
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021 1927

Atmosphere, an Open Source
Measurement-Oriented Data Framework for IoT
Riccardo Berta , Member, IEEE, Ahmad Kobeissi , Francesco Bellotti , and Alessandro De Gloria

Abstract—The ever more extensive data collection from
Internet of Thing (IoT) devices stresses the need for ef-
ficient application development tools. State-of-the-art IoT
cloud services are powerful, but the best solutions are pro-
prietary, and there is a growing demand for interoperability
and standardization. We have investigated how to develop
a nonvendor-locked framework, which exploits state of the
art data management technologies, and targets effective
and efficient development in this article. Focusing on the
concept of measurement, we abstracted an architecture
that could be applied in a variety of domains and contexts.
We tested the framework and its workflow in four use cases
analyzing data and enabling new services in health, auto-
motive, and instruction. Our experience showed the bene-
fits of the development tool, which is not tied to a commer-
cial platform, nor requires the huge set-up times needed
to start a project from scratch. The tool is released open-
source, particularly supporting collaborative research.

Index Terms—Application programming interface (API),
autonomous driving, cloud, e-health, e-mobility, Internet
of Thing (IoT), NoSQL database, open source, representa-
tional state transfer (REST)ful, smart city.

I. INTRODUCTION

W IDE availability of efficient application development
tools is key to the success of any digital ecosystem, as

it supports a virtual cycle with a community of developers (e.g.,
[1]). In the Internet of Thing (IoT) ecosystem, data collected
from the field fuels a variety of applications (e.g., monitoring,
prediction, maintenance, surveillance, etc.) in multiple industrial
domains [2]. According to a Gartner’s [3] forecast, 25 billion
connected things will be in use by 2021, and the share of IP
traffic generated by machine-to-machine modules is estimated
to rise from 3.1% in 2017 to 6.4% by 2022 [4]. This traffic
typically consists of real-time data generated by sensors and
IoT devices, bringing a large amount of context information.

Manuscript received February 12, 2020; revised April 8, 2020; ac-
cepted May 4, 2020. Date of publication May 14, 2020; date of current
version November 20, 2020. This work was supported in part by the
European Union’s Horizon 2020 research and innovation programme
under Grant 723051 and FP7 Transport, GA 605405, and in part by the
Italian Government Ministero dello Sviluppo Economico, SCN_00558.
Paper no. TII-20-0709. (Corresponding author: Francesco Bellotti.)

The authors are with the Department of Electrical, Electronics, and
Telecommunication Engineering and Naval Architecture, University of
Genova, 16145 Genova, Italy (e-mail: riccardo.berta@unige.it; ahmad.
kobeissi@elios.unige.it; franz@elios.unige.it; alessandro.degloria@
unige.it).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.2994414

Cloud services are needed to support data access and manage-
ment. These services are developed and maintained by taking ad-
vantage of platform-as-a-service frameworks. Despite the use of
common components (e.g., databases, application programming
interfaces (APIs), protocols), the development and deployment
process is challenging and time consuming [5].

Commercial companies (e.g., Amazon, Microsoft, Google)
have established efficient IoT ecosystems based on powerful
cloud services, but they rely on proprietary technologies, with
very limited interoperability and development opportunities for
third parties.

In a significant effort to rationalize and further extend the field
[6], the IEEE P2413 working group, including industry giants,
has recently released—as a draft standard—a cross-domain ar-
chitectural framework providing a reference model that defines
relationships among various IoT verticals (e.g., transportation,
healthcare, etc.) and common architecture elements. It also pro-
vides a blueprint for data abstraction. A reference architecture
covers the definition of basic architectural building blocks and
their ability to be integrated into multitiered systems [7].

In this article, we therefore investigate the research question
on how to develop a nonvendor-locked, interoperable frame-
work, which exploits state of the art data management technolo-
gies, and is able to support effective and efficient development
for a variety of relevant IoT applications.

As a fundamental design choice, we focused on the concept
of measurement, as this type of data is very common in IoT.
This choice delimited the target coverage, but made it easier and
more effective the process of abstraction, which is needed in
order to support efficient application development in a variety
of domains and operational contexts.

The remainder of the article is organized as follows. Section II
analyzes the state-of-the-art. Section III concerns system archi-
tecture, presenting requirements, design, and implementation.
Section IV presents the deployment of the framework in four use
cases (three industrial research project and one close-to-market
application). Finally, Section V concludes this article.

II. RELATED WORK

The literature offers a wide coverage of IoT frameworks.
Cheruvu et al. [8] provide a survey categorizing such tools
according to a consumer, industrial, or manageability focus.
Atamani et al. [9] provide a review of several available IoT
frameworks and platforms, analyzing such criteria as security,
data analytics, and support of visualization.

1551-3203 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1937-3969
https://orcid.org/0000-0001-7282-7128
https://orcid.org/0000-0003-4109-4675
https://orcid.org/0000-0002-7760-2099
mailto:riccardo.berta@unige.it
mailto:ahmad.kobeissi@elios.unige.it
mailto:franz@elios.unige.it
mailto:alessandro.degloria@unige.it
https://ieeexplore.ieee.org

1928 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

Powerful solutions are currently available on the market for
different types of IoT services. The Amazon Web Services for
the IoTs (AWS IoTs) [10] cloud service features architecture
modules for data management, device connectivity and con-
trol, and analytics and event detection. A stack of functions
is available on the back-end: DynamoDB, Kinesis, Lambda,
S3, SNS, SQS, etc. Since AWS is a cloud service provider,
multiple data processing services are already integrated. Appli-
cation integration in the platform is supported through various
messaging and queing services. AWS IoT does not distinguish
among sensors, actuators, and devices, as it focuses on the
concept of things. However, there are limited custom attributes
for things, which challenges manageability and increases la-
tency [11]. The Microsoft Azure cloud platform [12] enables
developers to create cloud-based programs using a software as
a service commercial platform. Azure Sphere contains tools for
edge software development kits (SDKs) [13] to enable secure
edge-to-cloud connectivity. Other commercial frameworks [14],
like Google Cloud and Bluemix, have a variety of IoT cloud
services. Despite their differences in performance and efficiency
in practice, Zúñiga-Prieto et al. [5] indicate long deployment
times as a shared issue among such frameworks. We argue that
a better-focused content structure could facilitate developers,
especially for the applications dealing with measurements.

Several IoT data frameworks have been presented in the
literature to deal with specific IoT application domains. Re-
cent examples concern forensics [15], smart homes [16] and
smart cities [17]. In a more general approach, Jiang et al.
[18] proposed a framework dealing with typical IoT challenges
(large volume of data, different data types, rapid generating
data, complicated requirements, etc.). For structured data, they
propose a database management model that combines and ex-
tends multiple databases and provides unified access APIs. For
unstructured data, the framework wraps and extends the hadoop
distributed file system based on the file repository model to
implement version management and multitenant data isolation.
A resource configuration module supports static and dynamic
data management in terms of the predefined meta-model. Thus,
data resources and related services can be configured based
on tenant requirements. More recently, Cai et al. [19] pre-
sented a functional framework that identifies the acquisition,
management, processing and mining areas of IoT big data,
and several associated technical modules are defined and de-
scribed in terms of their key characteristics and capabilities. Fu
et al. [20] deal particularly with IoT data storage efficiency and
security, proposing a framework that keeps time-sensitive data
(e.g., control information) on the edge and sends the other (e.g.,
monitoring data) to the cloud.

Similarly to Atmosphere, [21] proposes a framework, which
supports developers in modeling smart things as web resources.
The framework supports resource-type definition and design,
general-purpose software for operations on web resources, a
mapping between web resources and data sources, and program-
ming and publishing tools. User evaluation concerned the use
of InterDataNet (IDN)-studio (a graphical interface web appli-
cation for designing and managing web resources) to customize
and enhance the representation of a Point of Interest within the

mySmartCity application, and evaluate its rendering performed
by IDN-viewer. Sharma and Wang [22], single out four main
characteristics of IoT data in cloud platforms: multisource high
heterogeneity, huge scale dynamic, low-level with weak seman-
tics, inaccuracy. These characteristics are important, as they
highlight key features that should be provided by an effective IoT
data framework (e.g., source characterization, variety of source
data configurations/aggregation, outlier computation [23]), that
we kept into account in the design of Atmosphere.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section presents the design and implementation process,
starting with requirements up to the supported user workflow.

A. Requirements

Based on the literature analysis and our experience in in-
dustrial research projects (e.g., [24]) we elicited a need for an
IoT domain-independent data framework to support efficient
development of IoT applications dealing with measurements.
The solution should support easy problem and context modeling
and facilitate collaboration between developers, customers, and
stakeholders. Once the data model is defined, developers should
be able to quickly configure the framework accordingly. After
the deployment, the edge devices should be able to upload data,
and (third-party) applications to seamlessly access them.

From an architectural point of view, requirements concern
scalability (in terms of both data size and number of remote
connections), ease of deployment, preservation of data integrity,
large reusability, standardized IoT terminology cross-domain,
and user management.

B. Platform Choices

Based on the above requirements, we opted for designing
a framework leveraging cloud principles to support scalability
and ease of deployment, but without locking into nonportable
proprietary technologies. The framework integrates APIs im-
plementing representational state transfer (REST) services [25],
that provide a platform-independent hypertext transfer protocol
(HTTP) interface (e.g., [13]). A generic web service accommo-
dates numeric-type data in compliance with REST guidelines
in a reusable fashion. A RESTful API separates the user in-
terface (UI) from the server and data storage, which improves
portability, scalability, and independent development. For data
storage, we adopted a document-based database management
system (DBMS), such as MongoDB. NoSQL databases provide
a series of features that relational databases cannot provide,
such as horizontal scalability, memory, and distributed index,
dynamically modifying data schema, etc. [26]. MongoDB also
supports sharding, a method for distributing data across multiple
machines. A certain difficulty in coding complex queries brings
up the cost of such a choice. However, this is hidden to the user of
the framework, who access data through predefined routes to the
modeled resources, according to the REST API design principles
[25]. REST supports the mapping of HTTP verbs (GET, POST,

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

BERTA et al.: ATMOSPHERE, AN OPEN SOURCE MEASUREMENT-ORIENTED DATA FRAMEWORK FOR IOT 1929

Fig. 1. Atmosphere high-level block diagram.

PUT, DELETE) to the classical CRUDdatabase actions (create,
read, update, delete).

Unlike relational DBMSs, MongoDB does not impose the
prerequisite of defining a fixed structure. Models in MongoDB
allow hierarchical relationships representation, with the ability
to modify the structure of the record. Furthermore, MongoDB
recognizes data in javascript object notation (JSON) [27], a
natural JavaScript format, which means that no conversion is
required on a Node.js server. JSON facilitates the exchange of
data between web apps and servers in a compact and human-
readable format. Fig. 1 depicts the high-level block diagram
of the system. Node.js provides the advantages of full stack
JavaScript development [28]. A usual server-side approach
(e.g., in PHP, ASP.net, Ruby and Java) involves multithread-
ing. Node.js avoids the multithreading burden by employing
a nonblocking single-thread pattern and is able to efficiently
serve multiple concurrent clients by operating asynchronously,
employing the event-loop mechanism [29], which is particularly
suited for microservices architecture [30].

C. Modeling

Atmosphere was designed to represent the target context and
its elements as interrelated software objects, onto which to build
applications. These objects are modeled as resources, with their
own schemas and functionalities, accessible through the API
routes. Defining resources to expose the interface is thus a
key design step and requires abstraction in order to support
flexibility, extendibility, and scalability. Not only do the choices
concern the terminology, but also the semantic of each resource.

We identified five essential resources: thing, feature, service,
device, and measurement (see Fig. 2 and 3). A thing represents
the subject of a measurement. a feature describes the (typically
physical) measured quantitity/ies. Each quantity in a feature is
an item, with a name and a unit. A Service denotes the type of
the target IoT deployment. A device is a tool providing measure-
ments regarding a thing (or an actuator that acts within a thing
to modify its status). A measurement represents a sample of a
feature measured by a Device for a specific thing in the context of
a certain Service. Other resources include: alert, user, provider,
subscription, log, login, script, tag, constraint, and computation.

The concept of measurement abstracts the samples posted to
and retrieved from the database. The structure of a measurement
must match its feature. A measurement can contain one or more
homogeneous samples, the latter being the typical case when
sampling signals (see Fig. 4). Each sample contains a vector of
values. Values are not necessarily homogeneous. For instance,
a sample could represent a set of statistical information on a

quantity (e.g., average, stdev, etc.). Each value can be a scalar
(e.g. a temperature), a vector (e.g. the orientation in space) or a
tensor of numbers (e.g., general multidimensional data points).
The feature resource is used to check the integrity of each
received measurement. The size of each mesasurement sample
value must match the corresponding dimension attribute stored
in the corresponding feature item (see Fig. 2).

We also defined the computation resource, which performs
postprocessing calculation on measurements, exploiting the
cloud server capabilities. The result of a computation is struc-
tured and stored as a measurement, thus allowing further pro-
cessing. A set of (typically statistical) computation types are
available, identified by the “code” attribute. Currently, the fol-
lowing codes are supported: stat (including maximum, mini-
mum, average, median, standard deviation, variance), quartiles
(first quartile, third quartile), histograms. A custom computation
is also available, which executes a custom script uploaded by
the user. In the case of stdev and var, the engine offers two
variations: population-based and sample-based [31]. Another
type of computation concerns outlier detection, which is key to
guarantee the quality of data series.

Another abstraction that we defined to support the possible
needs of a data consumer service, is the constraint, which allows
defining relationships between different resources. We modeled
this as a resource in order to support the maximum flexibility
in adding associations/dependencies between resources while
avoiding hard-coding them inside the resources themselves. As
a use case, this allows building a drop-down menu in a UI which
is filled with its proper options by dynamically querying the
database (DB).

D. Implementation

The framework guarantees that all its exposed resources can
be manipulated through the previously mentioned HTTP meth-
ods. Standard response codes were defined for each method like
success codes (2xx) and client error codes (4xx), with suited
information in the response message. We have implemented
the RESTful API services in Node.js (JavaScript-based) within
the Express.js framework. This open-source framework offers
easy integration of third-party middleware, particularly the Mon-
goDB database and its Mongoose persistence layer.

In storage, resources correspond to collections in the database.
Each resource involves a number of fields, some of which are
mandatory, while others are optional. Within the API, resources
are implemented through two stages: schema and controller. The
schema—which is needed for data-checking, given the schema-
less nature of MongoDB—defines the resource structure, while
the controller implements the resource functionality. A resource
schema prescribes the fields, including their types, default val-
ues, and references to other resource fields. Fields that refer
to other resources have cross-validation functions implemented
within the resource schema. The schema also includes plugin
definitions as well as indexing options. The controller defines
the HTTP methods that are supported by the resource (typically:
GET for fetching resources, POST for inserting, PUT for updat-
ing, DELETE for removing, either permanently or softly).

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

1930 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

Fig. 2. Atmosphere resources outlook.

Fig. 3. UML metamodel of the main classes of Atmosphere.

Fig. 4. Measurement and Feature match.

The computation controller performs incremental calcula-
tions in order to avoid exhausting the system’s resources (e.g.,
memory), as computations are typically performed on huge
quantities of data. Computations are obtained in a two-step
process, where the client first issues a computation request,

which opens a WebSocket through which the client can get
information from the system about the progress of the execution.

According to the best practice in software engineering, the
framework includes an automatic test suite for all routes and
methods, supported by the javascript package manager. This is
key to ensure a correct working of the API operations.

E. Working System

When the API is first initialized, it connects to the storage
server and creates the database “atmosphere-DB” with one
collection inside. That collection is the “users” collection, and it
is essential to have one admin user in order to create other users
and other collections. This first instance of a user is predefined
within the source code. The “admin” user can create two other
types of users: “provider” and “analyst.” While the “admin” has
full access to the DB (all methods unrestricted—including those
for managing the application DB (ADB), which is described in
the next sub-section), the“provider” user has restricted access
that depends on ownership (allowed to POST measurements and
to GET only those records that are owned by the user), and the
“analyst” user can only access measurements (GET methods).
The authorization mechanism supports also a finer grain control,
as described in the L3Pilot use case. Another security measure
is authentication. It is based on a JSON web token (JWT), a
security pass that expires after a configurable timeout. To get a
JWT, users must POST to the “login” resource with their given
credentials. The API will reply with a JWT with the specific
authorization level of the requesting user. The JWT must then
be used as a header attribute for any further requests to the API.

F. Supported Workflow

Atmosphere has been designed in order to support an efficient
workflow for preparing different measurement-based data-rich
applications. The first step consists of the domain modeling,

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

BERTA et al.: ATMOSPHERE, AN OPEN SOURCE MEASUREMENT-ORIENTED DATA FRAMEWORK FOR IOT 1931

where the field objects are mapped to the Atmosphere API’s
resources. In this phase, the IoT application designer has to
define features (i.e., types of measurements), devices (i.e., mea-
surement instruments), tags (i.e., labels that can be attached as
attributes to other resources— typically measurements, features,
things and tag themselves), and constraints (i.e., relationships
between elements in the DB). In the configuration (or deploy-
ment) step, the above designed model resources are straight-
forwardly encoded in a.json file (e.g., see fragments in Fig. 2),
which is POSTed to the framework APIs, so to create the ADB
structure. In the regime phase, the framework manages the ADB,
allowing dynamic insertion/update of users, things, field mea-
surements and computation requests; and retrieval of results in
terms of things, measurements and computation outcomes. The
ADB structure can be updated during the operation as well, by
POSTing/PUTting/DELETEing features, devices, and tags. All
these actions happen only through the exposed resource routes,
with the well known advantages of the RESTful approach in
terms of scalability, encapsulation, security, portability, platform
independence, and clarity of terminology and operations.

IV. USE CASES

Atmosphere has been employed in three industrial research
projects, one in the health/smart home sector and two in auto-
motive that has put Atmosphere in challenging experimentation
set-ups, with different settings. The projects have also provided
the opportunity to improve and extend the framework. We also
report on a case applying the system for a closer to market appli-
cation for health-care instruction. In all cases, Atmosphere was
deployed on a commercial cloud server, namely an AWS elastic
cloud computing (EC2) T2.micromachine (1 virtual CPU, 1 GB
Ram) hosting Linux OS, without exploiting proprietary-specific
APIs nor services.

A. Health at Home (H@H)

H@H, a domestic project funded by the Italian Ministry of
economic development and aimed at supporting the elderly
with chronic health failure [32], developed a complete IoT
cloud service consisting of the home monitoring sensor system
(front-end), the home gateway (middleware), and a remote cloud
(back-end). Through the gateway, several physiological quanti-
ties (electrocardiogram signal, heart rate, breathing waveform,
breathing rate, oxygen saturation, blood pressure, glycemia, etc.)
are collected and delivered to the cloud. Through a web UI, a
clinician can view the measurements, and modify the pharmaco-
logical therapy according to the symptoms. Atmosphere acted
as the backbone of the application in order to implement the
H@H API described in [33]. Atmosphere had to accommodate
the needs and usage variations of different service providers, as
the front-end (edge) and the gateway (fog) were provided and
maintained by third parties in the health industry.

The mapping of the H@H quantities onto the Atmosphere
resources was straightforward. For each physiological signal,
we create a corresponding “feature” and for each sensor a
“device,” in order to collect information acquired on patients as

TABLE I
ATMOSPHERE RESOURCE MAPPING TO PROJECT MODELS

“measurements” in Atmosphere. The mapping between H@H
concepts and Atmosphere resources is given in Table I. The
“operator” entity, a new instance of the user resource, was
required, with a special set of behaviors and permissions. We
implemented this as an extension to the main “user” resource
exploiting the object-oriented programming paradigm.

In H@H, several service providers offer various e-health
services (e.g., postsurgery rehabilitation support, daily activity
monitoring, pain self-assessment, etc.). This required a man-
agement framework to organize the services on both the patient
and the provider side. We thus implemented a publish/subscribe

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

1932 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

(pub/sub) pattern, through a supplementary subscription re-
source. Atmosphere takes advantage of asynchronous Web-
Hooks to provide automated real-time callbacks. WebHooks
broadcast any service update by the service providers to all
subscribers. The new resource couples the users with their
subscribed services (the ones that are supported by their installed
edge sensory system). One field (IsActive) specifies whether
the payload delivery is enabled, while another one (endpoint)
specifies the uniform resource locator address to which the
service and later updates must be published.

H@H has been successfully piloted in Oderzo, a small town
in Veneto Region, where 13 older persons living in 8 apart-
ments have been monitored using different sensors (e.g. passive
infrared (PIR) sensors and thermostats in several rooms), and
measurements stored in an Atmosphere ADB. A second demon-
stration is ongoing in the facilities of Fondazione Don Gnocchi,
one of the largest non state-owned hospital infrastructure in Italy.

B. Fabric

In fabric, a seventh Framework Programme European Indus-
trial Research Project which implemented an on-road testbed
for dynamic wireless charging (DWC) of electrical vehicles
[34], we realized a charging process metering service for the
vehicles passing through the charging lane [35]. The system
senses and computes on the edge information about the charging
process and stores it on Atmosphere’s cloud server to support
new electro-mobility (e-mobility) services (e.g., billing, energy-
aware car navigation) which can be implemented by relevant
companies (e.g., energy providers, navigation providers).

The road-side DWC subsystem sends to Atmosphere data
representing the state of each consecutive charging grid. The
vehicle-side DWC subsystem generates a stream of measure-
ments recording the vehicle-coil alignment (which is key to
power transfer efficiency and was supported by a vision sys-
tem [36]) and the charging parameters and battery status. In
an approach suitable to the nature of each data stream, we
implemented the edge-computing module to process data in two
different ways. The road-side uploads to the cloud when a change
in measured samples occurs. The vehicle side averages the data
within a predefined period. The edge processor also included a
local buffer to deal with an intermittent connection between the
edge and the cloud.

The stored samples represent the electrical charging process
in current and voltage. Fig. 4 shows the measured samples of
the current in ampere of a charging session. The mapping of
the Fabric objects onto the Atmosphere resources is given in
Table I. Further parameters are required to contribute to the
metering and billing services such as the electrical power trans-
fer, energy stored, and final electrical bill. Acquiring these data
was made possible through the computation resource. Power
transfer is computed directly from the stored measurements.
But computing energy requires integrating the result of previous
power computations, that are stored as measurements.

The whole end-to-end deployment was tested in-lab and (the
vision module for vehicle-coil alignment) on the test site inside
the MotorOasi Piemonte safe drive track in Val di Susa, Italy.

Through enabling edge computing functionalities, the edge de-
vice managed to drop data upload size by approximately 96%
from 720 to 27 MB/h. Based on stored data, we performed
tests in lab tests for a simple prototype billing service. In a
three-step procedure, starting with power (KW), then computing
energy (KWH), we were able to obtain an estimate of the
electrical bill for a specific charging lane passage. In all cases,
concurrent and consecutive HTTP requests were maintained at
a stable 40 ms delays in response time on a low-end AWS EC2
T2.micromachine.

C. L3Pilot

L3Pilot is a Horizon 2020 research project aimed at assessing
the impact of automated driving (AD) on public roads, testing
the society of automotive engineers level 3 (and some level 4)
functions [37]. The pilots systems are being exposed to variable
conditions in hundreds of trips on vehicles by 13 owners (ten
original equipment manufacturers, two suppliers, one research
facility), across ten European countries. The project uses the
field operational test support action methodology [38], driven
by a set of research questions and hypotheses on technical
aspects, user acceptance, driving and travel behavior, as well
as the impact on traffic and safety. In order to answer such
research questions, the project has developed a data toolchain,
that translates the proprietary vehicular signals to a shared format
[39], and processes them to estimate the driving scenarios (e.g.,
“lane change,” “cut-in”) [40]. Data from all the pilot sites is now
being analyzed for an overall impact assessment. Atmosphere
provides the shared data storage back-end [41].

The mapping of the L3Pilot objects onto the Atmosphere
resources is given in Table I, with a thing (i.e., the subject
of a measurement) corresponding to every single experimental
trip. Stored measurements—produced by the abovementioned
toolchain—are not the original signal time-series, but mean-
ingful aggregations (called “Datapoints” and various types of
“indicators,” with such items as: avg speed, minimum longi-
tudinal distance, time headway at minimum time to collision,
percentage of driving times in the various scenarios, etc.). Thus,
such “datapoints” and “indicators” are the features in the L3Pilot
installation. Different driving scenario types have different dat-
apoint structures. All these features are tagged as datapoint to
facilitate data retrieval according to the jargon. Tags were very
useful also to specify driving scenarios, experimental conditions
(baseline, system available, system active, etc.) and road types
(e.g., motorway, major arterial, local road, etc.), that are all used
to segment a trip’s data.

The constraint resource was introduced to define abstract
relationships (e.g., dependencies) between two documents in
the DB. The web-browser-based UI— that was developed by
another project partner [40]—exploits constraint documents
in order to allow the data analyst user to select the available
measurement types from dynamically filled drop-down menus.
To this end, constraints were used for relating tags among each
others. For instance, the “datapoint” UI tag, that is one of the
items selectable for querying measurements, points to a group
of actual features (that finally identify the measurements), one

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

BERTA et al.: ATMOSPHERE, AN OPEN SOURCE MEASUREMENT-ORIENTED DATA FRAMEWORK FOR IOT 1933

Fig. 5. Response times to batch uploads with two types of
measurements (one with 28 and one with 40 dimensions) in the L3Pilot
Atmosphere ADB.

Fig. 6. Response times per single measurement relative to different
sizes of batch uploads (range 1 to 100) in the L3Pilot Atmosphere ADB.

for each driving scenario. Other UI tags identify point to other
groups, according to the logic of the application. This allows
automatic creation of hierarchical query forms.

The L3Pilot toolchain processes offline the data gathered
during a pilot vehicle’s trip and POSTs the resulting measure-
ments in batches to the DB. Batch sizes differ from one trip
to another, and we monitored the effect of batch sizes on the
API response time. As Fig. 5 shows, the response time is almost
linear with respect to the number of measurements per batch.
The size of the sample vector (feature’s items) has a minor
impact. Examining the effect of the batch approach on the
single measurement response time, we observed a significant
improvement in response times down to 17 ms on batches with
a larger number of measurements. Fig. 6 shows a decline in
response time, which settles at batches with 30 measurements.
The addition of the support of HTTPS had only a minor impact,
even while enabling SSL certificate verification. We observed a
+/- 4 ms difference at most between encrypted and unencrypted
requests, with a slight peak of 1% in CPU load upon HTTPS
connection, on our AWS EC2 T2.micromachine.

To POST measurements to Atmosphere, vehicle owners are
given “provider” credentials, through which they can also ac-
ces their own measurements only. Analyst users were initially

granted access to all measurements. Then, to better protect
confidentiality, the consortium required to restrict the analyst
access, requiring a finer grain right management. Three groups of
features were identified, and analysts are now given read access
rights to these single groups.

The L3Pilot ADB is now being used by the analysts of all the
pilot sites, that have started processing data inserted by the 13
vehicle owners to answer the project’s research questions on L3
autonomous driving. The last requirement we elicited has been
the need to implement the text/csv multipurpose internet mail
extensions type, so to reduce the message size and speed-up the
file preparation on the client side (analysts typically work on
.csv files obtained by downloading the result of a query).

D. Emergency Room Educational Simulator

While the three above presented use cases concern indus-
trial research prototypes, we also tried to check the system as
is for commercial applications. To this end, we organized a
presentation of Atmosphere with the development team of a
university spin-off company engaged in rich-data applications.
It took the developers two days to come up with an ADB model
implementation for the use case of a three-dimensional virtual
reality simulator from emergency room personnel instruction.
The very limited time-frame required for designing and deploy-
ing an effective solution was considered a key merit. Atmosphere
was used to achieve the goal of assessing the performance of
a doctor by evaluating the effects of his interventions on the
various patients. To this end, the ADB was designed to record the
state of a patient, that is characterized by a set of time-evolving
parameters; the actions performed by the doctor (e.g., how he
interacted with the available simulation tools); and the events in
the simulation (e.g., changes in medical equipment availability).
To speed up the queries and facilitate the post-processing, mea-
surements should be recorded both as and as blobs aggregating
data with the same time. Time series data will then be retrieved
to compute correlations and sophisticated machine learning so
to identify relationships between the doctor’s avatar actions and
the evolution of the patients.

E. Analysis of Results

The deployment of Atmosphere in the above presented diverse
IoT applications showed its effectiveness, flexibility, and ability
to support an efficient workflow. The system was used also by
third parties (universities, research institutes, and companies),
with satisfaction. Additionally, we were able to progressively
integrate new functionalities in an abstract manner, keeping the
reusability objective valid across all resources and methods.
Table I summarizes the mapping between Atmosphere and the
three project models.

While the other two projects are finished, L3Pilot is in
progress, and a full account of Atmosphere’s deployment will
not be available before the project concludes in 2021. How-
ever, requirements by L3Pilot partners and pilot tests have
been satisfied efficiently by Atmosphere, which showed a great
deal of versatility, also considering that we dealt with statisti-
cally preprocessed data, with complex semantic structures. This

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

1934 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

challenged our design, and required some improvements, for
instance to allow different dimension sizes for each value in
measurement samples, as L3Pilot datapoints, that are recorded
at each detected driving scenario instance (DSI), contain quite
different preprocessed quantities. When upgrades were needed,
we managed to keep the deployment delay upon structure change
relatively low (a couple of days at most). L3Pilot allowed testing
and upgrading Atmosphere to the use case in which different
IoT data source providers share postprocessed data, typically in
batches. The structural data checks implemented in Atmosphere
allowed detecting bugs in the complex data preparation toolchain
(particularly in terms of feature value dimensions), which saved
significant development time.

Across the four use cases, not only did the deployment envi-
ronment change, but the manner of data streaming to the cloud
as well. In H@H, we experienced a steady stream of raw data,
in fabric uploads contained high frequency of aggregated data,
and in L3Pilot we implemented batch upload of preprocessed
data. Upon examination of each use case, we extracted the
relevant parameters that give an insight into the efficacy of
Atmosphere’s deployment. We spotted a remarkable difference
in API response time to stream POSTs (one measurement with
a single or multidimension value vector) versus batch POSTs.
Stream POST requests resulted in an average 40 ms response
time on our low-end AWS EC2 T2.micromachine. While such
latency was suitable for our use cases, other types of workload
and applications (e.g., streaming for real-time remote control)
would need much more powerful servers than our low-end
T2.micromachine, and/or exploiting computation scaling func-
tionalities, such as MongoDB sharding. Batch POSTs contained
up to 4000 measurements, with multiple dimension (5 to 40)
value vectors. Fig. 5 and 6 show the response times of two batch
uploads to Atmosphere, with different dimensions. Each batch
POST costed around one minute, for 3500 measurements with
40-sized value vectors, resulting in a per measurement cost of
17 ms on average. We argue that the reason for this contrast
in response time per measurement between stream and batch
POSTs is partly because of the enabling of the response com-
pression using the “npm compression” middleware and partly
because of the overhead avoidance of HTTP request/response
header processing upon batches.

F. Lessons Learned

The most apparent lesson we learned from our use case
experience is that the framework must be easy to deploy and
use. We also prepared a Docker image, which greatly simplifies
the process. Creation of an ADB (i.e., configuration of an At-
mosphere server instance for an application) can be automated
through a Postman [42] script, which offers a turnkey solution for
deployment, that was particularly appreciated in L3Pilot, where
the ADB had to be deployed in several pilot sites for preliminary
local analysis.

Postman is an excellent tool for testing as well. But actual
deployment required us to develop tailored tools to support
insertion and query of measurements. In fact, while, the abstract
design of Atmosphere allowed its deployment in a variety of

contexts, an effective usage required some domain specific
customizations. Particularly, we have developed web UI and
command line interfaces, that introduce a business layer between
the user and the cloud platform (e.g., processing of input files,
dealing with possible duplicates and missing documents, peri-
odic back-up, provision of messages customized to the specific
application). These tools are project-tailored, but their porting
between different ADBs is relatively straightforward, greatly
benefiting from the Atmosphere abstractions. Expressing cus-
tomizations with domain-specific languages is left as a future
work [43].

Collaboration with the client application development teams
is key, particularly in the ADB design phase. To this end,
documentation and examples are necessary to present the At-
mosphere abstractions, that are powerful, but need to be un-
derstood. Particularly important are the concepts of samples,
for time series (nontime-series have a single sample), and of
values (inside a sample), each one of which can have different
dimensions (scalar, vector, and tensorial). This gives a high
flexibility in accommodating different types of data collections
and organizations. Tags and constraints are useful to define
lightweight relationships among resources, without hard-wiring
them in the resources themselves, which would unnecessarily
stiffen and weigh down the software and model structure. Tags
are particularly important in supporting the automatic building
of query forms for UIs.

Our experience showed the importance of understanding de-
velopers’ needs. If they require new product features, solutions
should be designed to be generic (i.e., application independent),
inline with the abstractions that make the framework flexible
and seamlessly usable in different contexts. Generally speaking,
frameworks should not be “opinionated.” They should support
a clear workflow, but not prevent users from performing other
desirable actions. The Atmosphere design aimed at achieving
flexibility, within a focus on the concept of measurement. As a
consequence, for instance, measurement features are very flex-
ible, and fine grain user rights are available for measurements,
while access to other resources (e.g., the ADB configuration
resources) is reserved to an admin.

An advantage stressed by all the developers we have worked
with is that, using Atmosphere, they could customize and exploit
a reliable system, which was already tested not only through
automatic testing, but also by other developers, in the pervious
project deployments. We consider this as an important acknowl-
edgment of the robustness of the system and, overall, validity of
its design abstractions.

V. CONCLUSION

As IoT technologies are increasing the capabilities of col-
lecting huge quantities of data from the field, it was ever more
important to have tools for creating new, data-rich applications.
In this article, we investigated how to develop a nonvendor-
locked, interoperable framework, which exploits state-of-the-art
data management technologies, and was able to support effective
and efficient development of relevant IoT applications. We de-
veloped Atmosphere, a cloud-platform independent framework

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

BERTA et al.: ATMOSPHERE, AN OPEN SOURCE MEASUREMENT-ORIENTED DATA FRAMEWORK FOR IOT 1935

for managing smart things in the IoT ecosystem. Our original
contribution consists in an edge-to-cloud computing model us-
ing abstract IoT web resources. Atmosphere was designed as a
deployment-ready IoT data storage and computation support ser-
vice, which was not locked into proprietary cloud technologies.
It focuses on measurement data and exposes resources (includ-
ing Computations) to support measurement-rich applications

As our target users were mainly IoT developers and service
providers, and in order to support the IoT developer commu-
nity, we have released Atmosphere open source on GitHub:
https://github.com/Atmosphere-IoT-Framework. We believed
that the tool could be particularly useful for shared research. Our
experience in three industrial research collaborative projects (use
cases 1 to 3)—quite various in nature—showed that Atmosphere
can seamlessly support a variety of IoT applications, providing
benefits in terms of efficiency and effectiveness, as its resources
support a structured and modular approach to application model-
ing and development. Atmosphere does not tie the development
to a proprietary commercial platform, nor requires the huge
set-up times needed to start from scratch a solution. Also based
on the feedback from the fourth, closer-to-market, use case we
estimated that Atmosphere has a technology readiness level
between 7 and 8.

Atmosphere was designed to support an efficient application
development workflow starting with domain modeling, where
the field objects are to be mapped to the Atmosphere API’s
resources. In the configuration step, the designed model re-
sources were POSTed to the framework API, so to create the
ADB structure, that can be efficiently deployed in the cloud
or in a local facility. In the regime phase, the framework man-
ages the ADB, allowing to insert and retrieve measurements
and computations. The system implements a rigorous RESTful
architecture, exploiting its well-known advantages. The tests
indicated that Atmosphere supports also the start up of new
generation e-mobility data-driven services for metering and
energy-awareness.

Future works will involve enriching the existing set of com-
putations, also with machine learning processing, for instance
for time-series prediction and automated clustering. Moreover,
we would like to integrate psychometric measurements and
user survey/questionnaire data, for supporting user acceptance
studies in the field. Finally, it will be interesting to set up an
empirical interventional study to assess the causal impact of
usage of Atmosphere by IoT application developers.

ACKNOWLEDGMENT

The sole responsibility of this publication lies with the au-
thors. The authors would like to thank all the project partners
for their cooperation and valuable contribution.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Thing J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[2] L. D. Xu, “Enterprise systems: State-of-the-art and future trends,” IEEE
Trans. Ind. Informat., vol. 7, no. 4, pp. 630–640, Nov. 2011.

[3] Gartner, Gartner Identifies Top 10 Strategic IoT Technologies and Trends.
Barcelona, Spain, Gartner Press Reslease, Nov. 7, 2018.

[4] M. Cooney, Cisco Predicts Nearly 5 Zettabytes of IP Traffic Per Year
by 2022, Netw. World Press Release, Nov. 18, 2018. [Online]. Avialble:
https://www.networkworld.com/article/3323063/cisco-predicts-nearly-
5-zettabytes-of-ip-traffic-per-year-by-2022.html. Accessed on: May 29,
2020.

[5] M. Zúñiga-Prieto, J. González-Huerta, E. Insfran, and S. Abrahão, “Dy-
namic reconfiguration of cloud application architectures,” J. Softw., Pract.
Experience, vol. 48, pp. 327–344, 2016.

[6] V. P. Singh, V. T. Dwarakanath, P. Haribabu, and N. S. C. Babu, “IoT
standardization efforts — An analysis,” in Proc. Int. Conf. Smart Technol.
Smart Nation SmartTechCon, 2017, pp. 1083–1088.

[7] “Standard for an Architectural framEwork for the Internet of Things
(IoT),” IEEE P2413, 2019. [Online]. Avialble: http://grouper.ieee.org/
groups/2413/

[8] S. Cheruvu, A. Kumar, N. Smith, and D. M. Wheeler, “IoT frameworks
and complexity,” in Proc. Demystifying Internet Things Secur., 2020,
pp. 23–148.

[9] A. Atmani, I. Kandrouch, N. Hmina, and H. Chaoui, “Big data for internet
of things: A survey on iot frameworks and platforms,” in Advanced
Intelligent Systems for Sustainable Development (Lecture Notes in Netw.
Syst.), vol. 92. M. Ezziyyani, Ed. Cham, The Netherelands: Springer, 2020.
[Online]. Available: https://doi.org/10.1007/978-3-030-33103-0_7

[10] Amazon Web Services AWS IoT, 2019. [Online]. Available: https://aws.
amazon.com/iot/solutions/industrial-iot/?nc = sn&loc = 3&dn = 2

[11] W. Tarneberg, V. Chandrasekaran, and M. Humphrey, “Experiences cre-
ating a framework for smart traffic control using AWS IOT,” in Proc. 9th
Int. Conf. Utility Cloud Comput., New York, NY, USA, 2016, pp. 63–69.

[12] Azure IoT, Microsoft, Redmond, WA, USA, 2019. [Online]. Available:
https://azure.microsoft.com/en-us/overview/iot/

[13] S. Jiong, J. Liping, and L. Jun, “The integration of azure sphere and azure
cloud services for internet of things,” MDPI J. Appl. Sci., vol. 9, no. 13,
2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/13/2746

[14] T. Pflanzner and A. Kertesz, “A survey of IoT cloud providers,” in Proc.
39th Int. Conv. Inf. Commun. Technol., Electron. Microelectron., 2016,
pp. 730–735.

[15] H. Chi, T. Aderibigbe, and B. C. Granville, “A framework for IoT data
acquisition and forensics analysis,” in Proc. IEEE Int. Conf. Big Data,
Seattle, WA, USA, 2018, pp. 5142–5146.

[16] J. Jung, K. Kim, and J. Park, “Framework of big data analysis about
IoT-Home-device for supporting a decision making an effective strategy
about new product design,” in Proc. Int. Conf. Artif. Intell. Inf. Commun.,
Okinawa, Japan, 2019, pp. 582–584.

[17] Ş. Kolozali et al., “Observing the pulse of a city: A smart city framework
for real-time discovery, federation, and aggregation of data streams,” IEEE
Internet Things J., vol. 6, no. 2, pp. 2651–2668, Apr. 2019.

[18] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented
data storage framework in cloud computing platform,” IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 1443–1451, May 2014.

[19] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data storage
systems in cloud computing: perspectives and challenges,” IEEE Internet
Things J., vol. 4, no. 1, pp. 75–87, Feb. 2017.

[20] J. Fu, Y. Liu, H. Chao, B. K. Bhargava, and Z. Zhang, “Secure data storage
and searching for industrial IoT by integrating fog computing and cloud
computing,” IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4519–4528,
Oct. 2018.

[21] F. Paganelli, S. Turchi, and D. Giuli, “A web of things framework for
RESTful applications and its experimentation in a smart city,” IEEE Syst.
J., vol. 10, no. 4, pp. 1412–1423, Dec. 2016.

[22] S. K. Sharma and X. Wang, “Live data analytics with collaborative
edge and cloud processing in wireless IoT networks,” IEEE Access,
vol. 5, pp. 4621–4635, 2017. [Online]. Available: https://doi.org/10.1109/
ACCESS.2017.2682640

[23] T. Yu, X. Wang, and A. Shami, “Recursive principal component analysis-
based data outlier detection and sensor data aggregation in IoT systems,”
IEEE Internet Things J., vol. 4, no. 6, pp. 2207–2216, Dec. 2017.

[24] F. Bellotti et al., “TEAM applications for collaborative road mobility,”
IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 1105–1119, Feb. 2019.

[25] S. S. Solapure and H. Kenchannavar, “Internet of things: A survey related
to various recent architectures and platforms available,” in Proc. Int. Conf.
Adv. Comput., Commun. Informat., 2016, pp. 2296–2301.

[26] J. Guo, L. Xu, G. Xiao, and Z. Gong, “Improving multilingual semantic
interoperation in cross-organizational enterprise systems through concept
disambiguation,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 647–658,
Aug. 2012.

[27] “The JavaScript Object Notation (JSON) Data Interchange Format,” In-
ternet Eng. Task Force, Fremont, CA, USA, Dec. 2017.

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Atmosphere-IoT-Framework
https://www.networkworld.com/article/3323063/cisco-predicts-nearly-5-zettabytes-of-ip-traffic-per-year-by-2022.html
http://grouper.ieee.org/groups/2413/
https://doi.org/10.1007/978-3-030-33103-0_7
https://aws.amazon.com/iot/solutions/industrial-iot/?nc ignorespaces = ignorespaces sn&loc ignorespaces = ignorespaces 3&dn ignorespaces = ignorespaces 2
https://azure.microsoft.com/en-us/overview/iot/
https://www.mdpi.com/2076-3417/9/13/2746
https://doi.org/10.1109/ACCESS.2017.2682640

1936 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

[28] A. German, S. Salmeron, W. Ha, and B. Henderson, “MEAN web devel-
opment: A tutorial for educators,” in Proc. 17th Annu. Conf. Inf. Technol.
Educ., New York, NY, USA, 2016, 128–129.

[29] A. Nandaa, “Beginning API Development With Node.js: Build Highly
Scalable, Developer-Friendly APIs for the Modern Web With JavaScript
and Node.js. Birmingham, U.K.: Packt Publ., 2018.

[30] J. Lewis, M. Fowler, “Microservices,” 2014. [Online]. Available: https:
//www.martinfowler.com/articles/microservices.html

[31] T. D. V. Swinscow, Statistics at Square One, 9th ed. London. U.K.:BMJ
Publ. Group, 1996.

[32] A. Monteriù et al., “A smart sensing architecture for domestic moniotring:
methodological approach and experimental validation,” Sensors, vol. 18,
no. 7, Jul. 2018. https://doi.org/10.3390/s18072310.

[33] L. Pescosolido, R. Berta, L. Scalise, G. M. Revel, A. De Gloria, and
G. Orlandi, “An IoT-inspired cloud-based web service architecture for
e-health applications,” in Proc. 2nd IEEE Int. Smart Cities Conf., Sep.
2016, doi:10.1109/ISC2.2016.07580759.

[34] V. Cirimele et al., “The Fabric ICT platform for managing wireless
dynamic charging road lanes,” IEEE Trans. Veh. Technol., vol. 69, no.
3, pp. 2501–2512, Mar. 2020.

[35] A. Kobeissi, F. Bellotti, R. Berta, and A. De Gloria, “Towards an IoT-
enabled dynamic wireless charging metering service for electrical vehi-
cles,” in Proc. 4th AEIT Int. Conf. Elect. Electron. Technol. Automot.,
Turin, Italy, 2019, pp. 1–6.

[36] A. H. Kobeissi, F. Bellotti, R. Berta, and A. De Gloria, “Raspberry Pi 3
performance characterization in an artificial vision automotive applica-
tion,” in Proc. Appl. Electron. Pervading Ind., Environ. Soc., Pisa, Italy,
Sep. 2018, pp. 1–8.

[37] “Taxonomy and definitions for terms related to driving automation systems
for on-road motor vehicles,” 2016. [Online]. Availble: https://www.sae.
org/standards/content/j3016_201806/

[38] Y. Bernard, S. Innamaa, S. Koskinen, H. Gellerman, E. Svanberg, and H.
Chen, “Methodology for field operational tests of automated vehicles,”
Transp. Res. Procedia, vol. 14, pp. 2188–2196, 2016.

[39] J. Hiller, E. Svanberg, S. Koskinen, F. Bellotti, F. Osman, and N, “The
L3Pilot common data format – enabling efficient autonomous driving data
analysis,” in Proc. 26th Int. Techn. Con. Enhanced Saf. Veh., 2019.

[40] J. Hiller et al., “The L3Pilot data management toolchain for a level 3
vehicle automation pilot,” Electronics, vol. 9, 2020.

[41] F. Bellotti et al., “Designing an IoT framework for automated driving
impact analysis,” in Proc. 30th IEEE Intell. Veh. Symp., Jun. 2019,
pp. 1111–1117.

[42] Postman, San Francisco, CA, USA. [Online]. Availble: https://www.
postman.com/. Accessed on: May 29, 2020.

[43] I. Portugal, P. Alencar, and D. Cowan, “A preliminary survey on domain-
specific languages for machine learning in big data,” in Proc. IEEE Int.
Conf. Softw. Sci., Technol. Eng., 2016, pp. 108–110.

Riccardo Berta (Member, IEEE) received the
M.Sc. degree in electronic engineering and
the Ph.D. degree in electrical engineering from
University of Genoa, Italy, in 1999 and 2003,
respectively.

He is an Associate Professor with ELIOS Lab-
oratory, Department of Electrical, Electronics,
and Telecommunication Engineering and Naval
Architecture, University of Genoa, Genoa, Italy.
He is Founding Member of the Serious Games
Society. He authored about 100 papers in inter-

national journals and conferences. He has been involved in the Editorial
Team as a Section Editor of the International Journal of Serious Games
and in the Program Committee of the GALA Confernce. His current
main research interest include applications of electronic systems, in
particular in the fields of serious gaming, technology enhanced learning,
and Internet of Things.

Ahmad Kobeissi received the B.Sc. and M.Sc.
degrees in computer engineering from Beirut
Arab University, Beirut, Lebanon, in 2012 and
2015, respectively. He is working toward the
Ph.D. degree in big data architectures for IoT
and cloud computing at the University of Gen-
ova, Genova, Italy, in Joint Cotutering with the
Lebanese University, Beirut, Lebanon.

His current research interests include the In-
ternet of Things, education technology, cloud
computing, and machine learning.

Francesco Bellotti received the M.Sc. degree
in electronic engineering (cum laude) and the
Ph.D. degree in electronic engineering from
University of Genoa, Italy, in 1997 and 2001,
respectively.

He is an Associate Professor with the Depart-
ment of Electrical, Electronic, Telecommunica-
tion Engineering and Naval Architecture, Univer-
sity of Genoa, Genoa, Italy, where he teaches
cyber–physical systems and edge computing
with the M.Sc. program in electronic engineer-

ing. He has been the WP Leader of several European and Italian
research projects. His current main research interests include edge
computing, machine learning, and cyber–physical systems.

Alessandro De Gloria received the M.Sc. de-
gree in electronic engineering from University
of Genoa, Italy, in 1980, (cum laude), and the
specialization degree in computer science at the
University of Genoa, in 1982.

He is a Full Professor of Electronic Engi-
neering with the University of Genoa, Genoa,
Italy. He is the Leader of the ELIOS Laboratory
with, Department of Electrical, Electronics, and
Telecommunication Engineering and Naval Ar-
chitecture, University of Genoa. He is the found-

ing and Emeritus President of the Serious Games Society. He sits in the
Directive Board of University of Genoa SIMAV center for advanced sim-
ulation. He has led and participated in more than 20 research projects
in the last 10 years, in the fields of serious games, technology enhanced
learning and automotive. His current main research interests include IoT,
serious games, virtual reality, computer graphics and HCI.

Authorized licensed use limited to: Riccardo Berta. Downloaded on September 24,2021 at 06:38:30 UTC from IEEE Xplore. Restrictions apply.

https://www.martinfowler.com/articles/microservices.html
https://doi.org/10.3390/s18072310
https://dx.doi.org/10.1109/ISC2.2016.07580759.
https://www.sae.org/standards/content/j3016_201806/
https://www.postman.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

