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Abstract

In [3], Antoine and Vandergheynst propose a group-theoretic approach to continuous

wavelet frames on the sphere. The frame is constructed from a single so-called admissi-

ble function by applying the unitary operators associated to a representation of the Lorentz

group, which is square-integrable modulo the nilpotent factor of the Iwasawa decomposition.

We prove necessary and sufficient conditions for functions on the sphere, which ensure that

the corresponding system is a frame. We strengthen a similar result in [3] by providing a

complete and detailed proof.

1. Introduction

In the recent twenty years, continuous and discrete wavelet frames on the sphere were examined

with different approaches and in particular with various techniques for imitating a dilation on

the sphere. The methods range from extending the discrete wavelet scheme based on multireso-

lution to spheres [6, 14], to Fourier analytic ones with appropriately weighted sums of spherical

harmonics [11, 23, 24, 21], lifted spherical wavelets [26], and constructions on tangent bundles

of the sphere [7]. Further, a spherical wavelet transform based on an integral transform with a

singular kernel was proposed in [17]. For more recent papers following the approximate identi-

ties idea, resp. using singular integrals, we refer to [4, 5, 18]. In connection with coorbit spaces
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spherical wavelets were considered in [8]. Various applications of spherical wavelet frames can

be found, e.g., in [12, 22, 25].

In [3] Antoine and Vandergheynst proposed a group-theoretic approach that generalizes that

of Grossmann et al. [15, 16] from locally compact groups to the homogeneous space given by

a quotient of the Lorentz group. For the 2-sphere, the construction and analysis of continuous

wavelet frames was outlined in [3] and for general n-spheres in [2]. In this paper, we exclusively

focus on this construction and our aim consists in adding missing information to the analysis

in [3], which in our opinion appears to be important and non-trivial. We will clearly indicate

the differences and additions we made by corresponding remarks. In particular, it appears that

finding an admissible function such that the corresponding function system indeed has upper

and lower frame bounds is quite involved. We consider these results as the main contribution of

our paper.

The outline of this paper is as follows. In Section 2, we set the stage by giving the formal

group-theoretic definition of wavelets on the sphere. Our main result is stated in Section 3.

Section 4 contains a proof of general necessary and sufficient conditions for a function to be

admissible. These conditions rely on a sequence of numbers that has to be bounded from above

in order to get an upper frame bound and uniformly bounded from below away from zero to

have a lower frame bound. While it is not hard to deduce these general sequence conditions, and

indeed they were already provided in [3], the main work consists in finding functions which fulfill

these conditions. This is the content of the subsequent sections. In Section 5, we derive necessary

and sufficient conditions on functions such that an upper frame bound for the corresponding

continuous frame can be ensured. To this end, we explore the asymptotic behavior of zonal

projections. In Section 6, we adopt the nice intuition of Antoine and Vandergheynst to switch

to stereographic projections. We show that the derived conditions on the admissible function

can be rewritten as moment conditions on the isometrically transferred admissible function to

the plane. Finally, the lower frame bound is treated in Section 7. As known from frame theory,

conditions for lower frame bounds are typically more complicated than the Bessel condition,

which is also the case for our setting.

2. Preliminaries

In this section, we first provide the basic notation on square integrable group representations

and continuous wavelet frames in general and subsequently specify it to our spherical setting.

For more information, we refer to [1, 13].

2.1. Continuous wavelet frames on homogeneous spaces

Let H be a Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉 12 , and fix a locally

compact space X equipped with a Radon-measure ν. A family {ηx}x∈X ⊂ H is called a con-
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tinuous frame, if for every φ ∈ H the map x 7→ 〈φ, ηx〉 is measurable and there exist constants

0 < c ≤ C <∞ such that

c‖φ‖2 ≤
∫

X
|〈φ, ηx〉|2 dν(x) ≤ C‖φ‖2 (1)

for all φ ∈ H. For a continuous frame {ηx}x∈X , the corresponding frame operator A is given in

its weak formulation by

〈Aφ,ψ〉 =
∫

X
〈φ, ηx〉〈ηx, ψ〉 dν(x), φ, ψ ∈ H ,

and condition (1) is equivalent to the fact that the frame operator A is bounded and boundedly

invertible.

The prototype of a continuous frame is given by a square-integrable representation of a locally

compact group G with left Haar measure µ. Let U be a continuous unitary representation of

G in H, i.e. U is a mapping from G into the space U(H) of unitary operators on H fulfilling

U(gg′) = U(g)U(g′) for all g, g′ ∈ G, and the function g 7→ 〈φ,U(g)ψ〉 must be continuous for

every φ,ψ ∈ H. In what follows, we will only consider continuous representations and omit the

word ’continuous’ in this context. An irreducible representation is called square integrable, if

there exists a vector η ∈ H \ {0} such that
∫

G

∣∣〈η, U(g)η〉
∣∣2 dµ(g) <∞. (2)

In this case, the vector η is called admissible. With the choice ν = µ, general results from

representation theory [9] guarantee that the family {U(g)η}g∈G is a continuous frame, and the

corresponding frame operator Aη with

〈Aηφ,ψ〉 =
∫

G
〈φ,U(g)η〉〈U(g)η, ψ〉 dµ(g), φ, ψ ∈ H,

is in fact a multiple of the identity.

In this paper, we are concerned with a homogeneous space X = G/N , where N is a closed

subgroup of G instead of the whole group. We fix on X a strongly quasi-invariant measure ν,

see (4) and [10] for the general theory. Since in general a representation is not directly defined

on X, we need to introduce a (measurable) section σ : X → G, i.e. a map which for each x ∈ X
assigns an element σ(x) ∈ G such that σ(x) belongs to the coset x. We then call a representation

U of G in H square-integrable modulo (N,σ), if there exists a vector η ∈ H\{0} such that the

family {U(σ(x))η}x∈X is a continuous frame, i.e. such that the operator Aη weakly defined via

〈Aηφ,ψ〉 =
∫

X
〈φ,U (σ(x)) η〉〈U (σ(x)) η, ψ〉 dν(x) , φ, ψ ∈ H,

is bounded and boundedly invertible. We call the corresponding vector η ∈ H\{0} admissible.

Notice that the definition of admissibility is often given in a different way in the literature, as

pointed out in the following remark.
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Remark 2.1. We observe that in [3] and in [8] a vector η ∈ H\{0} is called admissible if
∫

X

∣∣〈φ,U(σ(x))η〉
∣∣2 dν(x) <∞ (3)

for all φ ∈ H. If X = G and the representation U is irreducible, then the upper and lower

bounds follow from (2). However, if X = G/N with N non-trivial, (2) does not imply (3),

which in general is not sufficient to ensure the lower bound, see [13] for a complete discussion.

2.2. Group theoretic aspects

We briefly recall the group theoretical construction, introduced in [3], of wavelets on the two

dimensional sphere

S
2 := {ω ∈ R

3 : ωTω = 1} = {(sin θ cosϕ, sin θ sinϕ, cos θ)T : ϕ ∈ [0, 2π), θ ∈ [0, π]}.

There is no harm in regarding ω and (θ, ϕ) both as points on the sphere and as points in R
3

and we shall do so. We equip S
2 with the Riemannian surface element dΣ(ω) = sin θdθdϕ. The

Hilbert space H we are interested in is L2(S
2) = L2(S

2,Σ) and we denote the inner product by

〈·, ·〉 and the norm by ‖ · ‖ = 〈·, ·〉 12 .
The group G = SO(3, 1)0 is the connected component of the identity of the Lorentz group

O(3, 1) = {g ∈ R
4,4 : gTI3,1g = I3,1},

where I3,1 = diag(1, 1, 1,−1). Its Iwasawa decomposition reads as

SO(3, 1)0 = KAN,

where K is the maximal compact subgroup of rotations

K =

{[
γ 0

0 1

]
: γ ∈ SO(3)

}
∼ SO(3) = {γ ∈ R

3,3 : γTγ = I3,det γ = 1},

the factor A is the Abelian subgroup of dilations,

A =








I2 0 0

0 a+a−1

2
a−a−1

2

0 a−a−1

2
a+a−1

2


 : a ∈ R

+
∗




∼ R

+
∗ ,

and N is the nilpotent (in fact Abelian) subgroup of translations

N =








I2 −b b

bT 1− |b|2
2

|b|2
2

bT − |b|2
2 1 + |b|2

2


 : b ∈ R

2




∼ R

2.

From now on, we identify K, A and N with SO(3), R
+
∗ and R

2, respectively. The minimal

parabolic subgroup of SO(3, 1)0 is

P =MAN,
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where M is the centralizer of A in K, namely

M =

{[
u 0

0 I2

]
: u ∈ SO(2)

}
∼ SO(2) = {u ∈ R

2,2 : uTu = I2,det u = 1}.

Since

SO(3, 1)0/P = KAN/MAN ∼ K/M = SO(3)/SO(2) ∼ S
2,

the group SO(3, 1)0 acts transitively on S
2 and we denote the corresponding action by

SO(3, 1)0 × S
2 ∋ (g, ω) 7→ gω ∈ S

2.

In particular, for all rotations γ ∈ SO(3), we have

γω = γ.ω,

where γ.ω denotes the action of the matrix γ on the vector ω, and for all dilations a ∈ R
+
∗ ,

aω = (θa, ϕ) =: ωa, tan(12θa) = a tan(12θ).

The measure dΣ is quasi-invariant with respect to the action of SO(3, 1)0. This means for all

g ∈ SO(3, 1) that ∫

S2

f(gω) dΣ(ω) =

∫

S2

κ(g, ω)f(ω) dΣ(ω), (4)

where f : S2 → C is such that one of the two sides, hence both, is finite, and κ is a function

that enjoys the cocycle property

κ(g1g2, ω) = κ(g1, ω)κ(g2, g
−1
1 ω), g1, g2 ∈ SO(3, 1), ω ∈ S

2.

In particular, for all rotations γ ∈ SO(3),

κ(γ, ω) = 1, ω ∈ S
2,

and for all dilations a ∈ R
+
∗ ,

κ(a, ω) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
, ω = (θ, ϕ) ∈ S

2.

As a particular instance of the theory of parabolic induction [19], there is a natural irreducible

unitary representation of SO(3, 1)0 acting on L2(S
2) as

[
U(g)f

]
(ω) = κ(g, ω)1/2f(g−1ω), g ∈ SO(3, 1), f ∈ L2(S

2). (5)

The above representation is not square integrable. However, as first stated in [3], it is square-

integrable modulo (N,σ), where the homogeneous space is

X := SO(3, 1)0/N ∼ SO(3) × R
+
∗ ,
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and the section σ : X → SO(3, 1)0 is

σ(γ, a) = γa, γ ∈ SO(3), a ∈ A .

Note that X admits an SO(3, 1)-invariant measure ν given by

dν(γ, a) =
dµ(γ) da

a3
,

where µ is the Haar measure of SO(3) normalized in such a way that µ(SO(3)) = 8π2 and da is

the Lebesgue measure on the real line.

As shown in [3, Prop. 3.2], the representation (5) on the homogeneous space X factorizes as

U(σ(γ, a)) = λ(γ)Da,

where λ is the quasi-regular representation of SO(3) acting on L2(S
2) given for γ ∈ SO(3) by

[
λ(γ)f

]
(ω) = f(γ−1ω), ω ∈ S

2, f ∈ L2(S
2), (6)

and a 7→ Da is the unitary representation of R+
∗ acting on L2(S

2) via dilation operators, namely,

for any a ∈ R
+
∗ ,

(Daf)(ω) := κ(a, θ)1/2f(ω1/a), ω ∈ S
2, f ∈ L2(S

2).

In [3] the continuous wavelets on the sphere S
2 are defined as the family

{U(σ(x))η}x∈SO(3)×R
+
∗

,

where η ∈ L2(S2) is a suitable function. Theorem 3.1 below provides necessary and sufficient

conditions on the vector η such that {U(σ(x))η}x∈SO(3)×R
+
∗

is a continuous frame, i.e. it sat-

isfies (1). We refer to [3] for a geometrical interpretation of U(σ(x)) in terms of stereographic

projections.

The above result was first stated in [3] with a sketch of the proof. In Section 4, we provide

a complete proof, filling in details that are missing in [3]. To this end, we denote the spherical

harmonics by

Y m
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ, |m| ≤ ℓ, ℓ ∈ N0,

where Pm
ℓ denote the associated Legendre polynomials. We recall that {Y m

ℓ }ℓ∈N0,|m|≤ℓ form

an orthonormal basis of L2(S
2) and that for each ℓ ∈ N0 the orthogonal projection onto the

spherical zone

Yℓ = span{Y m
ℓ : |m| ≤ ℓ}

is given by

Πℓf(ω) =
∑

|m|≤ℓ

〈f, Y m
ℓ 〉Y m

ℓ (ω) = (2ℓ+ 1)

∫

S2

Pℓ(ω · ω′)f(ω′)dΣ(ω′), ω ∈ S
2, (7)

where Pℓ = P 0
ℓ is the Legendre polynomials of degree ℓ ∈ N0. Note that each Yℓ is an invariant

subspace of dimension 2ℓ+ 1 for the representation λ of SO(3), and that the restriction of λ to

Yℓ is irreducible.
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3. Main result

The main results of this paper are the following necessary and sufficient conditions on a function

η ∈ L2(S
2) to be admissible.

Theorem 3.1 (Main Result). Fix η ∈ L2(S
2) such that

∫

S2

|η(θ, ϕ)| 1

1 + cos θ
dΣ(ω) < +∞ , (8)

∫

S2

|η(θ, ϕ)| tan
2(θ2)

1 + cos θ
dΣ(ω) < +∞ , (9)

ess sup
(θ,ϕ)∈S2

(
|η(θ, ϕ)|1 + tan2(θ2)

1− cos θ

)
< +∞. (10)

Then there is a constant B > 0 such that

∫

X

∣∣〈φ,U(σ(x))η
〉∣∣2 dν(x) ≤ B‖φ‖2

for all φ ∈ L2(S2) if and only if

∫

S2

η(θ, ϕ)
1

1 + cos θ
dΣ(θ, φ) = 0 . (11)

Under this condition, the frame operator Aη : L2(S
2)→ L2(S

2) defined by

〈Aηφ,ψ〉 =
∫

X

〈
φ,U(σ(x))η

〉
〈U(σ(x))η, ψ〉 dν(x) (12)

is bounded, and it is boundedly invertible if and only if the function

θ 7→
∫ 2π

0
η(θ, ϕ) dϕ 6= 0 . (13)

The proof of the theorem is given in the rest of the paper, but we first add a few comments

and some notation. For η ∈ L2(S
2), set

η[1](θ, ϕ) :=
η(θ, ϕ)

1 + cos θ
, (θ, ϕ) ∈ S

2, (14)

η[2](θ, ϕ) := η[1](θ, ϕ) tan2(θ2 ), (θ, ϕ) ∈ S
2, (15)

η̃(θ) :=
1

2π

∫ 2π

0
η(θ, ϕ) dϕ, θ ∈ [0, π] . (16)

Conditions (8) and (9) state that η[1] and η[2] are integrable functions, respectively, and (13)

means that η̃ 6= 0. It is clear that if η is an axisymmetric function, i.e., η is independent of

the longitude ϕ, then η̃ = η and (13) simply states that η is a non-zero vector. Under these

assumptions, if η is a continuous function with support contained in (0, π), conditions (8), (9)

and (10) hold true. The following result shows that there is a rather natural construction for

functions η fulfilling the vanishing mean condition (11).
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Lemma 3.2. For every ζ ∈ L2(S
2) and α > 0, we have

∫

S2

ζ(θ, ϕ)

1 + cos θ
dΣ(ω) =

1

α

∫

S2

Dαζ(θ, ϕ)

1 + cos θ
dΣ(ω).

As a consequence, the function η = ζ − α−1Dαζ fulfills the cancellation condition (11).

The proof of the lemma is given at the end of Section 7.

4. General necessary and sufficient admissibility condition

The following theorem gives a necessary and sufficient condition for the frame operator associated

to {U(σ(x))η}x∈X to be bounded and boundedly invertible. The relation to [3, Theorem 3.3] is

explained in a subsequent remark. We set:

ηa := Daη .

Theorem 4.1. Take η ∈ L2(S
2) and set

Gℓ :=
1

2ℓ+ 1

∫ ∞

0
〈Πℓηa, ηa〉

da

a3
=

1

2ℓ+ 1

∫ ∞

0
‖Πℓηa‖2

da

a3
, ℓ ∈ N0. (17)

Then the following conditions are equivalent:

i) There exists a constant Cη > 0 such that for every φ ∈ L2(S
2),

∫

X

∣∣〈φ,U(σ(x))η
〉∣∣2 dν(x) ≤ Cη‖φ‖2. (18)

ii) The sequence (Gℓ)ℓ∈N0
is bounded.

If one of the above two conditions holds true, then the best constant Cη is given by

Cη = 8π2 sup
ℓ∈N0

Gℓ,

and the operator Aη : L2(S
2)→ L2(S

2) defined by (12) fulfills

〈Aηφ,ψ〉 = 8π2
∑

ℓ∈N0

Gℓ〈Πℓφ,ψ〉, (19)

for all φ,ψ ∈ L2(S
2). Furthermore, Aη is boundedly invertible if and only if the sequence (Gℓ)ℓ∈N0

is bounded from below by a strictly positive constant. In this case, we have

‖A−1
η ‖ =

(
inf
ℓ∈N0

Gℓ

)−1
.

As a consequence, η is an admissible vector if and only if there exist constants 0 < cη ≤ Cη such

that for all ℓ ∈ N0,

cη ≤ Gℓ ≤ Cη .
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Proof. Standard arguments show that condition i) is equivalent to assuming the existence of

a dense subset D ⊆ L2(S
2) such that (18) holds true for any φ ∈ D [13]. For the sake of

completeness, we outline the proof. Define the voice transform Vη : dom(Vη) ⊆ L2(S
2) →

L2(X, ν) by

Vηφ(x) := 〈φ,U(σ(x))η〉, for a.e. x ∈ X ,

where

dom(Vη) := {φ ∈ L2(S
2) | 〈φ,U(σ(·))η〉 ∈ L2(X, ν)}.

Since dom(Vη) is a vector space containing D, we see that Vη is a densely defined operator. A

direct computation shows that Vη is closed. Thus, the closed graph theorem together with the

fact that (18) holds true for all φ ∈ D implies that domVη = L2(S
2) and Vη is a bounded

operator, so that (18) holds true for every φ ∈ L2(S
2). Furthermore, it is straightforward to

check that Aη = V ∗
η Vη is given by (12), so that Aη is a positive bounded operator by construction.

Hence, it is sufficient to show that condition ii) is equivalent to the existence of a dense subset

D ⊆ L2(S
2) such that (18) holds true for every φ ∈ D. To this purpose, we define

D :=

{
L∑

ℓ=0

φℓ

∣∣∣ L ∈ N0, φℓ ∈ Yℓ

}
,

which is a dense subspace of L2(S
2). Fixing φ ∈ D, so that φ =

∑L
ℓ=0 Πℓφ, we obtain

∫

SO(3)

∣∣〈φ, λ(γ)Daη
〉∣∣2 dµ(γ) =

L∑

ℓ,ℓ′=0

∫

SO(3)

〈
Πℓφ, λ(γ)Daη

〉〈
Πℓ′φ, λ(γ)Daη

〉
dµ(γ)

=

L∑

ℓ,ℓ′=0

∫

SO(3)

〈
Πℓφ, λℓ(γ)Πℓηa

〉〈
Πℓ′φ, λℓ′(γ)Πℓ′ηa

〉
dµ(γ)

=

L∑

ℓ=0

8π2

2ℓ+ 1

∥∥Πℓφ
∥∥2 ∥∥Πℓηa

∥∥2 ,

where λℓ is the restriction of the representation λ to the λ-invariant subspace Yℓ = ΠℓL2(S
2),

and that last equality holds true since (λℓ)ℓ∈N0
is a family of irreducible non equivalent repre-

sentations of the compact group SO(3) and the Schur orthogonality relations give

∫

SO(3)

〈
φ, λℓ(γ)ψ

〉 〈
φ′, λℓ′(γ)ψ′〉 dµ(γ) =





µ(SO(3))
dim(Yℓ)

〈φ, φ′〉〈ψ′, ψ〉 ℓ = ℓ′,

0 ℓ 6= ℓ′

for all φ,ψ ∈ Yℓ, φ′, ψ′ ∈ Yℓ′ . Hence, by (6) and definition of ν, we have

∫

X

∣∣〈φ,U(σ(x))η
〉∣∣2 dν(x) =

∫ ∞

0

(∫

SO(3)

∣∣〈φ, λ(γ)Daη
〉∣∣2 dµ(γ)

)
da

a3
,

=

L∑

ℓ=0

8π2

2ℓ+ 1

∥∥Πℓφ
∥∥2
∫ ∞

0

∥∥Πℓηa
∥∥2 da

a3
(20)

= 8π2
L∑

ℓ=0

Gℓ

∥∥Πℓφ
∥∥2,
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where in view of Fubini’s theorem the left-hand side is finite if and only if each Gℓ in the sum

is finite. Furthermore, we get

sup
φ∈D,‖φ‖=1

∫

X

∣∣〈φ,U(σ(x))η
〉∣∣2 dν(x) = sup

L∈N0

sup
φ∈⊕L

ℓ=0
Yℓ

‖φ‖=1

8π2
L∑

ℓ=0

Gℓ

∥∥Πℓφ
∥∥2

= 8π2 sup
L∈N0

sup
ℓ≤L

Gℓ = 8π2 sup
ℓ∈N0

Gℓ.

The above equality shows that (18) holds true for all φ ∈ D if and only if the sequence (Gℓ)ℓ∈N0

is bounded and, in such a case, the best constant is given by 8π2 supℓ∈N0
Gℓ.

It remains to show the representation (19). Since Aη is a positive bounded operator, it is

enough to show (19) for φ = ψ ∈ D. With this choice it follows

〈Aηφ, φ〉 = ‖Vηφ‖2 =
∫

X

∣∣〈φ,U(σ(x))η
〉∣∣2 dν(x) = 8π2

L∑

ℓ=0

Gℓ

∥∥Πℓφ
∥∥2 .

The above equation makes it clear that Aη is boundedly invertible if and only if the sequence

(Gℓ)ℓ∈N0
is bounded from below by a positive constant. The last claim characterizing the

admissible vectors is now clear.

The identity (19) states that Aη commutes with the left-regular representation λ of SO(3),

which can be proven directly using (12). Moreover, it immediately becomes clear that the

boundedness of (Gℓ)ℓ∈N0
is indeed necessary and sufficient for the boundedness of Aη.

Remark 4.2 (Relation to [3, Theorem 3.3]). Using our notation, Theorem 3.3 in [3] claims

that there exists a function η such that (Gℓ)ℓ is bounded. Indeed the authors prove essentially

the relations given in our Theorem 4.1 and mention at the end of their proof that there are

clearly many functions η that satisfy this condition and that all these functions form a dense set

in L2(S
2). However, it took us the entire next section to show that such functions indeed exist,

though our conditions don’t describe a dense subset of L2(S
2).

Moreover, since we do not see immediately how to verify the integration/summation change

in (20) for an infinite sum over ℓ and since the finiteness of the whole expression is not ensured,

we circumvented this difficulty arguing with the dense subset D of L2(S
2).

The identity (19) does not only demonstrate that boundedness of the sequence (Gℓ)ℓ∈N0
is

equivalent to boundedness of the operator Aη , but it also reveals the criterion for its bounded

invertibility. In the rest of this paper, we investigate under which conditions on η this holds

true.

5. Upper frame bound

In this section, we deduce the first part of Theorem 3.1. First we derive necessary and sufficient

conditions on η such that each Gℓ, ℓ ∈ N0 is finite. Then we deduce conditions on η such that
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the whole sequence (Gℓ)ℓ∈N0
is bounded from above. By definition (17) of Gℓ, we will need

asymptotic estimates for the zonal projections ‖Πℓηa‖2 as a→ 0.

The next proposition gives a necessary cancellation condition on η such that the numbers Gℓ,

ℓ ∈ N0 are finite. It is directly related to [3, Prop. 3.6], where the authors deduced that the

boundedness of (Gℓ)ℓ∈N0
implies the cancellation property. Indeed, just one Gℓ, ℓ ∈ N0 must be

finite to require this condition.

Proposition 5.1. Let η ∈ L2(S
2) satisfy (8). Then

lim
a↓0
〈Πℓηa, ηa〉

a2
= 4(2ℓ+ 1)

∣∣∣∣
∫

S2

η(θ, ϕ)
1

1 + cos θ
dΣ(θ, φ)

∣∣∣∣
2

. (21)

If for a fixed ℓ ∈ N0, the number Gℓ defined by (17) is finite, then
∫

S2

η(θ, ϕ)
1

1 + cos θ
dΣ(θ, φ) = 0.

Proof. We first prove (21). Using the integral form (7) of Πℓ, we get

〈Πℓηa, ηa〉
a2(2ℓ+ 1)

=

∫

S2

∫

S2

1

a2
Pℓ(ω · ω′)Daη(ω)Daη(ω′) dΣ(ω) dΣ(ω′)

=

∫

S2

∫

S2

Pℓ(ω · ω′)
κ(a, θ)1/2κ(a, θ′)1/2

a2
η(ω1/a)η(ω

′
1/a) dΣ(ω) dΣ(ω

′)

=

∫

S2

∫

S2

Pℓ(ωa · ω′
a)
κ(a−1, θ)1/2κ(a−1, θ′)1/2

a2
η(ω)η(ω′) dΣ(ω) dΣ(ω′) . (22)

Since

κ(a, θ)1/2a =
2

(1− a−2) cos θ + a−2 + 1
≤ 2

(1 + cos θ)
,

we conclude
κ(a−1, θ)1/2

a
≤ 2

1 + cos θ
. (23)

Recalling further that the Legendre polynomials are uniformly bounded on [−1, 1], i.e.,

‖Pℓ‖L∞([−1,1]) = Pℓ(1) = 1 ,

we obtain with (8) an integrable upper bound for (22). Since θa → 0 as a→ 0 and

ωa · ω′
a = sin θa sin θ

′
a cos(ϕ− ϕ′) + cos θa cos θ

′
a,

we have that lima↓0 ωa · ω′
a = 1. Moreover, we obtain

lim
a↓0

κ(a−1, θ)1/2

a
= lim

a↓0
2a−2

(a−2 − 1) cos θ + (a−2 + 1)
=

2

cos θ + 1
. (24)

Therefore, Lebesgue’s dominated convergence theorem yields

lim
a↓0
〈Πℓηa, ηa〉
a2(2ℓ+ 1)

=

∫

S2

∫

S2

Pℓ(1)η(ω)η(ω′)

(
2

1 + cos θ

)2

dΣ(ω) dΣ(ω′)

=

∣∣∣∣
∫

S2

η(ω)
2

1 + cos θ
dΣ(ω)

∣∣∣∣
2

.
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If the integral defining Gℓ in (17) is finite, then, since the limit exists, we conclude

lim
a↓0
〈Πℓηa, ηa〉

a2
= 0.

By the above result it is clear that (11) is a necessary condition to have a finite upper bound

in the frame, see (18).

Next we will use higher order asymptotics to give sufficient conditions for Gℓ, ℓ ∈ N0 to be

finite and for (Gℓ)ℓ∈N0
to be bounded. We start with an auxiliary relation.

Lemma 5.2. Let η ∈ L2(S
2) satisfy (8) and (9). Then

lim
a↓0

1

a4

(
〈Πℓηa, ηa〉
2ℓ+ 1

− a2
∣∣∣∣
∫

S2

2η(ω)

1 + cos θ
dΣ(ω)

∣∣∣∣
2
)

= 8P ′
ℓ(1)

∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )− 2 tan(θ2 ) tan(
θ′

2 ) cos(ϕ− ϕ′)

(1 + cos θ)(1 + cos θ′)
η(ω)η(ω′) dΣ(ω) dΣ(ω′)

− 4

∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )

(1 + cos θ)(1 + cos θ′)
η(ω)η(ω′) dΣ(ω) dΣ(ω) .

Proof. Using the integral form (7) of Πℓ again, we obtain

1

a4

(
〈Πℓηa, ηa〉
2ℓ+ 1

− a2
∣∣∣∣
∫

S2

2η(ω)

1 + cos θ
dΣ(ω)

∣∣∣∣
2
)

(25)

=

∫

S2

∫

S2

Pℓ(ωa · ω′
a)− 1

a2
· κ(a

−1, θ)1/2κ(a−1, θ′)1/2

a2
η(ω)η(ω′) dΣ(ω) dΣ(ω′)

+

∫

S2

∫

S2

1

a2

(
κ(a−1, θ)1/2κ(a−1, θ′)1/2

a2
− 4

(1 + cos θ)(1 + cos θ′)

)
η(ω)η(ω′) dΣ(ω) dΣ(ω′)

=: I1 + I2.

Now we intend to apply Lebesgue’s dominated convergence theorem to both integrals.

Integral I1: Since Pℓ(1) = 1, there exists a polynomial Qℓ such that

Pℓ(t)− 1 = Qℓ(t)(1− t) , t ∈ [−1, 1] . (26)

Moreover, the Mean Value theorem and the properties of Legendre polynomials yield

‖Qℓ‖L∞([−1,1]) ≤ ‖P ′
ℓ‖L∞([−1,1]) = P ′

ℓ(1) =
ℓ(ℓ+ 1)

2
.

Thus,

I1 =

∫

S2

∫

S2

Qℓ(ωa · ω′
a)
(1− ωa · ω′

a)

a2
κ(a−1, θ)1/2κ(a−1, θ′)1/2

a2
η(ω)η(ω′) dΣ(ω) dΣ(ω′) . (27)

Now we get

0 ≤ 1− ωa · ω′
a = 1−

(
sin θa sin θ

′
a cos(ϕ− ϕ′) + cos θa cos θ

′
a

)

= 1− 4a2 tan(θ/2) tan(θ′/2) cos(ϕ− ϕ′) + (1− tan2(θa/2))(1 − tan2(θ′a/2))
(1 + tan2(θa/2))(1 + tan2(θ′a/2))

= 2a2
tan2(θ/2) + tan2(θ′/2) − 2 tan(θ/2) tan(θ′/2) cos(ϕ− ϕ′)

(1 + tan2(θa/2))(1 + tan2(θ′a/2))
,
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so that we can estimate

0 ≤ 1− ωa · ω′
a ≤ 2a2

(
tan2(θ/2) + tan2(θ′/2) − 2 tan(θ/2) tan(θ′/2) cos(ϕ− ϕ′)

)

≤ 2a2
(
tan(θ/2) + tan(θ′/2)

)2

≤ 4a2
(
tan2(θ/2) + tan2(θ′/2)

)

≤ 4a2
(
1 + tan2(θ/2)

)(
1 + tan2(θ′/2)

)
. (28)

Using also (23) and conditions (8) and (9) we obtain an integrable majorant. Finally, (24)

together with

lim
a↓0

1− ωa · ω′
a

a2
= 2
(
tan2(θ2 ) + tan2(θ

′

2 )− 2 tan(θ2) tan(
θ′

2 ) cos(ϕ− ϕ
′)
)

and

lim
a↓0

Qℓ(ωa · ω′
a) = Qℓ(1) = P ′

ℓ(1),

yield by Lebesgue’s dominated convergence theorem

lim
a↓0

I1 = 8P ′
ℓ(1)

∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )− 2 tan(θ2) tan(
θ′

2 ) cos(ϕ− ϕ′)

(1 + cos θ)(1 + cos θ′)
η(ω)η(ω′) dΣ(ω) dΣ(ω′).

Integral I2: For the second integral I2 we compute

κ(a−1, θ)1/2κ(a−1, θ′)1/2

a2
− 4

(1 + cos θ)(1 + cos θ′)

=
κ(a−1, θ)1/2

a

(
κ(a−1, θ′)1/2

a
− 2

1 + cos θ′

)
+

(
κ(a−1, θ)1/2

a
− 2

1 + cos θ

)
2

1 + cos θ′
. (29)

Then we realize that

2

1 + cos θ
− κ(a−1, θ)1/2

a
=

2

1 + cos θ
− 2a−2

(a−2 − 1) cos θ + (a−2 + 1)

=
2

1 + cos θ
− 2

(1− a2) cos θ + (1 + a2)

= a2
2(− cos θ + 1)

(1 + cos θ)((1− a2) cos θ + 1 + a2)

≤ a2 2

1 + cos θ

1− cos θ

1 + cos θ
= a2

2

1 + cos θ
tan2(θ2) . (30)

Now (23) and conditions (8) and (9) imply the existence of an integrable majorant. From the

above calculation we can also deduce

lim
a↓0

1

a2

(
2

1 + cos θ
− κ(a−1, θ)1/2

a

)
=

2

1 + cos θ
· 1− cos θ

1 + cos θ
.

Now Lebesgue’s dominated convergence theorem yields

lim
a↓0

I2 = −4
∫

S2

∫

S2

tan2(θ2) + tan2(θ
′

2 )

(1 + cos θ)(1 + cos θ′)
η(ω)η(ω′) dΣ(ω) dΣ(ω′) .

This completes the proof.
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Now we can prove the desired sufficient condition on η.

Proposition 5.3. Let η ∈ L2(S
2) be such that conditions (8), (9) and (11) hold true. Then the

numbers Gℓ defined in (17) are finite.

Proof. We split the integral

Gℓ =

∫ ∞

0

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

da

a
(31)

according to R
+
∗ = (0, ε] ∪ (ε,∞), with ε to be chosen later on.

Step 1: We first concentrate on the interval (0, ε], i.e. we discuss

J1 =

∫ ε

0

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

da

a
.

As in the previous proof, we start at (25) assuming condition (11). Taking into account (27)

with the bounds (23) and (28), and (29) with the bound (30), we get

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

≤ 16a2
∫

S2

∫

S2

∣∣Qℓ(ωa · ω′
a)
∣∣

×
(
1 + tan2(θ2)

)(
1 + tan2(θ

′

2 )
) |η(ω)| |η(ω′)|
(1 + cos θ)(1 + cos θ′)

dΣ(ω) dΣ(ω′)

+ 4a2
∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )

(1 + cos θ)(1 + cos θ′)
|η(ω)| |η(ω′)| dΣ(ω) dΣ(ω′)

≤ 4a2
(
4‖Qℓ‖L∞[−1,1]) + 1

)
m2

2 ,

where Qℓ is given in (26) and m2 =
∫
S2
|η[1](ω)|+ |η[2](ω)| dΣ(ω), where η[i] are defined in (14)

and (15), and m2 is finite by assumptions (8) and (9). Thus, a subsequent integration w.r.t. da
a

yields

J1 ≤ 2m2
2ε

2
(
4‖Qℓ‖L∞[−1,1]) + 1

)
= 2m2

2ε
2
(
2ℓ(ℓ+ 1) + 1

)
.

Step 2: It remains to deal with the integration over [ε,∞). But here we get the desired

estimate more directly: Since Πℓ is an orthogonal projection and Da a unitary operator, we find

〈Πℓηa, ηa〉 = ‖ΠℓDaη‖2 ≤ ‖Daη‖2 = ‖η‖2,

and consequently

1

2ℓ+ 1

∫ ∞

ε
〈Πℓηa, ηa〉

da

a3
≤ ‖η‖2

2ℓ+ 1

∫ ∞

ε

da

a3
=
‖η‖2
2ℓ+ 1

ε−2

2
. (32)

This completes the proof.

Another slight variation of the above arguments together with fixing a particular choice for the

parameter ε leads to a significant improvement of the ℓ-dependence, at the cost of an additional

assumption on η.

Theorem 5.4. Let η ∈ L2(S
2) be such that conditions (8), (9), (10) and (11) hold true. Then

the sequence (Gℓ)ℓ is bounded.
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Proof. In order to show that (Gℓ)ℓ is bounded, we again split the integral (31) according to

R
+
∗ = (0, ε] ∪ (ε,∞). Fixing the choice ε−2 = 2(2ℓ + 1), from the estimate (32) it immediately

becomes clear that the integral over (ε,∞) is uniformly bounded by ‖η‖2.
Thus it remains to consider the integral over (0, ε]. As in the previous proof, we start at (25)

assuming condition (11). Taking into account (27) with the bound (28), and (29) with the

bound (30), we get

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

≤ 4a2
∫

S2

∫

S2

∣∣Qℓ(ωa · ω′
a)
∣∣(1 + tan2(θ2 )

)(
1 + tan2(θ

′

2 )
)

× κ(a−1, θ)1/2κ(a−1, θ′)1/2

a2
|η(ω)| |η(ω′)| dΣ(ω) dΣ(ω′) (33)

+ 4a2
∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )

(1 + cos θ)(1 + cos θ′)
|η(ω)| |η(ω′)| dΣ(ω) dΣ(ω′) . (34)

Setting

C1 :=

∫

S2

|η(ω)|
1 + cos θ

(
1 + tan2(θ2)

)
dΣ(ω) ,

which is finite by assumptions (8) and (9), we can estimate the integral (34) by

4a2
∫

S2

∫

S2

tan2(θ2 ) + tan2(θ
′

2 )

(1 + cos θ)(1 + cos θ′)
|η(ω)| |η(ω′)| dΣ(ω) dΣ(ω′) ≤ 4a2C2

1 .

Next, we define

C2 := ess sup
ω∈S2

|η(ω)|
1− cos θ

(
1 + tan2(θ2)

)

which is finite by assumption (10). After rewriting (33) as

4a2
∫

S2

∫

S2

∣∣Qℓ(ω · ω′)
∣∣(1 + tan2(12θ1/a)

)(
1 + tan2(12θ

′
1/a)

)

× κ(a, θ)1/2κ(a, θ′)1/2

a2
|η(ω1/a)| |η(ω′

1/a)| dΣ(ω) dΣ(ω′) ,

and applying κ(a,θ)1/2

a ≤ 2
1−cos θ , we can estimate this by

16a2
(

ess sup
ω=(θ,ϕ)∈S2

|η(ω1/a)|
1− cos θ

(
1 + tan2(12θ1/a)

))2 ∫

S2

∫

S2

∣∣Qℓ(ω · ω′)
∣∣ dΣ(ω) dΣ(ω′)

= 16a2
(

ess sup
ω=(θ,ϕ)∈S2

|η(ω)|
1− cos θa

(
1 + tan2(θ2 )

))2 ∫

S2

∫

S2

∣∣Qℓ(ω · ω′)
∣∣ dΣ(ω) dΣ(ω′)

≤ 16a2C2
2

∫

S2

∫

S2

|Qℓ(ω · ω′)| dΣ(ω) dΣ(ω′) ,

where at the end we used a ≤ ε < 1, which implies θa ≤ θ and thus 1 − cos θ ≥ 1 − cos θa. To

calculate the last integral, we observe for Qℓ defined in (26) and for fixed ω = (θ, ϕ) that
∫

S2

|Qℓ(ω · ω′)| dΣ(ω′) =
∫

S2

|Qℓ(Rωω ·Rωω
′)| dΣ(ω′) =

∫

S2

|Qℓ(ez · ω′′)| dΣ(ω′′)

=

∫ 2π

0

∫ π

0
|Qℓ(cos θ

′′)| sin θ′′dθ′′ dϕ′′

= 2π

∫ 1

−1
|Qℓ(s)| ds = 2π‖Qℓ‖L1([−1,1]) ,
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where the rotation Rω maps ω onto the north pole ez, and we used the substitution s = cos θ′′.

We conclude ∫

S2

∫

S2

|Qℓ(ω · ω′)| dΣ(ω′) dΣ(ω) = 8π2‖Qℓ‖L1([−1,1]).

Arranging everything together, we arrive at

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

≤ 2C3a
2
(
1 + ‖Qℓ‖L1([−1,1])

)
,

where C3 is a suitable constant, which implies the estimate

∫ ε

0

〈Πℓηa, ηa〉
(2ℓ+ 1)a2

da

a
≤ C3ε

2
(
1 + ‖Qℓ‖L1([−1,1])

)
. (35)

Recalling ε2 ∼ ℓ−1, it remains to show that ‖Qℓ‖L1([−1,1]) = O(ℓ). Based on the Mean Value

Theorem applied to Pℓ, we have for every x ∈ [0, 1] that

|Qℓ(x)| =
1− Pℓ(x)

1− x ≤ ‖P ′
ℓ‖L∞([0,1]) =

ℓ(ℓ+ 1)

2
.

Thus, we obtain

∫ 1

−1
|Qℓ(x)| dx =

∫ ℓ−1

ℓ

−1

∣∣∣∣
1− Pℓ(x)

1− x

∣∣∣∣ dx+

∫ 1

ℓ−1

ℓ

|Qℓ(x)|dx

≤ 2

1− ℓ−1
ℓ

(ℓ− 1

ℓ
+ 1
)
+
ℓ(ℓ+ 1)

2

(
1− ℓ− 1

ℓ

)

= 2(2ℓ− 1) +
ℓ+ 1

2
=

9ℓ− 3

2
,

which shows that the right-hand side of (35) is uniformly bounded.

6. Stereographic projection and moment conditions

In this section, we consider an isometric transform of the mother wavelet η based on the stereo-

graphic projection. Recalling the definition of η[1] and η[2] given by (14) and (15), we reinterpret

the cancellation condition (11) on η[1] as a vanishing mean condition of the transformed η and

integrability condition (9) of η[2] as existence condition of the second moment of the transformed

η. The interesting relation between the cancellation condition and the transformed admissible

function was already discovered by Antoine and Vandergheynst [3].

The stereographic projection allows to map S
2 without the south pole onto the real plane. In

polar coordinates in the plane the stereographic projection and its inverse are given by

(θ, ϕ) 7→ (tan(θ2 ), ϕ), (r, ϕ) 7→ (2 arctan r, ϕ),

respectively. The stereographic projection allows to map functions on the sphere to functions

on the real plane and vice versa. The following lemma corresponds to [3, Lemma 3.5] under the

correspondence 2 arctan r = arccos 1−r2

1+r2
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Lemma 6.1. The mapping Θ : L2(S
2)→ L2(R+ × [0, 2π), r−1dr dϕ), defined by

(Θf)(r, ϕ) =
2r

1 + r2
f
(
2 arctan r, ϕ

)

is an isometric isomorphism. Moreover, the usual dilation D+
a on R

2, which can be written in

polar coordinates as (D+
a f)(r, ϕ) = f(r/a, ϕ), fulfills the relation ΘDa = D+

a Θ.

Proof. Since θ = 2arctan r if and only if r = tan(θ/2), we get

dθ

dr
=

2

1 + r2
,

and furthermore

sin θ =
2 tan(θ/2)

1 + tan2(θ/2)
=

2r

1 + r2
.

Inserting this, we conclude

‖Θf‖2L2(R+×[0,2π),r−1dr dϕ) =

∫ 2π

0

∫

R+

|(Θf)(r, ϕ)|2r−1 dr dϕ

=

∫ 2π

0

∫ π

0

(
2r

1 + r2

)2

|f(θ, ϕ)|2r−1 1 + r2

2
dθ dϕ

=

∫ 2π

0

∫ π

0
|f(θ, ϕ)|2 sin θ dθ dϕ = ‖f‖2.

Thus, Θ is an isometry, and obviously bijective. For the second part, we have on the one hand

(ΘDaf)(r, ϕ) = Θ
[
κ(a, θ)1/2f

(
2 arctan( 1a tan

θ
2 ), ·

)]
(r, ϕ)

= κ(a, 2 arctan r)1/2
2r

1 + r2
f
(
2 arctan(r/a), ϕ

)
,

and since cos θ = 1−r2

1+r2
we further get

κ(a, 2 arctan r)1/2 =
2a

(a2 − 1)1−r2

1+r2
+ (a2 + 1)

=
2a(1 + r2)

2a2 + 2r2
.

On the other hand,

(D+
a Θf)(r, ϕ) = D+

a

[ 2r

1 + r2
f
(
2 arctan r, ·

)]
(r, ϕ)

=
2ar

a2 + r2
f
(
2 arctan(r/a), ϕ

)
,

which finally shows ΘDa = D+
a Θ.

Remark 6.2. The substitution r = tan(θ/2) also yields the new interpretation of the cancellation

condition (11) on η[1] and the integrability (9) of η[2]. First, we obtain
∫ 2π

0

∫ π

0

η(θ, ϕ)

1 + cos θ
sin θ dθ dϕ =

∫ 2π

0

∫ π

0
η(θ, ϕ) tan(θ/2) dθ dϕ

=

∫ 2π

0

∫ ∞

0
η(θ, ϕ)

2r

1 + r2
dr dϕ

=

∫ 2π

0

∫ ∞

0
(Θη)(r, ϕ) dr dϕ .
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Thus, η[1] is integrable if Θη is integrable w.r.t. the Lebesgue measure as a function on R+ ×
(0, 2π). The cancellation condition on η[1] becomes a vanishing mean condition for Θη w.r.t. the

Lebesgue measure dr dϕ on (0,∞) × (0, 2π). Note that this is neither the Lebesgue measure on

R
2 in polar coordinates, nor the measure considered in Lemma 6.1.

Similarly, we can rewrite

∫

S2

η(θ, ϕ)

1 + cos θ
tan2

(
θ
2

)
dΣ =

∫ 2π

0

∫ ∞

0
r2(Θη)(r, ϕ) dr dϕ .

Hence the integrability condition for η[2] turns into the existence of the second moment of Θη

when considered as a function in L2((0,∞) × (0, 2π), dr dϕ).

Finally, the boundedness of η
1−cos θ (1 + tan2(θ2 )) transfers to the decay of Θη as r → 0 and

r→∞, respectively, in view of

Θ
( η

1− cos θ

(
1 + tan2(θ2 )

)
=

(1 + r2)2

2r2
Θη .

Remarkably, the conditions for η to be admissible resemble conditions for the Fourier transform

of Θη to be a wavelet in R
2 – weighted integrability and decay towards the origin (←→ smoothness

and vanishing moments, respectively, for the wavelet).

7. Lower frame bound

In this section, we are concerned with sufficient conditions for the invertibility of Aη and bound-

edness of A−1
η . In Proposition 7.2, we prove that the numbers Gℓ, ℓ ∈ N0, are positive if η̃

defined in (10) does not vanish, and in Theorem 7.3 that these numbers are indeed uniformly

bounded away from zero under Assumption (8). Since [3, Prop. 3.4] claims the same, we start

with a remark pointing out the differences.

Remark 7.1 (Relation to [3, Proposition 3.4]). The first part of the proof of Proposition 3.4

in [3] is devoted to show that Gℓ > 0 for every ℓ ∈ N0. It ends with the claim that the fact

that the convolution of some functions vanishes for all parameters a > 0 implies that one of the

functions is zero. However, the convolution of two functions vanishes if their respective Fourier

transforms have disjoint supports. Therefore, we invest some work in proving Gℓ > 0 in the next

proposition.

The second part of the proof in [3] deals with the uniform boundedness of (Gℓ)ℓ away from

zero. At the end of the proof, it is stated that ’the only contribution of the integral over θ comes

from the region a ∼ 1/ℓ’ – that intuition is correct. However, with increasing ℓ these regions

become smaller and smaller, so that we were unfortunately not able to follow the subsequent

argument. We will therefore address the issue again in the subsequent Theorem 7.3.

Proposition 7.2. For every η ∈ L2(S
2) satisfying (11) the numbers Gℓ, ℓ ∈ N0 are strictly

positive.
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Proof. Step 1: Let ℓ ∈ N0 be fixed. By definition of the zonal projections, we have

‖Πℓηa‖2 =
∑

|m|≤ℓ

|〈Y n
ℓ , ηa〉|2 =

∑

|m|≤ℓ

|η̂a(ℓ,m)|2, (36)

where η̂a(ℓ,m) := 〈ηa, Y m
ℓ 〉. Thus it suffices to show that |η̂a(ℓ, 0)|2 > 0. Note that in the

particular case of an axisymmetric function η, i.e., η is independent of the longitude ϕ, we have

actually |η̂a(ℓ,m)| = 0 for all m 6= 0. Using Lemma 6.1 we rewrite the Fourier coefficients as

η̂a(ℓ, 0) = 〈Daη, Y
0
ℓ 〉L2(S2) = 〈ΘDaη,ΘY

0
ℓ 〉L2(R2)

= 〈D+
a Θη,ΘY

0
ℓ 〉L2(R2) =

∫ 2π

0

∫ ∞

0
(ΘY 0

ℓ )(r, ϕ)(Θη)(r/a, ϕ)
dr

r
dϕ.

As Y 0
ℓ does not depend on ϕ, we may assume w.l.o.g. that η is axisymmetric, otherwise we

simply replace η by η̃ as defined by (16). Then the ϕ integration just produces a constant factor

2π. Moreover, denoting ǧ(r) := g(r−1), we obtain, up to a normalizing factor depending on ℓ,

η̂a(ℓ, 0) ∼ 2π

∫ ∞

0

(
Θ[Pℓ(cos ·)]

)
(r)(Θη)∨(a/r)

dr

r
.

The last integral can be understood as the convolution of the functions Θ[Pℓ(cos ·)] and (Θη)∨,

defined on the multiplicative group R
+
∗ equipped with the corresponding Haar measure dr

r .

Thus, for Gℓ = 0 to be true for some ℓ ∈ N0, this convolution needs to vanish for every a > 0.

However, the convolution of two functions can only vanish if their respective Mellin transforms

have disjoint support.

Step 2: The Mellin transform of a function g : (0,∞) → C which is locally integrable w.r.t.

the Haar measure dr
r , is defined by

(Mf)(s) =

∫ ∞

0
rsg(r)

dr

r
.

It is then easy to check that M(f ∗ g)(s) = Mf(s)Mg(s), where f ∗ g is the convolution in

L1(R
+
∗ ,

dr
r ). We are now interested in the Mellin transform of

Θ[Pℓ(cos ·)](r) =
2r

1 + r2
Pℓ

(1− r2
1 + r2

)
.

Using the substitution ρ = 1−r2

1+r2 , i.e., r
2 = 1−ρ

1+ρ , we obtain

M
[
Θ[Pℓ(cos ·)]

]
(s) =

∫ ∞

0
rs

2r

1 + r2
Pℓ

(1− r2
1 + r2

) dr
r

=

∫ 1

−1

(1− ρ
1 + ρ

)s/2
(1 + ρ)Pℓ(ρ)

1

(1 − ρ)1/2(1 + ρ)3/2
dρ

=

∫ 1

−1
(1− ρ) s−1

2 (1 + ρ)−
s+1

2 Pℓ(ρ) dρ .

From this we can conclude that the integral converges precisely for −1 < ℜs < 1, since the

Legendre-Polynomials are non-vanishing in the endpoints. Moreover, it is readily checked that
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it actually defines an analytic function on this open strip. As a consequence, the set of roots of

M[Θ[Pℓ(cos ·)]] cannot contain a cluster point.

For functions f ∈ L1((0,∞), drr )∩L2((0,∞), drr ), the particular line s =
1
2+it, t ∈ R, is always

contained in the domain of convergence. This gives rise to an isometry M̃ : L2((0,∞), drr ) →
L2(R) with

M̃f(t) :=
1√
2π

∫ ∞

0
r

1

2
+itf(r)

dr

r
.

This version of the Mellin transform inherits the convolution property, i.e.,

√
2πM̃(f ∗ g)(t) = M̃f(t)M̃g(t),

for almost all t ∈ R and for all f, g ∈ L2((0,∞), drr ).

Applying this general theory to our present situation we conclude that the function M̃
[
Θ[Pℓ(cos ·)]

]

has global support. Therefore η̂a(ℓ, 0) vanishes for all a > 0 exactly when M̃[(Θη)∨] = 0 and

hence only for η ≡ 0.

For convenience, we provide an alternative proof of the proposition in the appendix.

To prove that (Gℓ)ℓ is bounded below by a strictly positive constant it suffices by Proposition

7.2 to show that lim infℓ→∞Gℓ > 0. This is the content of our final theorem.

Theorem 7.3. Let η ∈ L2(S
2) satisfy (8). Then

lim inf
ℓ→∞

1

2ℓ+ 1

∫ ∞

0
|〈Y 0

ℓ , ηa〉|2
da

a3

≥ 4π

∫ ∞

0

(∫ ∞

0

2t

1 + t2
J0(2ct)η̃(2 arctan t) dt

)2 dc

c
, (37)

where η̃ is defined by (16). Furthermore, if (13) holds true, the sequence (Gℓ)ℓ∈N0
is bounded

below by a strictly positive number.

Proof. Step 1: For deriving a lower bound for the numbers Gℓ, it suffices to consider in (36)

the term with m = 0, more precisely,

Gℓ ≥
1

2ℓ+ 1

∫ 1

0
|〈Y 0

ℓ , ηa〉|2
da

a3
.

For the scalar product we obtain

〈Y 0
ℓ , ηa〉 = 〈Da−1Y 0

ℓ , η〉 =
∫

S2

κ(a−1, θ)

√
(2ℓ+ 1)

4π
Pℓ(cos(θa))η(θ, ϕ) dΣ .
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To simplify the notation, we assume η to be axisymmetric. Then we get

Gℓ ≥
1

2ℓ+ 1

∫ ∞

0
|〈Y 0

ℓ , ηa〉|2
da

a3

=
1

4π

∫ ∞

0

[∫

S2

κ(a−1, θ)
1

2Pℓ(cos(θa))η(θ) dΣ

]2 da
a3

=
1

4π

∫ ∞

0

[∫ 2π

0

∫ π

0
a−1κ(a−1, θ)

1

2 Pℓ(cos θa) η(θ) sin θ dθ dϕ

]2
da

a

= π

∫ ∞

0

[∫ π

0
a−1κ(a−1, θ)

1

2 Pℓ(cos θa) η(θ) sin θ dθ

]2 da
a

= π

∫ ∞

0

[∫ π

0

2a−2

(a−2 − 1) cos θ + (a−2 + 1)
Pℓ(cos θa) η(θ) sin θ dθ

]2
da

a

= 4π

∫ ∞

0

[∫ π

0

sin θ

(1− a2) cos θ + (1 + a2)
Pℓ(cos θa) η(θ) dθ

]2 da
a
.

As a next step, we deal with the inner integral.

Step 2: For every ℓ ∈ N, we define fℓ : R
+ → R

+ as

fℓ(a) =

[∫ π

0

sin θ

(1− a2) cos θ + (1 + a2)
Pℓ(cos θa) η(θ) dθ

]2
.

For brevity, we set

κa(θ) :=
sin θ

1 + cos θ + a2(1− cos θ)
.

Then

fℓ(a) =

[∫ π

0
κa(θ)Pℓ(cos θa)η(θ) dθ

]2
,

and our aim becomes to show that
∫ 1
0

fℓ(a)
a da has a strictly positive lower bound which is

independent of ℓ. We have for all θ ∈ (0, π) that

lim
a→0

κa(θ) = κ0(θ), (38)

0 ≤ κa(θ) ≤ κ0(θ) = tan
θ

2
. (39)

Using the Taylor expansion of θa = 2arctan
(
a tan θ

2

)
with respect to a at a = 0, we see that

θa = 2a tan
θ

2
+Oθ(a

3), (40)

where the subscript of Oθ says that the constant of the Landau symbol O depends on θ. The

formula [27, Theorem 8.21.6] states that

Pℓ(cos ζ) =

√
ζ

sin ζ
J0

((
ℓ+

1

2

)
ζ

)
+O(ℓ− 3

2 ),

uniformly in ζ ∈ [0, π− ε] for some fixed ε > 0, where J0 denotes the Bessel function of order 0.
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Let c > 0. Then we conclude for a = c
ℓ that

Pℓ(cos θ c
ℓ
) =

√
θ c

ℓ

sin θ c
ℓ

J0

((
ℓ+

1

2

)
θ c

ℓ

)
+O

(
ℓ−

3

2

)

=

√
θ c

ℓ

sin θ c
ℓ

J0

(
(2ℓ+ 1)c

ℓ
tan

θ

2
+Oθ

(
c3

ℓ2

))
+O

(
ℓ−

3

2

)
,

where the last line follows from (40). Taking the limit ℓ→∞, we obtain for all fixed θ ∈ [0, π)

in view of limℓ→∞ θ c
ℓ
= 0 that

lim
ℓ→∞

Pℓ(cos θ c
ℓ
) = J0

(
2c tan

θ

2

)
. (41)

Combining (38) and (41), we get the pointwise limit

lim
ℓ→∞

κ c
ℓ
(θ)Pℓ(cos θ c

ℓ
) η(θ) = κ0(θ)J0

(
2c tan

θ

2

)
η(θ).

Next, the bound |Pℓ(x)| ≤ 1 for all x ∈ [−1, 1] together with (39) implies

|κ c
ℓ
(θ)Pℓ(cos θ c

ℓ
) η(θ)| ≤ |κ0(θ) η(θ)|. (42)

The function |κ0 η| is integrable on (0, π) by assumption, and hence, by Lebesgue’s Dominated

Convergence Theorem, we obtain

lim
ℓ→∞

fℓ

(c
ℓ

)
=

(∫ π

0
lim
ℓ→∞

κ c
ℓ
(θ)Pℓ(cos θ 1

ℓ
) η(θ) dθ

)2

=

(∫ π

0
κ0(θ)J0

(
2c tan

θ

2

)
η(θ) dθ

)2

=: f(c).

Step 3: We want to estimate the integral
∫∞
0

fℓ(a)
a da. For every fixed k > 0 and b > 1, we have

∫ ∞

0
fℓ(a)

da

a
=

∫ ∞

0
fℓ

(c
ℓ

) dc
c
≥

k∑

j=−k

∫ bj

bj−1

fℓ

(c
ℓ

) dc
c
≥

k∑

j=−k

b−j

∫ bj

bj−1

fℓ

(c
ℓ

)
dc .

Since fℓ(
c
ℓ ) converges to f(c) for ℓ→∞ pointwise with respect to c, and using (42) to estimate

∣∣∣fℓ
(c
ℓ

)∣∣∣ ≤
(∫ π

0
|κ0(θ) η(θ)| dθ

)2

,

independently of ℓ, we verify for every j that

lim
ℓ→∞

∫ bj

bj−1

fℓ

(c
ℓ

)
dc =

∫ bj

bj−1

f(c) dc =

∫ bj

bj−1

(∫ π

0
κ0(θ)J0

(
2c tan

θ

2

)
η(θ) dθ

)2

dc.

This implies

lim inf
ℓ→∞

∫ ∞

0

fℓ(a)

a
da ≥

k∑

j=−k

∫ bj

bj−1

b−j

(∫ π

0

sin θ

1 + cos θ
J0

(
2c tan

θ

2

)
η(θ) dθ

)2

dc

≥ 1

b

∫ bk

b−k−1

(∫ ∞

0

2t

1 + t2
J0(2ct)η(2 arctan t) dt

)2 dc

c
, (43)
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where the last line uses the substitution t = tan θ
2 leading to cos θ = 1−t2

1+t2
, sin θ = 2t

1+t2
, and

dθ = 2 dt
1+t2 . Noting that (43) is valid for all k, we conclude

lim inf
ℓ→∞

∫ ∞

0

fℓ(a)

a
da ≥ 1

b

∫ ∞

0

(∫ ∞

0

2t

1 + t2
J0(2ct)η(2 arctan t) dt

)2 dc

c
. (44)

Further, the fact that this estimate holds for all b > 1 implies the lower bound (37).

Step 4: The inner integral in (44) is the Hankel transform of the function g(t) := 2
1+t2

η(2 arctan t),

evaluated at 2c. Parseval’s theorem for the Hankel transform [20] states

∫ ∞

0
t|g(t)|2 dt =

∫ ∞

0
c

∣∣∣∣
∫ ∞

0
tg(t)J0(ct) dt

∣∣∣∣
2

dc.

This implies that for any non-zero function η (which particularly entails g 6≡ 0) the right-hand-

side integral is not zero. Thus, there exists 1 < B <∞ such that

∫ B

0
c

∣∣∣∣
∫ ∞

0
tg(t)J0(2ct) dt

∣∣∣∣
2

dc > 0 ,

which in turn yields

∫ B

0

∣∣∣∣
∫ ∞

0
tg(t)J0(2ct) dt

∣∣∣∣
2 dc

c
≥ 1

B2

∫ B

0
c

∣∣∣∣
∫ ∞

0
tg(t)J0(2ct) dt

∣∣∣∣
2

dc > 0 .

Ultimately we conclude that (44) does not vanish so that

lim inf
ℓ→∞

Gℓ ≥ 4π lim inf
ℓ→∞

∫ ∞

0
fℓ(a)

da

a
> 0 .

Remark 7.4. We conjecture that (under slightly stronger assumptions on η) the limit indicated

below exists, and

lim
ℓ→∞

1

2ℓ+ 1

∫ ∞

0
|〈Y 0

ℓ , ηa〉|2
da

a3
= 4π

∫ ∞

0

(∫ π

0
κ0(θ)J0

(
2c tan

θ

2

)
η̃(θ) dθ

)2 dc

c
.

A proof of such a result would again require to determine an upper bound for fℓ(
c
ℓ ), but integrable

w.r.t. dc
c , which in turn would lead to an alternative (and stronger) proof for the upper frame

bound.

Let us summarize the results leading to the proof of our main theorem.

Proof of Theorem 3.1. Assertion i) of our main theorem is a consequence of Proposition 5.1

and Theorem 5.4.

Assertion ii) of Theorem 3.1 was shown in one direction in Theorem 7.3. To prove the “only

if”-part assume that ∫ 2π

0
η(θ, ϕ) dϕ = 0
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for almost all θ ∈ [0, π]. Then

〈ηa, Y 0
0 〉 = 〈η,D1/aY

0
0 〉 = 〈η, P0〉 =

∫ π

0

(∫ 2π

0
η(θ, ϕ) dϕ

)
sin θ dθ = 0

since Y 0
0 = P0 is a constant, so that D1/aY

0
0 = Y 0

0 . Hence, ‖Π0ηa‖2 = 0 so that G0 = 0. �

Finally, we prove Lemma 3.2, which corresponds to Proposition 3.7 in [3]. Here we provide a

shorter proof.

Proof of Lemma 3.2. The result is an immediate consequence of properties of the stereographic

projection in Lemma 6.1, namely

∫

S2

ζ(θ, ϕ)

1 + cos θ
dΣ(ω) =

∫ 2π

0

∫ ∞

0
(Θζ)(r, ϕ) dr dϕ =

1

α

∫ 2π

0

∫ ∞

0
(Θζ)(s/α, ϕ) ds dϕ

=
1

α

∫ 2π

0

∫ ∞

0
(D+

αΘζ)(s, ϕ) ds dϕ

=
1

α

∫ 2π

0

∫ ∞

0
(ΘDαζ)(s, ϕ) ds dϕ =

1

α

∫

S2

Dαζ(θ, ϕ)

1 + cos θ
dΣ(ω) . �

A. Alternative proof of Proposition 7.2

In addition to the transform Θ from Lemma 6.1, we define a second transform J : L2(R+ ×
[0, 2π), r−1dr dϕ)→ L2(R× [0, 2π), dr dϕ) via

(J f)(r, ϕ) = f(er, ϕ), f ∈ L2(R+ × [0, 2π)) .

Then it is straightforward to check for arbitrary b ∈ R that

JD+
eb

= TbJ ,

where Tbf(r, ϕ) := f(r − b, ϕ). Setting Ỹ n
ℓ := JΘY n

ℓ , we find for every (r, ϕ) ∈ R× [0, 2π) that

Ỹ n
ℓ (r, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+ n)!

(−1)ℓn
cosh r

Pn
ℓ (tanh r)e

inϕ

=

√
(2ℓ+ 1)

(ℓ −m)!

(ℓ+ n)!
(−1)ℓnφnℓ (r)einϕ , (45)

where φnℓ (r) :=
1√

4π cosh r
Pn
ℓ (tanh r). For simplicity let us once again assume that η(θ, ϕ) = η(θ).

In this case, we have

Gℓ =
1

2ℓ+ 1

∫ ∞

0
‖ΠℓDaη‖2

da

a3

=
1

2ℓ+ 1

∫

R

∣∣〈Debη, Y
0
ℓ 〉
∣∣2 e−2b db

=
1

2ℓ+ 1

∫

R

∣∣〈JΘDebη,JΘY 0
ℓ 〉
∣∣2 e−2b db,
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where the last equality holds since both Θ and J are isometries. Let ψ := JΘη. Then for every

b ∈ R it holds

JΘDebη = JD+
eb
Θη = TbJΘη = Tbψ.

By (45), we also have

JΘY 0
ℓ (r, ϕ) = Ỹ 0

ℓ (r, ϕ) =
√

(2ℓ+ 1)φ0ℓ(r).

Therefore we obtain

Gℓ =

∫

R

∣∣〈Tbψ, φ0ℓ 〉
∣∣2 e−2b db =

∫

R

∣∣〈FTbψ,Fφ0ℓ 〉
∣∣2 e−2b db

=

∫

R

∣∣〈M−bFψ,Fφ0ℓ 〉
∣∣2 e−2b db =

∫

R

∣∣F−1
(
Fφ0ℓ Fψ

)
(b)
∣∣2 e−2b db .

Hence, for Gℓ = 0, we need that the function F−1
(
Fφ0ℓ Fψ

)
, and thus Fφ0ℓ Fψ, vanishes almost

everywhere. However, since φ0ℓ(r) ≤ e−r, the first factor Fφ0ℓ is an analytic function, more

precisely, it can be extended to an analytic function on the strip {z ∈ C : |ℜz| < 1}. In

particular, it has only isolated roots. This implies that Gℓ = 0 is only possible if Fψ vanishes

almost everywhere, which in turn contradicts the assumption η̃ 6≡ 0. �
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(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

M.H. gratefully acknowledges funding by the German Research Foundation (DFG) within the

project Da 360/22-1.

References

[1] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Coherent States, Wavelets and Their General-

izations. Springer, Providence, RI, USA, 2000.

[2] J.-P. Antoine and P. Vandergheynst. Wavelets on the n-sphere and related manifolds. J.

Math. Phys., 39(8):3987–4008, 1998.

[3] J.-P. Antoine and P. Vandergheynst. Wavelets on the 2-sphere: A group-theoretical ap-

proach. Appl. Comp. Harm. Anal., 7:262–291, 1999.

[4] S. Bernstein. Spherical singular integrals, monogenic kernels and wavelets on the

three–dimensional sphere. Adv. Appl. Clifford Algebr., 19(2):173–189, 2009.

25



[5] S. Bernstein and S. Ebert. Wavelets on S3 and SO(3) – their construction, relation to each

other and radon transform of wavelets on SO(3). Math. Methods Appl. Sci., 33(16):1895—

-1909, 2010.

[6] S. Dahlke, W. Dahmen, E. Schmitt, and I. Weinreich. Multiresolution analysis and wavelets

on S2 and S3. Numer. Funct. Anal. Optim., 16:19–41, 1995.

[7] S. Dahlke and P. Maass. Continuous wavelet transforms with applications to analyzing

functions on spheres. J. Fourier Anal. Appl., 2:379–396, 1996.

[8] S. Dahlke, G. Steidl, and G. Teschke. Coorbit spaces and Banach frames on homogeneous

spaces with applications to the sphere. Adv. Comput. Math., 21:147–180, 2004.

[9] M. Duflo and C. C. Moore. On the regular representation of a nonunimodular locally

compact group. Journal of functional analysis, 21(2):209–243, 1976.

[10] G. B. Folland. A course in abstract harmonic analysis, volume 29. CRC press, 2016.

[11] W. Freeden, M. Schreiner, and T. Gervens. Constructive Approximation on the Sphere,

with Applications to Geomathematics. Clarendon Press, 1997.

[12] W. Freeden and U. Windheuser. Combined spherical harmonic and wavelet expansion—a

future concept in earth’s gravitational determination. Appl. Comput. Harmon. Anal., 4:1–

37, 1997.
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