
 

University of Genoa 
Department of Neuroscience, Rehabilitation, Ophthalmology, 
Genetics, and Maternal and Children's Sciences (DINOGMI) 

- 

In partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Neuroscience 

  

  

 

 MICROSTRUCTURAL WHITE MATTER 

PROPERTIES IN MULTIPLE SCLEROSIS: 

ANATOMICAL SPATIAL MAPPING 

VIA NODDI MODELLING 

TO BETTER UNDERSTAND 

THE MECHANISM OF INJURY 

  

       Candidate                    Supervisors   Co-Supervisor 

 Niccolo’ Piaggio   Luca Roccatagliata  Matteo Pardini 

                  Matilde Inglese 



 2  



 3  

 

 

 
to my supervisors LR and MP,  

who heroically kept me “on the tracks” along all the railway to doctorate 

and made me believe in it, winning my hesitations 

until this final gratifying achievement. 

 

 

to GB, GZ and CP, 
the three essential inspiring figures who stayed at my side “in their own way” 

along, respectively, the three parts of this long university journey: 

school of medicine, internship of specialization and PhD course. 

 

 

to my parents EA and MP 
& all my historical friends GR, RP, LV, BC, VT, MF, 

…the ones who (chosen or not) were always there to support me 

 from the beginning to the end of this great ascent.  

 

 

to my brother BP, 
who shared with me this inexplicable 

 interchangeable academic destiny. 

 

 

 

…to ALL of you,  
I dedicate this 3rd thesis, 

that will –likely– be 

the last thesis of my life.



 4  

 

 

 

 

Twenty years from now you will be more disappointed 

by the things that you didn't do than by the ones you did do.  

So throw off the bowlines.  

Sail away from the safe harbor.  

Catch the trade winds in your sails.  

Explore.  

Dream.  

Discover. 

Mark Twain 

 

 

We are going to fight.  

We are going to be hurt.  

And, in the end, we will stand. 

Stephen King 



 5  

SUMMARY   

   

 

List of abbreviations ..................................................................9   

Acknowledgements …………………...............................................11   

 

 

1 Abstract ...............................................................................12 

 

 

2  Background .........................................................................14 

2.1 Magnetic resonance imaging …………………………………….14 

2.1.1 Diffusion weighted imaging...........................................14 

2.1.2 Diffusion tensor imaging……………………………………………..16 

2.1.3 Advanced diffusion imaging techniques……………………..18 

2.1.4 Neurite orientation dispersion and density imaging……20 

2.2 Post-processing information technologies………………….25 

2.2.1 Ubuntu LINUX – based operating system……………………25 

2.2.2 Windows operating system…………………………………………26 

2.2.3 BASH scripting language……………………………………………..26 

2.2.4 FSL image processing tool library………………………………..27 

2.2.5 Matlab scripting platform……………………………………………29 

2.2.6 NODDI diffusion imaging toolkit………………………………….29 

2.2.7 SPSS statistical data analysis interface………………………..30 



 6  

2.3 Multiple Sclerosis……………………………………………………….31 

2.3.1 Classification……………………………………………………………….31 

2.3.2 Epidemiology………………………………………………………………32 

2.3.3 Risk factors………………………………………………………………….33 

2.3.4 Pathogenesis……………………………………………………………….34 

2.3.5 Pathology…………………………………………………………………….36 

2.3.6 Clinical features…………………………………………………………..37 

2.3.7 Diagnosis…………………………………………………………………….37 

2.3.8 MRI studies in MS……………………………………………………….39 

2.4 The Sys4MS consortium study……………………………………47 

2.5 The Human connectome project repository……………….48 

 

 

 

3 Thesis Introduction……………………………………………………………..49  

3.1 Multiple Sclerosis Lesion “Geography”………………………..49 

3.2 Imaging Recent Advances……………………………………………51  

3.3 Rationale…………………………………………………………………….54  

3.4 Objectives…………………………………………………………………..55  

3.5 Project Plan………………………………………………………………..56  

 

 

 

 

 



 7  

4 Research – STEP 1……………………………………………………………….57  

4.1 Population………………………………………………………………….57 

4.2 Methods…………………………………………………………………….58 

4.3 Results……………………………………………………………………….58 

 

5 Research – STEP 2……………………………………………………………….61  

5.1 Population………………………………………………………………….61 

5.2 Methods…………………………………………………………………….62 

5.3 Results……………………………………………………………………….66 

 

6 Research – STEP 3……………………………………………………………….67 

6.1 Experiment A………………………………………………………………67 

6.2 Experiment B………………………………………………………………69 

 

7 Research – STEP 4……………………………………………………………….70  

7.1 Methods…………………………………………………………………….70 

7.2 Results……………………………………………………………………….72 

 

8 Research – STEP 5……………………………………………………………….73  

8.1 Methods…………………………………………………………………….73 

8.2 Results……………………………………………………………………….74 

 

 



 8  

9 Discussion…………………………………………………………………………..75 

 

 

 

List of figures………………………………………………………………………….77 

List of tables………..…………………………………………………………………78 

 

List of publications and lectures……………………………………….…….79  

 

 

References……………………………………………………………………………..82 

    
    



 9  

List of Abbreviations  

  

 

 

 

AD  - Axial Diffusivity  

ADC  - Apparent Diffusion Coefficient 

BASH  - Bourne Again SHell  

BET  - Brain Extraction Tool 

BOLD  - Blood Oxygen Level Dependent 

CIS  - Clinically Isolated Syndrome  

CNS  - Central Nervous System  

CSF  - Cerebro-Spinal Fluid  

CST  - Cortico-Spinal Tract  

DIS  - Dissemination In Space 

DIT  - Dissemination In Time  

DKI  - Diffusion Kurtosis Imaging  

DSI  - Diffusion Spectrum Imaging  

DTI  - Diffusion Tensor Imaging  

DWI  - Diffusion Weighted Imaging  

EDSS  - Expanded Disability Status Scale 

F  - Female 

FA  - Fractional Anisotropy  

FAST  - FSL Automated Segmentation Tool 

FICVF  - Intracellular Volume Fraction (= ND) 

FISO  - Free-Water Isotropic Volume Fraction (= ISO) 

FLAIR  - Fluid Attenuated Inversion Recovery  

FLIRT  - FSL Linear registration Tool  

FSL  - Functional MRI of the Brain Software Library 



 10  

FWI  - Free Water Imaging  

GM  - Gray Matter 

GNU  - General Public License  

ISO  - Isotropic Volume Fraction (= FISO) 

M  - Male 

MATLAB - MATrix LABoratory 

MD  - Mean Diffusivity  

MNI  - Montreal Neurological Institute 

MPRAGE - Magnetization-Prepared Rapid Acquisition Gradient Echo 

MR  - Magnetic Resonance  

MRI  - Magnetic Resonance Imaging  

MS  - Multiple Sclerosis 

N  - Number 

ND  - Neurite Density (= FICVF) 

NODDI - Neurite Orientation, Dispersion and Density Imaging  

ODI  - Orientation Dispersion Index  

PDI  - Permeability-Diffusivity Imaging  

PP  - Primary Progressive  

QTI  - Q-Space Trajectory Imaging  

RD  - Radial Diffusivity  

RR  - Relapsing Remitting  

SP  - Secondary Progressive 

STD  - Standard Deviation 

TE  - Echo Time 

TOT  - Total 

TR  - Repetition Time  

WM  - White Matter  



 11  

Acknowledgements 

  
 

Besides the people to which this thesis is dedicated, several 

thanks are deserved by other people who contributed and 

supported the birth and development of this work. 

 

 

Thanks to Professor Matilde Inglese, who opened for me the doors to 

neurosciences and guided me through the first steps of this windy road. 

 

Thanks to the Professors Giovanni Luigi Mancardi, Mario Amore and 

Antonio Uccelli for offering me a way to build my research path in the 

department of Neurology, Rehabilitation, Ophthalmology, Genetics, 

Maternal and Child Health and to be part of the Sys4MS project team.  

 

Thanks to the radiology staff of I.S.T. and G.Gaslini Hospitals, who kindly 

hosted our MRI acquisitions and welcomed our patients. 

 

Thanks to my new radiology colleagues at D.I.T.: Agostino Taccone, 

Piero Glorialanza, Claudia Debenedetti, and especially Marco Estienne: 

without their frequent sacrifices I wouldn’t have had any chance to 

finish this work within the maximum times. 

 

Special thanks to all the people who made of “the LAB” the greatest 

place in which I ever worked: Giulia Bommarito, Simona Schiavi, Matteo 

Martino, Paola Magioncalda, Caterina Lapucci, Giacomo Boffa, Elvira 

Sbragia, Riccardo Iandolo, Benedetta Conio, Alessandro Bellini, Lorenzo 

Cama, Laura Falcitano, […] and all the others with which we shared a 

funny time … “wandering among the voxels”. 



 12  

1. Abstract 

 
 
Introduction. Plenty of literature focused on the topography of 
multiple sclerosis (MS) injury localization within brain. 
Various theories were proposed to explain this pattern, calling 
into question two main hypothesis: 
1- preexistent tissue-intrinsic microstructural susceptibility factors 
2- cerebrospinal-fluid (CSF)-borne soluble inflammatory factors 
diffusing through the brain surfaces (inner-ependymal-ventricular 
and outer-pial-cortical), thence affecting the parenchyma with a 
decreasing distribution along a distance-from-CSF gradient. 
However, despite more than one hundred years of efforts, the 
etio-physio-pathological basis of the onset and development of 
the MS plaque has not been completely unveiled yet. 
Recent technological advances in magnetic resonance imaging 
(MRI) and data post-processing, enabling an in-vivo definition of 
the local microstructure of the white matter (WM), give new 
perspectives for untangling the secrets of this complex disease. 
   
Materials & Methods. With a novel algorithm to analyze diffusion 
weighted MRI images, “NODDI”, we created detailed atlases of 
the microstructural characteristics of the normal WM in a healthy 
population; parallelly, we defined the topography of the lesions 
for a MS-affected population. 
By superposition of the patients lesion maps onto the healthy 
atlas, we could then test if any of the microstructural NODDI 
parameters is predictive of development of a T1-visible lesion. 
We then tested at which deepness of the gradient of distance 
from CSF, the a-priori microstructural susceptibility factor was 
more responsible of the T1-visible lesion development. 
Finally, we computed the mean distance from the CSF of the T1-
lesioned tissue, compared to the T1-spared one.   
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Results. In the corresponding areas where the patients developed 
T1-visible lesions, we found significant higher values of Neurite 
Density (ND) on the healthy population atlas, if compared to the 
areas where no lesion was visible on T1 imaging. 
The a-priori tissue property of high ND was found to have its 
greatest influence on T1-visible lesion formation especially in the 
deep WM layer (the furthest from the pial and ventricular 
surfaces). 
The NODDI microstructural parameter Orientation Dispersion 
Index (ODI) showed to have no influence at any level on the tissue 
proneness to develop a T1-visible lesion. 
The average distance of the T1-lesioned tissue from the ventricles 
was higher than the one of the T1-spared tissue. 
  
Conclusion. Our results suggest that an higher density of neurites 
seem to play a role on the probability of development of a T1-
visible WM lesion in MS, while the orientation dispersion of the 
axons does not appear to have any impact on these pathological 
events. 
An higher coherence and compactness of structure in the myelin-
rich WM areas could constitute a facilitating factor for the auto-
inflammatory immune process against myelin antigens. 
It is interesting to see that this effect, which appears already 
significant when considered the whole brain, looks to be even 
more prominent in the “deep WM layer”, which is the furthest-
from-CSF part of WM.  
Conversely, the lesion-promoting effect of high ND seems to be 
attenuated or neutralized in the WM layers neighboring the CSF: 
this fact brings to speculate the existence of some underlying 
interaction between inflammatory soluble factors and tissue 
structure, at different WM deepness levels.  
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2 . Background 
 

 

2.1 . Magnetic resonance imaging 

 

The phenomenon of magnetic resonance (MR) of the atomic 

nuclei is known since its discovery in 1946 by the Nobel-prized 

Bloch and Purcell.[1, 2] 

A rapid evolution followed, which brought to development of 

wide-bore superconducting magnets (around 35 years ago), which 

permitted the technique to be applied in clinical settings, 

following the first human MR images realized in Nottingham and 

Aberdeen in 1980.[3] 

Nowadays, with the availability of uncountable pulse sequences 

fitted for different applications in neurologic disorders, magnetic 

resonance imaging (MRI) is considered to have become an 

unsubstitutable and powerful diagnostic instrument. 

 

 

 

2.1.1 Diffusion weighted imaging 

 

Diffusion weighted imaging (DWI) is an advanced branch of MRI 

sciences, currently experimenting an active evolution. 

The basic physical principle of diffusion weighted imaging is the 

random “Brownian” displacement of water molecules in the 

analyzed sample. 

In a pure fluid solution, motion of water molecules is completely 

free in any direction; the amount of displacement in time mainly 

depends on the temperature of the solution, with no directional 
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preferentiality: this is named “isotropic diffusion”, and can be 

observed, for example, in the cerebro-spinal fluid (CSF). 

Instead, when diffusion of water molecules is subject to structural 

constraints in the biological sample (for example, impermeable 

cells membranes), the diffusion phenomenon is limited and the 

amount of displacement in the same period of time will be 

reduced: this is termed “restricted diffusion”, and the amount of 

slowdown of molecular displacement is also influenced by cito-

histological features and cell wall integrity. For example, a higher 

diffusion restriction is observed in highly-packed cancerous cells 

compared to normal tissue 

When the shape and the disposition of the cells assumes a 

fibrillary micro-tubular structure, the constraints to water 

diffusion act mainly on the transversal plane of the fibers, causing 

the diffusion to happen more intensely along the main axis of the 

fibers: this phenomenon in which water diffusion is not equal in 

all directions is called “anisotropic diffusion” and is observed, for 

example, in the neurite-rich regions of the brain, i.e.: white 

matter (WM) tracts. 

 

Studying the amount and characteristics of diffusion in human 

tissues is precious for many diagnostic purposes, from oncology to 

ischemic stroke, and is made possible by a specialized MRI pulse 

sequence, called DWI.[4]  

To obtain an image contrast based on the different rate of 

diffusion between different tissues, a conventional spin echo 

sequence must be modified by adding “diffusion gradients”: these 

two gradients are applied before and after the 180° pulse, equally 

distanced in time from it, both having the same duration and the 

same (but opposite) amplitude, hence the first operating a 

“dephasing” action, the second a “rephasing” one. 
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The sequence is designed in a way that, if no movement of 

particles happen in the lapse of time between the application of 

the two diffusion gradients, the effect of the second gradient 

suppresses completely the effect of the first one and there will be 

no signal loss. Since in biological tissues there is a certain grade of 

proton diffusion, the rephasing performed by second gradient will 

be incomplete and this will generate a signal attenuation on the 

diffusion weighted image. 

The b-value of a diffusion sequence is a number, which is 

dependent on three factors: the time between application of the 

two diffusion gradients, their strength and their duration 

A mathematical relation between the same sequence repeated 

with (b-n) and without (b-zero) any diffusion gradient applied, 

allows to purify the component of the signal deriving from true 

diffusion effects from the ones deriving from the underlying 

conventional pulse sequence, and, thence, to create an image 

which is weighted on diffusion only, called “apparent diffusion 

coefficient” (ADC) map.[5] 

 

 

 

2.1.2 Diffusion tensor imaging 

 

A more recent technique, called Diffusion Tensor Imaging (DTI), is 

derived from the classical diffusion weighted imaging and 

estimates diffusion of protons along multiple directions, by the 

application of multiple non-collinear directional-sensitizing 

diffusion gradients, to allow a virtual reconstruction of a diffusion 

tensor for each imaged voxel. For the fitting of a diffusion tensor, 

a minimum of 6 directions of analysis is required, but an 

increasing number of directions assures more robust fittings. 
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Technically: similarly to as seen in the DWI, one or more 

“baseline” acquisitions with a b-value of zero are always essential 

- aside to the directionally sensitized ones - to assure the diffusion 

weighting of the sequence. When analyzing WM with classical DTI, 

the b-value of 1000 is considered to be the most accurate for the 

directionally sensitized acquisitions. Anyway, it is possible (and 

sometimes useful) to add directional diffusion acquisitions with 

different b-values in the same sequence; in this case, each group 

of directional diffusion acquisitions with the same b-value is 

considered a “shell”.[5] 

 

DTI is particularly valuable in anisotropic diffusing areas, such as 

the WM of the brain, permitting to simulate tractography and 

fiber tracking and to quantify the characteristics of the axonal 

microstructure via four distinct scalar measures: fractional 

anisotropy (FA, which corresponds to the normalized variance of 

the tensor’s eigenvalues), mean diffusivity (MD, the average of 

the eigenvalues), axial diffusivity (AD, the major amongst the 

three eigenvalues) and radial diffusivity (RD, the average of the 

two smaller eigenvalues). 

Thanks to DTI’s mathematical simplicity and its sensitivity to 

subtle changes in WM structure and integrity, innumerable 

scientific works are employing DTI with the objective of better 

understanding the normal anatomy of WM pathways and of 

improving the diagnosis and the pathogenesis knowledge on 

several neurological and psychiatric affections, such as multiple 

sclerosis (and other demyelinating diseases), axonal traumatic 

injuries, brain neoplasms, epilepsy, ADHD, bipolar disorder, 

schizophrenia, neurodegenerative diseases, etc.[5] 
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2.1.3 Advanced diffusion imaging techniques 

 

As mentioned before, there are situations where the classical 

model of DTI encounters some critical issues, and appears largely 

insufficient to explain the complexity of the normal structure and 

the impairments of human brain tissue. One of the typical failures 

of the classical DTI model is when dealing with regions of the 

brain where the fibers are crossing in multiple directions or are 

taking short radius turns.  

Some of these shortcomings are surmountable by employing 

diffusion imaging methodologies which require an increased 

complexity, either in the acquisition phase (A) and/or in the post-

processing algorithm (B):  

A – a typical example is the acquisition of multiple shells, each 

shell with a different b-value (with some b-values even larger than 

2000), in order to sensitize the signal to diffusion restriction and 

to different spans of molecular displacement profiles. 

B – the most representative example is the employment of 

“compartmental modelling”[6] 

 

Here (Figure 1) is a synthetic representation of the most relevant 

advanced diffusion MRI techniques in use in research contexts, 

classified as suggested by Pasternak et al., 2018. 
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Figure 1 
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Advanced diffusion imaging techniques can be divided in into two 

main groups, depending on the analysis approach: model-based 

and non-model-based. 

 

 The non-model-based group, which relies on the sole 

analysis of the signal without needing to assume an 

underlying tissular model, includes Q-Space Imaging, 

Diffusion Kurtosis Imaging, Diffusion Spectrum Imaging and 

Q-space Trajectory Imaging. 

 In the model-based group, a compartmental tissue model is 

defined “a priori”, subdividing the biological sample in 

multiple pools of water molecules with different diffusion 

properties; subsequently an estimation of the 

microstructural characteristics is run separately in each 

distinct tissue compartment. Free Water Imaging, 

Permeability Diffusivity Imaging, Neurite Orientation 

Dispersion and Density Imaging (NODDI), and Q-space 

Trajectory Imaging belong to this last group of methods.[6] 

 

We will now concentrate on the description of the NODDI 

diffusion analysis method and omit the discussion of the other 

systems, as they fall outside the arguments of this thesis. 

 

 

 

2.1.4 Neurite orientation dispersion and density imaging 

 

The neurite orientation dispersion and density imaging (NODDI) 

method, is based on a three compartmental model (Figure 2), 

featuring an intracellular, an extracellular and a free-water 

partitions. 
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The free-water section (i.e.: CSF, perivascular spaces, interstitial 

water, plasma, etc.) is considered as isotropic and modelled 

consequently, with a diffusion coefficient corresponding to the 

one of pure water at body temperature (3×10−3mm2/s). 

The intracellular compartment treats about the fluids confined 

inside the axonal membranes, which present a strongly restricted 

radial diffusion, and is simulated by a bundle of cylinders with 

zero radius (“sticks”) and with a fluid diffusion along the 

longitudinal axis considered as constant and set to 

1.7×10−3mm2/s. A mathematical function, originally a Watson 

distribution with two free parameters, puts in relation the mean 

orientation of the sticks and their dispersion around that mean 

axis. The estimation of neurite density is obtained from the 

fractional volume of this second compartment. 

With the extracellular partition, the model takes in account the 

inter-axonal spaces, which are supposed to have a not restricted 

diffusion, but hindered along the same axis of the intracellular 

sticks. This compartment is therefore modelled using beams of 

tensors with equal orientation dispersion to the axons. A function 

is posed to regulate the neurite dispersion, their density and the 

parallel diffusivity of the sticks with the longitudinal and 

transversal diffusivity of the tensors. 

With these premises, the model keeps four free parameters: the 

orientation dispersion index (ODI), the neurite density (ND), the 

free-water isotropic fraction (ISO) and the axonal mean 

orientation.[7] 
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Figure 2 
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NODDI (Neurite orientation dispersion and density imaging) is based on a 

three-compartment model, an intracellular compartment (with restricted 

diffusion), an extracellular one (with hindered diffusion) and a CSF 

compartment (with free diffusion): the model allows the elaboration of 

parameter maps, known as neurite density (ND) map, orientation dispersion 

index (ODI) map, isotropic volume fraction (ISO) map.[8] 

 

 

 

 

As mentioned above, the NODDI model, to be run, needs an 

expressly tuned diffusion acquisition protocol, with at least two 

shells: for example, a set of directions should have a b-value of 

around 1000, the second set (higher number of directions to 

compensate the signal noise) should have higher b-values (2000 

or above). 

Here are some technical details of  typical acquisition protocols 

(these are examples, but NODDI can adapt to different options): 

 

 1.5T magnet, 11 b=0 basal images, 3 shells (9 directions at 

b=300, 30 at b=800, 60 at b=2400), isotropic voxel resolution 

2.5mm, TR 8900ms TE 99ms.[8] 

 

 3T magnet, 5 b=0 basal images, 3 shells (30 directions at 

b=1000, 30 at b=3000, 30 at b=4500), isotropic voxel 

resolution 2mm, TR 12000ms TE 108ms.[9] 
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To sum up, NODDI, comparing to the classical DTI method (which 

provides a mere FA information), gives the opportunity to specify 

if the microstructural WM modifications are due to an actual loss 

of neurite density or just to an augmented orientation dispersion 

of the axons.  

This makes the neurite density index a potential sensitive marker 

of demyelination (despite its low specificity); the orientation 

dispersion parameter, instead, which reflects crossing and 

bending fibers, could prove to be a useful marker in the study of 

neuronal developmental or neuronal degenerative diseases.[7] 

 

DTI and other advanced tractography techniques are currently in 

use in the Human Connectome Project, which has the objective to 

build connectivity maps of the normal human brain at a 

parcellated/regional level.[10] 
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2.2 . Post-processing information technologies 

 

 

2.2.1 Ubuntu LINUX – based operating system 

 

Ubuntu is an operating system which was firstly released in 2004; 

it is based on the stable kernel LINUX, more precisely on the 

DEBIAN branch. 

The name Ubuntu is derived from a south-african zulu 

philosophical word which means “humanity towards the others”, 

a concept that expresses the foundation of each human being 

upon the contributions of all the other human beings. 

Ubuntu is, indeed, an open-source operating system, mainly 

composed by free software (protected by the GNU General Public 

License), but also supporting commercial software. 

A new release is available every 6 months, and a “long term 

support” version every 2 years. The updates are developed and 

managed by the British company “Canonical Ltd.”, with the 

collaboration of a large community of developers, whose work is 

organised under a meritocratic model system. 

The project is economically supported by sale of Ubuntu-related 

premium support services and by the installation of the system on 

commercial hardware objects.[11] 

Due to its stability, gratuity, compatibility and customizability, 

Ubuntu is very well suited for running university software libraries 

for MR image analysis and its terminal is ideal for batch-scripting; 

these reasons made it our first choice to be used in the data 

processing phase of our project.  
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2.2.2 Windows operating system 

 

Windows is a widely spread commercial operating system, firstly 

developed in 1985 by Microsoft as a graphical shell for MS-DOS, 

and subsequently becoming a dominator in world’s market share 

for personal computers.[12] 

In our project, Windows (NT 10 version) was useful to run the 

image processing phases requiring Matlab. 

Moreover, Windows NT 10 environment allows to run several 

proprietary software which are essential for the management of 

the numerical results of the image processing and for their 

statistical analysis. 

 

 

2.2.3 BASH scripting language 

 

BASH is a Unix command language developed for the GNU project 

and first released in 1989, as an improvement to the syntax of the 

already existing Bourne Shell. The acronym of the name means 

“Bourne Again SHell”. 

BASH shell comes with a command processor, i.e.: the user types 

commands in a text-only window, and each command 

corresponds to an action. Instead of typing commands one-by-

one, a list of commands can be read and executed by BASH from a 

script file in format “.sh” (Figure 3). This function is of paramount 

importance when batch-analyzing hundreds of MR images from 

multiple patients. 

As well as for Ubuntu, BASH is free software, published by the 

Free Software Foundation and protected by the terms of the GNU 

General Public License.[13] 
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2.2.4 FSL image processing tool library 

 

FSL is a software library (extended name: Functional magnetic 

resonance imaging of the brain Software Library) comprehensive 

of multiple tools (all running in BASH environment) for the 

analysis of MR images of the brain and the subsequent statistical 

analysis of deriving data. 

FSL include tools to process different MR methods, such as 

morphological-structural MRI, functional MRI, DTI.  

FSL is developed, updated and made publicly and freely available 

– for research and non-commercial uses – by the Functional MRI 

Analysis Group of the University of Oxford.[14] 

Some MRI processing tools of FSL relevant to this project are, for 

example, the Brain Extraction Tool (BET), the FSL Automated 

Segmentation Tool (FAST), the FSL Linear Registration Tool 

(FLIRT), the MRI image reviewer (FSLView), etc. (Figure 3). 

Furthermore, some BASH FSL commands were core in this 

project (Figure 3): for example, “FSLstats” allows to convert MR 

images to numerical data; “FSLmaths” gives the opportunity to 

perform mathematical operations between MR images. 
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Figure 3 

 

 
 

Extract from a BASH script expressively written for this project and actually 

used in it, including FSL commands, to review and validate the processed 

images. 
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2.2.5 Matlab scripting platform 

 

MATLAB (shortening for MATrix LABoratory) is an environment for 

numerical calculation and statistical analysis, written in C, 

including its own programming syntax, developed by 

MathWorks.[15] 

MATLAB offers the opportunity to visualize functions and data, 

implement algorithms, create customized graphical user 

interfaces, manipulate matrices and bridge with other programs.  

These last two features were particularly sought in our project to 

be able to handle with 3-dimensional and 4-dimensional matrices 

(MR images) and to interface with the NODDI diffusion imaging 

toolkit, described below. 

MATLAB is employed by millions of people in the industry and 

university worlds, thanks to its uncountable supports to different 

research fields, and to its compatibility to most operating 

systems, such as Windows, MAC OS, GNU/Linux and Unix.[15] 

The version of MATLAB used in our project is R2016B, the one 

currently made available by the University of Genova IT 

department. 

 

 

2.2.6 NODDI diffusion imaging toolkit 

 

The diffusion MRI processing software used in our project is 

“NODDI Matlab Toolbox”, an extension for MATLAB built by UCL 

Microstructure Imaging Group. 

The toolbox allows to obtain NODDI parameter estimation maps 

from a double-shell high angular diffusion MRI sequence, 

exploiting parallel computing and the three-compartmental tissue 

geometric model described above in detail. 
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The software adapts to an acquisition protocol optimized for 

clinical feasibility, and requiring a 30 minutes average scanning 

time. 

 

The output parameter maps thus obtained are: 

- neurite density map,  

- orientation dispersion index map,  

- CSF volume fraction map,  

- fiber orientation in the 3-dimensional space maps,  

- map of fitting objective function vales,  

- map of the concentrated parameter of Watson distribution used 

to compute orientation dispersion,  

- map containing information about errors occurred during the 

fitting process. 

 

The parameter maps are able to highlight microstructural 

properties of the cerebral WM and grey matter (GM) which are 

much more specific than those of the classical DTI analysis 

method.[16, 17] 

 

 

 

 

2.2.7 SPSS statistical data analysis interface 

Statistical Package for Social Sciences is a commercial software by 

IBM with an extensive suite of statistical analysis functions. 

It features both a graphical user interface and the scriptability 

option for data analysis. 

Due to its characteristics it is one of the most widespread 

computed statistical tools available.[18] 
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2.3 . Multiple Sclerosis 

 

 

Multiple Sclerosis (MS) is a chronic multifocal auto-inflammatory 

disease which affects the myelination of the central nervous 

system (CNS). 

 

 

 

 

2.3.1 Classification 

 

The first acute episode of neurological impairment, usually 

involving the optic nerve, brainstem, spinal cord and cerebellum, 

lasting for a minimum of 24 hours before the clinical recovery, is 

referred as “clinically isolated syndrome” (CIS).  

The most common variant of the disease shows multiple episodes 

of inflammatory focal demyelination of the CNS, in some cases 

associated to a clinical neurological deficit, interlapsed with 

periods of clinical remission; this form, known as “relapsing 

remitting” (RR) MS, affects 85% of the patients. 

RR MS, in 15-30% of the cases, evolve to a “secondary 

progressive” (SP) disease, where the neurological impairment is 

escalating and leads to a cumulative disability. 

In a minor part of cases (10-15%), MS advances towards disability, 

with no relapses, directly since the onset: in this case we assist to 

a “primary progressive” (PP) MS.[19] 
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2.3.2 Epidemiology 

 

MS is the main demyelinating disorder in developed world and 

the second most common etiology of permanent disability in 

young adults (after traumatic CNS injuries). Average age at 

diagnosis is 30 years.[20] Global prevalence of the disease is 

estimated at around 31 per 100000; prevalence in Europe is 

higher, with 127 per 100000. A significant correlation between MS 

prevalence, latitude and socio-demographic index was found.[21] 

The prevalence showed a trend to increase in the last 20 years, 

due to the lengthening of survival, the improvements in diagnosis, 

and the change of diagnostic criteria.[21, 22] 

Global incidence is rated at 2.5 per 100000; European incidence is 

3.8 per 100000.[23] 

Gender ratio female:male for MS was considered to be 

unfavorable for males at the beginning of last century, but an 

overturning of this measure was observed in the last period. This 

apparent rise of gender ratio could reside in various factors:  a 

better access to healthcare for women in modernity and the 

higher prevalence, in females, of MS subtle forms which can be 

better detected with current diagnostic criteria and MR 

imaging.[23, 24]. 

Statistics on mortality show that survival rate after 25 years 

accounts around 70-88%, while survival time ranges between 24 

to >45 years. Mortality decreased by 11.5% in the last 20 

years.[21, 25] 

Favorable prognostic factors on survival and quality of life are: RR 

variant, earlier clinical onset (between 25 and 30 years of age), 

first neurological episode with visual or sensory symptoms, fewer 

disability accumulated in the first year of disease, longer lag 

between the first and second relapse.[26] 
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2.3.3 Risk factors 

 

It is not possible to isolate a single etiology explaining 

development of MS: multiple factors appear to play a role, both 

congenital and environmental.  

 

Only three environmental factors detain an evidence of unbiased, 

consistent association with MS: presence in serum of 

immunoglobulin G versus the nuclear antigen of Epstein Barr 

virus, infectious mononucleosis, smoking. Several associations 

between MS and other risk factors were explored, but showed to 

be light or inconsistent: vaccinations, biochemicals, dental 

amalgam, past traumatic events or surgeries, atopy, eczema, 

impaired venous flow, vitamin D deficiency.[27, 28] 

Interaction of environmental factors triggering the disease could 

be represented by molecular mimicry, surface cell exposure of 

new autoantigens, peripheral dispersion of normally CNS-

segregated autoantigens, pro-inflammatory cytokine setting. 

For example, it was proposed that Epstein Barr virus could 

activate B cells inside the CNS or provoke a generalized imbalance 

of the immune system.[29] 

 

Genetic context has a significant impact in MS: monozygotic twins 

are both affected with a 25.9% concordance, while dizygotic ones 

only with 2.3%.[30] 

Some variants of the HLA gene of the major histocompatibility 

complex were identified to have a predisposing action towards 

MS (HLA-DRB1*15:01 allele, diffuse in European population), or a 

protective effect against MS (class I HLA-A*02:01 and class II 

DRB1*14:01).[31] 
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More than one hundred of transcriptional polymorphisms in 

genes encoding for interleukin-7 and -2 receptors were found to 

show correlation with MS pathogenesis, probably inhibiting the 

tolerance systems or lowering the immune cell activation 

threshold. Different levels of expression of immunological-chain-

related genes in MS patients seem to influence the aggressiveness 

phenotype of the disease.[29, 32] 
 

 

 

 

 

 

 

 

 

2.3.4 Pathogenesis 

 

MS is an auto-inflammatory process targeting the CNS. The 

classical pathological feature of MS is the presence of 

inflammatory focal lesions, more frequently localizing in the 

perivenular spaces, with an interruption of the blood-brain barrier 

which allows lymphocyte infiltrate, glial activation, myelin sheath 

loss and, eventually, neurite disruption with impairment of 

neuronal signaling.[33] 

 

Generalizing, MS sets off in congenitally predisposed individuals 

who underwent some kind of triggering environmental factor 

which cause an autoinflammatory reaction against the CNS. It is 

not easy to identify why the first inflammatory process begins and 

how the immune system sustains it. 
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A theory states that the first encounter between antigen and T 

cells is in the periphery, and then activated lymphocytes and 

monocytes move to the CNS. The second explanation is that a 

primary event occurs intrinsically to the CNS (viral infection, 

neurodegeneration…), provoking a local immune reaction which 

releases CNS antigens to the systemic blood flow, and eventually 

attracting autoreactive immune cells.[34] 

 

The second hypothesis is supported: by the limited effect of 

available medicaments in the progressive forms of disease, and by 

the apparent independence between the relapse recurrence and 

the cumulative neurodegeneration; both facts seem to confirm an 

underlying primary neurodegenerative process which is separated 

from the inflammatory manifestations.[35] 

 

In any case, a CNS-antigen-based immune response is activated 

and CNS is invaded by lymphocytes. In consequence, microglia is 

activated, contributing to tissue damage and sustainment of the 

disease. Inflammatory processes are visible at any phase of MS, 

mainly in the acute, but also in the chronic ones. Immune cell 

infiltrates localizing in the perivenular space are hallmark of 

disease, and contain: macrophages, T cells (CD8+ > CD4+), B cells 

and plasma cells. Oligodendrocyte and demyelination appear 

consequently to inflammation. In the progressive forms of MS, the 

immune reaction involves more extensively the CNS, with diffuse 

demyelination, neurite loss, microglia activation, development of 

tertiary lymphoid structures and cortical injury. The result of this 

is a progressive WM and GM trophicity decrease, due to a loss of 

neurites and neuronal bodies, which is the basis of irreversible 

clinical disabilities in MS.[29] 
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2.3.5 Pathology 

 

The microscopical appearance of the focal lesions features 

primitive demyelination, followed by glial scaring, neurite and 

neuronal body degeneration and loss. 

Lesions localize mainly in WM, but also in cortical and nuclear GM, 

brainstem and spinal cord.  

A certain degree of remyelination is observed in focal lesions. 

Lesions can be classified in: acutely active-, chronically active-, 

slowly expanding-, inactive- lesions or remyelinated “shadow 

plaques”. 

Either if cortical lesions are hardly identified in MR in-vivo 

technique (only in 10-15% of cases), they appear extensively 

diffuse in pathology specimens of MS. 

In many cases, a lesion extends from cortex to the underlying 

subcortical WM, in others the lesions are purely intracortical or 

subpial. 

Superficial cortical lesions show meningeal inflammation and 

tertiary lymph follicles associated, especially in progressive MS 

forms. 

 

It is relevant to this thesis to note that active demyelination 

begins on cortical surface and propagates with a superficial-to-

deep gradient. The subsequent degeneration involves neurites 

and cellular bodies. 

The involvement of deep gray matter with focal lesions and 

diffuse neuronal degeneration is precocious in disease history, but 

evolves slowly over time. 

“MR normally appearing” WM and GM are instead characterized 

by a diffuse injury at a micropathological level, especially in 

progressive MS stages. 
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WM damage is characterized  by inflammatory infiltrates 

surrounding small vessels, diffuse axonal involution, glial 

activation and astrocytic scars. In the progressive phases of 

disease, the increasingly severity of demyelination in cortex, with 

neuronal body loss, brings a further neurite depletion in the 

WM.[33] 

 

 

 

2.3.6 Clinical features 

 

Clinical manifestations following active plaques in MS can vary 

widely, since they depend on the geography of lesions in the CNS: 

typical onset acute symptoms are unilateral optic neuritis, partial 

myelitis or brainstem syndrome.[36] 

Conversely, the chronic progressive neurodegeneration manifests 

heterogeneously with slowly worsening symptoms (in order of 

frequency, from more to less common): asymmetric paraparesis, 

hemiparesis, cerebellar ataxia, visual loss or dementia. 

The speed of evolution of the clinical course is very variable; 

prognostic indicators of disability accumulation have been 

associated to gender, brain atrophy, age and degree of disability 

at diagnosis. 

 

 

 

 

2.3.7 Diagnosis 

 

Since a single test is not sufficient to provide a specific diagnosis 

of MS (not even tissue biopsy), the diagnosis must be reached by 

integration of multifactorial data (clinical, laboratory and MRI). 
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Specifically, a dissemination of the disease in time (DIT) and a 

dissemination in space (DIS) must both be demonstrated to 

identify an actual MS case.  

The latest revision of the McDonald diagnostic criteria was 

codified in 2017[37], and bases the diagnosis of MS upon 

objectivable DIT and DIS of the CNS lesions, plus the consideration 

and exclusion of alternative better explanations for the clinical 

symptoms.  

This current diagnostic criteria revision still allow a purely clinical 

diagnosis; nevertheless, it is undeniable the increasing role of MRI 

in diagnosing MS. For example, a single MRI scan could satisfy 

both criteria: DIT (contemporaneous presence of Gadolinium 

enhancing and non-enhancing lesions) and DIS (simultaneous 

involvement of multiple foci in CNS, such as supra- and infra-

tentorial or spinal cord). 

Moreover, MRI is a precious tool to exclude many MS-mimicking 

conditions.[37-39] 

CSF specimen testing, though not usually necessary, can support 

the early MS diagnosis if demonstrating the presence of 

oligocolonal bands (DIT criteria) when the DIS criteria is already 

clinically satisfied. Other CSF features compatible with MS are a 

normal to moderately rise in cell count (<25 cells per cm3, mainly 

lymphocites), a low protein level (<1g/L), a raise in IgG index and 

an absence of serum oligoclonal bands. 

Finally, neurophysiological evoked potential testing on optic, 

sensory and auditory pathways could help the identification of 

subclinical lesions in the CNS, thus potentially confirming the DIS 

criteria.[37] 
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2.3.8 MRI studies in MS 

 

The key MRI feature of MS is the presence of multiple focal 

inflammatory lesions, visible as hyperintense in T2 and Fluid 

Attenuated Inversion Recovery (FLAIR) weighted sequences and 

hypointense in T1 imaging. 

Preferential localizations of lesion are periventricular and 

subcortical WM and infratentorial structures. 

Lesion load (LL), correlates with the burden of clinical disability 

(standardly measured with the expanded disability status scale 

EDSS). 

Spinal cord is affected by a MRI detectable lesion in 90% of MS 

patients and in 50% of CIS patients.[40] 

The MRI visible lesion burden in CNS alone is not enough to 

explain all the disability in MS, thus defining a gap between 

clinical and imaging features. 

In order to optimize diagnostic power and disease progression 

surveillance, guidelines have been redacted to codify the most 

accurate MRI protocols.[41, 42] 

In addition to classical pulse sequence standard protocols, some 

more sophisticated MR techniques have been introduced with the 

aim of better understanding, in vivo, the pathophysiological 

processes which bring to the development of MS. 

For example, employing a high-resolution delayed-post-

gadoliunium FLAIR scan, MR is capable of demonstrating 

leptomeningeal inflammation and tertiary follicles in up to 50% of 

the cases of MS, on a clinical magnet, and in up to 90% on a ultra-

high field magnet. 
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Magnetization transfer ratio maps are able to unveil the diffuse 

demyelination process underlying the normally appearing WM in 

the standard pulse sequences. 

Spectroscopic MR, giving insight on the content of N-acetyl-

aspartate, and MR Sodium imaging proved to detect neuronal 

body and axonal degeneration. 

Neurodegeneration is even measurable indirectly by means of 

brain tissue atrophy, which proved to be particularly relevant in 

deep GM nuclei and to correlate with EDSS.[43] 

Despite several possible biasing factors, brain and spinal cord 

atrophy is measurable (cross-sectionally and longitudinally) on 3D 

T1 MR images.[44] 

Plenty of literature flourished around resting state functional MRI 

in MS patients, with stimulating findings, but which are beyond 

the interests of this thesis.[45-49] 

Some studies combining structural connectivity data 

collected from diffusion sequences with the functional 

connectivity collected by functional MRI, with brain atrophy data 

and/or with clinical scores, found (sometimes univocally, 

sometimes with contrasting results between papers) that 

structural disconnection could provoke an increase in functional 

connectivity in MS patients[50, 51] or a re-modulation of the 

functional networks[52-54], with a final exhaustion of the 

compensatory connectivity systems in the latter stages of 

disease.[55] 

Concerning pure DWI MR techniques, plenty of literature studied 

MS pathology under the micro-structural, meso-structural and 

macro-structural aspects.[56] 
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Microstructural studies 

 

More than 300 DTI-based papers regarding MS were published, 

finding abnormal DTI parameters in MS lesions (reduced FA and 

increased MD, RD, AD)[57, 58], thus demonstrating increased 

water content together with myelin and axonal loss and glial 

scarring. 

Compared to healthy controls, even normally appearing WM of 

MS patients present a diffuse abnormality in DTI parameters, 

consistent with the fact that MS damage spreads beyond the 

visible borders of classical MRI visible plaques.[57, 58] 

In GM, the results were more controversial[59-62], partially for 

the simplistic limitations of the DTI model.[63] 

Although on animal models it was evidenced that AD and RD 

values reflect respectively axonal injury and myelin disruption[64, 

65], it is not prudent to generalize this conclusion.[66, 67] 

Despite the rich literature on classical DTI in MS, its parameters 

are very “raw”, since they are derived from the assumption of a 

Gaussian water diffusion model[68], which hardly captures the 

actual microstructural properties of the cerebral tissue, and can 

be biased by innumerable factors. 

Model free algorhythms, such as Q-Space Imaging and Diffusion 

Kurtosis Imaging promise to match with more fidelity the physical 

and cytological properties of the biological sample, such as the 

axonal diameter.[69] Unfortunately, the acquisition protocols for 

these approaches are complex and time-demanding and hardly 

applicable to clinical settings[70]: up to now, studies were limited 

to post-mortem imaging-vs-histology validation[71, 72] or to 

animal MS models[73, 74], and there are few published papers 

that prove their usefulness in small numbers of in-vivo MS 

patients.[75-83] 



 42  

A few Diffusion Spectrum Imaging studies on post-mortem 

samples successfully validated this imaging technique metrics on 

histological stains.[84, 85] 

Surprisingly, although multi-compartmental models such as 

NODDI were developed expressly to be practicable in clinical 

settings, to date there are no in-vivo MS published studies.[7] 

Summing up, various basic or advanced diffusion MRI techniques 

helped to provide biomarkers of tissue damage which improve 

specificity and sensibility of conventional MRI imaging: diffusion 

imaging techniques allow to visualize subtle and early changes in 

normally appearing brain tissue or to highlight the 

pathogenethical differences between similarly-looking WM 

lesions. 

As a drawback, most diffusion microstructural biomarkers lack of 

specificity if compared to actual histology, potentially presenting 

identical diffusion MRI alterations despite being due to a 

coexistence of multiple different etiological substrates. 
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Mesostructural studies 

 

Focal MS microstructural damage does not have local 

consequences only: due to the structure of brain, it happens to 

localize along neuronal pathways and networks, impairing their 

function at a mesoscopic scale. This is why the mere study of 

lesion load and microscopical tissue properties is not sufficient to 

explain the clinical disability burden of MS.[86] 

To address this issue, diffusion MRI tractography was developed: 

a system to simulate axonal bundle pathways by analyzing, voxel 

by voxel, the diffusivity pattern and direction of the WM and 

therefore estimating and reconstructing virtual “tracts”. 

Classical DTI measurement can thence be acquired within the 

tract boundary, and be eventually associated with a specific 

clinical deficit. 

With this “tract based” system, motor and sensory pathways were 

object of the most conspicuous number of investigations in MS, 

thanks to their easier comparison to eloquent manifestations and 

to clinically measurable criteria (i.e.: EDSS, timed walk test, etc.). 

Corticospinal tract (CST) consistently shows alteration of the DTI 

values (AD, RD, MD) in MS patients, if compared to healthy 

subjects, and this CST damage was associated to functional 

impairments in clinical scales and atrophy (thinning) of the 

primary motor cortex. Conversely, FA anomalies of the CST seem 

to have a lesser impact on disability.[87-89] 

Plastic changes and reorganization of the primary motor cortex 

were demonstrated and  in MS patients with lesions affecting 

CSTs unilaterally, by comparing tractographic connectivity with 

morphological (surface area) data.[90] 

In alternative to the single-tract method, contemporary multiple-

tract based analysis are made possible by means of the “graph 
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theory”: this mathematical method is applied to MS 

neurophysiopathology by defining some GM regions as “nodes” 

and their pairwise WM inter-connections as “edges”. Each edge is 

obtained by multi-seed-region tractography and is characterized 

by its own DTI properties. This wide-area approach allowed 

defining integrity and efficiency metrics on a more extended 

network, which appear to more satisfactorily explain the EDSS 

burden of disability in MS patients.[86, 91-93] 

In addition, besides the sensory-motor domain, other more 

complex aspects of MS neuronal symptomatology (such as 

fatigue, memory and processing speed) could be studied by 

applying these sophisticated methods to a wider range of brain 

structures, such as cingulum.[94, 95] 

However, there are some drawbacks that currently suggest 

caution in the use of this network-level method in clinical settings: 

loss of information of the original precise localization of the WM 

lesions and risk of amplification of the well-known pitfalls of 

tractography.[96]  
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Macrostructural studies 

 

Again, the structural connectome is a system based on the graph 

theory; this time, however, the full brain is more broadly 

considered as a complex integrated network, with distinct 

functional areas (GM nodes obtained from cortical and subcortical 

structural MR parcellation) connected by axonal wiring (WM 

edges reconstructed non-invasively on the base of diffusion MRI 

data).[97-102] 

Its metrics does not help us to fill the gap between MS 

microhistological features and imaging, but have potential to give 

us a deep insight on how neuronal communication brings to 

human behavior and how its dysfunction bring to disease.[103, 

104] 

Connections between each couple of GM areas can be weighted 

by different metrics: the number of streamlines simulated with 

tractography[105], the tract’s diffusion MRI parameters[106], or 

any other microstructural MR metric of interest[107]. A point of 

strength of this approach is, indeed, its ability to summarize in a 

few number of easily manageable measures a very complex 

ensemble of pathological effects, and it constitutes a promising 

base from which to furtherly analyze local alterations on the more 

traditional mesoscopical and microscopical level. 

Various papers reported in MS an early alteration of the structural 

connectome, with an initially regular functional network 

preservation[108, 109]; this pattern was found opposite in other 

primary neurodegenerative diseases, such as Alzheimer’s.[110, 

111] 

An overall brain network efficiency in RR MS patients was linked 

to disruptive changes in several meso-scale sub-networks an 

eventually to disability.[112] Localization of WM damage, if 
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compared to the efficiency rate of the whole network and the 

clinical performance status of the subject, gives an opportunity to 

better understand the level of tolerance of each subnetwork to 

injury.[113] 

Methods of connectome analysis are relatively recent and still 

under active development, and still require validation under 

several technical aspects: for example, there is not unanimity 

consensus around which method to use to parcellate the cortex, 

how to realize the tractography or which are the correct metrics 

to weight the graph’s edges.[114] 

Conversely, connectomic analysis could unveal some subtle 

widespread cross-subnetwork alterations, invisible on the 

traditional mesoscopic and microscopic levels, and independent 

from the focal origin of injury. 

 

 

 

 

In conclusion, diffusion MRI techniques, despite their physical and 

technical limitations and their difficult applicability in clinical 

settings, consent a good degree of multimodality and a wide 

range of valid parameters for research purposes in MS. 

Additionally, they give the opportunity of integrating neuronal 

damage complementary information collected from different 

points of view on a progressive scale of magnification, from the 

macroscopical level, to the mesoscopical and to the 

microstructural one.[56]  
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2.4 . The Sys4MS consortium study 

 

 

 

The Sys4Ms multi-center study lies in the wider context of the 

European Union supported ERACOMED project, a research 

program on MS based on “system medicine”. 

This approach exploits and integrates, by advanced 

computational tools, the information gathered by multiple 

biomarkers, such as imaging, clinical data, and “multi-omics”. 

The final aim of the project is to better explain pathology and 

pathogenesis of MS, at a “patient-by-patient” level, in order to 

develop personalized treatments. 

329 MS patients were recruited cross-sectionally, along with 

90 healthy controls. All patients underwent brain MRI and 

optical coherence tomography; clinical scores were calculated, 

the type of MS treatment in use was recorded. Blood samples 

were analyzed by multi-omics approach (genotyping with 

around 500.000 genetic markers, cytomics with 17 antibodies 

targeting immune cell subpopulations, phosphoproteomics on 

white blood cells at 3 time points with 20 kinases). 

Significant differences were unveiled between patients and 

controls at multiple levels of biomarkers. The information 

gathered from a such large number of biomarkers gives us the 

opportunity to compute an integrated profile of the disease, a 

promising value which clarifies the prognosis and help the 

development of objective decision systems to optimize MS 

management.[115] 
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2.5 . The Human connectome 

project repository 

 

The Human Connectome[97] 

Project was conceived in 2009 and 

involves two research consortia 

for a total of 16 research 

institutes, including Washington 

University in Saint Louis, University of Minnesota, Oxford 

University, Harvard University, Massachusetts General Hospital, 

the University of California Los Angeles and D'Annunzio University 

of Chieti–Pescara.[116]  

In particular, the WU-Minn-Oxford consortium was able to collect, 

via the most advanced MRI 3T and 7T hardware and software 

systems available, a massive database of ultra-high quality 

structural and HARDI diffusion MRI brain data, from around 1200 

healthy adults, plus hundreds of data from twins and 

siblings[117], and made it publicly available and downloadable 

from the internet in an open-source platform.[118] 

This huge data repository is a precious base which allowed to 

build an unprecedentedly-defined connectome map of human 

brain, shedding light on WM pathways organization[119]; its 

public availability permitted to develop hundreds of research 

studies on various subjects, including dyslexia, autism, Alzheimer's 

disease, and schizophrenia. 

Acquisition of MRI data on human young healthy brains is still in 

progress; in addition, some research centers of the consortia are 

focusing on populations different than young adults or on subjects 

affected by a particular disease. This will help to understand the 

changes occurring in brain connectivity structure during ageing or 

caused by neurologic pathologies. 
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3 . Thesis Introduction 
 

 

 

3.1. Multiple Sclerosis Lesion “Geography”  

 

 

To date, despite a whole century of research efforts, the basis of 

WM damage spatial localization (lesion appearance and lesion 

evolution) in MS are poorly understood.[120]  

 

Although it is recognized that the entire brain is affected by 

pathological processes of MS, it is however well known that not 

all the anatomical structures of the brain are affected at the same 

degree[121]: it was observed, both via ex vivo and later via in vivo 

MRI experiments, that lesions and normal appearing WM changes 

are more frequent and intense in the WM and GM adjacent to the 

outer (i.e. subpial)[122] and inner (i.e. ventricular)[123] surfaces 

of the brain. 

 

The brain parenchyma underlying the subpial brain surface is 

reported to be an elective site of localization for cortical lesions, 

which appear to be consistently present in subjects with PP 

MS.[124]  

The presence of subpial cortical damage was related to meningeal 

inflammation, in all MS subtypes, suggesting the possibility that 

the presence of soluble inflammatory factors in CSF could 

facilitate the spatial distribution of tissue damage to the outer 

layers of superficial GM.[125] 
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Similarly, while it is well established that the lesion formation 

process appears to predilect the periventricular WM 

structures[123], recent studies added the notion that even extra-

lesional WM anomalies are more intense in the regions 

immediately underlying the ependymal ventricular surface[126]. 

 

In addition, a diffusion weighted imaging study in subjects with PP 

MS demonstrated an association between cortical lesion load and 

the severity of periventricular normal appearing WM damage, 

suggesting that a common factor could play a role in the 

development of both cortical lesion and periventricular normal 

appearing WM abnormalities in PP MS.[127] 

 

Some recent studies sought to explore the correlation of deep and 

superficial brain damage in relapse-onset MS, and found 

associations between periventricular WM lesions and the entity of 

cortical atrophy.[128] Other studies highlighted that in relapse-

onset MS, both in subependimal[129] and in subpial[122] 

structures a decreasing gradient of normal appearing WM 

anomalies  is present, thus suggesting that a common facilitating 

factor could underlie tissue damage in both cortical and 

periventricular areas.  

 

 

Most of these observations, however, did not find a etio-

pathological explanation yet. 
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3.2. Imaging Recent Advances 

 

As discussed above, the degree of damage found in the brain 

structure has been classically assessed by measurements 

gathered via diffusion weighted imaging (i.e.: fractional 

anisotropy, mean diffusivity, axial diffusivity and radial 

diffusivity)[5] or via magnetization transfer imaging. 

Some novel advanced diffusion MRI protocols and analysis models 

permit a further characterization of the tissular microstructure, 

overcoming some limitations of the classical models, especially 

when sampling areas where several WM fiber and bundles are not 

directionally coherent but “cross” the sampling voxel in different 

directions.[6] 

 

One of the most promising approach which come in help in these 

cases of “crossing fibers voxels”, where the classical models fail, is 

Neurite Orientation Density and Dispersion Imaging (NODDI) 

model.[16] 

The NODDI modeling requires a targeted DWI acquisition with an 

optimized protocol with at least two-shells.[16] 

The NODDI MRI protocol was developed with the scope to obtain 

a “non-invasive histology”, avoiding patient discomfort and 

possible side effects of standard biopsy-histology procedures and 

enabling temporal monitoring through repeat measurements. 

Moreover, microstructure imaging produces maps over the whole 

brain rather than a targeted biopsy sample of a few mm3, so is 

less prone to false negatives from poor targeting, and provides a 

more complete picture of heterogeneous diseases, such as MS, 

which affect very heterogeneously the different brain areas.[130] 
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This “microstructure imaging” (i.e. a technique for estimating fibre 

orientations and configurations from diffusion MRI enabling non-

invasive studies of brain connectivity through tractography) works 

by fitting mathematical models of cellular architecture to imaging 

data.[7] 

The NODDI algorithm produces separate maps of dispersion of 

fiber orientations (how much fanning/bending/etc.), fiber density, 

and partial volume with free water (e.g. CSF). The traditional 

fractional anisotropy (FA) index from diffusion tensor imaging 

(DTI) confounds these three effects; NODDI allows a separate 

analysis of each. Moreover, the technique provides useful 

information in GM as well as WM. In GM, the dispersion and 

density of dendrite orientations provides contrast between 

functional areas that translates into contrast from the diffusion 

MRI signal. NODDI requires only 10-30 minutes acquisition time 

with standard pulse sequences, therefore is clinically feasible.[7]  

The key advance in NODDI’s fitting technology compared to the 

previous DWI analysis techniques is to move away from voxel-by-

voxel estimation of microstructure parameters to exploit spatial 

coherence: microstructure is usually similar in proximal voxels so 

it is possible to pool data to improve estimates and reduce noise 

in the measurement. It was demonstrated in simulations that 

assuming consistency of microstructure along fiber tracts, it is 

possible to improve microstructure parameter estimates, and 

resolve long-standing ambiguities in tractography, such as kissing 

versus crossing.[131]  
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Various tools were developed to validate NODDI microstructure 

imaging applications:  

 

- a diffusion simulation system that supports arbitrary tissue 

environments, from packed cylinders with diameters reflecting 

WM to arbitrary mesh models derived from confocal or electron 

microscopy images[132];  

 

- WM phantoms from specially designed meshes or glass 

capillaries[133-135];  

 

- an asparagus as a biological phantom with similar pore 

structure to WM[134];  

 

- a viable tissue chamber to allow imaging of excised tissue in 

in-vivo conditions for ten hours or more[136];  

 

- an ex-vivo histological verification by comparison of the 

NODDI parameters of a mouse brain acquired on a 7T MRI 

scanner and its transparent-rendered dissections.[137] 

 



 54  

3.3. Rationale 

 

 

Spatial localization of WM T2 / FLAIR hyperintensity in multiple 

sclerosis along the brain has been extensively studied and is well 

known; though, the reasons that cause the evolution from early 

MS lesion (i.e. T2 / FLAIR hyperintensity) to chronic lesion (i.e. 

“black hole” on T1 sequences) remains poorly understood. 

 

Specifically, it is not clear why some lesions evolve to black hole 

and some others not. 

 

 

Two hypothesis are posed:  

 

- the distance from CSF could represent a determinant factor 

to lesion evolution via inflammatory facilitation 

 

- some pre-existent regional properties of the WM 

microstructure make the tissue locally more prone to structural 

degeneration and lesion evolution 
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3.4. Objectives  

 

 

 

The overall aim of this project is to better explain the 

relationship within the gradient-like centripetal distribution of 

tissue damage in MS and the anatomical microstructural 

properties (NODDI’s neurite density, orientation dispersion 

index, CSF volume fraction, fiber orientation) of the affected 

WM, and hence better explain the spatial preferentiality and 

the pathogenesis and evolution of the MS plaque. 
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3.5. Project Plan  

 

Our research developed along this timeline of work 

organization: 

 

1. The first step of these three years of doctorate has been 

gathering normal anatomical data on a large pool of 

healthy subjects (as made publicly available by the Human 

Connectome Project Consortium) and therefore building, 

via NODDI modelling mean parametric maps of a normal 

population in order to assess the different properties of 

tissue in relation to anatomical localization. 

 

2. The second step was to cross-sectionally evaluate the 

lesion geography on a cohort of MS patients, defining WM 

T2/FLAIR hyperintensities and black hole localization. 

 

3. The third step was to search whether the NODDI 

microstructural WM properties in the corresponding 

location of black holes on normal brain maps is predictive 

of lesion formation and or black hole degeneration. 

 

4. The fourth step was to evaluate at which “deepness” (i.e.: 

distance from the CSF-brain interface) the effects of the 

NODDI microstructural WM properties have the strongest 

effect on the probability of T2-to-T1 lesion evolution. 

 

5. The fifth step was to check if, in our sample of patients, the 

mean distance of T1 lesions from ventricular CSF was 

significantly different from the mean distance of the rest of 

the non-T1 affected parenchyma. 
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4 .  Research - Step 1 
“NODDI modelling” 

 

 

 

 

4.1. Population 

 

Data was acquired from healthy adults between the ages of 20 

and 59. Demographic information, including gender and age 

range, are shown in Table 1.  

 

 

 

Table 1 

 

N M:F ratio Age (mean, STD) 

35 19:16 37.60 ± 12.71 

 

Demographics of the Human Connectome Project population  

 

 

The participants gave written consent, and the procedures were 

carried out in accordance with the institutional review board 

approval and procedures. 

Each dataset (in nifti format) consists of a Magnetization-Prepared 

Rapid Acquisition Gradient Echo (MPRAGE) scan, a high resolution 

T2-SPACE scan and diffusion scans with 4 different b-values. 
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4.2. Methods 

 

The DWI scans were post processed and the NODDI model was 

fitted by NODDI toolbox (MIG, UCL Microstructure Imaging Group) 

extension for Matlab (The MathWorks, Inc.) and NODDI WM 

microstructural properties maps were generated for fiber 

orientation, intracellular volume fraction (ficvf also known as 

“neurite density” ND), isotropic volume fraction (fiso), and 

orientation dispersion index (ODI). 

 

 

 

 

4.3. Results 

 

The maps obtained from one of the subjects are shown in the 

image below (Figure 4). 
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Figure 4 

 

  
 

Parametric maps obtained from NODDI modelling, from left to right: the 

axonal mean orientation,  the neurite density (ficvf), the free-water isotropic 

fraction (fiso) and the orientation dispersion index (ODI). 

 

 

 Values of ficvf (neurite density) are high in neurite-rich areas such 

as WM, as can most clearly be seen in the internal capsule and the 

splenium of the corpus callosum. The fiso maps accurately 

highlight the ventricles and surrounding CSF that have a very high 

isotropic diffusivity. The orientation dispersion index (ODI) maps 

the dispersion of neurites around the principal diffusion direction. 

In single-fiber regions in the WM, this can be regarded as an 

indication of the coherence of the axons in that voxel. This can 

most clearly be seen in the posterior limb of the internal capsule, 

wherein the ODI is low indicating high axonal coherence.  
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The normal brain NODDI microstructural properties maps thus 

obtained were translated in a normal MNI space[138-141] 

 

    

 

via “NiftiReg” (NiftyReg is an open-source software for efficient 

medical image registration developed by members of the 

Translational Imaging Group with the Centre for Medical Image 

Computing at University College London, UK), and the “mean 

maps” were computed for each parameter. 

 

These maps thus obtained are generally of great interest if used as 

a “normal brain microstructural atlas”, since they potentially allow 

to assess, in any white-matter-damaging disease, how the WM 

microstructure of an average normal brain “should be”, in the 

region where a lesion disrupted the tissue and consequently the 

WM structure is no longer evaluable. 
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5 .  Research - Step 2 
“MS Coort Recruitment and Analysis” 

 

 

5.1. Population 

 

For our work we recruited 92 MS patients. 

 

The participants gave written consent, and the procedures were 

carried out in accordance with the institutional review board 

approval and procedures. 

 

Patients were recruited in the context of the Sys4Ms consortium, 

a multicenter, multidisciplinary study with the aim to develop new 

tools based on systems medicine to improve and personalize the 

management of MS patients. The consortium is developing 

mathematical models into which clinical information MRI and 

omics data from diverse sources can be integrated and which can 

be used to generate algorithms that can predict the disease 

course and future disability in specific subgroups of MS patients, 

as well as aid the selection of the best therapy for each individual. 

 

Our population anagraphics are depicted in Table 2. 
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Table 2 

 

MS Subtypes RR PP SP TOT 

N 68 11 13 92 

M:F ratio 18:50 5:6 4:9 27:65 

Age (mean, STD) 40.01 ± 10.27 50.63 ± 7.31 52.15 ± 6.49 43.55 ± 10.71 

EDSS (median) 1.5 (0 - 6) 4 (4 - 6) 4 (2 - 6.5) 2 (0 - 6.5) 

 

Demographic and disease information of the University of Genova 

Sys4MS subpopulation enrolled in this study. 

 

 

 

 

5.2. Methods 

 

Patients underwent, aside to several clinical and Immunological 

tests, a 3T MRI scan which included the following high resolution 

pulse sequences (Figure 5): 3D T2, 3D FLAIR; 60 directions DWI; 

Resting State blood oxygen level dependent (BOLD) imaging; pre 

and post contrastographic 3D T1.  

The scanning protocol lasted approximately 1 hour. Motion 

blurred sequences were repeated. 
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Figure 5 

 

 
 

The MRI scan protocol employed in the University of Genova Sys4MS study, 

including: Resting State Functional MRI, 60-directional single-shell DTI, 3D 

FLAIR-weighted imaging, pre- and post-contrastographic 3D T1-weighted 

imaging, 3D T2-weighted imaging. 

  

3D FLAIR and 3D T1 volumes were post processed by resampling 

to 3mm axial slices in order to make the manual drawing of the 

lesions possible. 

Lesion edge contours were traced, slice by slice, using an active 

surface semi automatic algorithm using the software “JIM” 

(version 6, Xinapse Systems). 
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Each segmentation result underwent a double accuracy check 

(including a revision by an experienced neuroradiologist) and, if 

necessary, manual edited. 

 

Figure 6 shows an example of lesion segmentation respectively on 

FLAIR hyperintensities (“LesionT2Map”) and on T1 black holes 

(“LesionT1Map”). 

 

Figure 6 

 

 
Semi-automatic neuroradiologist-revised lesion segmentation of the 3-mm 

axially reformatted 3D-FLAIR (on the left of the image) and 3D-T1 (on the 

right) images of one of the patients’ brain. 

6 
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The binary “LesionT1Map” and” LesionT2Map” of each patient 

were furtherly computed to obtain binary “LesionNonT1Map” 

(i.e.: a map of the “T2 only” lesions, therefore with a voxel value 1 

on each voxel where a T2 lesion was detected but a 

corresponding T1 lesion was NOT present, and value zero 

elsewhere) and a binary “NormalWhiteMatterMap” (i.e.: voxel 

value 0 for T1 and/or T2 lesions and value 1 for all the remaining 

WM voxels untouched by any lesion). 

 

The lesion maps thus obtained were translated in a normal MNI 

space[138-141] via “NiftiReg” (NiftyReg is an open-source 

software for efficient medical image registration developed by 

members of the Translational Imaging Group with the Centre for 

Medical Image Computing at University College London, UK). 
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5.3. Results 

 

Lesional Load for each map was evaluated in each patient, as 

shown in the Graph 3 below. 

 

 

Graph 3 

 

 
 

X axis = Patient identifying number, 

Y axis = Lesion Load (total volume) in milliliters, 

Blue column = T1 lesion load, 

Red column = T2 lesion load. 
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6 .  Research - Step 3 
“Correlations Between NODDI Microstructural 

Properties and Lesion Masks” 

 

 

 

 

The search of correlations between NODDI microstructural WM 

properties and lesion masks was performed via two different 

approaches, Experiment A and Experiment B. 

 

 

 

6.1. Experiment A 

 

Via a patient-by-patient approach:  

 

METHODS 

 

Firstly, we extracted for the whole brain of each patient the mean 

value for each noddi parameter inside the “1-valued” voxels of 

each binary LesionT1Map, LesionT2Map, LesionNonT1Map and 

NormalWhiteMatterMap.  

 

Then, we performed a general linear model test to explore the 

eventuality of a possible predictivity of a black hole formation via 

the “a priori” knowledge of the noddi microstructural properties 

of a determinate anatomical region of the brain. Statistical 

correction was included for: lesion load, disease duration, age.  

 



 68  

 

RESULTS 

 

Here we present the descriptive statistics (mean and standard 

deviation) for the NODDI parameters found in each subcategory 

of WM status. Since we performed statistical tests on the results 

regarding the T1 lesion regions of interest, compared to the non-

T1-affected regions, and we did not take in consideration the 

normal WM and T2 lesion maps, due to the objective of this 

study, we will present descriptive statistics regarding the first 

couple of regions of interest only. 

 

Average ODI and ND were found to be respectively 0.291 ± 0.031 

and 0.618 ± 0.030 in the T1 affected regions. 

 

Conversely, in the T1 lesion-free brain, these parameters 

measured respectively: 0.285 ± 0.022 and 0.612 ± 0.029 (see 

Table 4). 

 

Table 4 

 

WHOLE 

BRAIN 

ODI 
T1-lesioned 0.291 ± 0.031 

] p=0.675 T1-lesion-free 0.285 ± 0.022 

ND 
T1-lesioned 0.618 ± 0.030 

] p=0.014 T1-lesion-free 0.612 ± 0.029 

 

Summary table displaying results of Orientation Dispersion Index (ODI) and 

Neurite Density (ND) mean values (± standard deviation) in “T1-affected” 

versus “T1-spared” brain areas, calculated on the whole brain. 

On the right, significance of the (lesion load, disease duration, age 

corrected) general linear model test for each couple of values. 
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No significant difference was found in ODI parameter between T1-

lesioned areas and T1-lesion-free areas. 

 

Instead, a significant difference exists when comparing the mean 

ND parameters of the same regions (p=0.014). 

 

 

 

6.2. Experiment B 

 

Via a voxelwise approach: 

 

METHODS 

 

We generated a single large 4-dimensional matrix containing for 

each voxel two essential information: 1- the lesion probability 

value in that voxel position for our SM patient’s sample 

(LesionT1Map, LesionT2Map, LesionNonT1Map and 

NormalWhiteMatterMap), and 2 - the value of the noddi 

parameter in the corresponding voxel in the healthy subject’s 

noddi parameter maps. The purpose of this action should have 

been to evaluate the correlation between the mean noddi value 

and the probability of lesion for each area of the brain. 

 

RESULTS 

 

Unfortunately, the size of the matrix thus obtained was too 

massive to handle due to some of our actual hardware-software 

limitations: this road looks promising although challenging but 

we hope to be able to overcome this issue in the next future.  
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7 .  Research - Step 4 
“Correlations Between NODDI Microstructural 

Properties and Lesion Distance from the CSF” 

 

 

7.1. Methods 

 

We evaluated at which “deepness” (i.e.: distance from the CSF-

brain interface) the effects of the NODDI “a priori” known 

microstructural tissue properties (as offered by the previously 

computed normal tissue mean NODDI parameter maps) have the 

strongest effect on the probability of T2-to-T1 lesion evolution.  

 

To do this, we divided the brain maps into three “deepness” 

layers, each measuring an equivalent thickness, namely, from 

deep to superficial (Figure 7): “periventricular WM” (shown in 

blue in the “B” image), “deep WM” (in green) and “subpial layer 

(in red); we derived these layers from the 12-layer-map described 

by Pardini M et al, 2016 (“A” in the image). 

 

We coregistered all the layer maps to the normal MNI space[138-

141] and then multiplied the binary lesion maps with each of the 

three layer-selection maps. We subsequently calculated the mean 

and standard deviation ODI and MD parameter for each layer in 

T1-lesioned areas and T1-lesion-free areas. 

 

Finally, we performed a general linear model test, corrected as 

described above, to investigate differences between NODDI 

parameter mean values at each level. 
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Figure 7 

 

 
 

A (left side) - depicts the 12-layer-white-matter-deepness map described by 

Pardini M et al, 2016 

B (right side) - displays the simplified three-layer-white-matter-deepness 

map that we derived from the one on side A; color code of the layers: 

- BLUE: “periventricular WM”, 

- GREEN: “deep WM”, 

- RED: “subpial layer. 
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7.2. Results 

 

Here (Table 5) we show descriptive statistics for each parameter, 

as described in this methods section; on the right we show the 

general linear model correlations between the results in the T1-

affected and T1-not-affected regions of interest. In our sample of 

patients, we found significant correlation (p=0.004) only in the 

deep WM layer, when comparing the neurite density values of the 

T1 affected with the T1 normally appearing regions of interest. 

A close-to-significant p-value was found for orientation dispersion 

values in the subpial layer. 

 
Table 5 
 

 

Summary table displaying results of Orientation Dispersion Index (ODI) and 

Neurite Density (ND) mean values (± standard deviation) in “T1-affected” 

versus “T1-spared” brain areas, calculated at three different deepness levels 

of the white matter (See Figure 7). 

On the right, significance of the (lesion load, disease duration, age 

corrected) general linear model test for each couple of values. 

PERI 

VENTRICULAR 

WHITE 

MATTER 

ODI 
T1-lesioned 0.285 ± 0.040 

] p=0.855 T1-lesion-free 0.278 ± 0.027 

ND 
T1-lesioned 0.604 ± 0.037 

] p=0.561 T1-lesion-free 0.609 ± 0.034 

DEEP 

WHITE 

MATTER 

ODI 
T1-lesioned 0.264 ± 0.034 

] p=0.501 T1-lesion-free 0.265 ± 0.021 

ND 
T1-lesioned 0.649 ± 0.034 

] p=0.004 T1-lesion-free 0.629 ± 0.033 

SUBPIAL 

LAYER 

ODI 
T1-lesioned 0.320 ± 0.067 

] p=0.053 T1-lesion-free 0.329 ± 0.036 

ND 
T1-lesioned 0.600 ± 0.123 

] p=0.153 T1-lesion-free 0.596 ± 0.050 
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8 .  Research - Step 5 
“T1 Lesion Load Distance From CSF, 

Comparatively To The T1-Non-Affected Tissue” 

 

 

8.1. Methods 

 

We checked if, in our sample of patients, the mean distance of T1 

lesions from ventricular CSF was significantly different from the 

mean distance of the rest of the non-T1 affected parenchyma. To 

assess the mean distance from CSF of the T1 lesional load for each 

patient we used the layered distance map (as described by Pardini 

M et al, 2016), each layer’s region being valued with integer 

numbers from 1 to 12 (reflecting the voxel distance from the 

periventricular deep zone to the subcortical WM, with zero value 

for the intraventricular CSF and 13 value for the cortical GM); we 

coregistered the 12-white-matter-layer map to the normal MNI 

space[138-141] and then multiplied the binary T1 lesion maps 

with the layer map and averaged the corresponding values on the 

layer map to obtain a mean distance value for the distribution of 

the T1 affected tissue. We performed the same process for the 

T1-normally-appearing WM. 

 

We then performed a paired samples T-test to check for 

differences between the mean distances from ventricles of the 

T1-affected and T1-normal tissue. 

Finally, we performed an age-at-mri corrected general linear 

model test to search for differences between the mean distances 

from ventricles of the T1-affected and T1-normal tissue. 
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8.2. Results 

 

Here (Table 6) we present the average distances (and their 

standard deviation) from ventricles of the T1-affected and T1-

normal tissue (on a 1-to-12 based scale). On the right, we 

reported the correlation p value for the paired sample T-test* 

and for the age corrected general linear model** performed as 

described in the methods section. 

 

While a significant difference (p=0.017) was found, between the 

distance of the T1-affected and the T1-normally appearing WM, 

in our sample of patients, with the paired sample T-test*, this 

significance did not survive when testing with age-corrected 

general linear model**. 

 

 

Table 6 

 

 

 

Results of the average values (± standard deviation) of distance -in 

“twelfths”- from the ventricular surface of the “T1-affected” versus the 

“T1-spared” WM tissue. On the right we showed the significance of their 

comparison by means of paired sample T-test* and the loss of statistical 

significance if tested by age-corrected general linear model test**. 

   

  

DISTANCE 

FROM 

VENTRICLES 

T1-lesioned 5.371 / 12   ±   1.144 / 12 

] p=0.017* and p=0.585** 
T1-lesion-free 5.135 / 12   ±   0.824 / 12 
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9  . Discussion 
 

 

 

We noticed that the amount of orientation dispersion of the 

axons in a brain region, as estimated by the NODDI mathematical 

model, does not seem to influence the probability of 

development of a T1-visible WM lesion (also known as “black 

hole”), when considering the whole brain, in our sample of 

multiple sclerosis patients. Conversely, the amount of neurite 

density seems to have an impact on the multiple sclerosis lesion 

evolution to black hole.  

 

A higher coherence and compactness of structure in the myelin-

rich WM areas could constitute a facilitating factor for the auto-

inflammatory immune process against myelin antigens. 

It is interesting to see that this effect, which appears significant 

when considered the whole brain, looks to be particularly 

prominent in the “deep WM layer”, which is the furthest-from-

CSF part of WM. 

 

We also noted that in the subpial layer, the closest to superficial 

CSF, orientation dispersion index assumes a close-to-significant 

role in the lesion-to-black-hole degeneration process, possibly 

underlying a different interaction between inflammatory factors 

and tissue structure, at different WM deepness levels. 

 

Further magnetic resonance imaging studies and ex vivo 

histological investigations could better explore the mechanisms of 

interaction between the distance from CSF and the microstructure 

of WM. 
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In perspective, it will be interesting to verify whether the “black 

hole lesions” show differences in size, number, characteristics 

relatively to their distance from CSF (i.e. the brain inner and outer 

surface). 

 

Another pending project is to assess the volumetric proportion of 

T1-lesioned tissue versus T1-spared tissue, relatively to each WM 

deepness level. 

 

Furthermore, the rescan of the previously cross-sectionally 

studied population is in progress, such as the repetition of the 

lesion FLAIR and T1 segmentation. The study of the NODDI 

properties of the regions affected by progression of the FLAIR 

lesion to T1 black hole could confirm if there is a microstructural 

predicting factor which could facilitate the process of lesion 

degeneration. 

 

Finally, the NODDI parametric WM normal microstructural atlas 

maps could be employed to assess the mechanisms of WM injury 

in other demyelinating processes and in other diseases where the 

WM is prominently affected. 
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imaging DSI = Diffusion spectrum imaging NODDI = Neurite orientation 
dispersion and density imaging QTI = q-space trajectory imaging.[6] 
 
Figure 2 - NODDI (Neurite orientation dispersion and density imaging) is 
based on a three-compartment model, an intracellular compartment (with 
restricted diffusion), an extracellular one (with hindered diffusion) and a CSF 
compartment (with free diffusion): the model allows the elaboration of 
parameter maps, known as neurite density (ND) map, orientation dispersion 
index (ODI) map, isotropic volume fraction (ISO) map.[8] 
 
Figure 3 - Extract from a BASH script expressively written for this project 
and actually used in it, including FSL commands, to review and validate the 
processed images. 
 
Figure 4 - Parametric maps obtained from NODDI modelling, from left to 
right: the axonal mean orientation, the neurite density (ficvf), the free-water 
isotropic fraction (fiso) and the orientation dispersion index (ODI). 
 
Figure 5 - The MRI scan protocol employed in the University of Genova 
Sys4MS study, including: Resting State Functional MRI, 60-directional single-
shell DTI, 3D FLAIR-weighted imaging, pre- and post-contrastographic 3D 
T1-weighted imaging, 3D T2-weighted imaging. 
 
Figure 6 - Semi-automatic neuroradiologist-revised lesion segmentation of 
the 3-mm axially reformatted 3D-FLAIR (on the left of the image) and 3D-T1 
(on the right) images of one of the patients’ brain. 
 
Figure 7 - A (left side) - depicts the 12-layer-white-matter-deepness map 
described by Pardini M et al, 2016 B (right side) - displays the simplified 
three-layer-white-matter-deepness map that we derived from the one on 
side A; color code of the layers: - BLUE: “periventricular WM”, - GREEN: 
“deep WM”, - RED: “subpial layer. 
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France from 25 - 28 October 2017 
 
 
Contrasting variability patterns in the default mode and sensorimotor networks 
balance in bipolar depression and mania. 
Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, Rocchi G, Escelsior 
A, Marozzi V, Wolff A, Inglese M, Amore M, Northoff G. 
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4824-9. doi: 10.1073/pnas.1517558113. 
Epub 2016 Apr 11.PMID: 27071087 
 
 
Patterns of microstructural white matter abnormalities and their impact on cognitive 
dysfunction in the various phases of type I bipolar disorder. 
Magioncalda P, Martino M, Conio B, Piaggio N, Teodorescu R, Escelsior A, Marozzi V, 
Rocchi G, Roccatagliata L, Northoff G, Inglese M, Amore M. 
J Affect Disord. 2016 Mar 15;193:39-50. doi: 10.1016/j.jad.2015.12.050. Epub 2015 Dec 
30. PMID: 26766032 
 
 
Functional connectivity and neuronal variability of resting state activity in bipolar 
disorder-reduction and decoupling in anterior cortical midline structures. 
Magioncalda P, Martino M, Conio B, Escelsior A, Piaggio N, Presta A, Marozzi V, Rocchi 
G, Anastasio L, Vassallo L, Ferri F, Roccatagliata L, Pardini M, Northoff G, Amore M. 
Hum Brain Mapp. 2015 Feb;36(2):666-82. doi: 10.1002/hbm.22655. Epub 2014 Oct 12. 
PMID: 25307723 
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Abnormal functional-structural cingulum connectivity in mania: combined functional 
magnetic resonance imaging-diffusion tensor imaging investigation in different phases 
of bipolar disorder.  
Martino M, Magioncalda P, Saiote C, Conio B, Escelsior A, Rocchi G, Piaggio N, Marozzi V, 
Huang Z, Ferri F, Amore M, Inglese M, Northoff G. 
Acta Psychiatr Scand. 2016 Jun 7. doi: 10.1111/acps.12596. [Epub ahead of print] PMID: 
27273612 

 

 

 

 

Other academic activities during the PhD Course 

 

 
- Was speaker for 4 hours in a ECM course targeted to medical doctors, 

physiotherapists, and other rehabilitation professionals, titled:  „Ricerca 

nella Sclerosi Multipla: Le Tecnologie al Servizio della Riabilitazione“, 2 and 

3 december 2017 

  

 

- Was the supervisor of 3 medical students for the preparation of their 

thesis, titled : 

 

« Atrofia Cerebrale in Sclerosi Multipla. Confronto del parametro di 

NeuroRM Brain Parenchymal Fraction in sequenze 3D-FSPGR e 3D-

FLAIR, con procedura totalmente automatizzata », july 2017. 

  

« Area Spinale Cervicale a livello del Forame Magno e Disabilità 

nella Sclerosi Laterale Amiotrofica: uno Studio Pilota », july 2017. 

 

« Ottimizzazione del processo di calcolo del carico lesionale in 

Sclerosi Multipla: confronto tra segmentazione manuale e alcuni 

algoritmi automatizzati sia con sequenze di risonanza magnetica 

3D FLAIR, che con tecnica FLAIR2 », march 2018. 

http://www.ncbi.nlm.nih.gov/pubmed/27273612
http://www.ncbi.nlm.nih.gov/pubmed/27273612
http://www.ncbi.nlm.nih.gov/pubmed/27273612
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