
box. Finally, the box was removed, and the Kinect detection of the finger was
captured. The 27 measurements in world coordinates obtained by the Kinect
were then compared to the 27 measurements taken with the Vive Tracker.
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Calibrated Cameras MRE

ZED left and right cameras: to calibrate
the ZED stereo rig (section 3.0.1/3.0.2)

0.59

ZED left camera - Kinect camera: to find
the Z

KT transformation (section 3.0.3/Fig-
ure 13)

0.35

Table 1: Mean Reprojection Error (MRE) of the stereo camera calibrations used to
register the Kinect, representing the distance (in pixels) between a pattern
key-point detected in a calibration image, and a corresponding world point
projected into the same image.

The mean Euclidean error between the measurements was 15 ± 12 mm,
which we treat as the accuracy error. To assess the precision of measurements,
we collected another 3 batches of measurements of the 27 grid positions with
the Kinect. We computed each point’s mean position (separating the three
axes) and the absolute difference of the 4 readings with respect to the mean
value. We then computed the mean absolute difference of all 27 points with
respect to their mean position and obtained a precision error of 1.7± 2 mm on
the x-axis, 3.4± 3 mm on the y-axis, and 4.4± 4 mm on the z-axis.

Finally, the mean reprojection errors (MREs) of the stereo camera calibra-
tions are reported in Table 1.

3.0.4 Real Case Registration Module

During interaction tasks, the reaching misalignment error cannot be imputed
solely to the reduction of optical cues induced by the use of an HMD, as the
reaching also involves a motor task. As we already stated, the control group’s
motivation is to see the impact of any biomechanical bias during the movement
and isolate the real perceptual error induced by the HMDs. The control group
had to perform the same reaching task but without HMD.

To be as coherent as possible to the AR case, we devised a system to provide
the same visual stimulus streamed through the HMDs (Figure 15).

The visual stimuli were provided using a LED light connected to an Arduino
Uno and programmed to turn on for the same amount of time as in the AR
task (1 second). A remote controller controlled the LED light, and the whole
circuit was encased in a 3D-printed box designed to be precisely positioned on
3 specific positions of a metal rod. The box had a circular hole (1 cm radius),
which was internally covered with a small square of plastic (0.8 mm thick)
to diffuse the LED light in a uniform circle, to be as similar as possible to
the stimuli provided in AR. The metal rod was then placed in fixed positions
of a metal structure with 18 hook supports and served as support for the rod.
Thus, the LED light could assume 3 different positions on the rod, which could
be housed in 9 different positions, achieving the same 3× 3× 3 stimuli grid
that was displayed through AR HMDs (see Figs. 14 and 24). The experiment
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Figure 14: The structure used to convey visual stimuli similar to the ones perceived
in AR, while not wearing any HMD (see Figure 15 for a depiction of the
perceived stimulus). A box with a green LED can slide on a rod and snap
into 3 possible positions. The experimenter can move the rod into 9 possible
positions, thus achieving a 3× 3× 3 grid, enclosed inside a cube with a side
length of 24 cm.

was specifically conducted in the darkness as the whole metal structure’s sight
would otherwise provide a strong cue on the stimulus’s 3D position.

The positions of the grid points, expressed in the HTC Vive reference system,
have been obtained by positioning the LED box in all the 27 positions and
measuring its 3D world coordinates with a Vive Tracker attached on top of the
center of the LED light. The whole structure was designed to quickly remove
the metal rod after the visual stimulus vanished, leaving an empty volume in
front of the user. In this way, we deprived the users of the haptic feedback
deriving from the finger’s physical contact with the LED box.
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Figure 15: Top: the stimulus as observed from inside the OST HMD through an inner
camera. Bottom: the stimulus as observed without any HMD, displayed
through a green LED, using the structure displayed in Figure 14. On the
right side, the views in the darkness are displayed, as during the experi-
ment. In the darkness, the perceived stimuli are the same.



4
Perception and Action in Peripersonal
Space

The previous chapter describes the design and development of a registration
framework which can be used to develop AR applications in such a way that
the user, the environment and the virtual content are coherently co-localized
and synchronized. In this chapter, we describe how we used the developed
framework to carry out further research on the perception/interaction loop in
peripersonal space.

The next three sections (4.1, 4.2 and 4.3) thus describe the studies specifically
designed, implemented and carried out to understand how people perceive
and process information in AR environments and which is the best interface
in terms of transparency, able to guarantee a minimum cognitive load on the
user so that he can concentrate on the current task.

Three cases are considered: the first one (section 4.1) is a reaching task per-
formed with unregistered devices. The aim is to quantify whether distortions
in perception of the spatial layout of the scene occur, by taking into considera-
tion two different AR HMD (VST and OST). The considered devices are Sam-
sung Galaxy S6 with a DivineViewer VR headset (Google Cardboard) used as
VST HMD and a Meta2 as OST HMD.

The next one (section 4.2) is a blind reaching task, carried out in a more
controlled environment with the proposed registration framework described
in chapter 3. This experiment aims to isolate the visual perceptual error in
the reaching task by removing the visual alignment cue by using the blind
paradigm. The experiment is performed in the darkness to be able to have a
coherent control group, who do not use any HMD, to have a baseline with
which to compare the performance of the users when wearing HMDs. This
time, both HMDs are binocular and within the same price range, to have a
better comparison between currently available AR HMDs. The used devices
are an HTC Vive pro with a ZED mini frontal stereo camera as VST HMD and
a Meta2 as OST HMD.

The last one (section 4.3), also performed with the proposed framework, is
an interactive task. This experiment aims at obtaining a comparison of the two
AR devices in a functional and interactive task. The aim is to assess whether

41
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and how the distortions observed in the blind reaching experiment affect user
interaction in more naturalistic settings, where multiple depth cues are avail-
able. The used devices are the same seen in section 4.2, as the aim is to compare
the performances of the two HMDs in different settings.

4.1 Using Stock, Unregistered AR Devices

In this experiment, participants were standing (to not give any haptic or per-
spective clue) and tried to reach some virtual cubes generated randomly within
a fixed 50x30x30 cm volume, being as precise as possible (see Figure 16). The
user had 5 seconds to adjust the position for each tentative. To a subset of the
participants, the visual feedback about how the hand was registered internally
was not provided (occlusion handling, i.e. hand augmentation, was disabled),
thus they had to rely only on their perception of virtual objects and own real
hand (Test I - without feedback).

Figure 16: Scene sketch of the experimental setup.

To the remaining subset of participants we gave a feedback of the user’s
hand position in the internal reference frame (Test II - with feedback). In both
systems the participants could see when the hand was entering inside the
cube. With the OST, the depth occlusion handling (which relies on the embed-
ded depth sensor) was enabled again. With the VST, a red boxing glove was
rendered in such a way that it approximately overlapped with the real hand
(Figure 17).

Each participant was also asked to compile a Simulator Sickness Question-
naire (SSQ, [52]) before and after using each device.
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Figure 17: The virtual augmentation of the hand for the VST device. The users have
been asked to grasp the handle in such a way that they perceived the glove
as overlapped to the real hand.

4.1.1 Setup

A Kinect device was rigidly attached to an horizontal frame with 0
◦ tilt (point-

ing straight forward) at a 156.5 cm height (measured from the ground to the
sensor center). The Kinect was facing the subject, 1.5m away from his point of
view: participants had to stand on top of a line taped on the ground, which
signaled the 1.5m mark (Figure 16). To reduce the amount of noise in the data
obtained by the Kinect sensor, the movements of the subjects were restrained.
Participants were standing in a precise location in a small room and were
asked not to move their feet.

4.1.1.1 Video see-through

The considered HMD is a Samsung Galaxy S6 with a DivineViewer VR headset
(Google Cardboard). The rear 16MP camera was used to capture the video
feed. The S6 screen resolution is 2560x1440 pixels (1280x1440 per eye) with
30Hz refresh rate. The field of view of the HMD is ∼ 95

◦. The AR tracking
was performed using Vuforia integrated in Unity. Vuforia is an AR SDK which
uses computer vision technology to recognize and track planar images and 3D
objects in real time. It is then possible to position and orient virtual objects with
respect to the reference frame attached to the tracked real world objects, when
they are viewed through the camera of a mobile device. In our case, two images
(targets) were tracked simultaneously: the first one was a 420x594mm picture
attached vertically, just below the Kinect sensor. The center of this image served
as global reference frame for the inner game measures. The second image
target was sized 90x100mm, and it was needed to track the hand position.
This image was attached to a 3D printed handle, which was a 10x10 cm plane
attached to a 10 cm tall cylinder with 45

◦ slope. The handle was designed
to be easily seen by the camera from a seated position, to make the tracking
more reliable. Vuforia does not currently handle occlusions between real and
virtual objects: the augmentation is always overlapped on top of the video
feed, regardless of their true relative positions. Thus, the augmentation of the
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hand was helping the user by providing back this depth cue, since the relative
occlusion between virtual objects can take place.

4.1.1.2 Optical see-through

The used device is a Meta 2 headset by MetaVision. The Meta HMD has 90
◦

field of view and a resolution of 2560x1440 pixels (1280x1440 per eye), similar
to the VST device. In contrast to the VST device, however, the OST FOV only
refers to the area where the virtual augmentation can take place; the user
can still see through the remaining portion of the headset’s glass. The front
camera, used for the inner SLAM tracking, has a 1280x720 pixel resolution.
MetaVision’s HMD is designed to work best within arm’s reach (eyes vergence
is not dynamically tracked).

4.1.1.3 Experiment overview

The scene was similar for both HMDs, with a few differences. A cube was
rendered in a random position inside a volume of 50x30x30 cm size, at discrete
intervals of 10 cm. Thus each cube had 72 possible positions. The spawning
volume position was slightly shifted in position between the two HMDs due
to internal differences of how the two devices’ tracking works (e.g. VST HMD
has problems to detect the image on the handle close up simultaneously to
the bigger image 1.5m away, as the smartphone can only keep one of them
in focus). Each cube was 10x10x10 cm wide for both HMDs, and disappeared
after 5 seconds of continuous detection of the user’s hand. Upon destruction of
a cube, its position and the hand current position, which was given by the hand
tracking in the case of the OST and by the handle target tracking for the VST,
were recorded internally into a text file. This data is thus referred as internal
data, as these measures are entirely dependent on the tracking performed by
the Vuforia and Meta SDK. After a cube disappeared, a new one instantly
appeared, in a different random position.

The scene is also acquired by an external device, i.e. a Microsoft Kinect, in
order to obtain quantitative measurements not dependent on the VST and OST
systems. Once acquired, we segmented the Kinect data by first derivating the
measures over the height. Such derivative is close to zero only when the sub-
jects held their hand position still inside the cube, or when they had lowered
it to the side, waiting before trying the next grasp. The cubes were appearing
instantly one after another, but sometimes subjects had to look around as they
could appear slightly outside the FOV. Hence we extracted the segments of
data that satisfied two conditions: (i) the derivative over the height was close
to zero; (ii) the height of the hand was above the average height of the hand
when resting on the side, which was recorded before starting the test for each
subject.

Each extracted position was thus composed of all the readings, starting from
the first time the above two conditions were verified, until one of the con-
ditions ceased to be valid. Sequences of data shorter than 50 readings were
discarded to remove outliers: since the subjects maintained the position for
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about 5 seconds and the Kinect samples at 30hz, valid sequences had to have
around 100-150 readings. The final extracted positions have been computed
from averaging the readings of each segment. We computed the average depth
of the targets that appeared for both groups, as well as the average depth ob-
tained both from the data gathered internally and the data registered with the
Kinect sensor.

Finally, the SSQ [52] has been analyzed by computing the four indexes of
nausea, oculomotor, disorientation and total cybersickness score.

4.1.2 Procedure

A total of 45 volunteers participated in the experiment.
The first 30 volunteers (10 females) performed the Test I (without feedback),

over two days. The VST was tested during the first day by 15 participants (5
females). They were aged between 19-29 years (mean 23.0 ± SD 2.8 years) and
between 161-188 cm tall (mean 173.8 ± 8.0 cm). The OST was tested during the
second day by 15 participants (5 females). They were aged between 19-29 years
(mean 24.7 ± SD 3.0 years) and between 156-188 cm tall (mean 173.9 ± 8.7 cm).
The subjects were not tested for eyesight, and everyone wore the headsets as
they were most comfortable.

The remaining 15 volunteers (5 females) performed the Test II (with feed-
back), and were tested within a day. This time, all of them tried both devices.
Each participant started with a different HMD than the previous one (to not
introduce bias due to eye strain or learning processes).

The IPD of subjects was not measured: an average value of 63mm was used
to render the two views. The HMDs were large enough that all the subjects
who had glasses managed to wear them underneath the device.

The experiment has been conducted inside our University laboratory: parti-
cipants were mostly ranging from undergraduate to PhD students.

The subjects, after giving informed consent, first compiled the SSQ with
their initial conditions before using the HMDs. After noting age, height and
gender, each candidate was told to stay still on top of the line which marked
a 1.5m distance from the Kinect sensor and Vuforia image target. The subject
standing position was measured for a few seconds by the Kinect before starting
the test. A brief explanation was given about how to use and wear the HMD,
and the structure of the test: the participant had to move the hand inside the
perceived position of the cube, stand still for 5 seconds, and lower the hand
to the side before trying again with the next one. Each participant was given
5 minutes, thus made approximately 50-60 reaching attempts at most. The
VST device was sometimes refocusing the camera resulting in a little slower
tracking, thus participants who used the VST HMD ended up making a little
less reaching attempts than those using the OST HMD (approximately 40-50).
After finishing the test, the subject was asked to compile again the SSQ.
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4.1.3 Data Analysis

Figure 18(c,f) shows the distribution of hits centered around the goal: VST has
a higher spread with respect to OST. We computed a linear fit of the hand
positions with respect to the real positions of the cubes (on the z axis) for each
participant (see Figure 20(a,b)), and plotted a normal distribution of slopes by
using the average and standard deviation values for each group (see Figure
22), similarly to a previous study that used the same approach [65].

4.1.3.1 Test I - without feedback

By looking at the plotted positions of the hands registered both internally
and by the Kinect for the OST HMD, we can notice no particular difference
between the two measures, and a slight depth compression (see Figure 18(d,e)).
The mean depth errors (Tab.2) confirm the presence of an underestimation of
a few (∼6) centimeters. There is a trend towards a larger underestimation as
the distance from the user increases (Figure 20(a,b) and Figure 21(e,f)). On
the other hand, there is a significant depth compression with the VST HMD.
Moreover, the internal data seems to be slightly mismatched with respect to
the Kinect data for the measured depths (Figure 18(a,b); Tab.2). This suggests
that there could be a misalignment between the internal scene view and the
real world.

A two sample t-test revealed significant difference (p < 10−7) between
the average slope of the two HMDs: the mean slope for the VST HMD was
16.57

◦±SD 9.13
◦, while for the OST 37.46

◦±SD 4.66
◦. It is worth noting that

10 out of 15 subjects who used the VST HMD obtained slopes under 20
◦, sug-

gesting consistent inability to estimate precisely the depth of virtual objects if
no other internal feedback is given, and lack of perceived difference between
two objects at different distances. All the subjects who used the OST HMD
obtained slopes above 25

◦. There were no slopes over 45
◦, nor negative ones,

thus on average none of the subjects overestimated depths.

4.1.3.2 Test II - with feedback

The distribution of hits centered around the target for VST HMD users was
more condensed with respect to Test I (Figure 19(c) and Figure 18(c)), which
was to be expected. The comparison between the same distributions for OST
HMD users reveals no appreciable difference (Figure 19(f) and Figure 18(f)).

The slopes obtained by the single subjects also show an improvement for
VST HMD users and a consistency with previous results from OST HMD users.
From those who used the VST HMD, 5 out of 15 obtained slopes under 20

◦,
as opposed to 10 over 15 of Test I. Only one subject that used the OST HMD
obtained a slope under 20

◦.
The SSQ analysis reveals a slight increase in cybersickness symptoms when

using the VST HMD, and no significant change when using the OST HMD
(see Figure 23 (a,b)).
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Test HMD Data source
MAE of
perceived
depth

I VST Internal 19.2±10.2 cm

I VST Kinect 28.4±15.2 cm

I OST Internal 5.8±10.1 cm

I OST Kinect 5.8±11.2 cm

II VST Internal 5.4±10.3 cm

II VST Kinect 17.4±14.8 cm

II OST Internal 3.0±9.6 cm

II OST Kinect 0.4±10.3 cm

Table 2: Comparison of VST and OST depth Mean Absolute Error (MAE).

4.1.4 Outcome

We analyzed the perceptual difference between VST and OST HMDs users,
gathering data from 45 volunteers. We subdivided the analysis into two differ-
ent tests.

In Test I - without feedback, we positioned the reaching goals in front of the
subjects, thus the perspective cue cannot help, but only the perspective size.
Here, we measure the reaching positions by using a Kinect device in order
to have the positions with respect to an external reference frame. We assess
the possible misperception of the spatial structure of the scene: for this test
we do not use augmentation of the subject’s hand, thus we allow only a visual
online error correction between the real hand and the AR contents. This can be
useful to understand whether it is possible a natural interaction between real
and virtual objects. VST shows worse performances and also OST decreases
its reaching precision (see Figure 20(a,b) and Figure 21(e,f)): this can be due
to lack of perspective cue and to the frontal reaching task. By considering
external measures, VST has larger error in depth with respect to OST (see
Figure 18(b,e)): in particular, VST has a mean depth error of ∼30 cm, and OST
∼6 cm (see Table 2). This result suggest that OST allows an effective interaction
in AR.

In Test II - with feedback, we introduce an augmentation of the subject’s hand,
thus a visual online error correction between the augmented hand and the AR
contents is possible in the same reference frame. In this way, the internal errors
decrease for VST and are similar to the previous ones for OST, and the external
measures show an improvement of the reaching for both VST and OST (see
Figure 19). Though, the error in depth of VST is still large, ∼17 cm. Whereas,
OST is ∼1 cm (see Table 2). It is worth to note that since a visual online error
correction is possible, the errors are mainly due to the 3D reconstruction of the
real environment performed by VST and OST, i.e. how they are able to place
virtual objects in correct positions with respect to the real environment.
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By looking at the average slopes obtained during the experiment (Figure
22), we can notice how participants who used an OST HMD obtained an over-
all better result (i.e. the slope of the linear fitting between real measurements
and perceived ones is around 45 deg as expected). A two sample t-test revealed
a significant difference between the average slopes obtained when using the
VST HMD in the conditions described in Test I and Test II (p < 0.05). The
mean slope in the former case was 16.57

◦±SD 9.13
◦, while in the latter it

was 26.38
◦±SD 10.71

◦. There is no significant difference in perceived depth
between users who used the OST HMD in Test I (mean slope 37.46

◦±SD 4.66
◦)

and those who did it in Test II (mean slope 36.09
◦±SD 6.64

◦), suggesting that
the OST HMD gives enough depth cues even without the hand augmentation.
Moreover, a t-test revealed significant difference (p < 0.05) between the aver-
age slopes when using the two different HMDs of Test II, which considering
previous results, suggests a general better depth perception by subjects who
used an OST HMD.

Furthermore, by looking at the mean depth errors registered internally with
respect to the external Kinect measures (Tab.2), we can notice how the VST
HMD internal measures have an error ∼18 cm. Thus, even if the user is able to
minimize his error when interacting with virtual objects thanks to an internal
feedback, such mismatch with the real measures could make the VST HMD
less suitable for haptic applications (e.g. virtually augmented real tools). The
OST HMD did not display such behavior, as the mean depth errors measured
internally and externally are consistent with each other.

The SSQ analysis reveals a slight increase in cybersickness symptoms (es-
pecially oculomotor and disorientation factors) for VST HMD users (Figure
23(c)), although to a lesser extent than the Test I (Figure 23(a)). OST HMD
users, on the other hand, did not experience any significant condition aggrava-
tion on both tests (Figures 23(b,d)). Thus, we can conclude that the OST HMD
is generally better in terms of eye strain and fatigue.

By considering the previous discussions, the results suggest that the con-
sidered VST setup does not allow an effective interaction in AR, since there is
a shrink of the perceived space, specifically a large underestimation of depth.
This fact hampers even the reaching of the AR contents. However, Test II al-
lows us to infer that it is possible an interaction with AR contents through
the augmentation of the subject’s hand, since this provides a cue for a visual
online error correction. Conversely, the results obtained by using OST suggest
that such a technique allows effective interactions with AR contents with or
without the hand augmentation, thus OST can be considered for interaction
also with augmented real objects. A further extensive evaluation, by consider-
ing binocular VST devices, may give us further experimental evidence for the
comparison of distance perception and interaction with HMD AR devices.
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(a) (b) (c)

(d) (e) (f)

Figure 18: Data from Test I - without feedback. (a) and (d) represent the distribution of
subjects’ hands positions with respect to their standing position in (0,0) -
red dots represent the spawn positions of the targets. (b) and (e) represent
the same distribution, but with the average hand positions measured by
the Kinect. (c) and (f) are the distributions of the hand positions (from the
internal data) around the target, which is centered in (0,0), after holding
the hand position for five seconds.

(a) (b) (c)

(d) (e) (f)

Figure 19: Data from Test II - with feedback, displayed in the same order as Figure 18.
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(a) (b)

(c) (d)

Figure 20: Difference between real and perceived depth distances (i.e. perceived z dis-
tances plotted against the corresponding real ones) in Test I - without feed-
back (top row) and Test II - with feedback (bottom row). Left images are from
the VST HMD, right images from the OST HMD. The reference α value
should be 45 deg, indicating a perceived depth equals to the real one. Smal-
ler α values indicate a compression of the perceived distances.
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(e) (f)

(g) (h)

Figure 21: Difference between real and perceived distances on the x axis (left and
right with respect to the user) in Test I - without feedback (top row) and Test
II - with feedback (bottom row). Left images are from the VST HMD, right
images from the OST HMD. The computed α is reported with respect to an
ideal value of 45 deg, and smaller α values indicate a compression of the
perceived distances, as in Figure 20.

Figure 22: Distributions of slopes (in degrees) between the participants, when using
different HMDs and different experimental conditions. Participants who
used an OST HMD obtained an overall better result (i.e. the slope of the lin-
ear fitting between real measurements and perceived ones is around 45 deg
as expected).
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(a) (b)

(c) (d)

Figure 23: SSQ results for Test I - without feedback (a,b) and Test II - with feedback (c,d).
PRE and POST refer to answers before and after the experiment, respect-
ively.
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4.2 Using Registered Devices without Feedback

This experiment aims to isolate the visual perceptual error in the reaching
task by removing the visual alignment cue by using the blind paradigm. The
experiment is performed in the darkness in order to be able to have a coher-
ent control group, who do not use any HMD, to have a baseline with which
to compare the performance of the users when wearing HMDs. Displaying
a 3D point in space without an AR HMD always requires the presence of a
structure or contraption, which would otherwise introduce a perception bias
if not hidden from the user. Although this experiment can be considered as not
strictly AR, as the real-virtual blending is basically disabled, we consider this
setup required to establish the impact of perception or other biases present in
our experimental setup during the interaction without the visual alignment
cue between the target and the finger. We thus have to assess if, in our ex-
perimental settings users without HMDs are able to accurately point a target
whose location is specified by visual information alone (as in [93]), and blind
reaching has been repeatedly found to be more accurate than explicit judge-
ments (e.g. [102]). If distortion is also observed in the control group, then part
of the misperception can be imputed to the specific experimental setting, e.g.,
due to physical constraints during the reaching, such as targets being too far
away. Otherwise, any other statistically relevant misperception encountered
can be attributed solely to the optical aberrations caused by the two HMDs.

4.2.1 Setup

The subjects had to perform a blind reaching task: they were asked to reach
with a finger the 3D location of a sphere (1 cm radius), which was shown for 1

second. The experiment is performed with the VST HMD, with the OST HMD,
and with no HMD. The experiment was performed in an enclosed room, which
was darkened as much as possible by covering any source of light. Since the
eyes quickly adapt to dim light conditions, we asked them to keep the eyes
closed to deprive any geometrical cue subjects. The subjects were informed
when to open the eyes to see the stimulus’s position and had to close the eyes
again before attempting the reaching (blind reaching task). The same proced-
ure has been used for both the HMDs and the baseline (without HMD), to
maintain the same cognitive load over the different tasks and avoid any pos-
sible bias.

4.2.2 Procedure

We gathered data from 15 volunteers, mean age of 29± 7 years (6 females, 9

males). The 15 subjects were evenly split into three groups to avoid bias, and
each group tested all three cases in a different order (balanced within-subject
experimental design). The average height was 174± 10 cm. All the participants
had a strong technical background, which allowed the understanding of all the
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experimentation phases under strict conditions to reduce the noise caused by
ill-calibrations. All the subjects had normal or corrected to normal eyesight.
Users with glasses were asked to keep them underneath HMDs.
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Figure 24: Sketches of the experiments. (left) in the blind reaching task configuration,
targets (green circles) appear inside a spawning volume in front of the user:
the fingertip is tracked by a Kinect placed in a tracked position. In the in-
teraction kitchen task configuration, targets (kitchen objects, see Figures 27

and 28) appear on the spawning plane; in this configuration, the observer’s
line of sight is approximately perpendicular to the spawning plane. The
HMDs calibrations are adjusted by aligning a tracked checkerboard. (right)
an example of the stimuli displayed in the blind reaching task; during the
experiment, the room was darkened (as in Figure 15, right images)

The experiment was performed as follows. The whole experimental proced-
ure is explained to the subject before starting. The user is shown how to wear
and tighten the HMD (if any is used). Once comfortable, the user is asked to
sit still, and the procedure starts by registering the head height. The user is
then asked to perform the calibration as described in Section 3.0.1 and Sec-
tion 3.0.2. Once finished, the subject wears the finger-cap on the right-hand
index finger, and the battery-powered LED inside the finger-cap is turned on,
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and the room lighting is switched off. The subject is asked to close the eyes.
The experimenter warns the subject when to open the eyes, just as a target (a 1
cm radius sphere) is about to appear in a random position of a 3× 3× 3 grid
(of size 24× 24× 24 cm). The grid occupies a cubic spawning volume (Figure
24) volume standing 48 cm away from the user. The volume height adapts to
the height of the user, which was measured when the experiment began. The
target positions are extracted from the randomly shuffled list of the 27 possible
configurations, and each target appears only once. The target disappears after
1 second: the user is asked not to move until the target has disappeared and
to close the eyes again as soon as the target disappears. Thus, the user blindly
reaches the perceived position, and the experimenter records through a button
press the finger location and the target position. Each user performed 27 reach-
ing movements per session, and 4 sessions were repeated consecutively, using
the same hardware configuration for all 4 sessions. Once the experiment ends,
the subject is given enough time to accommodate and rest before testing the
other devices configurations (1 day) to exclude any bias caused by the user’s
fatigue.

4.2.3 Data Analysis

The users’ fingertip 3D positions during the reaching task have been com-
pared with the real positions, where the stimulus is displayed. Each one of the
15 users performed 27x4 reaching attempts for all the 3 experimental condi-
tions: OST, VST, and real-world (RW) baseline (i.e. performing the task without
HMD, our control condition). A total of 1620 points were displayed for each
setup. After discarding outliers (mainly due to erroneous recording of the fin-
ger position), the final analysis has been performed on 1399 points for the
control condition, 1472 points for the VST HMD, and 1361 points for the OST
HMD.

Figure 25 (left images) shows the scatter plots of the reaching points (colored
dots) with respect to the position of the target stimulus (red dots) for the XY
plane (which is a frontal plane for the observer). Figure 25 (right images) and
Figure 26 display the horizontal plane XZ’s behavior, where the depth is along
the z-axis (see Figs. 14 and 24).

Table 3 shows the mean absolute errors (MAEs) during the reaching task for
the three axes. With respect to the user, X is the lateral axis (left/right), Y the
vertical axis, and Z the longitudinal axis (depth).

Being the data not normally distributed, we performed a Wilcoxon signed-
rank test to analyze the obtained errors. The test has shown no significant
difference in the y-axis MAE between the OST and Real-World case, and sig-
nificant difference in all other condition comparisons (p < 0.005): when com-
paring the errors along the axes between the control group and the two HMD,
and when comparing the two HMD together.
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OST HMD VST HMD Real World

X 33± 25 mm 44± 29 mm 24± 21 mm

Y 31± 28 mm 35± 29 mm 29± 23 mm

Z 98± 67 mm 69± 52 mm 40± 29 mm

Table 3: Mean absolute errors of the Blind Reaching Task, with respect to each axis.
Axes X and Y represent the plane orthogonal to the user’s optical axis, with
Y pointing upwards and X to the right, while the Z axis represents depth,
pointing away from the user (see Figure 24).

4.2.4 Outcome

In Figure 25 we can observe how the OST and real-world (RW) conditions
are comparable as cloud shape for the frontal plane XY, and the error is quite
uniform around the target. In contrast, the VST shows a slight asymmetry that
is highlighted by the red arrows. This could be due to the ZED camera’s not
optimal positioning on the Vive HMD, which introduces a rotational error that
the user’s calibration has not completely removed.

By looking at Figure 26, which considers depth (z-axis), we can notice a dif-
ferent behaviour for the three conditions: indeed, for the OST, the users exper-
ience a relevant depth compression. This is evident in the scatter plot (Figure
25, OST top view) and in Figure 26 OST HMD, where the underestimation
of depth changes as a function of distance. On the contrary, the VST HMD,
while still performing significantly worse than the real world condition, seems
to cause less distance compression, and such compression is less affected by
the distance. As expected, there is no asymmetry and compression for the RW
condition.

The VST HMD data seems to show the effect of the aforementioned rota-
tional error, with a trend to cause an overestimation of the distances over the
x-axis (Figure 25, middle plots).
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Figure 25: Results of the Blind Reaching Task (measures in meters). Red dots represent
the stimulus position (target). Colored dots represents the user’s fingertip
positions during the blind reaching: a specific color is associated for each
target position to see the related cluster of reaching positions. The vectors
point the center of mass of the cluster, which encloses all the hits for that
target. The origin is the user’s point of view.
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Figure 26: Linear fittings displaying the relationship between the real and perceived
depth positions in the three conditions, where the bisector represents the
ideal case (with equal real and perceived depth). The slope α in the OST
group suggests that the undershooting, and thus compression of the per-
ceived depth, grows as distance from the user increases.
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4.3 Using Registered Devices with Feedback

This experiment aims at obtaining a comparison of the two AR devices in
a functional and interactive task. The aim is to assess whether and how the
distortions observed in the blind reaching experiment affect user interaction
in more naturalistic settings, where multiple depth cues are available.

4.3.1 Setup

Subjects were asked to move a few common household items on a table and
overlap them to their virtual projection (see Figure 27,28). The CAD models
used for the rendering were not necessarily a replica of the real ones (e.g., our
box of cereal was of a different brand). Still, the models’ shapes and sizes were
scaled accordingly to be dimensionally coherent with the real items used.

The virtual objects appeared in a 3× 3 grid (20 cm distance between central
points) on a table in front of the users. We choose to have a larger workspace
area with respect to the previous experiment (40x40 cm instead of 24x24 cm),
increase the users’ mobility around the scene, observe their behaviour and the
possible undesired effects like sickness in a more naturalistic task. We fixed
the rendering positions of the virtual objects on the 3x3 grid by placing a Vive
Tracker on the 9 possible positions on the table and recording its position:
the grid is therefore rendered in the same place for all the users. The subject
had as much time as needed to align the real object with the corresponding
virtual one, and no constraints were imposed on the movements. The virtual
items’ spawning position was randomized by shuffling the list of the 9 possible
positions of the grid. Each user aligned 45 items, thus moving to the same
point of the grid 5 times. Among all the users, virtual objects were displayed
60 times on every candidate position of the grid.

The experiment was conducted under normal lighting, thus providing all
the cues which would be present for normal usage circumstances of the OST
and VST HMDs. We gathered data from 12 volunteers (9 males, 3 females)
who were evenly split into two groups of 6 people. Each group started the
experiment with a different HMD to avoid bias (balanced within-subject ex-
perimental design). All the subjects had already performed the blind reaching
experiment thus, they knew the calibration procedures. Of the original 15 par-
ticipants from the blind reaching experiment, 3 could not attend the second
experiment: the average age of the examined sub-group was 30± 7 years. The
average height was 174± 9 cm.

In this experiment, the perceived position of the virtual objects was recorded
through a Vive Tracker fixed on a glove (instead of the Kinect as in the previous
experiment) to increase the freedom of interaction movements. This is also
motivated by the fact that we do not need to detect the position of a finger, but
just the position of the hand that grasps the real items. We built the glove with
a 3D printed ankle band adapter attached with two Velcro straps on a custom
adjustable glove, sewed from washable synthetic fabric. Data gloves, which
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also include precise finger tracking, are commercially available (e.g., Manus
gloves) but not necessary for our experiment.

During this experiment, we asked the participants to fill the Simulator Sick-
ness Questionnaire (SSQ) [52] and the Igroup Presence Questionnaire (IPQ) [76]
to measure user experience differences between the two HMDs.

The SSQ consists of 16 questions, to be answered on 4 points Likert scale, in-
dicating the level of perceived symptoms from None to Severe. The evaluation
of simulator sickness for a human-computer interaction topic is still under dis-
cussion [83]. Still, the SSQ is the de facto standard to evaluate undesired effects
when using VR and AR devices. To obtain an indication of the symptoms over
the Nausea, Oculomotor, and Disorientation domains, the answers to the 16

questions are weighted as in [101].
The IPQ is a questionnaire for measuring the sense of presence experienced

in a virtual environment. The IPQ has three subscales and one additional gen-
eral item not belonging to any specific subscale. The three subscales are: Spatial
Presence, i.e., the sense of being physically present in the virtual environment;
Involvement, measuring the attention devoted to the environment; and Exper-
ienced Realism, measuring the subjective experience of realism in the virtual
environment [82].

4.3.2 Procedure

At the beginning of the experiment, the subject is asked to fill the SSQ (PRE)
questionnaire. The experimenter briefly explained the task. Then, after the
same calibration procedure described in the previous experiment carried out,
the task started. The experimenter spawned a virtual item on the table (see
Figs. 2728). After the user aligned the real object with its virtual counterpart,
the user was asked to keep the palm flat, above each object, centered on the ob-
ject’s midpoint along the XZ plane. The experimenter recorded the perceived
location with a button press, and a new virtual item was generated. It is worth
noting that to proceed with the alignment, the user can move the real objects
present on the table, thus creating a new and not controlled configuration of
the real objects. We ensured that the user’s concept of the center was the same
as the actual physical center by showing which position must be considered as
the central one for each object before the start of the experiment. Moreover, all
the objects used were either circular or mostly symmetrical, thus no misinter-
pretation of the task was likely possible. After the subject finished aligning 45

items, the task ended. The subject removed the HMD, and filled the IPQ, SSQ
(POST) and SSQ (PRE, for the second trial) questionnaires. The same proced-
ure was then repeated with the other HMD. After finishing the task again, the
SSQ (POST) and IPQ questionnaires were filled. Since this experimental setup
was much quicker than the blind reaching, we performed the test with the two
HMDs consecutively, without letting the user’s rest 1 day as in the first exper-
iment. However, we can safely exclude any bias introduced by fatigue both
because the first HMD used was equally different for the whole experimental
group and because the starting user conditions were recorded before each test
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through the SSQ questionnaire (PRE). Two videos showing the First-person
task experiment with the VST 1 and the OST 2 devices are available.

4.3.3 Data Analysis

In this experiment, the task is to move the real objects onto the virtual cor-
responding ones. To quantify the errors in performing the task, the position
of the user’s palm, after the alignment of the real object with the virtual one,
is compared with the position of the displayed virtual object in the kitchen
scenario (Figure 29). Each subject performed 45 alignments for a total of 540

interactions. The mean absolute error over the x-axis is 17± 11mm for the OST
HMD and 18± 17mm for the VST HMD. For the z-axis (depth), the mean ab-
solute error is 28± 20mm for the OST HMD and 35± 25mm for the VST HMD.
The Wilcoxon Signed-Rank test shows no significant difference between the
two HMDs over the x-axis. The depth errors (z-axis), on the other hand, are
found to be different (p < 5e−5), with the VST HMD slightly underperforming
when compared to the OST HMD.

The SSQ scores (Figure 30) also display a better performance of the OST
HMD, with the VST HMD increasing all the motion sickness symptoms sig-
nificantly more. A significant increase in nausea, oculomotor and total scores
are observed for the VST HMD, and no substantial increase in any score for
the OST HMD. The cross validation between the starting conditions (OST-VST
pre) of the subjects, who used different HMDs, show no significant difference
between them. The cross validation between the final conditions (OST-VST
post) shows a significant difference in the way the nausea and total scores
increase during the use of the two different HMDs.

Finally, a Wilcoxon Signed-Rank test shows that the results of the IPQ ques-
tionnaire (Figure 31) display no significant differences in the perceived sense
of presence between the users of the two HMDs.

4.3.4 Outcome

In this experiment, the users are able to use many more depth cues with re-
spect to the blind case. The perspective of the scene from above (i.e. on the XY
plane with respect the line of sight), together with the ability to move around,
helps the user perform the task. The feedback exploited during the alignment
task (i.e. the visual alignment cue) greatly enhances the user’s accuracy and
precision: the errors observed during the experiment are coherent with the
errors measured in the control group of the blind reaching experiment. This
behaviour is also coherent with the results of our previous study [10], where
users performed significantly better when the visual feedback is possible (i.e.
the visual alignment between the real and the virtual object) was provided
during the movement. It must be noted how the movement, in this case, was

1 https://youtu.be/kLTj-x8cSAw

2 https://youtu.be/2xpd1Q_jRlg

https://youtu.be/kLTj-x8cSAw
https://youtu.be/2xpd1Q_jRlg
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constrained for simplicity on a plane (the table), but without loss of general-
ization, we expect to observe similar behaviours even while the same task is
carried out at different heights. Similar experimental setups are not uncom-
mon in depth perception experiments (e.g. in [53] a similar setup is proposed
for VR depth perception). Our final consideration is that albeit current AR
HMDs do indeed introduce enough aberrations that distort the user’s spatial
perception, it is possible to achieve an effective interaction in AR with enough
visual feedbacks.
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VST device

(a) (b)

Figure 27: Frames of the interaction task experiment, for the VST device. The left
column (a) shows the scene before the task: the real and virtual correspond-
ing objects are highlighted with red and green boxes, respectively. The task
consisted in moving the real objects onto the virtual corresponding ones.
The right column (b) shows the scene after the task has been completed.
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OST device

(a) (b)

Figure 28: The same representation displayed in Figure 27, but for the OST HMD:
before, column (a), and after the alignment, column (b).

Figure 29: The hand positions (colored dots, as in Figure 25) recorded during the inter-
action task experiment with the OST and VST HMDs (measures in meters).
Red dots represent the displayed object position. A small undershooting
can be observed, which is likely due to the palm being slightly offset with
respect to the center of an object (red dots) during a grasp. The vectors
point to the center of each cluster. The origin is the user’s point of view.
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* p<0.05; ** p<0.005

*
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*
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*
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Figure 30: Interaction task experiment: the results of the SSQ questionnaire for the
OST and the VST devices (left and right, respectively). Each plot shows the
mean values, averaged on all the participants, and the associated standard
deviation, for 3 subscales and the total score. The SSQ questionnaire has
been filled before (PRE) and after the experiment (POST). The Wilcoxon
Signed-Rank Test p-values are displayed where a significant difference is
found (i.e. when the paired, two-sided test rejects the null hypothesis of
zero median in the difference between paired samples at the 5% significance
level).

Figure 31: First-person interaction task experiment: the results of the IPQ question-
naire. Blue is for OST HMD, and red for VST HMD. The values, averaged
across the participants, are represented for the 3 subscales.



5
Conclusions

The contribution of this thesis is twofold: first, we developed a registration
framework which can be used to develop AR applications where real and
virtual elements are co-localized and registered in a common reference frame.
The generalized nature of the framework allows the use of different types of
headsets, both VST and OST, and tracking systems, and provides a way to
track and register the user’s interaction in the same common reference frame
where the virtual elements are displayed.

Moreover, we have used the proposed framework to quantitatively assess
and compare the interaction and 3D position perception in the peripersonal
space when using OST and VST HMDs, in rigorous experimental settings. In-
deed, to perform a quantitative comparison, all the elements of the scene must
be expressed with respect to the same, known, reference frame. This also ap-
plies to the users’ fingers and hands, if the interaction is quantified as well.

The proposed framework is made of several modules, which are all integ-
rated inside the Unity graphical engine. All the measures have been registered
in the VST HMD reference frame, as it provides a robust way to precisely loc-
ate designated points inside a specified area, with IR tracking. The system can
be easily adapted to work with similar systems, i.e. using other VST HMDs
IR tracking systems (e.g. Oculus Rift one instead of HTC Vive system) or any
other forms of tracking systems able to perform precise punctual tracking (e.g.
MOCAP). To compare the performances of different types of HMDs, different
devices have thus been registered in the VST HMD reference frame.

One module deals with the registration of a generic OST HMD: the visual
tracking of the HMD has been disabled, to use the HMD merely as a visual-
ization device, isolating any bias possibly introduced by the robustness of the
manufacturer SLAM system. The HMD can thus be tracked with an external
tracker, which is being tracked in the VST HMD reference frame, and then
calibrated with the SPAAM technique implemented in the module to obtain a
generic profile which adjusts the projection to avoid the parallax introduced by
the mismatch between the location of the tracker with respect to the user’s eyes
optical center position. The module is designed to obtain a baseline calibration
profile first, as in the literature the calibration procedure has been proven to
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be very susceptible to user’s error. The baseline profile can be obtained by per-
forming several calibrations in a strict setting, using a specifically constructed
mannequin with a stereo camera resembling the human’s eyes. In this way, the
alignment error caused by the user’s sway (i.e. caused by breathing or by oper-
ating the confirmation method) is kept under control. Rather than moving the
mannequin head to perform the alignment, the target can be moved instead in
fixed stable positions during the alignment phase. To further reduce the calib-
ration error, the calibration module implements a RANSAC procedure which
removes outliers in over-determined systems, i.e., whenever more alignments
than the strict minimum needed six are obtained.

The final alignment performed by each user before using the HMD, to deal
with the residual calibration error, is dealt with another module. The users
align a virtual checkerboard with a real one, which is also being tracked in the
VST HMD reference system. A visual gizmo is displayed, and the alignment is
performed through verbal communication with the experimenter, which ad-
justs the projection as communicated by the user. The module adjusts the
parameters of the virtual cameras which are used by the graphic engine to
generate the final projection rendering in tiny steps until a correct alignment
is achieved.

To isolate the baseline error, i.e. the measured error which is not caused
by a perceptual mismatch, a control group is required. One module of the
frameworks is a setup that can be used to measure the baseline error, i.e. the
error measured when the task is performed in non-AR settings, which is thus
caused by other factors such as the sum of all the registration errors of the
various tracking devices. The proposed setup is able to provide visual stimuli
in different 3D positions which are identical to the ones perceived with AR.

Finally, the last modules of the framework track the user’s finger position
and register it in the same common reference frame as all the other devices.
The user’s finger position is tracked with a color segmentation algorithm
which can be configured to use different HSV values to track different colors as
needed, with a Microsoft Kinect V2. The Kinect is registered with an external
Vive Tracker through an external program which is synchronized through an
UDP connection, thus the system can be adapted to use not only other RGB-D
sensors, but other types of tracking devices (e.g. Optitrack) as well.

To recap, the framework is able to (i) track the user’s position in a common
reference frame regardless of the used HMD; (ii) track the user’s fingertip,
which is also registered in the same common referance frame; (iii) track objects
in the real scene to display virtual content in specified, repeteable positions.
Finally, it provides a way to display the same visual stimuli perceived in AR
without the need of an HMD, for validation purposes. The framework thus
enables the development of complex AR applications, where the user is able
to interact with virtual imagery which can be precisely displayed in chosen
positions with respect to the real world. We thus exploited the framework to
perform further studies on the perception/interaction loop, by carrying out
several experiments.
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The performed experiments investigate the perceptual differences between
different AR visualization devices in peripersonal space. In the state of the art,
several studies have been performed on spatial perception in AR, but many
focus on mid to far distances perception. We chose to focus on peripersonal
space perception instead, and thus on the ability to achieve an effective inter-
action with manipulative tasks (e.g. grasping, pointing). Indeed, for a proper
interaction in close distances, the virtual augmentation must be particularly
stable and devoid of optical aberrations. In this work, the aim is specifically
to measure the differences between two different technological approaches to
construct an AR HMD, i.e., using a VST model or an OST model. Due to their
design differences, which have different implications on the user-HMD optical
models, different behaviours have indeed been observed.

We first tested the differences between the devices in a stock, unregistered
state. We took in consideration two different HMDs. We performed two tests,
and compared the results between the subjects who used an Optical See-
Through (OST) HMD (Metavision Meta 2) and those who used a Video See-
Through (VST) HMD (a smartphone in conjunction with a headset like the
Google Cardboard). The data has been collected from a total of 45 volunteer
participants. In the experiment, the subjects had to perform a precision reach-
ing task by overlapping the hand on the perceived target position. Then, we
observed how the presence or absence of an internal feedback influenced the
homing performance. Our results revealed a better depth estimation, thus a
more precise interaction, when using the OST device, which also revealed a
lower impact on eye strain and fatigue. As expected, the lack of a proper
synchronization between the used devices, caused a misalignment between
the measures obtained internally (through the HMD’s sensors) and externally
(through the Kinect), potentially introducing a bias in the results. We thus used
the developed framework to perform a systematic comparison, by carrying out
two experiments.

The first one is a 3D blind reaching experiment, where simple objects (spheres)
appeared randomly in a 3D grid in front of the user. The results reveal a consist-
ent underestimation (∼ 10 cm) of depth (i.e. along the z-axis that is orthogonal
to the viewer image plane) when using the OST device, and also differences
between OST and VST devices along the x and the y-axis (left/right and up-
/down directions with respect to the user). The baseline data, recorded by
performing the same task without using HMDs, i.e. the real world condition,
revealed that the task is usually performed with errors of less than 4 cm in
depth. This result is interesting per se, since it provides a baseline of the user’s
performance in real condition, i.e. without wearing an HMD. The AR devices
affect user’s perception and thus the interaction capabilities, in line with sim-
ilar results in the literature.

The second experiment considers a realistic interaction task in AR: people
should move objects in a scene containing both real and virtual elements. In
this case, the results reveal negligible (for the purposes of the given task) differ-
ences between VST and OST devices in terms of accuracy. Interestingly, such
a result is in line with the previous result of the blind reaching task in real
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condition. Indeed, the egocentric geometry of the scene and the specific task
make the 3D position perception constrained on the table, which is on the XY
plane with respect to the observer’s line of sight, and in the XY plane no appre-
ciable differences between VST and OST are observed. A further observation
is that the VST device causes more sickness than the OST one, this fact is due
to the latency in the video stream and is coherent with other findings in the
literature.

The conclusion of the performed experiments is that albeit spatial aberration
and depth compression do seem to be relevant across commercial AR HMDs,
with a proper feedback the user is able to achieve a functional interaction,
which is within the bounds of the errors observed in the real world. Being able
to have a visual feedback of one’s hands (or other interaction mediums, e.g.,
controllers) in the HMD system reference frame allows the user to effectively
adjust the residual registration error caused by the misalignment of the real
and tracked environment. The need of this re-alignment process does however
have a non-trivial cognitive load which leads to the development of different
degrees of simulation sickness symptoms.

Our results do not solve the problem of choosing between VST and OST
devices, nor was this the aim of the study. Rather, this study serves as a
baseline for further studies by highlighting the specificity of egocentric per-
ception in interactive AR and providing the proposed registration framework
to the research community, as a set of independently working modules which
can easily be adapted to work with any type of HMD or external tracking
device.



6
Perspective

The results obtained lay the foundations for further researches both on the way
humans perceive information coming from the surrounding environment and
on the interaction with the environment, which are examined in this last part.
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Augmented Reality has stimulated the fantasy of entire generations of people
far before its birth in the 90’s: first depictions of holograms started to appear
in science fiction as far as in the fifties, from Isaac Asimov novels. Today, we
are starting to see the spread of AR in many fields, but we are still far from
achieving what is commonly depicted in futuristic settings in movie theaters:
full blown out holograms animated thorough the city, and people seamlessly
interacting with super advanced machines with holographic interfaces fully
integrated with natural language processing. At the moment, AR devices still
often struggles to put together all the technological and cognitive discoveries
required to obtain stable enjoyable experiences for everyone. The environment
must be properly tracked, segmented and labeled in real-time, and the user po-
sition in the environment must be known. Whenever multiple users are present
in the scene, all of them must be registered with each other, for shared AR to be
possible. The user interaction must be tracked in some way, which is starting
to become possible thanks to real time hand pose estimation techniques, which
are by themselves a very complex branch of the computer vision research field
(e.g. due to their fast movement, tendency to self-occlusion, complex kinematic
model, differences in skin colors, and so on). The devices themselves face sev-
eral technological constraints, due to the difficulty of the optical system, the
processing power required, the energy consumption, the limited field of view
and frame rate. The future incarnation of AR will probably be through a mix
of handheld and HMD devices, which, in the current form, have shown to be
perceptually inaccurate with respect to the human sight system. The proposed
work is a step forward in that direction, offering interesting perspectives in the
development of both new devices and new applications.

The work conducted on the registration framework, for example, gives us
a starting ground to perform further comparisons between different devices
in strict experimental settings. Without properly synchronized and registered
devices it would be impossible to perform a coherent analysis. Due to the
generic nature of the framework, composed by several interlinked modules, it
will be possible to add new devices (e.g. new HMDs, or handheld) for even
broader comparisons. The user tracking module can be enriched to detect more
complex interactions, i.e., by registering external hand trackers (like the Leap
Motion) or by adding a routine to directly use the HMDs video stream (e.g.
with MediaPipe). In our setup, the environment is tracked through IR trackers
to achieve a better stability, but it is possible to increase the spatial awareness
of the system by registering and modelling the surrounding environment (i.e.
with similar approaches to the work discussed in [98]).

The experiments performed on the perception/interaction loop confirm the
presence of optical aberrations in the devices used and give insight on the
design of further similar experiments. The natural extension to the experi-
ments performed is to assess if other HMDs have comparable performances
with respect to the ones used in our setup, to eventually isolate more precisely
the factors which have a greater impact on the achievement of a natural in-
teraction (i.e. using the stock Vive Pro frontal cameras rather than the frontal
mounted ZED mini stereo camera).
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If mechanically achieving a parallax-free optical model is proven to be too
difficult, and the spatial aberrations inevitable, a possible future approach
could be to act on the rendering pipeline to lessen the effect of spatial compres-
sion that are currently observed in AR environment, e.g. non-linearly modify-
ing the objects rendering position depending on the user position (in a similar
way to haptic retargeting techniques, e.g. as seen in [5]).

Finally, some other interesting developments could be the investigation of
other cognitive aspects behind AR UX design besides spatial perception, i.e.,
the comparison of AR user interface performances with respect to traditional
interfaces, in terms of commonly evaluated indexes (e.g. learnability, memor-
ability, or safety). Ergonomics and bio-mechanical factors might also be con-
sidered to develop a new set of UX guidelines, i.e., consider both the user’s
arms interaction volume and muscle load to split the peripersonal space in
sub-volumes with different strain indexes, to be able to place items subject of
frequent interactions in places associated with a lower impact on the user’s
strain.



Framework Documentation
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The following sections provide the documentation with the technical details
of the devised registration framework, which is made publicly available, li-
censed under The Unlicense (a license with no conditions whatsoever which
dedicates works to the public domain): unlicensed works, modifications, and
larger works may be distributed under different terms and without source
code.

Appendix A shows the hierarchical index, which displays the inheritance
list of the project’s classes; Appendix B includes the class list with a brief
description, and Appendix C includes the detailed description of each class,
with their relative attributes and methods.

It must be noted that since Unity uses the entity/component model instead
of the classic object-oriented programming (OOP) paradigm, all the classes ac-
tually inherit from the same class (MonoBehaviour, the base class from which
every Unity script derives). For this reason, instead of an UML class diagram,
the structure of the Unity scenes (and the relative entity/component relation-
ships) are displayed in the provided repository, together with the suggested
settings for each parameter. Nevertheless, the hierarchical index (Appendix A)
has still been included as it can act as a compact index to quickly find the
reference to the needed classes.

The framework repository is available on GitHub [6].



A
Hierarchical Index

A.1 Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:

MonoBehaviour
Checkerboard_tracker_pose . . . . . . . . . . . . . . . . . . . . . . . 5

Hmd_tracker_pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IdentifyTrackerID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

KeepBetweenScenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

NeutralizeRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

SPAAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

SpawnTargets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SpawnTargetsVive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

SwitchProjection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Target_tracker_pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

destroyTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

disableSteamVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

enableCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

packData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

reachingTaskController . . . . . . . . . . . . . . . . . . . . . . . . . . 8

relPosTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

savePositionsToFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

savedParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

socketReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

spawnTargetsExp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

spawnTargetsExp2Vive . . . . . . . . . . . . . . . . . . . . . . . . . . 18

syncKinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

tinyCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

tinyCalibrationVive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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B
Class Index

B.1 Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

Checkerboard_tracker_pose
Synchronizes the virtual checkerboard to the real one, up-
dating the pose depending on the pose of the Vive Tracker
attached to the real checkerboard. The rigid transformation
between the Vive Tracker and the checkerboard has to be set
inside Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

destroyTimer
Destroys the associated gameObject after a set amount of
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

disableSteamVR
Disables steamVR from automatically launching when the
scene starts. Can be attached to any active gameObject of the
scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

enableCalibration
Can be used to when the SPAAM calibration procedure is not
needed, to disable all the components involved in the SPAAM
calibration. Attach to a random gameObject and toggle disable←↩
Calibration to skip the SPAAM calibration procedure . . . . . 6

Hmd_tracker_pose
Updates the head position, depending on the pose of the
Vive Tracker attached to the HMD. The rigid transformation
between the Vive Tracker and the HMD has to be set inside
Unity (after obtaining it through calibration) . . . . . . . . . . 6

IdentifyTrackerID
Automatically associates the correct ViveTracker to a specific
gameObject at runtime, without the need to select the active
device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

KeepBetweenScenes
Used to avoid the need to reinitialize the HMD/calibrate
again on scene change . . . . . . . . . . . . . . . . . . . . . . . 7
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NeutralizeRotation
Neutralizes any translation/rotation/scaling of a child Game←↩
Object by applying the inverse transformation . . . . . . . . . 7

packData
Fetches the data which can then be sent through a socket to
another project . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

reachingTaskController . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

relPosTest
Can be used to display the relative position between two
gameObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

savedParameters
Used to display the parameters computed through SPAAM
calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

savePositionsToFile
Simple script used to save the 3D positions of the points
tracked by the Kinect Registration Module, and the 3D po-
sitions of a Vive Tracker, to file . . . . . . . . . . . . . . . . . . 10

socketReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

SPAAM
Single Point Active Alignment Method (SPAAM) implement-
ation for the OST HMD . . . . . . . . . . . . . . . . . . . . . . 12

SpawnTargets
Handles most of the logic behind the blind reaching OST
HMD experimental setup proposed . . . . . . . . . . . . . . . 16

spawnTargetsExp2

Handles most of the logic behind the active task OST HMD
experimental setup proposed . . . . . . . . . . . . . . . . . . . 17

spawnTargetsExp2Vive
Handles most of the logic behind the active task VST HMD
experimental setup proposed . . . . . . . . . . . . . . . . . . . 18

SpawnTargetsVive
Handles most of the logic behind the blind reaching VST
HMD experimental setup proposed . . . . . . . . . . . . . . . 19

SwitchProjection
Can be used to switch back and forth (by pressing the space
bar on the keyboard) between a chosen camera pose and the
one obtained through tracking (for debugging purposes) . . 21

syncKinect
Synchronizes the position of a chosen gameObject with the
3D world position of the point tracked by the Kinect, which
is received from the socketReceiver class . . . . . . . . . . . . 21



class index 4

Target_tracker_pose
Updates the target gameObject position, depending on the
pose of the Vive Tracker used during the SPAAM procedure.
The same tracker has been later used to track the hand an-
d/or the Kinect position in the active task experimental ses-
sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

tinyCalibration
Handles the checkerboard alignment procedure performed
by each user before using the OST HMD. The approxim-
ate correct parameters must be obtained from the SPAAM
procedure first. Starts the experimental sessions immediately
after the alignment task . . . . . . . . . . . . . . . . . . . . . . 22

tinyCalibrationVive
Handles the checkerboard alignment procedure performed
by each user before using the VST HMD. The approximate
correct parameters must be obtained from the SPAAM pro-
cedure first. Starts the experimental sessions immediately after
the alignment task . . . . . . . . . . . . . . . . . . . . . . . . . 24



C
Class Documentation

C.1 Checkerboard_tracker_pose Class Reference
Synchronizes the virtual checkerboard to the real one, updating the pose de-
pending on the pose of the Vive Tracker attached to the real checkerboard. The
rigid transformation between the Vive Tracker and the checkerboard has to be
set inside Unity.

Inherits MonoBehaviour.

C.2 destroyTimer Class Reference
Destroys the associated gameObject after a set amount of time.

Inherits MonoBehaviour.

Public Attributes

• float lifetime

C.2.1 Member Data Documentation

lifetime float destroyTimer.lifetime

Time in seconds before the object destruction.

C.3 disableSteamVR Class Reference
Disables steamVR from automatically launching when the scene starts. Can be
attached to any active gameObject of the scene.

Inherits MonoBehaviour.

5
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C.4 enableCalibration Class Reference
Can be used to when the SPAAM calibration procedure is not needed, to dis-
able all the components involved in the SPAAM calibration. Attach to a ran-
dom gameObject and toggle disableCalibration to skip the SPAAM calibration
procedure.

Inherits MonoBehaviour.

Public Attributes

• bool disableCalibration
• GameObject leftCamera
• GameObject rightCamera
• GameObject calibrationParameters

C.4.1 Member Data Documentation

calibrationParameters GameObject enableCalibration.calibrationParameters

gameObject used to display the computed parameters inside the Unity ed-
itor.

disableCalibration bool enableCalibration.disableCalibration

If set to true, the crosshair shaders applied to the virtual cameras will be
disabled, and the SPAAM procedure will not start.

leftCamera GameObject enableCalibration.leftCamera

gameObject of the left camera contained in the metaCameraRig prefab.

rightCamera GameObject enableCalibration.rightCamera

gameObject of the right camera contained in the metaCameraRig prefab.

C.5 Hmd_tracker_pose Class Reference
Updates the head position, depending on the pose of the Vive Tracker attached
to the HMD. The rigid transformation between the Vive Tracker and the HMD
has to be set inside Unity (after obtaining it through calibration).

Inherits MonoBehaviour.

C.6 IdentifyTrackerID Class Reference
Automatically associates the correct ViveTracker to a specific gameObject at
runtime, without the need to select the active device.

Inherits MonoBehaviour.
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Public Attributes

• string trackerId

C.6.1 Member Data Documentation

trackerId string IdentifyTrackerID.trackerId

Id of the tracker, obtainable from steamVR->handle Vive Trackers

C.7 KeepBetweenScenes Class Reference
Used to avoid the need to reinitialize the HMD/calibrate again on scene change.

Inherits MonoBehaviour.

C.8 NeutralizeRotation Class Reference
Neutralizes any translation/rotation/scaling of a child GameObject by apply-
ing the inverse transformation.

Inherits MonoBehaviour.

Public Member Functions

• void LateUpdate ()

C.8.1 Detailed Description

In order to use this class to neutralize tracking of the Meta headset, create
a new empty GameObject and place this script on it. Then make the Meta←↩
CameraRig GameObject the only child of this new GameObject. You can then
parent this GameObject by a further empty GameObject on which you can
apply any custom transformation (such as third-party tracking).

C.9 packData Class Reference
Fetches the data which can then be sent through a socket to another project.

Inherits MonoBehaviour.

Public Types

• enum class Tracker { HMD , CalibrationTarget , Checkerboard }

Public Attributes

• Tracker selectedTracker
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C.9.1 Detailed Description

It is assumed to have 3 tracked objects: the Vive Tracker on the HMD, the Vive
Tracker attached to the checkerboard calibration pattern and the Vive Tracker
used as calibration target during the SPAAM procedure. Change the name
of the gameObject accordingly to change the items which are sent through
the socket. First, create a prefab, e.g. "Synced_Data" which as a gameObject
for each tracked object in the scene. Then, attach this script to each tracked
gameObject. Select the corresponding associated gameObject in the dropdown
menu created by the public enumerator. The created prefab must then be
present in both Unity projects to be able to sync them through the socket
connection. Add the created prefab as the "Player Prefab" inside the Spawn
Info of the Network Manager class.

C.9.2 Member Data Documentation

selectedTracker Tracker packData.selectedTracker

Used to display a dropdown menu inside the Unity editor, to correctly asso-
ciate each tracker to their correct gameObject.

C.10 reachingTaskController Class Reference
Inherits MonoBehaviour.

C.11 relPosTest Class Reference
Can be used to display the relative position between two gameObjects.

Inherits MonoBehaviour.

Public Attributes

• GameObject b
• Vector3 relPos

C.11.1 Detailed Description

The script must be attached to the first gameObject, while the public variable
"b" needs to be set to the second gameObject. The relative position between the
two objects will be displayed in the editor through the relPos public variable.

C.11.2 Member Data Documentation
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b GameObject relPosTest.b

Add the second gameObject, of unknown relative position with respect with
the master gameObject.

relPos Vector3 relPosTest.relPos

Output relative position from the master gameObject to the chosen gam←↩
Object.

C.12 savedParameters Class Reference
Used to display the parameters computed through SPAAM calibration.

Inherits MonoBehaviour.

Public Attributes

• Vector3 leftEyePosition
• Quaternion leftEyeRotation
• Vector3 rightEyePosition
• Quaternion rightEyeRotation
• double SensorSizeX_left
• double SensorSizeY_left
• double LensShiftX_left
• double LensShiftY_left
• double SensorSizeX_right
• double SensorSizeY_right
• double LensShiftX_right
• double LensShiftY_right
• bool leftEyeCalibrated = false

C.12.1 Detailed Description

Attach this script to an empty gameObject. If the enableCalibration class is
used in the scene, this gameObject must be passed to its "calibrationParameters"
public variable.

C.12.2 Member Data Documentation

leftEyeCalibrated bool savedParameters.leftEyeCalibrated = false

Used to internally track which eye has been calibrated.

leftEyePosition Vector3 savedParameters.leftEyePosition

Position of the left eye with respect to the device origin. e.g., position which
needs to be set as the left camera inside the MetaCameraRig prefab.
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leftEyeRotation Quaternion savedParameters.leftEyeRotation

Rotation of the left eye with respect to the device origin. e.g., rotation which
needs to be set as the left camera inside the MetaCameraRig prefab.

LensShiftX_left double savedParameters.LensShiftX_left

Computed principal point offset, on the x axis, for the left eye.

LensShiftX_right double savedParameters.LensShiftX_right

Computed principal point offset, on the x axis, for the right eye.

LensShiftY_left double savedParameters.LensShiftY_left

Computed principal point offset, on the y axis, for the left eye.

LensShiftY_right double savedParameters.LensShiftY_right

Computed principal point offset, on the y axis, for the right eye.

rightEyePosition Vector3 savedParameters.rightEyePosition

Position of the right eye with respect to the device origin. e.g., position which
needs to be set as the right camera inside the MetaCameraRig prefab.

rightEyeRotation Quaternion savedParameters.rightEyeRotation

Rotation of the right eye with respect to the device origin. e.g., rotation
which needs to be set as the left camera inside the MetaCameraRig prefab.

SensorSizeX_left double savedParameters.SensorSizeX_left

Computed sensor size width for the left eye.

SensorSizeX_right double savedParameters.SensorSizeX_right

Computed sensor size width for the right eye.

SensorSizeY_left double savedParameters.SensorSizeY_left

Computed sensor size height for the left eye.

SensorSizeY_right double savedParameters.SensorSizeY_right

Computed sensor size height for the right eye.

C.13 savePositionsToFile Class Reference
Simple script used to save the 3D positions of the points tracked by the Kinect
Registration Module, and the 3D positions of a Vive Tracker, to file.

Inherits MonoBehaviour.

Public Attributes

• string logDataFilename ="realPositions"
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C.13.1 Detailed Description

Used to verify the Kinect registration accuracy and precision by comparing the
3D world coordinates obtained with a Vive tracker with respect to the same
positions tracked by the Kinect V2. The assigned key-bindings for the Rotation
editing mode are the following ones:

• T: Saves the Vive tracker position, in world coordinates, to file.
• K: Saves the Kinect tracked point, in world coordinates, to file.
• O: Finishes the session and closes the log file. It is then possible to exit

the editor.

C.13.2 Member Data Documentation

logDataFilename string savePositionsToFile.logDataFilename ="realPositions"

Filename where the recorded data txt will be saved.

C.14 socketReceiver Class Reference
Inherits MonoBehaviour.

Public Member Functions

• void Start ()
• string getLatestUDPPacket ()

Public Attributes

• int port
• float xKinectTracked = 0

• float yKinectTracked = 0

• float zKinectTracked = 0

C.14.1 Member Data Documentation

port int socketReceiver.port

Port used for the transmission. Must be the same of the one used in the
Kinect Registration Module (default is 8888).

xKinectTracked float socketReceiver.xKinectTracked = 0

x coordinate of the 3D point tracked by the Kinect, expressed with respect
to the Kinect reference frame. Visualization only.
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yKinectTracked float socketReceiver.yKinectTracked = 0

y coordinate of the 3D point tracked by the Kinect, expressed with respect
to the Kinect reference frame. Visualization only.

zKinectTracked float socketReceiver.zKinectTracked = 0

z coordinate of the 3D point tracked by the Kinect, expressed with respect
to the Kinect reference frame. Visualization only.

C.15 SPAAM Class Reference
Single Point Active Alignment Method (SPAAM) implementation for the OST
HMD.

Inherits MonoBehaviour.

Public Attributes

• bool calibrateRightEye
• float disparity
• bool enableLogging
• bool enableDebugLog
• bool enableRANSAC
• double inlierDistanceThreshold
• int ransacPointsPerBatch
• float maxError
• bool useIntrinsics
• bool useMyInputParameters
• List< float > myTrackerX = new List<float>()
• List< float > myTrackerY = new List<float>()
• List< float > myTrackerZ = new List<float>()
• List< float > myU = new List<float>()
• List< float > myV = new List<float>()
• float adjustmentShift = 0

• float adjustmentAngle = 0

• int resolutionWidth
• int resolutionHeight
• float pixelSizeX = 124/2560/1000

• float pixelSizeY = 85.5f/1440/1000

• List< float > xSpawnPositionsUserDefined = new List<float>()
• List< float > ySpawnPositionsUserDefined = new List<float>()
• int numberOfMatches
• int spriteSize
• GameObject viveTracker
• GameObject viveCamera
• Matrix4x4 originalProjection
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• bool flipX
• bool flipY
• bool flipZ
• bool Normalization
• bool metricConversion
• bool removeCrosshairShift
• bool usePixelSizes

C.15.1 Member Data Documentation

adjustmentAngle float SPAAM.adjustmentAngle = 0

Legacy parameter used for the implementation.

adjustmentShift float SPAAM.adjustmentShift = 0

Legacy parameter used for the implementation.

calibrateRightEye bool SPAAM.calibrateRightEye

Set to true to start the calibration with the right eye. By default the procedure
starts by calibrating the left eye.

disparity float SPAAM.disparity

Disparity (in mm) between the two LCDs of the OST HMD.

enableDebugLog bool SPAAM.enableDebugLog

Set to true to generate a more verbose log.

enableLogging bool SPAAM.enableLogging

Set to true to generate a log with the computations.

enableRANSAC bool SPAAM.enableRANSAC

Set to true to use the RANSAC to remove outliers from the set of performed
alignments.

flipX bool SPAAM.flipX

Set to true if the image x-axis and camera x-axis point in opposite directions.

flipY bool SPAAM.flipY

Set to true if the image y-axis and camera y-axis point in opposite directions.

flipZ bool SPAAM.flipZ

Set to true if the camera looks down the negative-z axis.
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inlierDistanceThreshold double SPAAM.inlierDistanceThreshold

Threshold used to define the maximum reprojection error of an alignments
which are considered inliers.

maxError float SPAAM.maxError

Defines the stopping criteria of the RANSAC procedure. When the likeli-
hood of finding a better model becomes lower than this parameter, the best
model found so far is saved.

metricConversion bool SPAAM.metricConversion

Set to true to convert the coordinates of the shown crosshair in metric form,
using Pixel Size (x,y) as parameters.

myTrackerX List<float> SPAAM.myTrackerX = new List<float>()

List of the x positions (in meters) of the SPAAM target during the alignment
task (Xw)

myTrackerY List<float> SPAAM.myTrackerY = new List<float>()

List of the y positions (in meters) of the SPAAM target during the alignment
task (Yw)

myTrackerZ List<float> SPAAM.myTrackerZ = new List<float>()

List of the z positions (in meters) of the SPAAM target during the alignment
task (Zw)

myU List<float> SPAAM.myU = new List<float>()

List of the x positions (in pixels) of the crosshair displayed during the align-
ment task

myV List<float> SPAAM.myV = new List<float>()

List of the y positions (in pixels) of the crosshair displayed during the align-
ment task

Normalization bool SPAAM.Normalization

Set to true to normalize the coordinates of the shown crosshair between -1
and 1.

numberOfMatches int SPAAM.numberOfMatches

Number of matches required for the SPAAM procedure for each eye. The
minimum should be at least 6, but since RANSAC is being implemented, more
is advised.

originalProjection Matrix4x4 SPAAM.originalProjection

Variable used to display the original 4x4 projection matrix (before calibra-
tion).
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pixelSizeX float SPAAM.pixelSizeX = 124/2560/1000

Size of the projected pixel width of the OST HMD.

pixelSizeY float SPAAM.pixelSizeY = 85.5f/1440/1000

Size of the projected pixel height of the OST HMD.

ransacPointsPerBatch int SPAAM.ransacPointsPerBatch

Number of alignments processed during each RANSAC iteration. The min-
imum number of alignments needed to obtain a well-defined system is 6.

removeCrosshairShift bool SPAAM.removeCrosshairShift

Set to true to perform the alignment with respect to the bottom left corner
rather than the crosshair centre.

resolutionHeight int SPAAM.resolutionHeight

Height resolution (in pixel) of the OST HMD LCD display used for the
projection on the lenses.

resolutionWidth int SPAAM.resolutionWidth

Width resolution (in pixel) of the OST HMD LCD display used for the pro-
jection on the lenses.

spriteSize int SPAAM.spriteSize

Size of the sprite used as crosshair during the alignment task. The sprite is
assumed to be square. e.g. 64 means a 64x64pixel wide sprite.

useMyInputParameters bool SPAAM.useMyInputParameters

Set to true to use custom input parameters for the SPAAM procedure (for
offline debugging)

usePixelSizes bool SPAAM.usePixelSizes

Set to true to convert u,v image plane coordinates into metric units.

viveCamera GameObject SPAAM.viveCamera

The GameObject which contains the calibrating camera.

viveTracker GameObject SPAAM.viveTracker

GameObject which must be set as child of the HMD camera and copy the
3D tracked world point coordinates for each update step.

xSpawnPositionsUserDefined List<float> SPAAM.xSpawnPositionsUserDefined = new

List<float>()

List of the x positions (in pixels) where the crosshair will be displayed during
the alignment task
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ySpawnPositionsUserDefined List<float> SPAAM.ySpawnPositionsUserDefined = new

List<float>()

List of the y positions (in pixels) where the crosshair will be displayed dur-
ing the alignment task

C.16 SpawnTargets Class Reference
Handles most of the logic behind the blind reaching OST HMD experimental
setup proposed.

Inherits MonoBehaviour.

Public Attributes

• int trialsNumber = 0

• string logDataFilename = "data"
• int depth = 3

• int width = 3

• int height = 3

• float spawnDistance = 5

• float userDistance = 50

• GameObject Volume
• GameObject Head
• GameObject target
• float targetSize = 1

C.16.1 Member Data Documentation

depth int SpawnTargets.depth = 3

Number of possible depth spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

Head GameObject SpawnTargets.Head

GameObject of the ViveTracker which tracks the OST HMD.

height int SpawnTargets.height = 3

Number of possible height spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

logDataFilename string SpawnTargets.logDataFilename = "data"

Filename where the recorded data will be saved. An increasing index will be
added at the end, e.g. writing "test_" here will generate "test_0.txt", "test_1.txt"
and so on
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trialsNumber int SpawnTargets.trialsNumber = 0

The total number of stimuli that will displayed to the user during the whole
experiment. In our study we used 27, but it can be changed.

spawnDistance float SpawnTargets.spawnDistance = 5

Minimum distance between spawn positions (centimeters).

target GameObject SpawnTargets.target

Prefab of the displayed stimuli (in our case, a circle).

targetSize float SpawnTargets.targetSize = 1

Scale of the prefab used to display the stimuli. Will be applied as invariant
scale factor.

userDistance float SpawnTargets.userDistance = 50

Distance of the volume from the user (centimeters). Measured from the
centre of the volume.

Volume GameObject SpawnTargets.Volume

Root gameObject used as bounding volume for the stimuli grid: all the stim-
uli prefabs will be instantiated as children of this gameObject. Create an empty
GameObject "Volume" and position it as needed in the scene.

width int SpawnTargets.width = 3

Number of possible width spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

C.17 spawnTargetsExp2 Class Reference
Handles most of the logic behind the active task OST HMD experimental setup
proposed.

Inherits MonoBehaviour.

Static Public Member Functions

• static List< int > GenerateRandom (int count, int min, int max)

Public Attributes

• int trialsNumber = 0

• string logDataFilename = "data"
• List< Vector3 > spawnPosition = new List<Vector3>(9)
• List< int > spawnSequence = new List<int>()
• List< GameObject > kitchenObjects
• GameObject Head
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C.17.1 Member Data Documentation

Head GameObject spawnTargetsExp2.Head

GameObject of the ViveTracker which tracks the OST HMD.

kitchenObjects List<GameObject> spawnTargetsExp2.kitchenObjects

List filled with all the different objects models available. Every time a new
object is spawned, a random one will be picked from the added library of
objects.

logDataFilename string spawnTargetsExp2.logDataFilename = "data"

Filename where the recorded data will be saved. An increasing index will be
added at the end, e.g. writing "test_" here will generate "test_0.txt", "test_1.txt"
and so on

trialsNumber int spawnTargetsExp2.trialsNumber = 0

Number of times the entire grid will be displayed in a randomized order:
we used 5. Change at your own discretion.

spawnPosition List<Vector3> spawnTargetsExp2.spawnPosition = new List<Vector3>(9)

Define the x, y, z coordinates where the items will be spawned. Measure the
x, y, z coordinates by placing a vive tracker in the desired positions and saving
the Vive Tracker Coordinates.

spawnSequence List<int> spawnTargetsExp2.spawnSequence = new List<int>()

Can be used to define a custom sequence.If left undefined, the vector of
positions will be shuffled and a target will spawn into a random position until
every item of the grid has been displayed. The process is repeated for several
times (defined by "trialsNumber" in the Experimental Settings).

C.18 spawnTargetsExp2Vive Class Reference
Handles most of the logic behind the active task VST HMD experimental setup
proposed.

Inherits MonoBehaviour.

Static Public Member Functions

• static List< int > GenerateRandom (int count, int min, int max)
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Public Attributes

• int trialsNumber = 0

• string logDataFilename ="data"
• List< Vector3 > spawnPosition = new List<Vector3>(9)
• List< int > spawnSequence = new List<int>()
• List< GameObject > kitchenObjects
• GameObject Head

C.18.1 Member Data Documentation

Head GameObject spawnTargetsExp2Vive.Head

GameObject of the HMD prefab of the VST HMD.

kitchenObjects List<GameObject> spawnTargetsExp2Vive.kitchenObjects

List filled with all the different objects models available. Every time a new
object is spawned, a random one will be picked from the added library of
objects.

logDataFilename string spawnTargetsExp2Vive.logDataFilename ="data"

Filename where the recorded data will be saved. An increasing index will be
added at the end, e.g. writing "test_" here will generate "test_0.txt", "test_1.txt"
and so on

trialsNumber int spawnTargetsExp2Vive.trialsNumber = 0

Number of times the entire grid will be displayed in a randomized order:
we used 5. change at your own discretion.

spawnPosition List<Vector3> spawnTargetsExp2Vive.spawnPosition = new List<Vector3>(9)

Define the x, y, z coordinates where the items will be spawned. Measure the
x, y, z coordinates by placing a Vive tracker in the desired positions and saving
the Vive tracker Coordinates.

spawnSequence List<int> spawnTargetsExp2Vive.spawnSequence = new List<int>()

Can be used to define a custom sequence.If left undefined, the vector of
positions will be shuffled and a target will spawn into a random position until
every item of the grid has been displayed.The process is repeated for several
times (defined by "trialsNumber" in the Experimental Settings).

C.19 SpawnTargetsVive Class Reference
Handles most of the logic behind the blind reaching VST HMD experimental
setup proposed.

Inherits MonoBehaviour.
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Public Attributes

• int trialsNumber = 0

• string logDataFilename = "data"
• int depth = 3

• int width = 3

• int height = 3

• float spawnDistance = 5

• float userDistance = 50

• GameObject Volume
• GameObject Head
• GameObject target
• float targetSize = 1

C.19.1 Member Data Documentation

depth int SpawnTargetsVive.depth = 3

Number of possible depth spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

Head GameObject SpawnTargetsVive.Head

GameObject of the HMD prefab of the VST HMD.

height int SpawnTargetsVive.height = 3

Number of possible height spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

logDataFilename string SpawnTargetsVive.logDataFilename = "data"

Filename where the recorded data will be saved. An increasing index will be
added at the end, e.g. writing "test_" here will generate "test_0.txt", "test_1.txt"
and so on

trialsNumber int SpawnTargetsVive.trialsNumber = 0

Number of displayed stimuli. In our study we used 27, but can be changed.

spawnDistance float SpawnTargetsVive.spawnDistance = 5

Minimum distance between spawn positions (centimeters).

target GameObject SpawnTargetsVive.target

Prefab of the displayed stimuli (in our case, a circle).

targetSize float SpawnTargetsVive.targetSize = 1

Scale of the prefab used to display the stimuli. Will be applied as invariant
scale factor.
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userDistance float SpawnTargetsVive.userDistance = 50

Distance of the volume from the user (centimeters). Measured from the
centre of the volume.

Volume GameObject SpawnTargetsVive.Volume

Root gameObject used as bounding volume for the stimuli grid: all the stim-
uli prefabs will be instantiated as children of this gameObject. Create an empty
GameObject "Volume" and position it as needed in the scene.

width int SpawnTargetsVive.width = 3

Number of possible width spawn positions in the interaction area. Distance
between spawn points defined by SPAWN DISTANCE parameter.

C.20 SwitchProjection Class Reference
Can be used to switch back and forth (by pressing the space bar on the key-
board) between a chosen camera pose and the one obtained through tracking
(for debugging purposes).

Inherits MonoBehaviour.

Public Attributes

• bool enableCorrectedProjection
• float t1 = 0.015f
• float r1 = 62.5f

C.20.1 Member Data Documentation

enableCorrectedProjection bool SwitchProjection.enableCorrectedProjection

Set to true to use custom projection by default.

C.21 syncKinect Class Reference
Synchronizes the position of a chosen gameObject with the 3D world position
of the point tracked by the Kinect, which is received from the socketReceiver
class.

Inherits MonoBehaviour.

C.21.1 Detailed Description

Attach both syncKinect.cs and socketReceiver.cs to any gameObject, and then
create an empty gameObject with tag 'kinect'. The position of the 'kinect'
tagged gameObject will be updated with the 3D position of the tracked point,
expressed with respect to the Kinect Reference Frame. To express the tracked
point position with respect to the HTC Vive reference frame, the position of
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the Kinect in the HTC Vive reference frame must be known, and the tracked
object must be set as child of a gameObject with the Kinect position (in the
HTC Vive reference frame) as transform. To obtain such position it is sufficient
to attach a Vive Tracker (or a controller) rigidly and in a known position with
respect to the Kinect. To do this, we attached the Kinect to a perforated metal
angular profile, and then attached a Vive Tracker on a 3D printer part which
can house a ZED mini in a known position. We then obtained the transforma-
tion between the Zed Mini and the Kinect Camera through camera calibration,
and since the transformation between the ZED mini and the Vive Tracker is
known from the CAD of the 3D printed part, we can thus track the Kinect
position (and therefore the 3D point tracked by the Kinect) in the HTC Vive
Reference frame.

For more details on the process refer to the related chapter (Kinect Registra-
tion Module, section 3.0.3).

C.22 Target_tracker_pose Class Reference
Updates the target gameObject position, depending on the pose of the Vive
Tracker used during the SPAAM procedure. The same tracker has been later
used to track the hand and/or the Kinect position in the active task experi-
mental session.

Inherits MonoBehaviour.

C.23 tinyCalibration Class Reference
Handles the checkerboard alignment procedure performed by each user before
using the OST HMD. The approximate correct parameters must be obtained
from the SPAAM procedure first. Starts the experimental sessions immediately
after the alignment task.

Inherits MonoBehaviour.

Public Attributes

• float adjustmentShift = 0

• float adjustmentAngle = 0

• float focalStep = 0

• bool skipCalibration = false
• bool secondExperiment = false
• GameObject CheckerBoard

C.23.1 Detailed Description

The alignment procedure can be in two different states: Translation editing
mode or Rotation editing mode. By default, the first active state is the Transla-
tion editing mode. The experimenter can align the virtual checkerboard with
the instructions of the user depending on the perceived position of the virtual
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checkerboard with respect to the real one. The assigned key-bindings for the
Translation editing mode are the following ones:

• Y: Switch to Rotation mode.
• W: Moves the virtual checkerboard forward in the Z axis (away from the

user).
• A: Moves the virtual checkerboard backward in the X axis (to the left of

the user).
• S: Moves the virtual checkerboard backwards in the Z axis (towards the

user).
• D: Moves the virtual checkerboard forward in the X axis (to the right of

the user).
• R: Moves the virtual checkerboard forward in the Y axis (towards the

ceiling).
• F: Moves the virtual checkerboard backwards in the Y axis (towards the

floor).
• X: Increases the adjustment step (each keypress results in a bigger trans-

lation/rotation).
• Z: Decreases the adjustment step (each keypress results in a smaller trans-

lation/rotation).
• Space: Saves the current parameters and continues to the experiment.

The assigned keybindings for the Rotation editing mode are the following
ones:

• U: Switch to Translation mode.
• W: Increases the virtual checkerboard rotation over the X axis.
• A: Decreases the virtual checkerboard rotation over the Y axis.
• S: Decreases the virtual checkerboard rotation over the X axis.
• D: Increases the virtual checkerboard rotation over the Y axis.
• Q: Increases the virtual checkerboard rotation over the Z axis (clockwise

with respect to the user optical axis).
• E: Decreases the virtual checkerboard rotation over the Z axis (anticlock-

wise with respect to the user optical axis).
• X: Increases the adjustment step (each keypress results in a bigger trans-

lation/rotation).
• Z: Decreases the adjustment step (each keypress results in a smaller trans-

lation/rotation).
• Space: Saves the current parameters and continues to the experiment.

C.23.2 Member Data Documentation

adjustmentAngle float tinyCalibration.adjustmentAngle = 0

Defines the step angle in used for each rotation of the checkerboard during
the alignment.
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adjustmentShift float tinyCalibration.adjustmentShift = 0

Defines the step size in mm used for each translation of the checkerboard
during the alignment.

CheckerBoard GameObject tinyCalibration.CheckerBoard

GameObject with checkerboard_tracker_pose attached, which tracks the 3D
world position of the checkerboard.

focalStep float tinyCalibration.focalStep = 0

Defines the step used to modify the scale factor.

secondExperiment bool tinyCalibration.secondExperiment = false

Set to true if performing the active alignment task.

skipCalibration bool tinyCalibration.skipCalibration = false

Set to true to skip the alignment procedure, and read an existing calibration
file.

C.24 tinyCalibrationVive Class Reference
Handles the checkerboard alignment procedure performed by each user before
using the VST HMD. The approximate correct parameters must be obtained
from the SPAAM procedure first. Starts the experimental sessions immediately
after the alignment task.

Inherits MonoBehaviour.

Public Attributes

• float adjustmentShift = 0

• float adjustmentAngle = 0

• float focalStep = 0

• bool skipCalibration = false
• bool secondExperiment = false
• GameObject CheckerBoard

C.24.1 Detailed Description

The alignment procedure can be in two different states: Translation editing
mode or Rotation editing mode. By default, the first active state is the Transla-
tion editing mode. The experimenter can align the virtual checkerboard with
the instructions of the user depending on the perceived position of the virtual
checkerboard with respect to the real one. The assigned keybindings for the
Translation editing mode are the following ones:

• Y: Switch to Rotation mode.
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• W: Moves the virtual checkerboard forward in the Z axis (away from the
user).

• A: Moves the virtual checkerboard backward in the X axis (to the left of
the user).

• S: Moves the virtual checkerboard backwards in the Z axis (towards the
user).

• D: Moves the virtual checkerboard forward in the X axis (to the right of
the user).

• R: Moves the virtual checkerboard forward in the Y axis (towards the
ceiling).

• F: Moves the virtual checkerboard backwards in the Y axis (towards the
floor).

• X: Increases the adjustment step (each keypress results in a bigger trans-
lation/rotation).

• Z: Decreases the adjustment step (each keypress results in a smaller trans-
lation/rotation).

• Space: Saves the current parameters and continues to the experiment.

The assigned keybindings for the Rotation editing mode are the following
ones:

• U: Switch to Translation mode.
• W: Increases the virtual checkerboard rotation over the X axis.
• A: Decreases the virtual checkerboard rotation over the Y axis.
• S: Decreases the virtual checkerboard rotation over the X axis.
• D: Increases the virtual checkerboard rotation over the Y axis.
• Q: Increases the virtual checkerboard rotation over the Z axis (clockwise

with respect to the user optical axis).
• E: Decreases the virtual checkerboard rotation over the Z axis (anticlock-

wise with respect to the user optical axis).
• X: Increases the adjustment step (each keypress results in a bigger trans-

lation/rotation).
• Z: Decreases the adjustment step (each keypress results in a smaller trans-

lation/rotation).
• Space: Saves the current parameters and continues to the experiment.

C.24.2 Member Data Documentation

adjustmentAngle float tinyCalibrationVive.adjustmentAngle = 0

Defines the step angle in used for each rotation of the checkerboard during
the alignment.

adjustmentShift float tinyCalibrationVive.adjustmentShift = 0

Defines the step size in mm used for each translation of the checkerboard
during the alignment.
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CheckerBoard GameObject tinyCalibrationVive.CheckerBoard

GameObject with checkerboard_tracker_pose attached, which tracks the 3D
world position of the checkerboard.

focalStep float tinyCalibrationVive.focalStep = 0

Defines the step used to modify the scale factor.

secondExperiment bool tinyCalibrationVive.secondExperiment =false

Set to true if performing the active alignment task.

skipCalibration bool tinyCalibrationVive.skipCalibration = false

Set to true to skip the alignment procedure, and read an existing calibration
file.
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