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Introduction

Motivated by providing a rigorous solution to the motion segmentation prob-
lem in computer vision, where one seeks algorithms for automatically determin-
ing the different motions in a video sequence, René Vidal in his 2003 PhD thesis
[Vid03] formally introduced and studied the problem of clustering data points
sampled from a subspace arrangement. His seminal work together with Yi Ma
and Shankar Sastry led to the formation of a new subfield of machine learning
known as Generalized Principal Component Analysis (GPCA) [VMS16] or Sub-
space Clustering [Vid11]. Here the attribute Generalized indicates a generalization
of the classical Principal Component Analysis, a cornerstone of statistics, dating
back to Legendre and Gauss, which involves modeling data with a single linear
subspace. Since then, GPCA has evolved into an interdisciplinary research area
in the intersection of computer science and applied mathematics. Vidal’s original
solution [VMS05, VMS03], somewhat recently revisited by the author and Vidal
[TV17, TV18], was based on algebraic geometry and in particular on the structure
of the vanishing ideal of a subspace arrangement. An instrumental property in the
theory of that method is that for an arrangement of n linear subspaces V1, . . . , Vn of
a finite-dimensional vector space over an infinite field k, Vi being the vanishing lo-
cus of an ideal Ii generated by linear forms, the vanishing ideal ⋂i∈[n] Ii of ⋃i∈[n] Vi
coincides at degree n with the product ideal J = ∏i∈[n] Ii, as long as the Vi’s are

transversal; here [n] = {1, . . . , n}. The method went on by computing a k-basis of
Jn, the homogeneous component of J at degree n, and extracting k-bases for the
Ii’s by polynomial differentiation. Remarkably, the above property was proved via
entirely independent motivations by Conca and Herzog, also in 2003, in a paper
[CH03] that was to become landmark itself in commutative algebra. In that pa-
per the authors were concerned with well-behaved classes of ideals in a polynomial
ring, in the sense that the Castelnuovo-Mumford regularity of their product can
be bounded from above by the sum of the individual regularities. A primary de-
composition of J was described and was used in proving that the regularity of J is
always equal to its minimum possible value n for any Ii, that is J always has a lin-
ear resolution. Under the transversality assumption, the equality of homogeneous
components (⋂i∈[n] Ii)n = Jn followed as a corollary of the regularity result.

It is not an exaggeration to say that the birthmark of the present thesis is the
(non-reduced) intersection point of the two works [Vid03, CH03] described above.
The thesis itself discusses aspects of commutative algebra, algebraic geometry and
combinatorics as they relate to subspace arrangements, matrices of bounded rank
and Grassmannians, these being prevalent objects in machine learning and signal
processing theories and applications.

The first two chapters are concerned with combinatorial and homological prop-
erties of the ideal J mentioned above, which, via GPCA, is related to numerous
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applications such as motion segmentation and face clustering in computer vision,
document clustering in machine learning, gene clustering in bioinformatics and
identification of hybrid linear systems in control theory, as well as multiple-view
geometry in computer vision. For all these, see [VMS16] and references therein.
The mathematical contributions are as follows.

In Chapter 1, which is the joint work [CT19] of Conca with the author, the
main highlight is an explicit description of the minimal graded free resolution of the
ideal J . The resolution is supported on a polymatroid obtained from the underlying
representable polymatroid by means of the so-called Dilworth truncation. Formulas
for the projective dimension and Betti numbers as well as a characterization of the
associated primes are given in terms of the polymatroid. Along the way it is shown
that J has linear quotients. In fact, this is done for a large class of ideals JP , where
P is a certain poset ideal associated to the underlying subspace arrangement.

For Chapter 2 we let S = k[x1, . . . , xr] be a polynomial ring over an infinite
field k, and I a homogeneous ideal of S generated in degree d. The existence of
an integer nI is proved, such that for a set X of at least nI general points in Pr−1,
the ideal I∏p∈X I(p) has a linear resolution, where I(p) is the vanishing ideal of

the point p ∈ Pr−1. It is also proved that nI ≤ r(reg(I) − d), where reg(I) is the
Castelnuovo-Mumford regularity of I. This can be seen as a generalization of the
well-known fact that Ims always has a linear resolution for s ≥ reg(I) − d where
m = (x1, . . . , xr). These results were published in [Tsa20c].

Chapters 3 and 4 are of a somewhat different flavor and deal with two in-
verse problems that occur in machine learning and signal processing. The first
one, with which Chapter 3 is concerned, is the well-known low-rank matrix comple-
tion [CR09, CT10], where the objective is to reconstruct a low-rank matrix from
a subset of its entries. Applications are abundant, ranging from recommendation
systems in machine learning to quantum tomography in physics. The specific aspect
that we consider here is the characterization of the minimal observation patterns,
for which there are only finitely many completions of a partially observed generic
matrix of the appropriate rank. The mathematical equivalent is to characterize
the base sets of the corresponding algebraic matroid, and it is this latter avenue
that we follow in this thesis. For an exposition of this work suitable for a general
audience, the reader is referred to [Tsa20b]. The second problem, by which Chap-
ter 4 is inspired, is more recent and is known under the name unlabeled sensing
[UHV18] or linear regression without correspondences [HSS17]. In its simplest
form, this problem amounts to solving a linear system of equations for which the
right-hand-side vector is given only up to a permutation. This formulation is rele-
vant in applications where input/output data are available but the correspondences
between inputs and outputs are unknown. Applications include record linkage in
machine learning, multi-target tracking and image registration in computer vision,
neuron matching in neuroscience, acoustical imaging in signal processing and many
others. Chapter 4 itself is concerned with a generalization of this problem, termed
homomorphic sensing, where one allows for arbitrary linear transformations instead
of permutations, and develops the theory of unique recovery. An exposition suitable
for a general audience is [TP19], while an algebraic geometry method for linear
regression without correspondences is developed in [TPC+20]. The mathematical
contributions of these two chapters are as follows.
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In Chapter 3 a class of base sets is presented for the algebraic matroid of the
determinantal variety of m×n matrices of rank at most r over an infinite field, whose
known characterizations are available only for r = 1,2,m− 1. It is conjectured that
these bases completely characterize the matroid and the conjecture is reduced to a
purely combinatorial statement, which is verified for the case r = m − 2. Towards
that end, matrix completion is interpreted from a point of view of linear sections on
the Grassmannian via Plücker coordinates. A critical ingredient is a class of local
coordinates on the Grassmannian induced by so-called supports of linkage matching
fields, described by Sturmfels & Zelevinsky [SZ93]. As a byproduct, a conjecture
of Rong, Wang & Xu [RWX19] is proved.

Chapter 4 introduces homomorphic sensing, an intersection problem in linear
algebra whose solution quickly becomes commutative algebraic. Specifically, with
k an infinite field, T a finite set of linear endomorphisms of km, and V a linear
subspace, one is interested in conditions for which τ1(v1) = τ2(v2) for v1, v2 ∈ V and
τ1, τ2 ∈ T necessarily implies v1 = v2. The main result is a dimension bound on an
open locus of a determinantal scheme, under which, a general subspace V of di-
mension n ≤m/2 satisfies this property. By specializing to permutations composed
by coordinate projections and computing the dimension of the corresponding open
subscheme, we obtain the unlabeled sensing theorem of [UHV18].
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CHAPTER 1

Resolution of ideals associated to subspace
arrangements

A subspace arrangement V is a finite collection V1, . . . , Vn of vector subspaces of
a given vector space V over a field K. Several geometric objects can be associated
to V and their investigation has attracted the attention of many researchers, see for
example Björner [Bjö94], De Concini and Procesi [DCP95] and Björner, Peeva and
Sidman [BPS05]. Subspace arrangements interplay as well with multigraded com-
mutative algebra and geometric computer vision, see [AST13], [Con07], [CS10],
and [CDNG18], where a subspace arrangement V gives rise to a multigraded ideal,
called the multiview ideal.

In this chapter we consider the product J of the ideals generated by the Vi’s
in the polynomial ring S = SymK(V ). In [CH03] a primary decomposition of J is
presented. It is indeed a “combinatorial” decomposition since the ideals involved
are powers of ideals generated by sums of the Vi’s. From the primary decomposition
one reads immediately that J is saturated from degree n. This is the key ingredient
of the proof in [CH03] asserting the minimal free resolution of J is linear, i.e. the
Castelnuovo-Mumford regularity of J is exactly n. In [Der07] Derksen proved that
the Hilbert function of J is a combinatorial invariant, that is, it just depends on
the rank function:

rkV ∶ 2
[n]
→ N, A ⊆ [n], rkV(A) = dimK ∑

i∈A
Vi.

As observed by Derksen, since the resolution is linear, this implies that the algebraic
Betti numbers of J are themselves combinatorial invariants. Attached to the rank
function we have a discrete polymatroid

P(V) = {x ∈ Nn ∶ ∑
i∈A

xi ≤ rkV(A) for all A ⊆ [n]}

that plays a role in the sequel.
The goal of the chapter is to describe the minimal free resolution of J and give

an explicit formula for the Betti numbers and for the projective dimension. Indeed
we prove that the minimal free resolution of J can be realized as a subcomplex of
the tensor product of the Koszul complexes associated with generic generators of
the Vi. Such a resolution is supported on the subpolymatroid

P(V)
∗
= {x ∈ Nn ∶ ∑

i∈A
xi ≤ rkV(A) − 1 for all ∅ ≠ A ⊆ [n]}

of P(V) whose rank function rk∗V is obtained by the so-called Dilworth truncation

rk∗V(A) = min{

p

∑
i=1

rkV(Ai) − p ∶ A1, . . . ,Ap is a partition of A} .
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It turns out that the (algebraic) Betti numbers βi(J) of J are given by:

∑
i≥0

βi(J)z
i
=∑
i≥0

γi(V)(1 + z)
i

where γi(V) = #{x ∈ P(V)∗ ∶ ∣x∣ = i} and the projective dimension of J is given by
the formula:

projdimJ = rk∗V([n]) = min{

p

∑
i=1

rkV(Ai) − p ∶ A1, . . . ,Ap is a partition of [n]} .

The formulas for the Betti numbers and the projective dimension hold over any
base field K while the description of the minimal free resolution depends on the
choice of generic bases (in a precise sense, see 1.1) of the Vi’s whose existence is
guaranteed only over an infinite base field.

Our results apply indeed to an entire family of ideals associated with the sub-
space arrangement that makes possible inductive arguments. As a by-product we
prove that the ideal J has linear quotients.

A. Notation and basic facts

Let K be an infinite field and V a K-vector space of dimension d. Let S be
the symmetric algebra of V , i.e. a polynomial ring over K of dimension d. Let
V = V1, . . . , Vn be a collection of non-zero K-subspaces of V . Let di = dimK Vi.
Such a collection V is called a subspace arrangement of dimension (d1, . . . , dn). For
i ∈ [n] let {fij ∶ j ∈ [di]} be an ordered K-basis of Vi. The arrangement of vectors

{fij ∶ i ∈ [n] and j ∈ [di]}

is called a collection of bases of V. Here and in the following for u ∈ N we denote by
[u] the set {1, . . . , u}. As usual for i ∈ [n] we will denote by ei ∈ Nn the vector with
zeros everywhere except a 1 at position i and for a ∈ Nn we set ∣a∣ = a1 +⋯ + an.

For every a = (a1, . . . , an) ∈ Nn with ai ≤ di we define a K-subspace of V by

Wa = ⟨fij ∶ i ∈ [n] and j ∈ [ai]⟩,

which clearly depends on the subspace arrangement but also on the collection of
bases chosen.

Assumption 1.1. Given V = V1, . . . , Vn we assume that the collection of bases
{fij} is general in the sense that for all a = (a1, . . . , an) ∈ Nn with ai ≤ di the
dimension of Wa is the largest possible.

A collection of bases satisfying 1.1 always exists (here we use the fact that the
base field is infinite). In other words, the subspace arrangement can be special with
inclusions and even equalities allowed, but for each Vi we pick a general basis.

For later purposes we define two discrete polymatroids associated to the sub-
space arrangement V = V1, . . . , Vn. For general facts and terminology on poly-
matroids we refer the reader to the classical paper by Edmonds [Edm70] and to
monographs [Fuj05] and [Mur98] for modern accounts. The subspace arrangement

V gives rise to the rank function rkV ∶ 2
[n] → N defined by

rkV(A) = dimK ∑
i∈A

Vi

and the associated discrete polymatroid:
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P(V) = {x ∈ Nn ∶ ∑
i∈A

xi ≤ rkV(A) for all A ⊆ [n]} .

Let us denote by rkV −1 ∶ 2[n] → N the function that takes a non-empty A ⊂ [n]
to rkV(A)−1 and takes the value 0 at ∅. This function defines the discrete polytope

P(V)
∗
= {x ∈ Nn ∶ ∑

i∈A
xi ≤ (rkV −1)(A) for all A ⊆ [n]} .

Proposition 1.2. The set P(V)∗ is a discrete polymatroid with associated rank

function the so-called Dilworth truncation rk∗V ∶ 2
[n] → N of rkV −1 defined as

rk∗V(A) = min{

p

∑
i=1

rkV(Ai) − p ∶ A1, . . . ,Ap is a partition of A}

if A ≠ ∅ and rk∗V(∅) = 0.

Proof. Properties (a),(b),(c),(d) in [Edm70, p.12] characterize the rank func-
tions of discrete polymatroids, see also [HH02]. For rk∗V only submodularity (c) is
not obvious. In the language of Fujishige’s monograph [Fuj05], the function rkV −1
is intersecting-submodular, meaning that for any A,B ⊂ [n] such that A ∩B ≠ ∅,
we have (rkV −1)(A) + (rkV −1)(B) ≥ (rkV −1)(A ∩B) + (rkV −1)(A ∪B); this fol-
lows from the submodularity of rkV . According to Theorem 2.5 in [Fuj05], there
is a unique submodular function inducing P(V)∗. By Theorem 2.6 in [Fuj05] that
function is the Dilworth truncation of rkV −1, which is exactly rk∗V . �

In other words, rk∗V is the unique rank function such that:

P(V)
∗
= {x ∈ Nn ∶ ∑

i∈A
xi ≤ rk∗V(A) for all A ⊆ [n]} .

In particular,

max{∣x∣ ∶ x ∈ P(V)
∗
} = rk∗V([n]).

We collect now some simple facts about the vector spaces Wa associated to a
given subspace arrangement V and their relations with the two polymatroids just
introduced.

We have:

Lemma 1.3. Assume that there is a nontrivial linear dependence relation among
the generators of Wa involving one of the generators of Vq. Then Vq ⊆Wa−eq .

Proof. For the given q let p be the largest index such that fqp appears in
a nontrivial linear dependence relation among the generators of Wa. This implies
that fqp ∈Wb with b = (b1, . . . , bn) and bk = ak for k ≠ q and bq = p− 1. But because
of the choice of the fij ’s this implies that Vq ⊆Wb ⊆Wa−eq . �

Lemma 1.4. Set T = {i ∈ [n] ∶ Vi ⊆ Wa} and b ∈ Nn with bi = 0 if i ∈ T and
bi = ai otherwise. Furthermore set c = a − b. Then

(1) Wa =Wb +∑i∈T Vi,
(2) dimKWb = ∣b∣, i.e. the elements fij with i /∈ T and j ≤ ai are linearly

independent,
(3) Wb ∩ (∑i∈T Vi) = 0,
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(4) Wc = ∑i∈T Vi,
(5) dimKWa = ∑i/∈T ai + rkV(T ).

Proof. (1) is obvious. (2) follows from Lemma 1.3 and the definition of T .
For (3) we set u ∈ Nn with ui = di if i ∈ T and ui = ai otherwise. Then we observe
that, by (1) we have Wa = Wu. If, by contradiction, Wb ∩ (∑i∈T Vi) is non-zero
then there is a non-trivial linear relation among the generators of Wu involving
an element fij with i /∈ T . Applying Lemma 1.3 we have that Vi ⊆ Wu = Wa, a
contradiction with the definition of T . Finally (4) and (5) follow from (1)-(3). �

Proposition 1.5. We have:

dimKWa = min{∑
i/∈T

ai + rkV(T ) ∶ T ⊆ [n]}

Proof. For every T ⊆ [n] we have

Wa ⊆ ⟨fij ∶ i /∈ T and j ≤ ai⟩ +∑
i∈T

Vi

and therefore

dimKWa ≤∑
i/∈T

ai + rkV(T ).

It remains to prove that at least for one subset T we have equality and this follows
from Lemma 1.4 part (5). �

Corollary 1.6. The following conditions are equivalent:

(1) dimKWa = ∣a∣, i.e. the fij’s with j ≤ ai are linearly independent.
(2) ∑i∈T ai ≤ rkV(T ) for every T ⊆ [n], i.e. a ∈ P(V).

Proof. The implication (1) Ô⇒ (2) is obvious. The implication (2) Ô⇒
(1) follows from Proposition 1.5. �

Proposition 1.7. The following conditions are equivalent:

(1) for every i one has Vi /⊆Wa.
(2) for every ∅ ≠ T ⊆ [n] one has ∑i∈T ai ≤ rkV(T ) − 1, i.e. a ∈ P(V)∗.

Proof. (1) Ô⇒ (2): By virtue of Lemma 1.3 we know that the fij ’s with
j ≤ ai are linearly independent. Hence for every non-empty T ⊆ [n] we have

∑
i∈T

ai = dimK⟨fij ∶ i ∈ T and j ≤ ai⟩ ≤ rkV(T )

and, if equality holds, we have ∑i∈T Vi ⊆Wa contradicting the assumption.
(2) Ô⇒ (1). The assumption and Corollary 1.6 imply that the fij ’s’s with

j ≤ ai are linearly independent. By contradiction suppose that T = {i ∈ [n] ∶ Vi ⊆
Wa} is not empty. By Lemma 1.4 (5) we have

dimKWa =∑
i/∈T

ai + rkV(T )

and by hypothesis rkV(T ) > ∑i∈T ai. It follows that dimKWa > ∣a∣ which is clearly
a contradiction. �
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B. Ideals associated to subspace arrangements and poset ideals

Given a subspace arrangement V = V1, . . . , Vn of dimension (d1, . . . , dn) we
consider the ideal Ii of S generated by Vi and set

J = J1J2⋯Jn.

We fix a collection of bases f = {fij ∶ i ∈ [n] and j ∈ [di]} of V satisfying Assumption
1.1. On Nn we consider the standard poset structure defined as a ≥ b if ai ≥ bi for
every i ∈ [n]. Indeed (Nn,≤) is a distributive lattice with

a ∧ b = (min(a1, b1), . . . ,min(an, bn))

and

a ∨ b = (max(a1, b1), . . . ,max(an, bn)).

Consider the hyper-rectangle D = [d1] × ⋯ × [dn] ⊂ Nn with the induced poset
structure. A poset ideal of D is a subset P ⊆ D such that if a, b ∈ D and a ≤ b ∈ P
implies a ∈ P .

For every a ∈ D we set fa = ∏
n
i=1 fiai and observe that J = (fa ∶ a ∈ D).

Furthermore for a ∈ Nn with ai ≤ di we denote by Ia the ideal of S generated by
the vector space Wa = ⟨fij ∶ i ∈ [n] and j ≤ ai⟩. For every poset ideal P of D we
define an ideal of the polynomial ring S as follows:

JP = (fa ∶ a ∈ P ).

Clearly JP depends on V but also on the collection of bases f that we consider.
In particular J = JD and J∅ = {0}. Let a be a maximal element of a non-empty poset
ideal P . Then Q = P ∖{a} is itself a poset ideal. Furthermore set b = a−(1,1, . . . ,1).
With this notation our first goal is to prove:

Theorem 1.8.

(1) JP has a linear resolution.
(2) If fa /∈ Ib then JQ ∶ (fa) = Ib and if fa ∈ Ib then fa ∈ JQ i.e. JQ ∶ (fa) = S.

Proof. We prove the assertions by induction on the cardinality of P . Both
assertions are obvious when P has only one element. Note that (2) actually implies
(1) because we have either JQ = JP and we conclude by induction or we have the
short exact sequence

0→ S/Ib(−n)→ S/JQ → S/JP → 0

and again we conclude by induction. So it remains to prove (2). Set A = {u ∈ D ∶

u < a}. By construction A ⊆ Q is a poset ideal and

Ibfa ⊆ JA ⊆ JQ ⊆ Ib.

Hence

Ib ⊆ JQ ∶ fa ⊆ Ib ∶ fa.

Since Ib is prime we have that Ib = JQ ∶ fa provided fa /∈ Ib.
It remains to prove that if fa ∈ Ib then actually fa ∈ JQ. Since Ib is prime we

have that fiai ∈ Ib for at least one i ∈ [n] and this implies, by the choice of the
fij ’s, that Vi ⊆ Wb. Therefore the set T = {i ∈ [n] ∶ Vi ⊆ Wb} is not empty. Up
to a permutation of the coordinates we may assume that T = {1, . . . ,m} for some
m > 0. Set a′ = (a1, . . . , am), A′ = {u′ ∈ Nm ∶ u′ < a′} and b′ = (b1, . . . , bm). We
have Ib′ ⊆ JA′ ∶ fa′ by construction and Wb′ = ∑i∈[m] Vi by Lemma 1.4 (4), i.e. Ib′
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is the maximal homogeneous ideal of the sub-polynomial ring S′ of S generated by

∑i∈[m] Vi. Since the generators of JA′ and fa′ already belong to S′, we have that fa′

is in the saturation of JA′ in S′. Note that A′ is a poset ideal of D′ = [d1]×⋅ ⋅ ⋅×[dm]

and ∣A′∣ ≤ ∣A∣ < ∣P ∣. Hence, by induction, JA′ has a linear resolution and therefore
it is saturated from degree m and on. It follows that fa′ ∈ JA′ and then

fa = fa′
n

∏
i=m+1

fiai ∈ JA′

⎛

⎝

n

∏
i=m+1

fiai
⎞

⎠
⊆ JA ⊆ JQ

as desired. �

Theorem 1.8 has some important corollaries. We set

DV = (1, . . . ,1) +P(V)
∗
= {a ∈D ∶∑

i∈T
ai − ∣T ∣ ≤ rkV(T ) − 1 for every ∅ ≠ T ⊆ [n]} .

Corollary 1.9. Let P be a poset ideal of D. Set P ′ = P ∩ DV . We have
JP = JP ′ . In particular, J = JDV .

Proof. Using the notations of Theorem 1.8 we have seen that fa ∈ JQ iff
fa ∈ Ib. The latter condition holds iff Vi ⊆ Ib for some i and this is equivalent, in
view of Proposition 1.7, to the the fact that b /∈ P(V)∗. In other words, if a ∈ P ∖DV
then fa ∈ JQ, i.e. JP = JQ. Iterating the argument one obtains JP = JP ′ . �

In view of Corollary 1.9 when studying the ideal JP we may assume P ⊆DV .

Corollary 1.10. Let P ⊆DV be a poset ideal. We have:

(1) JP has linear quotients. More precisely, any total order on P that refines
the partial order ≤ gives rise to a total order on the generators of JP that
have linear quotients.

(2) We have:

∑
j≥0

βi(JP )zi = ∑
a∈P

(1 + z)∣a∣−n.

Proof. (1) follows immediately from Theorem 1.8 part (2) while (2) follows
from the short exact sequence used in the proof of Theorem 1.8. �

Let us single out the special case

Corollary 1.11. (1) J is minimally generated by fa with a ∈DV .
(2) J has linear quotients. Indeed ordering the generators fa with a ∈ DV

according to a linear extension of the partial order ≤ gives linear quotients.
(3) The Betti numbers of J are given by the formula:

∑
i≥0

βi(J)z
i
= ∑
a∈DV

(1 + z)∣a∣−n =∑
i≥0

γi(V)(1 + z)
i

where γi(V) = #{x ∈ P(V)∗ ∶ ∣x∣ = i}.
(4) The projective dimension projdimJ of J is the rank of P(V)∗, i.e.

projdimJ = min{

p

∑
i=1

rkV(Ai) − p ∶ A1, . . . ,Ap is a partition of [n]} .

We can go one step further and characterize the Betti numbers of Jν for ν ∈ N
in terms of P (V)∗:

6



Proposition 1.12. For ν ∈ N we have projdimJν = projdimJ . More precisely,
βi(J

ν) is the degree rank∗V([n]) polynomial

βi(J
ν
) =∑

j≥i
(
j

i
) ∑
x∈P (V)∗∶∣x∣=j

(
x1 + ν − 1

ν − 1
)⋯(

xn + ν − 1

ν − 1
)

Proof. Jν is a product of linear ideals associated to the subspace arrangement
Vν = (Vij = Vi ∶ i ∈ [n], j ∈ [ν]). Moreover, P (Vν)∗ consists of those (xij ∶ i ∈
[n], j ∈ [ν]) for which (∑j∈[ν] x1j , . . . ,∑j∈[ν] xnj) ∈ P (V)∗. Each x = (xi ∶ i ∈

[n]) ∈ P (V)∗ induces (
x1+ν−1
ν−1

)⋯(
xn+ν−1
ν−1

) elements of P (Vν)∗ and each element of
P (Vν)∗ is associated with a unique element of P (V)∗. Then the claim follows from
Corollary 1.11 (3). �

In [Der07] Derksen described a combinatorial procedure for the recursive com-
putation of the Betti numbers of J in terms of the Betti numbers of the JT =∏i∈T Ii,
for all T ⊆ [n]. His proof made use of a theorem in Sidman’s PhD thesis [Sid02b]
concerning the vanishing of the homologies of a complex that involves all such prod-
ucts. Translating Derksen’s formula into the context of the polymatroid P (V)∗

yields a recursive formula for the γi(VT )’s; here VT denotes the subspace arrange-
ment that involves only the subspaces indexed by T :

Proposition 1.13. For T ⊆ [n] we have for every ` = 0, . . . , rkV(T ) − 1

∑
S⊆T

∑
j=0,...,#S

(−1)#S−j
(
#S

j
)γ`−j(VS) = 0

We close with a conjecture supported by numerical computations:

Conjecture 1.14. J has linear quotients for any ordering of the fa’s.

C. Irredundant primary decomposition and stability of associated
primes

We keep the notation of the previous section. As noted earlier, the key in-
gredient in proving reg(J) = n was a description given in [CH03] of a (possibly
redundant) primary decomposition of J , i.e.

J = ⋂
∅≠A⊆[n]

I#A
A

where for A ⊆ [n] we have set IA = ∑i∈A Ii. Here one notes that IA is an ideal
generated by linear forms and hence prime with primary powers. The first reason
why the decomposition can be redundant is that different components might have
the same radical. We consider the set of the so-called flats of the polymatroid P (V)

F (V) = {B ⊆ [n] ∶ rkV(B) < rkV(A) for all B ⊊ A ⊆ [n]}

and observe that if A ⊆ [n] and B is its closure, i.e. B = {i ∶ rkV(A) = rkV(A∪{i})} ∈

F (V) then I#A
A ⊇ I#B

B . Hence

J = ⋂
B∈F (V)

I#B
B

is still a primary decomposition and now the radicals of the components are distinct.
To get an irredundant primary decomposition it is now enough to identify for which
B ∈ F (V) the prime ideal IB is associated to J .
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Proposition 1.15. For B ∈ F (V) we have that the prime ideal IB is associated
to J if and only if rk∗V(B) = rkV(B) − 1.

Proof. Set P = IB . Since B ∈ F (V), we have that JSP = ∏i∈B IiSP . We
have that P is associated to J if and only if P is associated to ∏i∈B Ii. So we
may assume right away that B = [n] and I[n] is the graded maximal ideal of S.

By part (4) of Corollary 1.11 we have projdimJ = rk∗V([n]) and by the Auslander-
Buchsbaum formula projdimJ = rkV([n]) − 1 if and only if I[n] ∈ Ass(S/J). Hence

I[n] ∈ Ass(S/J) if and only if rk∗V([n]) = rkV([n]) − 1. �

Summing up we have:

Theorem 1.16. An irredundant primary decomposition of J is given by

J =⋂
B

I#B
B

where B varies in the set {B ∈ F (V) ∶ rk∗V(B) = rkV(B) − 1}. In particular,

Ass(S/J) = {IB ∶ B ∈ F (V) and rk∗V(B) = rkV(B) − 1}.

Proof. To obtain an irredundant primary decomposition of J it is enough

to remove from the possibly redundant primary decomposition J = ⋂B∈F (V) I
#B
B

the components not corresponding to associated primes. Hence by 1.15 we get
the irredundant primary decomposition described in the statement. The assertion
about the associated primes in then an immediate consequence. �

Corollary 1.17. Suppose that the subspace arrangement V = V1, . . . , Vn of
V is linearly general, i.e. dim∑i∈A Vi = min{∑i∈A di, d} for all A ⊆ [n] where
di = dimVi and d = dimV . Assume n > 1 and di < d for all i and set Ii = (Vi). We
have Πn

i=1Ii = ∩
n
i=1Ii if and only if d1 + d2 + ⋅ ⋅ ⋅ + dn < d + n − 1.

Proof. If d1 + d2 + ⋅ ⋅ ⋅ + dn ≤ d then the assertion is obvious. So we may
assume d1 + d2 + ⋅ ⋅ ⋅ + dn > d. In particular, I[n] is the maximal ideal m of S and
rkV([n]) = d. It has been already observed in [CH03] that for a linearly general
subspace arrangement a primary decomposition of the product ideal J is given by
J = ∩ni=1Ii ∩m

n. Therefore we have that J = ∩ni=1Ii if and only if m is not associated
to J . In view of the characterization given in 1.16, the latter is equivalent to
rk∗V([n]) < rkV([n]) − 1 = d − 1, that is, ∑

p
i=1 rkV(Ai) − p < d − 1 for some partition

A1, . . . ,Ap of [n]. Summing up, we have to prove that the following conditions are
equivalent:

(1) d1 + d2 + ⋅ ⋅ ⋅ + dn < d + n − 1
(2) ∑

p
i=1 rkV(Ai) − p < d − 1 for some partition A1, . . . ,Ap of [n].

That (1) implies (2) is clear, just take p = n and Ai = {i}. Vice versa, let A1, . . . ,Ap
be a partition of [n] such that ∑

p
i=1 rkV(Ai) − p < d − 1. If ∑j∈Av dj ≥ d for some

v one has rkV(Av) = d, contradicting the assumption. Hence ∑j∈Ai dj < d for all
i. By assumption this implies that rkV(Ai) = ∑j∈Ai dj for all i. It follows that
d1 + d2 + ⋅ ⋅ ⋅ + dn = ∑

p
i=1 rkV(Ai) < d − 1 + p ≤ d − 1 + n as desired. �

Now we turn our attention to the properties of the powers Ju of the ideal
J with u > 0. Clearly Ju is associated to the subspace arrangement Vu = {Vij ∶
(i, j) ∈ [n] × [u]} with Vij = Vi for all j. The polymatroids and rank functions
associated to Vu are very tightly related to those of V as we now explain. Since Vu
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is indexed on [n] × [u] the domain of the associated rank function rkVu is 2[n]×[u].
Let π ∶ [n] × [u]→ [n] be the projection on the first coordinate. We have:

Lemma 1.18. For every subset A ⊆ [n] × [u] we have

rkVu(A) = rkV(π(A)) = rkVu(π
−1π(A))

and
rk∗Vu(A) = rk∗V(π(A)) = rk∗Vu(π

−1π(A)).

Proof. For the first assertion one observes that

rkVu(A) = dim ∑
(i,j)∈A

Vi,j = dim ∑
i∈π(A)

Vi = rkV(π(A)).

For the second, set ν = rk∗Vu(A) and let A1, . . . ,Ap be a partition of A such that
ν = ∑

p
c=1 rkVu(Ac) − p. If for some i, j one has π(Ai) ∩ π(Aj) ≠ ∅ then let k ∈

π(Ai) ∩ π(Aj). Let A′
1, . . . ,A

′
q be obtained from A1, . . . ,Ap by replacing Ai with

Ai ∪ {(a, b) ∈ Aj ∶ a = k} and Aj with {(a, b) ∈ Aj ∶ a ≠ k} if {(a, b) ∈ Aj ∶ a ≠

k} ≠ ∅ (in this case q = p), or simply by removing Aj if {(a, b) ∈ Aj ∶ a ≠ k} =

∅ (and in this case q = p − 1). One can check that the new partition satisfies

∑
q
c=1 rkVu(A

′
c)− q ≤ ν and hence ∑

q
c=1 rkVu(A

′
c)− q = ν. We may repeat the process

until we obtain a partition A1, . . . ,As of A such that ν = ∑
s
c=1 rkVu(Ac) − s and

π(Ai) ∩ π(Aj) = ∅ for every i ≠ j. Then π(A1), . . . , π(As) is a partition of π(A)

and rk∗Vu(A) = ν = ∑
s
c=1 rkVu(Ac)−s = ∑

s
c=1 rkV(π(Ac))−s ≥ rk∗V(π(A)). Vice versa

if B1, . . . ,Bs is a partition on π(A) such that ∑
s
c=1 rkV(Bc) − s = rk∗V(π(A)) then

with Ai = A ∩ π−1(Bi) one gets a partition A1, . . . ,As of A such that rk∗Vu(A) ≤

∑
s
c=1 rkVu(Ac) − s = rk∗V(π(A)). �

We obtain:

Theorem 1.19. For every u > 0 we have:

(a) projdimJ = projdimJu,
(b) Ass(S/J) = Ass(S/Ju),
(c) an irredundant primary decomposition of Ju is obtained by raising to

power u the components in the irredundant primary decomposition of J
described in 1.16, i.e.

Ju =⋂
B

Iu#B
B

where B ∈ F (V) and rk∗V(B) = rkV(B) − 1.

Proof. (a) By 1.11(4) projdimJ = rk∗V([n]) and projdimJu = rk∗Vu([n]× [u])
and by 1.18 rk∗V([n]) = rk∗Vu([n] × [u]).

Assertions (b) and (c): by 1.16 the associated primes of Ju arise form subsets
C ⊆ [n] × [u] such that rk∗Vu(C) = rkVu(C) − 1 and C ∈ F (Vu), i.e. rkVu(C) <

rkVu(A) for all C ⊊ A. The second condition together with 1.18 implies that
C = π−1(B) with B = π(C). But then, again by 1.18, rk∗Vu(C) = rkVu(C) − 1
is equivalent to rk∗V(B) = rkV(B) − 1. Summing up, F (Vu) = {π−1(B) ∶ B ∈

F (V)} and hence the associated primes of Ju are exactly the associated primes
of J . The assertion concerning the primary decomposition follows immediately
since #π−1(B) = u#B. �

The established relations 1.18 among the rank functions translate immediately
to the following relation involving the associated polymatroids:
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Proposition 1.20. For every u we have:

P (V
u
)
∗
=

⎧⎪⎪
⎨
⎪⎪⎩

(xij) ∈ N[n]×[u]
∶
⎛

⎝
∑
j∈[u]

x1j , . . . , ∑
j∈[u]

xnj
⎞

⎠
∈ P (V)

∗
⎫⎪⎪
⎬
⎪⎪⎭

.

Since the Betti numbers can be expressed in terms of the points in P (Vu)∗,
using 1.20 one can deduce a formula for the Betti numbers of Ju that just depends
on P (V)∗:

Corollary 1.21. For every u > 0 and every i ≥ 0 one has:

βi(J
u
) = ∑

x∈P (V)∗
(
∣x∣

i
)
n

∏
j=1

(
u + xj − 1

xj
)

Remark 1.22. As a further generalization, instead of the powers Ju of J =

I1I2⋯In one can consider a product of powers of the Ii’s, that is Iu1

1 ⋯Iunn with
(u1, . . . , un) ∈ Nn and the arguments we have presented extend immediately. As-
suming ui > 0 for all i one has:

(a) the results in 1.19 (a), (b), (c) hold with the ideal Ju replaced by Iu1

1 ⋯Iunn
and the exponent u#B replaced by ∑i∈B ui.

(b) The polymatroid associated to the subspace arrangement V(u1,...,un) = {Vij}
with Vij = Vi for all j ∈ [ui] is:

P (V
(u1,...,un))∗ =

⎧⎪⎪
⎨
⎪⎪⎩

(xij) ∈ N[u1]×⋅⋅⋅×[un] ∶
⎛

⎝
∑

j∈[u1]
x1j , . . . , ∑

j∈[un]
xnj

⎞

⎠
∈ P (V)

∗
⎫⎪⎪
⎬
⎪⎪⎭

.

(c) The formula for the Betti numbers is:

βi(I
u1

1 ⋯Iunn ) = ∑
x∈P (V)∗

(
∣x∣

i
)
n

∏
j=1

(
uj + xj − 1

xj
)

The case i = 0 of the formula 1.22(c) deserves a special attention because of
its relation with the so-called multiview variety that arises in geometric computer
vision. Let us recall from [AST13, Con07, CS10, CDNG18, Li18] that the
subspace arrangement V defines a multiprojective variety whose coordinate ring
can be identified with the subring

A =K[V1y1, . . . , Vnyn]

of the Segre product K[xiyj ∶ i = 1, . . . , d and j = 1, . . . n]. The ring A is Zn-graded
by deg yj = ej ∈ Zn. Given u = (u1, . . . , un) ∈ Nn, the u-th homogeneous component
Au of A is V u1

1 ⋯V unn and its dimension equals to β0(I
u1

1 ⋯Iunn ). We get a relatively
simple and new proof of an improved version of the main result of [Li18]:

Theorem 1.23. For every u = (u1, . . . , un) ∈ Nn the multigraded Hilbert func-
tion of the coordinate ring A =K[V1y1, . . . , Vnyn] of the multiview variety associated
with the subspace arrangement V = {V1, . . . , Vn} is given by:

dimK Au = ∑
x∈P (V)∗

n

∏
j=1

(
uj + xj − 1

xj
)

In particular, the multidegree of A is multiplicity free and supported on the maximal
elements of the polymatroid P (V)∗.
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D. Resolution of JP

For every subspace arrangement V1, . . . , Vn of dimension (d1, . . . , dn) with a
given collection of bases f = {fij ∶ i ∈ [n] and j ≤ di} satisfying Assumption 1.1 and
for every poset ideal P of D = [d1]×⋯× [dn] we have proved that the ideal JP has
a linear resolution and that the Betti numbers are combinatorial invariants. Our
goal is now to describe explicitly a minimal free resolution of JP . We start with
the “generic” case.

D.I. Resolution of JP : the generic case. Assume firstly that, for the given
(d1, . . . , dn), the Vi’s are as generic as possible. That is, we assume that there is a
basis {xij ∶ i ∈ [n] and j ∈ [di]} of the ambient vector space such that Vi is generated
by {xij ∶ j ∈ [di]}. Note that the collection of bases x = {xij ∶ i ∈ [n] and j ∈ [di]}
satisfy the Assumption 1.1 and we will consider the ideals JP with respect to x. In
this case

S =K[xij ∶ i ∈ [n] and j ∈ [di]].

The corresponding ideal J is the product of transversal ideals Ii = (xij ∶ j ∈ [di])
because each factor uses a different set of variables. Then the resolution of J is
given by the tensor product of the resolutions of the Ii’s, the (truncated) Koszul

complex on the set xij with j ∈ [di]. More explicitly, let K(i) be the Koszul complex
on xij with j ∈ [di] with the 0-th component removed and homologically shifted so
that

K
(i)
j = ∧

j+1Sdi .

This is sometimes called the first syzygy complex of the full Koszul complex.
Denote by ei1, . . . , eidi the canonical basis of Sdi . For every non-empty subset
Ai = {j1, j2, . . .} of [di] with j1 < j2 < . . . we have the corresponding basis element

eAi = eij1 ∧ eij2 ∧ . . . of K(i) in homological degree ∣Ai∣ − 1. Then

K = K
(d1,...,dn) = K(1)

⊗K
(2)

⊗⋯⊗K
(n)

is the free resolution of J = J1⋯Jn. An S-basis of K can be described as follows. Let
A = (A1, . . . ,An) with Ai a non-empty subset of [di]. Set eA = eA1 ⊗eA2 ⊗⋯⊗eAn ∈
K. Then the homological degree of eA is ∑

n
i=1 ∣Ai∣ − n and the set of all eA’s form

an S-basis of K. The differential ∂K of K can be described as follows:

∂K(eA) = ∑
i∈[n],∣Ai∣>1

∑
b∈Ai

(−1)σ(i,b)xib eA1 ⊗ ⋅ ⋅ ⋅ ⊗ eAi∖{b} ⊗⋯⊗ eAn

where

σ(i, b) =∑
j<i

(∣Aj ∣ − 1) + ∣{c ∈ Ai ∶ c < b}∣.

For a given poset ideal P of D we define

KP = K
(d1,...,dn)
P = ⊕SeA

where the sum is extended to all the eA such that (max(A1), . . . ,max(An)) ∈ P .
Clearly KP is a subcomplex of K and (KP )0 = ⊕a∈PSe1a1 ⊗ e2a2⋯⊗ enan and our
goal is to prove:

Theorem 1.24. The complex KP is a minimal free resolution of JP .
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Augmenting the complex KP with the map

(KP )0 → S

sending e1a1 ⊗ e2a2⋯ ⊗ enan to fa = x1a1 . . . xnan one gets a complex K̃P and we
will actually prove it is a resolution of S/JP . We need the following properties that
follow immediately from the definitions.

Remark 1.25.

(1) An inclusion P1 ⊆ P2 of poset ideals of D induces an inclusion of the

associated complexes K̃P1 ⊆ K̃P2 .
(2) Given two poset ideals Q1,Q2 of D both Q1 ∪Q2 and Q1 ∩Q2 are poset

ideals and one has K̃Q1 ∩ K̃Q2 = K̃Q1∩Q2 and K̃Q1 + K̃Q2 = K̃Q1∪Q2 .
(3) Given two poset ideals Q1,Q2 of D one has a short exact sequence of

complexes

0→ K̃Q1∩Q2 → K̃Q1 ⊕ K̃Q2 → K̃Q1∪Q2 → 0

where the first map sends y to (y, y) and the second sends (y, z) to y − z.

Later on we will also need the following assertion that is part of the folklore of
the subject.

Lemma 1.26. Let S be a positively graded ring and M a finitely generated graded
S-module. Let x1, . . . , xh be elements of degree 1 of S and set I = (x1, . . . , xh).
Denote by HS(M,z) the Hilbert series of M . Assume HS(M/IM, z) = HS(M,z)(1−
z)h. Then x1, . . . , xh is an M -regular sequence.

Proof. For i = 0,1, . . . , h we set Ii = (x1, . . . , xi) and Ni =M/IiM . Denote by
Ti the kernel of multiplication by xi+1 on Ni. For i < h we have an exact sequence:

0→ Ti → Ni(−1)→ Ni → Ni+1 → 0

and hence

HS(Ni+1, z) = HS(Ni, z)(1 − z) +HS(Ti, z)

Taking into consideration that N0 =M it follows that for every j ≥ 0 one has

HS(Nj , z) = HS(M,z)(1 − z)j +∑
i<j

HS(Ti, z)(1 − z)
j−1−i.

Setting j = h and using the assumption one has:

∑
i<h

HS(Ti, z)(1 − z)
h−1−i

= 0

Since HS(Ti, z) are series with non-negative terms and the least degree component
of (1 − z)h−1−i is positive, HS(Ti, z) = 0 for every i, that is Ti = 0 for every i. �

Theorem 1.27. The complex K̃P is a minimal free resolution of S/JP .

Proof. By construction we have that H0(K̃P ) = S/JP and hence we have to

show that Hi(K̃P ) = 0 for i > 0. We do it by induction on ∣P ∣. The case ∣P ∣ = 1 is
obvious. Let M be the set of maximal elements in P .

If ∣M ∣ = 1, say M = {a} with a = (a1, . . . , an), then P = {b ∈D ∶ b ≤ a} and JP =

∏
n
i=1(xi1, . . . , xiai). Then a resolution of S/JP is given by the augmented complex

obtained by the tensor product of the truncated Koszul complexes associated to
xi1, . . . , xiai which is exactly K̃P .
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If instead ∣M ∣ > 1, sayM = {m1, . . . ,mv} setQ1 = {b ∈D ∶ b ≤mi for some i < v}
and Q2 = {b ∈ D ∶ b ≤ mv} so that P = Q1 ∪Q2. By 1.25(3) we have a short exact
sequence of complexes:

0→ K̃Q1∩Q2 → K̃Q1 ⊕ K̃Q2 → K̃P → 0.

The associated long exact sequence on homology together with the fact that,
by induction, we already know the statement for Q1,Q2 and Q1 ∩Q2, imply that
Hi(K̃P ) = 0 for i > 1 and that H1(K̃P ) fits in the exact sequence:

0→H1(K̃P )→ S/JQ1∩Q2 → S/JQ1 ⊕ S/JQ2 → S/JP → 0

But JQ1∩Q2 = JQ1 ∩ JQ2 and JP = JQ1 + JQ2 because of Lemma 1.28 and then

it follows that H1(K̃P ) vanishes as well. �

Lemma 1.28. Let P1, P2 be poset ideals of D. Then JP1∩P2 = JP1 ∩ JP2 and
JP1∪P2 = JP1 + JP2 .

Proof. The second assertion and the inclusion JP1∩P2 ⊆ JP1 ∩ JP2 are obvi-
ous. For the other inclusion, since the ideals involved are monomial ideals, the
intersection JP1 ∩ JP2 is generated by LCM(fa, fb) with a ∈ P1 and b ∈ P2. But
fa∧b∣LCM(fa, fb) and a ∧ b ∈ P1 ∩ P2. �

D.II. Resolution of JP : arbitrary configurations. Now let us return
to the case of an arbitrary subspace arrangement V = V1, . . . , Vn of dimension
(d1, . . . , dn) and fix a collection of bases {fij} satisfying Assumption 1.1. Con-
sider the K-algebra map:

T =K[xij ∶ i ∈ [n] and j ∈ [di]]→ S

sending xij to fij which, without loss of generality, we may assume is surjective.
We consider S as a T -module via this map. We have:

Theorem 1.29. For every poset ideal P ⊆DV the complex K̃P⊗TS is a minimal
S-free resolution of S/JP .

Proof. In the proof we need to distinguish the ideal JP associated with the
arbitrary subspace arrangement V1, . . . , Vn and collection of bases f with the one,
that we will denote by JgP , associated with the generic arrangement of dimension
(d1, . . . , dn) and collection of bases x. Let U be the kernel of the map T → S. By
construction, U is generated by h = ∑

n
i=1 di −dimK ∑

n
i=1 Vi linear forms and one has

T /JgP ⊗T S = T /(JgP +U) = S/JP .

Since by Theorem 1.27 K̃P is a resolution of T /JgP it is enough to prove that the
generators of U form a T /JgP -regular sequence. Note that by Corollary 1.10 T /JgP
and S/JP have the same Betti numbers and hence their Hilbert series differ only
by the factor (1 − z)h. Then by Lemma 1.26 one concludes that the generators of
U form a T /JgP -regular sequence. �

As a consequence we have that Lemma 1.28 holds for arbitrary subspace con-
figurations:

Corollary 1.30. Let P1, P2 be poset ideals of DV . Then JP1∩P2 = JP1 ∩ JP2

and JP1∪P2 = JP1 + JP2 .
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Proof. The second assertion and the inclusion JP1∩P2 ⊆ JP1 ∩JP2 are obvious.
The short exact sequence of complexes

0→ K̃P1∩P2 ⊗ S → (K̃P1 ⊗ S)⊕ (K̃P2 ⊗ S)→ K̃P1∪P2 ⊗ S → 0

induces an exact sequence in homology that, by virtue of Theorem 1.29, yields the
following short exact sequence:

0→ S/JP1∩P2 → S/JP1 ⊕ S/JP2 → S/JP1 + JP2 → 0

that in turns implies the desired equality. �

As a special case of Theorem 1.29 we have:

Theorem 1.31. For every subspace arrangement V = V1, . . . , Vn the complex
K̃DV ⊗T S is a minimal S-free resolution of S/J .

Remark 1.32. The formulas for the Betti numbers and projective dimension
hold over any base field. The resolution described works provided the base field is
infinite.

E. Examples

Example 1.33. Let k be an infinite field and consider the polynomial ring
S = k[x, y]. Let V1 = V2 = ⟨x, y⟩ and thus J = (x, y)2. Since J is generated by the
2 × 2 minors of a 2 × 3 matrix, its minimal free resolution is well known to be

0→ S(−3)2 φ1
Ð→ S(−2)3 φ0

→ J → 0

φ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y 0
−x y
0 −x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, φ0 = [x2 xy y2]

as seen either by Hilbert-Burch or Eagon-Northcott. We show how to get this res-
olution by Theorem 1.29. First, we consider the generic case as in §D.I. So let
T = [x11, x12, x21, x22] and V gi = ⟨xi1, xi2⟩, i ∈ [2]. The ideal Igi = (xi1, xi2) of T is
resolved by the truncated Koszul complex

0→ T (−2)
[xi2 −xi1]⊺
→ T (−1)2 [xi1 xi2]

→ Igi → 0

with T (−2) free on ei1∧ei2 and T (−1)2 free on ei1, ei2. The tensor product of these
two free resolutions

K̃ ∶ 0→ T (−4)
φ2
Ð→ T (−3)4 φ1

Ð→ T (−2)4 φ0
Ð→ Jg1J

g
2 → 0

φ2 = [x12 − x11 − x22 x21]

φ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x22 0 x12 0
−x21 0 0 x12

0 x22 −x11 0
0 −x21 0 −x11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ0 = [x11x21 x11x22 x12x21 x12x22]

is a minimal free resolution of Jg1J
g
2 . A direct computation shows that for V = V1, V2

we have DV = {(1,1), (1,2), (2,1)}. To obtain the complex K̃DV we must discard

from K̃ the generators

(e11 ∧ e12)⊗ (e21 ∧ e22), e12 ⊗ (e21 ∧ e22), (e11 ∧ e12)⊗ e22, e12 ⊗ e22
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at homological degrees 2,1,1,0 respectively. By Theorem 1.24 the resulting complex

K̃DV ∶ 0→ T (−3)2 φ1
Ð→ T (−2)3 φ0

Ð→ JgDV → 0

φ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x22 x12

−x21 0
0 −x11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

φ0 = [x11x21 x11x22 x12x21]

is a minimal free resolution of JgDV .
Now we must define a map T → S such that for i = 1,2 the map takes xi1, xi2

to k-bases of V1, V2 that satisfy Assumption 1.1. One such map is

x11 ↦ x, x12 ↦ y, x21 ↦ y, x22 ↦ x

The kernel is generated by x11 − x22 and x12 − x21 and Theorem 1.29 together with
Corollary 1.9 assert that

K̃DV ⊗T S ∶ 0→ S(−3)2 φ1
Ð→ S(−2)3 φ0

Ð→ JDV → 0

φ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x y
−y 0
0 −x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

φ0 = [xy x2 y2
]

is a minimal free resolution of JDV = (x, y)2. Up to a permutation of coordinates
this is the same complex as in the beginning of the example.

Example 1.34. With k infinite we let S = k[x, y, z] and consider the subspace
arrangement V given by V1 = V2 = ⟨x, y⟩, V3 = V4 = ⟨y, z⟩. As in Example 1.33 set
T = k[x11, x12, x21, x22, x31, x32, x41, x42] and Igi = (xi1, xi2) for i ∈ [4]. Each of the
Igi is resolved by a truncated Koszul complex

0→ T (−2)
[xi2 −xi1]⊺
→ T (−1)2 [xi1 xi2]

→ Igi → 0

with T (−2) free on ei1∧ei2 and T (−1)2 free on ei1, ei2. The tensor product of these
four free resolutions is a free resolution of Jg = Jg1J

g
2J

g
3J

g
4 and has the form

K̃ ∶ 0→ T (−8)→ T (−7)8
→ T (−6)24

→ T (−5)32
→ T (−4)16

→ Jg → 0

Let us verify those Betti numbers via the formula of part (3) in Corollary 1.11. For
this we need to compute the polymatroid P (Vg)∗. A simple calculation shows that

P (V
g
)
∗
= {a ∈ N4

∶ ai ≤ 1}

γ0(V
g
) = 1, γ1(V

g
) = 4, γ2(V

g
) = 6, γ3(V

g
) = 4, γ4(V

g
) = 1

Applying the formula we get

∑
0≤i≤4

βi(J
g
)zi = (1 + z)0

+ 4(1 + z) + 6(1 + z)2
+ 4(1 + z)3

+ (1 + z)4

and so indeed

β0(J
g
) = 16, β1(J

g
) = 32, β2(J

g
) = 24, β3(J

g
) = 8, β4(J

g
) = 1

Since the maximal elements of DV are

(1,2,1,2), (2,1,2,1), (2,1,1,2), (1,2,2,1)
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in the above complex we must discard all generators that simultaneously involve e12

and e22 or e32 and e42 to obtain a minimal free resolution of JgDV . From this we

see that there will be no components in homological degrees 4 and 3 in K̃DV . The
resolution has the form

K̃DV ∶ 0→ T (−6)4
→ T (−5)12

→ T (−4)9
→ Jg → 0

The minimal free resolution of J is K̃DV ⊗T S where T → S is a ring homomorphism
that sends the xi1, xi2 to a basis of Vi such that Assumption 1.1 holds true. Note
that such a choice yielding monomial minimal generators for J in the free resolution
is not possible. Instead, a valid choice is

x11 ↦ x x12 ↦ y
x21 ↦ y + x x22 ↦ x
x31 ↦ y + z x32 ↦ z
x41 ↦ z x42 ↦ y + z

Finally, we verify the Betti numbers by computing them from P (V∗) as above.
The maximal elements of P (V∗) are (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1). Hence

γ0(V) = 1, γ1(V) = 4, γ2(V) = 4

and part (3) in Corollary 1.11 gives

β0(J) = 9, β1(J) = 12, β2(J) = 4

Example 1.35. We close with an example showing that the infiniteness of k
is in general necessary for Assumption 1.1, the point being that in a finite field we
may not have enough linearly independent fij’s. Let k = Z2 and Vi = k

2, i ∈ [4].
Then we can set

f11 = e1 f21 = e2 f31 = e1 + e2

but no matter how we choose f41 we will have that ⟨fi1, f41⟩ will be 1-dimensional
for some i < 4. On the other hand, there exist elements u ∈ Vi, v ∈ V4 such that
⟨u, v⟩ is 2-dimensional.
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CHAPTER 2

Linearization of resolutions via products

Given a homogeneous ideal I in a polynomial ring S = k[x1, . . . , xr], it is of
interest to be able to quantify how complicated I is. One option is to consider the
maximal degree among any minimal set of generators of I, which can be shown
to be an invariant of I. However, this invariant does not provide any information
regarding the relations between the generators of I (first syzygies of I), or the rela-
tions of these relations (second syzygies of I) and so on, which should be taken into
account when measuring the complexity of I. Instead, this is achieved by working
with the Castelnuovo-Mumford regularity of I [Eis95], which is the smallest integer
m such that for each i the ith syzygy of I is generated in at most degree m + i.

The Castelnuovo-Mumford regularity of I has been proved to be a very fruitful
notion, used among others, as a measure of complexity of computing a Gröbner
basis for I [BM93]. In general, the regularity admits a doubly exponential bound

reg(I) ≤ (2d)2r−2

[CS05], where d is the maximal degree at which I is generated.
Moreover, in the absence of any assumptions on I, this bound is nearly sharp,
as shown in [MM82, BS88]. Even for a homogeneous prime ideal over an alge-
braically closed field, efficient bounds in terms of invariants such as the codimension
(height) of the ideal or the multiplicity (degree) of the quotient ring remain elusive
[EG84, MP18].

On the other hand, products or intersections of ideals generated by linear forms
have remarkable properties. Specifically, the product always has a linear resolution
[CH03], while the regularity of the intersection is bounded by the number of factors
[DS02, DS04]. Moreover, these results together with [Der07] have been important
in the theoretical foundations of algebraic machine learning methods for clustering
data in a subspace arrangement [VMS03, VMS05, MYDF08, TV14, TV17,
TV18], a problem that over the past 15 years has received a lot of attention in the
computer science community [EV13, LLY+13, VMS16].

In general, it is of interest to bound the regularity of the product and intersec-
tion of any given ideals in terms of their individual regularities. However, in the
absence of any further hypothesis this is a very hard problem. On the other hand,

reg(IJ) ≤ reg(I) + reg(J),(1)

for any ideal I as soon as dim(S/J) ≤ 1 [CH03]; a generalization of the earlier
result reg(Jn) ≤ n reg(J) of [Cha97], subsequently further generalized in [Sid02a,
Cav07, EHU06]. More can be said for monomial ideals: In [CMT07] (1) was
established for monomial complete intersections, in [Cim09] for Borel-type ideals,
and in [YCQ15] for I Borel-type and J monomial complete intersection. Bounding
the regularity of the intersection ideal is an even harder problem, partly because
the generators of the intersection are not in principle available as for the product.
This difficulty is not present for monomial ideals, and the work of [Her07] proved
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that

reg(I ∩ J) ≤ reg(I) + reg(J),

by constructing a free resolution of S/(I + J) for any monomial ideals I, J ; see
[BBC15, BCV15, BC17a, BC17b] for other recent related results.

Inspired by [CH03] as well as by the fact that in computer vision subspace
arrangements often appear mixed with other non-linear varieties [RYSM10], we
study the regularity of the product of an arbitrary homogeneous ideal I generated
in a single degree with ideals of general points. We prove the rather surprising
fact that multiplication of I with sufficiently many such ideals, yields an ideal
that has linear resolution. More precisely, for r ≥ 3, k infinite but not necessarily
algebraically closed, and I(p) the vanishing ideal of a point p ∈ Pr−1, we have:

Theorem 2.1. Let I be any homogeneous ideal of S, generated in degree d.
Then there exists an integer nI ≤ r(reg(I) − d), such that for any set X of general
points of Pr−1 with #X ≥ nI , the ideal I∏p∈X I(p) has a linear resolution.

In Theorem 2.1 the points X are required to be general in the sense that there
must exist reg(I) − d disjoint subsets of X , each containing r points, so that no
such subset of r points lies in a hyperplane.

Given that reg(I) can be doubly exponential in r and d, Theorem 2.1 in princi-

ple requires a large number of points[1]. If on the other hand I is a general complete
intersection of degree d, then r(d − 1) linear ideals are enough to linearize I:[2]

Theorem 2.2. Let Ici be an ideal generated by ` ≤ r general forms of degree d.
With X a set of r general points of Pr−1, the ideal Ici(∏p∈X I(p))

d−1 has a linear
resolution.

A. Generalities

For a positive integer ` we let [`] = {1, . . . , `}. We work over a polynomial ring
S = k[x1, . . . , xr] over an infinite field k which need not be algebraically closed,
and we assume that r ≥ 3. We assume the standard grading on S, where each xi
has degree 1, and we let m = (x1, . . . , xr). Given a finitely generated graded S-
module M and an integer ν we denote by Mν the degree-ν component of M , which
is a finite-dimensional k-vector space of dimension HF(ν,M). For large enough
ν this vector space dimension is given by the Hilbert polynomial of M , denoted
by pM , which is a polynomial of degree dimM − 1. The Castelnuovo-Mumford
regularity reg(M) of M is defined to be the smallest integer m such that every

module TorSi (M,k) vanishes at degree higher than i + m. This is equivalent to
saying that the ith syzygy module Syzi(M) of M is generated in degree at most

i+m. Equivalently, reg(I) is the smallest integer m such that ExtiS(M,S) vanishes
at degrees below −m − i [Eis95], or in terms of local cohomology, the smallest m
such that Him(M)j = 0, ∀i + j > m [BH98]. By definition, reg(M) bounds from
above the maximal degree d in which M is generated. When reg(M) = d, we say
that M has a linear resolution, in the sense that Syzi(M) is generated in degree
i + d. The regularity is well-behaved on short exact sequences of finitely generated

[1]The question of how sharp these bounds are is the subject of current research. Preliminary

investigations for small r using Macaulay2 suggest that sharper bounds might exist.
[2]The description of the non-empty Zariski open subset associated to Theorem 2.2 is more

involved and is deferred to the proof the theorem.
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graded S-modules: given such a sequence 0 Ð→M ′ Ð→M Ð→M ′′ Ð→ 0, we have
that

reg(M) ≤ max{reg(M ′
), reg(M ′′

)},

reg(M ′
) ≤ max{reg(M), reg(M ′′

) + 1},

reg(M ′′
) ≤ max{reg(M), reg(M ′

) − 1}.

For a graded S-module N of finite length, reg(N) admits a simple characterization:
it is the largest degree at which N is non-zero. An ideal generated by linear forms
always has regularity 1, and in fact we have the following more general result.

Proposition 2.3 (Theorem 3.1 in [CH03]). Let L1, . . . , Ln be ideals of S, each
generated by linear forms. Then reg(L1⋯Ln) = n.

The proof of Proposition 2.3 relies on a more fundamental result about the primary
decomposition of products of linear ideals, which we use in this chapter and state
next.

Proposition 2.4 (Lemma 3.2 in [CH03]). Let L1, . . . , Ln be ideals of S, each
generated by linear forms. Then a primary decomposition for L1⋯Ln is given by

L1⋯Ln = ⋂
A⊂[n]

(∑
i∈A

Li)
#A

.(2)

Given an ideal I of S, the saturation Isat of I is defined as Isat = {f ∈ S ∶ mnf ⊂

I, for somen}. In fact, Isat is equal to the intersection of all the primary compo-
nents of I except the one that corresponds to m, if any, so that Isat/I has finite
length. If such a component is not present, then I = Isat in which case I is called
saturated. The saturation index sat(I) of I is defined as the smallest degree n such
that Im = Isat

m , ∀m ≥ n, and admits the following simple characterization.

Proposition 2.5 (Follows from Proposition 2.1 in [BG06]). Let I be a non-
saturated homogeneous ideal in S. Then sat(I) − 1 is the largest degree among the
elements of I ∶ m not belonging to I.

We conclude with a very useful formula that relates sat(I) with reg(I).

Proposition 2.6 (Corollary 1.3 in [CH03]). Let I be a homogeneous ideal
in S and x a linear form that is a non-zero divisor of S/Isat. Then reg(I) =

max{reg(I + (x)), sat(I)}.

B. Proof of Theorem 2.1

Let I be a homogeneous ideal of S generated in degree d. By Theorem 2.4 in
[CH03] it is enough to prove that the product of I with nI ideals of general points
has a linear resolution. If I already has a linear resolution (in particular, if d = 1),
then we can take nI = 0. So we assume that I does not have a linear resolution (in
particular, d > 1) and we proceed in several steps. To begin with, for i = 1, . . . , r
we let Li be the linear ideal of codimension r − 1 generated by all variables except
xi and we let J = L1⋯Lr. The following lemma is used in this section for ` = 1 but
the more general case is needed in section C.

Lemma 2.7. For any ` ≥ 1, the ideal J` is generated by all monomials of degree
r` except the ones that are divided by xsi for some i ∈ [r] and s > (r − 1)`.
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Proof. By Proposition 2.4 we have

J` = (L1⋯Lr)
`
= L`1 ∩⋯ ∩L`r ∩mr`.(3)

Since a monomial v = xν1

1 ⋯xνrr of degree r` is in L`i if and only if ∑j≠i νj ≥ `, or

equivalently νi ≤ (r − 1)`, we have that the generators of J` are the monomials
v = xν1

1 ⋯xνrr such that ∑i νi = r` and νi ≤ (r − 1)` for every i ∈ [r]. �

The next lemma is the crucial computation behind Theorem 2.1.

Lemma 2.8. Let Li be the ideal generated by all variables except xi and J =

L1⋯Lr. Let I be any homogeneous ideal generated in degree d. Then

sat(IJ) ≤ max{r + d, reg(I) + 2} .

Proof. If IJ is saturated the statement is trivially true, so suppose that IJ ⊊

(IJ)sat. Let u be an element of maximal degree s among the elements of IJ ∶ m that
do not belong to IJ . Then sat(IJ) = s + 1 by Proposition 2.5. If s < r + d, we are
done; so suppose s ≥ r + d. First, suppose that u /∈ I. Since (IJ)sat ⊂ Isat, we have
that u ∈ Isat ∖ I. Then Propositions 2.5 and 2.6 give that s ≤ sat(I)−1 ≤ reg(I)−1,
by which we are done. Thus, suppose that u ∈ I, by which we can write

u = p1f1 +⋯ + pnfn,

where f1, . . . , fn are minimal generators of I, each of degree d, and pi are homo-
geneous polynomials of degree s − d. For each j ∈ [n] we decompose each pj as
pj = p̄j + p̃j , where

p̄j = c
(1)
j xs−d1 +⋯ + c

(r)
j xs−dr , c

(i)
j ∈ k,

and p̃j is supported only by monomials each divisible by at least two variables.
Since by hypothesis s − d ≥ r, this implies that p̃j ∈ J . Since fj p̃j ∈ IJ and u /∈ IJ ,
we may replace u by u −∑

n
j=1 fj p̃j and assume that

u = p̄1f1 +⋯ + p̄nfn

= (c
(1)
1 xs−d1 +⋯ + c

(r)
1 xs−dr ) f1 +⋯ + (c(1)n xs−d1 +⋯ + c(r)n xs−dr ) fn

= xs−d1 (c
(1)
1 f1 +⋯ + c(1)n fn) +⋯ + xs−dr (c

(r)
1 f1 +⋯ + c(r)n fn) .(4)

Since u is non-zero, not all c
(i)
j are equal to zero, and after a possible re-indexing

of the variables xi, we may assume that there exists a minimal integer 1 ≤ r′ ≤ r

such that c
(i)
j = 0, ∀i > r′, ∀j ∈ [n], while for i ≤ r′ at least one of the coefficients

c
(i)
1 , . . . , c

(i)
n is non-zero. Since f1, . . . , fn are minimal generators of I, this implies

that c
(i)
1 f1 + ⋯ + c

(i)
n fn is non-zero for every i ≤ r′. Since u ∈ IJ ∶ m, we have that

xiu ∈ IJ, ∀i ∈ [r], which in particular implies that 0 ≠ xs−d+1
i (c

(i)
1 f1 +⋯ + c

(i)
n fn) ∈

IJ for every i ≤ r′. Hence, there exist polynomials h1, . . . , hn in J of degree s−d+1,
such that

0 ≠ xs−d+1
i (c

(i)
1 f1 +⋯ + c(i)n fn) = h1f1 +⋯ + hnfn, ∀i ≤ r

′.(5)

Consider the exact sequence 0 Ð→ Syz1(I) Ð→ ⊕
n
j=1 S(−d) Ð→ I Ð→ 0 of graded

morphisms (i.e., each arrow has degree zero), where the second arrow sends the
generator of each direct summand to a generator of I. Then equation (5) says that

Z1i = (c
(i)
1 xs−d+1

i − h1, . . . , c
(i)
n xs−d+1

i − hn) , i ∈ [r′]
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is a non-zero element of Syz1(I) of (shifted) degree (s − d + 1) + d = s + 1. Let

(q11, . . . , q1n) , . . . , (q`1, . . . , q`n)

be minimal homogeneous generators of Syz1(I) of (shifted) degrees t1, . . . , t` re-
spectively, i.e., deg(qαβ) = tα − d, and set t = maxα∈[`] {tα}.

If t ≥ s + 1, then by definition of reg(I) we must have that the degree of
Z1i must be bounded from above by reg(I) + 1, i.e., s + 1 ≤ reg(I) + 1, and so
sat(IJ) ≤ reg(I) + 1, by which we are done.

So suppose that t ≤ s, in which case we can write

Z1i = (c
(i)
1 xs−d+1

i − h1, . . . , c
(i)
n xs−d+1

i − hn)

= v1 (q11, . . . , q1n) +⋯ + v` (q`1, . . . , q`n) ,(6)

where each vα is a homogeneous polynomial of degree s + 1 − tα > 0.
If t = s, then by the definition of reg(I) we must have that s ≤ reg(I)+ 1, from

which we have sat(I) ≤ reg(I) + 2, and we are done.
Hence, suppose that t ≤ s − 1; we will show that in this case we arrive at a

contradiction. To begin with, we isolate the jth coordinate of equation (6):

c
(i)
j xs−d+1

i − hj = v1q1j +⋯ + v`q`j .(7)

For every α ∈ [`], we can write vα = bαx
s+1−tα
i + ṽα, where bα ∈ k, and ṽα ∈ Li.

Substituting in (7) and reordering terms we have

xs+1−t
i (c

(i)
j xt−di − b1x

t−t1
i q1j −⋯ − b`x

t−t`
i q`j)

= hj + ṽ1q1j +⋯ + ṽ`q`j .(8)

This last equation shows that the polynomial hj + ṽ1q1j + ⋯ + ṽ`q`j is divisible by
xs+1−t
i , by which we can write

hj + ṽ1q1j +⋯ + ṽ`q`j = x
s+1−t
i ξj ,(9)

where ξj is either the zero polynomial or homogeneous of degree t−d. Since hj , ṽα ∈

Li, we necessarily have that ξj ∈ Li. Combining (8) and (9) we get

c
(i)
j xt−di − ξj = b1x

t−t1
i q1j +⋯ + b`x

t−t`
i q`j .(10)

Since (10) is true for all j ∈ [n], we equivalently have

(c
(i)
1 xt−di − ξ1, . . . , c

(i)
n xt−di − ξn)

= b1x
t−t1
i (q11, . . . , q1n) +⋯ + b`x

t−t`
i (q`1, . . . , q`n) .

This implies that (c
(i)
1 xt−di − ξ1, . . . , c

(i)
n xt−di − ξn) ∈ Syz1(I), and so

xt−di (c
(i)
1 f1 +⋯ + c(i)n fn) = ξ1f1 +⋯ + ξnfn.

Now, if ξj ≠ 0, then deg(ξj) = t − d and every xs−ti ξj is a polynomial of degree
s − d ≥ r. Moreover, since ξj ∈ Li, every supporting monomial of xs−ti ξj is divisible
by at least two variables, and so xs−ti ξj ∈ J . Consequently, multiplying this last
equation with xs−ti we see that

xs−di (c
(i)
1 f1 +⋯ + c(i)n fn) ∈ IJ.
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Since this last equation is true for any i ∈ [r′], by (4) and the definition of r′ we
have that u ∈ IJ , in contradiction to the hypothesis that u /∈ IJ . Consequently, the
hypothesis that t < s is not a valid one, and the proof is concluded. �

Proposition 2.9. Let Li be the ideal generated by all variables except xi and
set J = L1⋯Lr. Then for I any homogeneous ideal generated in degree d we have

reg(IJ) ≤ max{r + d, reg(I) + 2} .

Proof. Because the underlying field k is assumed infinite, the set of regular
elements on S/Isat is a non-empty open set of kr and similarly for S/(IJ)sat. Since
kr is irreducible, the intersection of these two open sets is non-empty, hence a linear
form µ = c1x1+⋯+crxr, ci ∈ k, that is regular on both S/(I)sat and S/(IJ)sat exists.
Then by Proposition 2.6 we have that

reg(I) = max{reg(I + (µ)), sat(I)} ,(11)

reg(IJ) = max{reg(IJ + (µ)), sat(IJ)} .(12)

We first bound from above reg(IJ + (µ)). Towards that end, suppose without
loss of generality that cr ≠ 0, and let S′ = k[x1, . . . , xr−1], m′ = (x1, . . . , xr−1)S

′,
and I ′ the ideal of S′ generated by the generators of I with xr substituted with
−c−1
r (c1x1 +⋯ + cr−1xr−1). Then S/(IJ + (µ)) ≅ S′/I ′(m′)r, and so

reg (IJ + (µ)) = reg (I ′(m′
)
r
) .(13)

Since I ′ is a homogeneous ideal of S′ generated in degree d, we have that the ideal

(m′)reg(I′)−dI ′ has a linear resolution and regularity reg(I ′). If r ≤ reg(I ′)−d, then
reg((m′)rI ′) = reg(I ′), and otherwise reg((m′)rI ′) = reg(I ′)+r−(reg(I ′)−d) = r+d.
Consequently,

reg(I ′(m′
)
r
) = max{r + d, reg(I ′)} .(14)

On the other hand,

reg (S′/I ′) = reg (S/(I + (µ)))
(11)
≤ reg(S/I),

from which we conclude that reg(I ′) ≤ reg(I). Thus (13) and (14) give

reg(IJ + (µ)) ≤ max{r + d, reg(I)} .

Combining this with Lemma 2.8 into (12) concludes the proof. �

Corollary 2.10. Let Li be the ideal generated by all variables except xi and
set J = L1⋯Lr. Then for I any homogeneous ideal generated in degree d we have

reg(IJ) ≤ reg(I) + reg(J) − 1.

Proof. First, note that reg(J) = r by Proposition 2.3. Next, since I is as-
sumed to not have a linear resolution, reg(I) > d. By Proposition 2.9 we have that
reg(IJ) ≤ max{r + d, reg(I) + 2}. Now, r+d = (d+1)+ (r−1) ≤ reg(I)+ reg(J)−1.
Also, reg(I) + 2 ≤ reg(I) + (r − 1) = reg(I) + reg(J) − 1. �

We now complete the proof of Theorem 2.1 as follows. First, recall that there
is a 1 − 1 correspondence between points p of Pr−1 and ideals of S of dimension
1 that are generated by linear forms. Next, let I(p1), . . . , I(pr) be r such linear
ideals defined by r points p1, . . . , pr of Pr−1. We call these ideals general if the
points p1, . . . , pr do not lie in any hyperplane of Pr−1. In such a case, there exists a
change of coordinates that maps each pi to ei, the latter having zeros everywhere
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except the ith coordinate. This change of coordinates induces a ring isomorphism
φ ∶ S Ð→ S such that φ(I(pi)) = Li ∶= I(ei) and reg(φ(Q)) = reg(Q) for any ideal
Q. Now let Λ be a collection of r(reg(I)−d) linear ideals of dimension 1, such that
Λ admits a partition into reg(I) − d subsets Λ1, . . . ,Λreg(I)−d, each consisting of r
general ideals. For α ∈ [reg(I) − d] denote by Jα the product of all r ideals in Λα.
Moreover, let φα ∶ S Ð→ S be the ring isomorphism that takes all ideals of Λα to
L1, . . . , Lr. Then by Corollary 2.10 we have

reg(IJ1) = reg(φ1(I)J) ≤ reg(φ1(I)) + reg(J) − 1 = reg(I) + reg(J1) − 1.

Similarly,

reg(IJ1J2) = reg(φ2(IJ1)J) ≤ reg(φ2(IJ1)) + reg(J) − 1

= reg(IJ1) + reg(J2) − 1 ≤ reg(I) + reg(J1) + reg(J2) − 2.

Repeating this for α = 3, . . . , reg(I) − d, we arrive at

reg(IJ1⋯Jreg(I)−d) ≤ reg(J1) +⋯ + reg(Jreg(I)−d) + d = r(reg(I) − d) + d.

But now r(reg(I)−d)+d is precisely the degree of the generators of IJ1⋯Jreg(I)−d,
which means that the latter has a linear resolution.

C. Proof of Theorem 2.2

We proceed in several steps starting with a lemma, which is interesting on its own.

Lemma 2.11. Let L1, . . . , Ln be linear ideals of S, and I a homogeneous ideal
generated in a single degree d ≥ 2. Set J = L1⋯Ln. If

(i) (I + J)n = Sn,
(ii) (I ∩ J)n+d = (IJ)n+d, and

(iii) n ≥ reg(I) − d,

then reg(IJ) = n + d, i.e., IJ has a linear resolution.

Proof. By Proposition 2.3 reg(S/J) = n−1. By hypothesis (i) reg(S/(I+J)) ≤
n − 1. Then by the exact sequence

0→
S

I ∩ J
→
S

I
⊕
S

J
→

S

I + J
→ 0,(15)

we get that

reg(S/I ∩ J) ≤ max{reg(S/I), reg(S/J), reg(S/(I + J)) + 1}

≤ max{reg I − 1, n − 1, n}

(iii)
≤ max{n + d − 1, n − 1, n}

d≥2
= n + d − 1,(16)

i.e., reg(I ∩ J) ≤ n+ d. This implies that I ∩ J is generated at most in degree n+ d,
which together with hypothesis (ii) gives reg(I∩J/IJ) ≤ n+d−1. Hence, the exact
sequence

0→
I ∩ J

IJ
→

S

IJ
→

S

I ∩ J
→ 0,

together with (16) gives

reg(S/IJ) ≤ max{n + d − 1, n + d − 1} = n + d − 1,

i.e., reg(IJ) ≤ n+d. But IJ is generated in degree n+d and so reg(IJ) = n+d. �
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Remark 2.12. Let α = reg(I). Then mα−dI has a linear resolution. Notice that
this is a special case of Lemma 2.11. Indeed n = α − d = reg I − d so that condition
(iii) is satisfied. Moreover, (mα−d + I)n = (mα−d + I)α−d = (mα−d)α−d = Sα−d = Sn,
and so condition (i) is satisfied. Finally, if ν ≥ n + d = α, write ν = α + `. Then
(mα−dI)ν = (mα−dI)α+` = Iα+` = (mα+` ∩ I)α+` = (mα−d ∩ I)α+` = (mα−d ∩ I)ν , and
so condition (ii) is satisfied.

Remark 2.13. The conditions of Lemma 2.11 are not necessary. For example
for r = 3, L1 = (x1, x2), L2 = (x1, x3), L3 = (x2, x3), I = (x2

2, x
2
3), L1L2L3I has a

linear resolution, but condition (i) is not true.

In what follows, for i ∈ [r] we let Li be the linear ideal generated by all variables
except xi and J = L1⋯Lr. Let s = height(Ici)−1 and assume throughout that d ≥ 2.
In the next four lemmas we show that for the particular complete intersection ideal
I = (xd1, . . . , x

d
s , x

d
s+1 + ⋯ + xdr), the ideal IJd−1 satisfies the conditions of Lemma

2.11 and thus has a linear resolution.

Lemma 2.14. The ideal Jd−1 + I agrees with S at degree r(d − 1).

Proof. By Lemma 2.7 it is enough to show that Jd−1+I contains all monomials
of degree r(d−1) of the form xνi v, where ν ≥ (r−1)(d−1)+1, for every i ∈ [r], with
v not divisible by xi and of degree at most d−2. If i ≤ s, this is true because in that
case xdi ∈ I; so suppose that i ≥ s + 1. Without loss of generality we need to show
that xνs+1v ∈ J

d−1 + I. But this follows by noting that xν−ds+1v(x
d
s+1 +⋯+ xdr) ∈ I, and

every monomial of the form xν−ds+1x
d
jv with j > s + 1 lies in Jd−1, since the exponent

of every variable in that monomial is less or equal than (r − 1)(d − 1). �

Lemma 2.15. Let u /∈ Jd−1 be a monomial of degree r(d−1) such that xd1u ∈ J
d−1.

Then there exists some i > 1, integer νi ≥ (r−1)(d−1)+1, and monomial v of degree

at most d − 2 not divisible by xi, such that xd1u = x
d
i u

′, with u′ = xd1x
νi−d
i v ∈ Jd−1.

Proof. By Lemma 2.7 there exists some i ∈ [r] such that u = xνii v, with
νi ≥ (r − 1)(d− 1)+ 1, and v not divisible by xi and of degree at most d− 2. If i = 1,
then the exponent of x1 in xd1u is at least d + (r − 1)(d − 1) + 1 = r(d − 1) + 2. Now,
the hypothesis xd1u ∈ J

d−1 means that we can write xd1u = wu
′′, for some u′′ ∈ Jd−1

of degree r(d− 1) and some w of degree d. Then by Lemma 2.7 the exponent of x1

in u′′ is at most (r − 1)(d − 1) and since the exponent of x1 in w is at most d, we
have that the exponent of x1 in xd1u is at most d+(r−1)(d−1) = r(d−1)+1, which
is a contradiction. Hence, i > 1, and without loss of generality we can take i = 2,
i.e., u = xν2

2 v, where ν2 ≥ (r−1)(d−1)+1, v is not divisible by x2 and deg(v) ≤ d−2.

Now d ≤ (r − 1)(d − 1) + 1, and so xd2 divides u, and we can write xd1u =

xd2(x
d
1u/x

d
2) = xd2(x

d
1x
ν2−d
2 v). Let us show that xd1x

ν2−d
2 v ∈ Jd−1. This will follow

from Lemma 2.7 if we show that the exponent of every variable in xd1x
ν2−d
2 v does

not exceed (r − 1)(d − 1). For x2 this exponent is at most r(d − 1) − d = r(d −
1) − (d − 1) − 1 = (r − 1)(d − 1) − 1 < (r − 1)(d − 1). Since the degree of v is at

most d − 2, and d − 2 < (r − 1)(d − 1), the exponent of xi, for i > 2 in xd1x
ν2−d
2 v is

strictly less than (r − 1)(d − 1). Finally, the exponent of x1 in xd1x
ν2−d
2 v is at most

d + (d − 2) = 2(d − 1) ≤ (r − 1)(d − 1), since r ≥ 3. �

Lemma 2.16. The ideal I∩Jd−1 agrees with the ideal IJd−1 at degree r(d−1)+d.
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Proof. Let p be a polynomial of degree r(d−1)+d that lies in I ∩Jd−1. Since
p ∈ I, we can write

p = xd1p1 +⋯ + xdsps + (xds+1 +⋯ + xdr)q,

where p1, . . . , ps, q are polynomials of degree r(d − 1). We will show that p is in
IJd−1. Towards that end, we can without loss of generality assume that every
monomial in the support of p1, . . . , ps, q does not lie in Jd−1. We may also assume
without loss of generality that for every monomial uj in the support of pj , j ∈ [s],

the monomial xdjuj is in the support of the polynomial xd1p1 +⋯ + xdsps.

We now show that every such xdjuj must lie in the support of p. For if not, then

we must have that xdjuj = x
d
j′u, for some j′ ≥ s + 1 and u monomial in the support

of q. Without loss of generality we can take j = 1 and j′ = s + 1, i.e., xd1u1 = x
d
s+1u.

Now, recalling that by hypothesis u1 /∈ Jd−1, Lemma 2.7 gives that u1 = x
νj′′

j′′ v, for

some j′′ ∈ [r], r(d − 1) ≥ νj′′ ≥ (r − 1)(d − 1) + 1 and v not divisible by xj′′ and of

degree at most d − 2. Thus, xd1x
νj′′

j′′ v = x
d
s+1u and by degree considerations we see

that j′′ must be equal to s + 1. Hence, u = xd1x
νs+1−d
s+1 v. But then Lemma 2.7 gives

that u ∈ Jd−1, which is a contradiction.
Next, we show that for every j ∈ [s] and uj monomial in the support of pj , we

have that xdjuj ∈ J
d−1I. Without loss of generality we can take j = 1. By what we

have already established xd1u1 is in the support of p, and so p ∈ Jd−1 ∩ I implies
that xd1u1 ∈ J

d−1, because Jd−1 is a monomial ideal. Since by hypothesis u1 /∈ Jd−1,
by Lemma 2.15 there exists i > 1, integer r(d − 1) ≥ νi ≥ (r − 1)(d − 1) + 1, and
monomial v of degree at most d−2 not divisible by xi, such that xd1u1 = x

d
i u

′
1, with

u′1 = xd1x
ν2−d
i v ∈ Jd−1. If i ≤ s, we are done, since then xdi u

′
1 ∈ IJd−1. So suppose

that i > s and without loss of generality take i = s+ 1. Thus xd1u1 = x
d
s+1(x

d
1x
µs+1

s+1 v),

with xd1x
µs+1

s+1 v ∈ J
d−1, (r − 1)(d − 1) − 1 ≥ µs+1 ≥ (r − 2)(d − 1), and v of degree at

most d − 2 and not divisible by xs+1. Then

xd1u1 = x
d
s+1(x

d
1x
µs+1

s+1 v)

= −xd1(x
d
s+2 +⋯ + xdr)x

µs+1

s+1 v + (xds+1 +⋯ + xdr)x
d
1x
µs+1

s+1 v,

from which we see that xd1u1 ∈ IJ
d−1, since by degree considerations xdjx

µs+1

s+1 v ∈ J
d−1

for j = 1, s + 2, . . . , r.
As a consequence, we are reduced to showing that if p = (xds+1 +⋯ + xdr)q is in

I ∩ Jd−1, then p ∈ IJd−1, where q is of degree r(d − 1) and every monomial in its
support lies outside Jd−1. By an argument similar as before, we have that for every
monomial u in the support of q all monomials xds+1u, . . . , x

d
ru are in the support of

p, and as a consequence xds+1u, . . . , x
d
ru ∈ J

d−1. Then by Lemma 2.15 we have that
u = x

νj
j v, where j ∈ [s], νj ≥ (r − 1)(d − 1) + 1 and v is of degree at most d − 2 and

not divisible by xj . Without loss of generality we can take j = 1. But then

(xds+1 +⋯ + xdr)u = x
d
1(x

d
s+1x

ν1−d
1 v +⋯ + xdrx

ν1−d
1 v) ∈ Jd−1I.

�

Lemma 2.17. The ideal Jd−1I has a linear resolution.

Proof. Lemma 2.14 shows that condition i) of Lemma 2.11 is satisfied. Lemma
2.16 shows that condition ii) of Lemma 2.11 is satisfied. Moreover, xds+1 + ⋯ +

xdr is S/(xd1, . . . , x
d
s)-regular, since the only associated prime of S/(xd1, . . . , x

d
s) is
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(x1, . . . , xs). Hence, I is generated by a regular sequence and so reg(I) = (s+1)d−s.
This, together with the fact that the number of linear ideals in the product Jd−1 is
r(d − 1) shows that condition iii) of Lemma 2.11 is also true. �

We now complete the proof of Theorem 2.2 as follows. Let I(p1), . . . , I(pr) be

ideals of points p1, . . . , pr ∈ Pr−1, set Jfp = (I(p1), . . . , I(pr))
d−1

and let Ici be an

ideal[3] generated by ` forms of degree d. Using Jfp as the product of linear forms
in Lemma 2.11, we see that condition (i) is satisfied on an open set U1 (possibly
empty) of the space parametrizing the generators of I(p1), . . . , I(pr), Ici. From the
exact sequence (15) we have that on U1

HF(ν,S/(Ici ∩ Jfp)) = HF(ν,S/Ici) +HF(ν,S/Jfp), ∀ν ≥ r(d − 1).

On an open set U2 the ideals I(p1), . . . , I(pr) are distinct and so on U2 we have
that HF(ν, Jfp) = HF(ν, Jd−1) for every ν. On an open set U3 the generators of Ici

form a regular sequence and condition (iii) of Lemma 2.11 is true. Moreover, on

U1 ∩ U2 ∩ U3 and for ν = r(d − 1) + d, HF(ν, Ici ∩ Jfp) is a constant[4] c, because on
that open set

HF(ν,S/(Ici ∩ Jfp)) = HF(ν,S/I) +HF(ν,S/Jd−1
).(17)

Now, condition HF(ν, IciJfp) = c is true on an open set U4, and so on the open set
U = U1∩U2∩U3∩U4 all conditions of Lemma 2.11 are true. Finally, U is non-empty
because by Lemmas 2.14 and 2.16 it contains the choice L1, . . . , Lr, I .

D. Examples

Example 2.18. We revisit Example 2.1 in [CH03]. Let S = k[a, b, c, d] and
consider two monomial ideals J = (a2b, abc, bcd, cd2) and I = (b, c). As mentioned
in [CH03] reg(J) = 3 while reg(IJ) = 5, with already a non-linear syzygy present
among the generators of IJ . According to Theorem 2.1 multiplication of IJ with
the product of 4 = 4(5 − 4) = r(reg(IJ) − d) ideals of general points will yield an
ideal with linear resolution. On the other hand, a symbolic computation shows that
the ideal of one general point is enough. Moreover, for special points we have that

reg (IJK) = 6, K = (a, b, c)

reg (IJK) = 5, K = (a, b, d)

Example 2.19. In S = k[a, b, c, d] let I be an ideal generated by 3 general
forms of degree 2. Then reg(I) = 4. As per Theorem 2.1 a linear resolution is
achieved upon multiplication by r(reg(I)− d) = 4(4− 2) = 8 ideals of general points.
Instead, Theorem 2.2 guarantees a linear resolution after multiplication by four
ideals of general points. On the other hand, a computation shows that three points
are enough.

[3]The subscripts fp and ci stand for fat points and complete intersection respectively.
[4]HF(ν,S/I) can be computed from the Hilbert series (1− td)`/(1− t)n of S/I, while Lemma

2.7 can be used to show that HF(ν,S/Jd−1) = pS/Jd−1(ν) = r(
d+r−3
r−1

).
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CHAPTER 3

On the algebraic matroid of the determinantal
variety

With k an infinite field and [s] = {1, . . . , s} for any positive integer s, we let
k[Z] = k[zij ∶ (i, j) ∈ [m] × [n]] be a polynomial ring in the zij ’s and Ir+1(Z) the

determinantal ideal generated by all (r + 1)× (r + 1) minors of the matrix Z = (zij ∶

(i, j) ∈ [m] × [n]). With Ω a subset of [m] × [n] and k[ZΩ] = k[zij ∶ (i, j) ∈ Ω], the
images in k[Z]/Ir+1(Z) of the zij ’s with (i, j) ∈ Ω are algebraically independent
over k if and only if k[ZΩ] ∩ Ir+1(Z) = 0. Since Ir+1(Z) is a prime ideal [BV88],
the set of all such algebraically independent subsets of zij ’s forms an algebraic
matroid [RST20]. The rank of that matroid coincides with the Krull dimension of
k[Z]/Ir+1(Z) which is r(m+n−r), i.e. every base set of the matroid has cardinality
r(m + n − r). A ZΩ = {zij ∶ (i, j) ∈ Ω} with #Ω = r(m + n − r) is a base if and only
if the projection morphism πΩ ∶ M(r,m × n) → AΩ has finite fibers over a Zariski
dense open subset on the source. Here M(r,m × n) = Spec(k[Z]/Ir+1(Z)), AΩ =

Spec(k[ZΩ]) and πΩ is induced by the ring homomorphism k[ZΩ]→ k[Z]/Ir+1(Z)

where zij ↦ zij + Ir+1(Z) for (i, j) ∈ Ω. Whenever no confusion arises, we will
identify ZΩ with Ω.

By elimination theory, the ideal k[ZΩ] ∩ Ir+1(Z) of k[ZΩ] is generated by the
elements of a Gröbner basis of Ir+1(Z) that lie in k[ZΩ], with the underlying term
order being lexicographic and the variables ZΩ the least significant. This gives
an immediate characterization of the base sets for the extreme rank values r = 1
and r = m − 1, since for these cases a description of a universal Gröbner basis
is available. Indeed, for r = 1 the independent work of Sturmfels and Villarreal
implies the existence of a universal Gröbner basis supported on the cycles of the
complete bipartite graph Km,n, e.g., see Theorem 3.1 in [Con07]. This makes the
base sets of M(1,m × n) those Ω’s for which the corresponding bipartite graph is
a tree; see [SC10] for an argument based on rigidity theory. On the other hand,
Bernstein & Zelevinsky [BZ93] proved that for r = m − 1 the maximal minors
form a universal Gröbner basis; a result that was later generalized in [Boo12],
[CDNG15], [CDNG20]. This makes the base sets of M(m − 1,m × n) those ZΩ’s
that consist of collections of m−1 rows of Z together with any m−1 elements from
the remaining row[1]. However, for 1 < r <m− 1 it is known that the (r + 1)-minors
do not in general form a universal Gröbner basis. Instead, the (r + 1)-minors are a
Gröbner basis for Ir+1(Z) under any diagonal or anti-diagonal term order, e.g. see
Theorem 5.4 in [BC03] and [Stu90]. As noted by Kalkbrener & Sturmfels [KS95]
this yields a class of base sets for any r: with the partial order zij ≤ zi′j′ if i ≤ i′

and j ≤ j′, an Ω is a base set of M(r,m × n) if it does not contain an antichain

[1]A simpler justification for this characterization is also possible.
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of cardinality r + 1. Already though for r = 1 it is easy to find examples of base
sets that do not satisfy this condition. For r = 2 D.I. Bernstein [Ber17] overcame
these difficulties by using the tropicalization of the Grassmannian Gr(2,m) [SS04]
and a connection with the completion of tree metrics to characterize the bases of
M(2,m × n) as those bipartite graphs for which an acyclic orientation exists with
no alternating trails. This approach though appears to be intractable for r ≥ 3.

Characterizing the matroid of M(r,m × n) is also of great importance in the
machine learning problem of low-rank matrix completion. There, one is interested
in knowing a minimal number of precise locations in a matrix of rank r, that if
observed, lead to a finite number of possible rank-r completions, i.e. to a finite
fiber π−1

Ω (πΩ(X)), e.g., see [KT12], [KTT15]; see also [BBS20] for a variation
where the minimal completion rank is sought.

We call a set Φ = ⋃j∈[m−r] φj × {j} ⊂ [m]× [m− r] an (r,m)-SLMF (Support of
a Linkage Matching Field), if Φ satisfies the following conditions:

#φj = r + 1, j ∈ [m − r] and # ⋃
j∈J

φj ≥ #J + r, J ⊆ [m − r].(18)

SLMF’s arise as the supports of the vertices of the Newton polytope of the product
of maximal minors of an m×(m−r) matrix of variables. These were introduced by
Sturmfels & Zelevinsky [SZ93] in their effort to establish the aforementioned uni-
versal Gröbner basis property of maximal minors, and have recently found applica-
tions in tropical geometry, e.g., see [FR15], [LS20]. Here we need a generalization
of the notion of SLMF. Let us write Ω = ⋃j∈[n] ωj × {j} for ωj ’s subsets of [m] and
ΩJ = ⋃j∈J ωj × {j} for J ⊂ [n].

Definition 3.1. For J ⊂ [n] and ν a positive integer we call ΩJ a relaxed
(ν, r,m)-SLMF if ∑j∈J max{#ωj ∩ I − r,0} ≤ ν(#I − r) for every I ⊂ [m] with
#I ≥ r+1, and equality for I = [m]. Note that an (r,m)-SLMF is always a relaxed
(1, r,m)-SLMF.

In [SZ93] Sturmfels & Zelevinsky showed that a family of local coordinates on
Gr(r,m) already known by Gelfand, Graev & Retakh [GGR90] from an analytic
point of view, could be seen as induced by SLMF’s. This connection is one of the
key ingredients for the main result of this chapter:

Theorem 3.2. If #Ω = r(m + n − r) and there is a partition [n] = ⋃`∈[r]J`
with ΩJ` a relaxed (1, r,m)-SLMF for ` ∈ [r], then Ω is a base set of the algebraic
matroid of M(r,m × n).

Another key ingredient in the proof of Theorem 3.2 is a novel interpretation
of matrix completion in terms of linear sections on the Grassmannian Gr(r,m) via
the use of Plücker coordinates. A natural consequence of this view is:

Proposition 3.3. If Ω is a base set of the algebraic matroid of M(r,m × n),
then Ω is a relaxed (r, r,m)-SLMF.

Therefore, a complete characterization of the algebraic matroid of M(r,m × n)
will be achieved once the following purely combinatorial conjecture is proved.

Conjecture 3.4. Suppose #Ω = r(m + n − r) and without loss of generality
that each vertex in the bipartite graph associated with Ω has degree at least r + 1
(Lemma 3.16). Then Ω is a relaxed (r, r,m)-SLMF if and only if there is a partition
[n] = ⋃`∈[r]J` with ΩJ` a relaxed (1, r,m)-SLMF for every ` ∈ [r].
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Remark 3.5. Conjecture 3.4 is trivially true for r = 1, which shows that the
notion of a relaxed (1,1,m)-SLMF coincides with the notion of a tree. This fact
is also easy to prove directly. The conjecture is immediate for r = m − 1 and easy
for r = m − 2, while a proof for other values of r remains elusive. We discuss this
further in §C. Finally, for r = 2 a comparison with D. I. Bernstein’s characterization
mentioned above is also not available.

The following is a useful consequence of Theorem 3.2:

Corollary 3.6. Suppose Ω satisfies the hypothesis of Theorem 3.2. Then
there is a Zariski dense open set UΩ ⊂ M(r,m×n) with π−1

Ω (πΩ(X)) finite for every
X ∈ UΩ.

Among all bases of the matroid of M(r,m × n) it is interesting to characterize
those for which the fiber π−1

Ω (πΩ(X)) contains a single element. Recently, for

k = R,C, replacing πΩ by X
πF
z→ (fi(X) ∶ i ∈ [N]) for an arbitrary collection

F = (fi ∈ Homk (k
m×n, k) ∶ i ∈ [N]) Rong, Wang & Xu [RWX19] proved that

for general F the map πF is injective on a dense subset of the rank-r matrices as
long as N > dim M(r,m × n). They further conjectured the existence of special
F ’s with N = dim M(r,m × n) that allow the same conclusion. Our next result
settles their conjecture in the affirmative. For this, we note that if ΩJ is a relaxed
(1, r,m)-SLMF and denoting by Ωj the set of subsets of ωj of cardinality r + 1,
then there exist φj′ ∈ ⋃j∈J Ωj for j′ ∈ [m− r] such that Φ = ⋃j′∈[m−r] φj′ ×{j′} is an
(r,m)-SLMF (Lemma 3.17). We say that ΩJ induces the SLMF Φ.

Proposition 3.7. In addition to the hypothesis of Theorem 3.2 suppose that
each ΩJ` induces the same (r,m)-SLMF Φ = Φ` for every ` ∈ [r]. Then there exists
a Zariski dense open set UΩ ⊂ M(r,m × n) such that πΩ is injective at the k-valued
points of UΩ. Moreover, any (r,m)-SLMF Φ induces such an Ω.

A. Preliminaries

A.I. Local coordinates on Gr(r,m) induced by SLMF’s. We recall the
beautiful relationship between SLMF’s and local coordinates on Gr(r,m) described
in [SZ93], here presented more generally over an infinite field k.

Let S ∈ Gr(r,m) be a k-valued point and S⊥ ∈ Gr(m − r,m) the orthogonal
complement of S. That is, if s`, ` ∈ [r] is a basis for S then S⊥ is the vanishing locus
of the linear forms induced by the s`’s. Working with the standard basis of km the
canonical isomorphism Gr(r−m,m)→ Gr(r,m) sends the Plücker coordinate [ψ]S⊥

to σ(ψ, [m] ∖ψ) [[m] ∖ψ]
S

, where ψ is any subset of [m] of cardinality m − r and

σ(ψ, [m]∖ψ) is −1 raised to the number of elements (a, b) ∈ ψ×([m]∖ψ) with a > b[2].

Let A ∈ km×(m−r) contain a basis of S⊥ in its columns. Let Φ = ⋃j∈[m−r] φj × {j}
be an (r,m)-SLMF. For j ∈ [m − r] denote by Hj the k-subspace of km−r spanned
by these rows of A indexed by [m] ∖ φj . The locus VΦ of Gr(r,m) where the Hj ’s
have codimension 1 and ⋂j∈[m−r]Hj = 0 is open. Suppose S ∈ VΦ. Then there is an
automorphism of km−r that takes Hj to the hyperplane with normal vector ej , the
latter having zeros everywhere and a 1 at position j. Changing the basis we see
that S can also be represented by some Ã ∈ km×(m−r) which is sparse with support
on Φ. Let mjj′ be the minor of A corresponding to row indices in [m] ∖ φj and

[2]E.g., see §1.6 in Bruns & Herzog [BH98].
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column indices [m − r] ∖ {j′} and set M = (mjj′ ∶ j, j
′ ∈ [m − r]). Use respective

notations m̃jj′ and M̃ = (m̃jj′ ∶ j, j
′ ∈ [m − r]) for Ã. By definition of VΦ all m̃jj ’s

are non-zero thus, viewed as an element of Pm−1, the j-th column ãj of Ã satisfies

ãφijj = (−1)i−1[φj ∖ {φij}]S for i ∈ [r + 1] and ãij = 0 for i /∈ φj

where φij is the i-th element of φj . Next consider the rational maps γφj ∶ Gr(r,m)⇢

Pr and γΦ ∶ Gr(r,m)⇢∏j∈[m−r] Pr given by

S
γφj
z→((−1)i−1

[φj ∖ {φij}]S ∶ i ∈ [r + 1])

S
γΦ
z→(γφj(S) ∶ j ∈ [m − r])

Proposition 3.8 (Sturmfels & Zelevinsky [SZ93]). The rational map γΦ is

an open embedding on VΦ. In particular, for k-valued S ∈ VΦ the columns of Ã∣S

contain a basis for S⊥, where Ã∣S denotes the evaluation of Ã at S interpreted as

an element of km×(m−r).

Let T = k[[ψ] ∶ ψ ⊂ [m], #ψ = r] be a polynomial ring generated by variables
[ψ]’s associated with the Plücker embedding of Gr(r,m), i.e. Gr(r,m) = Proj(T /p)
with p the ideal generated by the Plücker relations. By computing the normal
vectors of the Hj ’s in terms of the mjj′ ’s it follows that S ∈ VΦ if and only if

det(M) ≠ 0. Since M̃ = MC where C is an invertible matrix[3] we see that VΦ

is defined by the non-vanishing of the polynomial ∏j∈[m−r] m̃jj . This gives the

equation of this hypersurface in Plücker coordinates [4]:

pΦ = det ([φα ∖ {β}] ∶ α ∈ [m − r] ∖ 1, β ∈ [m] ∖ φ1) ∈ T(19)

A.II. Fibers of morphisms and dominance. For convenience we recall as
needed the upper semicontinuity of the fiber dimension:

Proposition 3.9 (Exercise II.3.22 in Hartshorne [Har77]). Let g ∶ Y →W be
a dominant morphism of integral schemes of finite type over a field k. Then for
any y ∈ Y we have that dim g−1(g(y)) ≥ dimY − dimW with equality on a dense
open set of Y .

B. Proofs

We begin with some preparations. For ω ⊆ [m] define the coordinate projection
πω ∶ k

m → k#ω by (ξi)i∈[m] ↦ (ξi)i∈ω. For B ∈ km×r let πω(B) ∈ k#ω×r the matrix
obtained by applying πω to the columns of B. For j ∈ [n] we let Ωj be the set of all
subsets of ωj of cardinality r + 1. A k-valued point of Gr(r,m) is an r-dimensional
linear subspace of km.

Lemma 3.10. Let S ∈ Gr(r,m) be a k-valued point, ω ⊆ [m] with #ω ≥ r and
suppose that dimπω(S) = r. Suppose that for some x ∈ km we have πω(x) ∈ πω(S).
Then there exists unique y ∈ S such that πω(y) = πω(x).

[3]This follows from the functoriality of ∧m−r−1.
[4]If β /∈ φa then [φα ∖{β}] = 0. Only the sign may change if one replaces 1 by any j ∈ [m−r]

in (19).
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Proof. Let B ∈ km×r be a basis for S. By hypothesis πω(B) ∈ k#ω×r is a basis
of πω(S). Then there is a unique c ∈ kr such that πω(x) = πω(B)c. Define y = Bc,
clearly πω(x) = πω(y). Suppose πω(y) = πω(y

′) for some other y′ ∈ S. There is a
unique c′ ∈ kr such that y′ = Bc′. On the other hand, the equation πω(y) = πω(y

′)
implies that πω(B)(c − c′) = 0. But πω(B) has rank r and so c = c′. �

Lemma 3.11. Let S ∈ Gr(r,m) be a k-valued point, x ∈ km and ω,ω′ ⊆ [m] with
πω(x) ∈ πω(S) and πω′(x) ∈ πω′(S). If dimπω∩ω′(S) = r then πω∪ω′(x) ∈ πω∪ω′(S).

Proof. There exist y, y′ ∈ S such that πω(x) = πω(y) and πω′(x) = πω′(y
′).

This implies that πω∩ω′(x) = πω∩ω′(y) = πω∩ω′(y
′). Lemma 3.10 gives y = y′. �

Lemma 3.12. Let φ = {i1 < ⋅ ⋅ ⋅ < ir+1} ⊆ [m], let x ∈ km and S ∈ Gr(r,m) a
k-valued point with dimπφ(S) = r. Then πφ(x) ∈ πφ(S) if and only if

∑
α∈[r+1]

(−1)α−1 xiα [φ ∖ {iα}]S = 0

Proof. With B ∈ km×r a basis for S and any α ∈ [r+1] we identify [φ∖{iα}]S
with det (πφ∖{iα}(B)). Applying Laplace expansion on the first column of the ma-

trix [πφ(x) πφ(B)] ∈ k(r+1)×(r+1) shows that det ([πφ(x) πφ(B)]) = 0 is equivalent

to the formula in the statement. Since πφ(B) has rank r, det ([πφ(x) πφ(B)]) = 0
is equivalent to πφ(x) ∈ πφ(S). �

Lemma 3.13. Let Φ = ⋃j∈[m−r] φj × {j} be an (r,m)-SLMF and let S ∈ VΦ be a
k-valued point. Then dimπφj(S) = r for every j ∈ [m − r].

Proof. Since S ∈ VΦ Proposition 3.8 gives that Ã∣S has full column rank. On
the other hand, dimπφj(S) < r if and only if all Plücker coordinates [φj ∖ {φij}]S
are zero, where φij denotes the i-th element of φj . But in that case the j-th column

of Ã∣S would be zero by definition of Ã. �

Lemma 3.14. Let Φ = ⋃j∈[m−r] φj × {j} be an (r,m)-SLMF and let S ∈ VΦ be a
k-valued point. If πφj(x) ∈ πφj(S) for every j ∈ [m − r], then x ∈ S.

Proof. By Lemma 3.13 dimπφj(S) = r for every j ∈ [m−r]. Then Lemma 3.12
implies that the relation πφj(x) ∈ πφj(S) is equivalent to πφj(x) being orthogonal

to the j-th column of Ã∣S . Since this is true for every j ∈ [m − r] and since the

columns of Ã∣S form a basis for S⊥ this implies that x ∈ S. �

Lemma 3.15. Let k ↪ K be a field extension. Then the algebraic matroid of
T /I coincides with the algebraic matroid of T /I ⊗k K.

Proof. A set of zij ’s with (i, j) ∈ Ω form an independent set in the matroid
of T /I if and only if the ring homomorphism k[zij ∶ (i, j) ∈ Ω] → T /I is injective.
Since K is a faithfully flat k-module, this is equivalent to the injectivity of K[zij ∶
(i, j) ∈ Ω]→ T /I ⊗k K. �

Lemma 3.16. Insertion or deletion of ωj’s with #ωj = r do not affect the
property of Ω of being a base set.

Proof. Suppose ZΩ = {zij ∶ (i, j) ∈ Ω} is algebraically dependent mod Ir+1(Z).
We consider the lexicographic term order on k[Z] with z11 > z21 > ⋯ > zm1 > z12 >

z22 > ⋯ > zm2 > z13 > ⋯ > zm−1,n > zmn. This is a diagonal term order in the
sense that the leading term of every minor is the product of the variables on the
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main diagonal. With respect to that order the (r + 1)-minors of Z form a Gröbner
basis (Theorem 5.4 in [BC03]). Since Ir+1(Z) = Ir+1(P1ZP2) for any permuta-
tions P1, P2 [BV88], we may assume that ω1 = {m−r+1, . . . ,m}. Write Z = [z Z ′]
where z is the first column of Z and set Z ′

Ω = {zij ∶ (i, j) ∈ Ω, j > 1}. By elimination
theory the elimination ideal k[zm−r+1,1, . . . , zm1, Z

′] ∩ Ir+1(Z) is generated by the
(r + 1)-minors of Z ′. Hence k[ZΩ] ∩ Ir+1(Z) ⊂ k[zm−r+1,1, . . . , zm1, Z

′] ∩ Ir+1(Z) ⊂

Ir+1(Z
′). Thus ZΩ is algebraically dependent mod Ir+1(Z

′). But k[Z]/Ir+1(Z
′) ≅

k[Z ′]/Ir+1(Z
′)[z]. Hence Z ′

Ω is algebraically dependent mod Ir+1(Z
′). The con-

verse direction is clear by definition. �

Lemma 3.17. Suppose ΩJ = ⋃j∈J ωj ×{j} is a relaxed (1, r,m)-SLMF for some
J ⊂ [n]. Denote by Ωj the set of subsets of ωj of cardinality r+1. Then there exist
φj′ ∈ ⋃j∈J Ωj for j′ ∈ [m − r] such that Φ = ⋃j′∈[m−r] φj′ × {j′} is an (r,m)-SLMF.

Proof. For each j ∈ J fix any ω′j ⊂ ωj with #ω′j = r and for every κ ∈ ωj ∖ ω
′
j

define φj,κ = ω
′
j ∪ {κ}. Setting I = [m] in the definition of relaxed (1, r,m)-SLMF

gives ∑j∈J max{#ωj ∖ ω
′
j − r,0} = m − r so that in total we have m − r φj,κ’s

and thus we can order them as φ1, . . . , φm−r. Then Φ = ⋃j′∈[m−r] φj′ × {j′} is an
(r,m)-SLMF. �

B.I. Proof of Theorem 3.2. In view of Lemma 3.15 we may assume that k
is algebraically closed. In view of Lemma 3.16 we may assume that #ωj ≥ r + 1 for

every j ∈ [n]. By Lemma 3.17 for every ` ∈ [r] there are φ`j ∈ ⋃j′∈J` Ωj′ , j ∈ [m − r]

such that Φ` = ⋃j∈[m−r] φ
`
j ×{j} is an (r,m)-SLMF. For a closed point X ∈ M(r,m×

n) and S the column-space of X the condition S ∈ ⋂`∈[r] VΦ` is true on an open set
of M(r,m × n) which can be described as follows. Let p = ∏`∈[r] pΦ` where pΦ` is

given by (19). For any ψ ⊆ [n] with #ψ = r replace every [φ`α∖{β}] in p by the r×r
minor of Z with row indices φ`α ∖ {β} and column indices ψ to obtain a polynomial
pψ ∈ k[Z]. Varying ψ gives the open set UΩ = ⋃ψ⊆[n],#ψ=r Spec(k[Z]/Ir+1(Z))p̄ψ
of M(r,m × n), where (k[Z]/Ir+1(Z))p̄ψ is the localization of k[Z]/Ir+1(Z) at the

multiplicatively closed set {1, p̄ψ, p̄
2
ψ, . . .}, with p̄ψ the class of pψ in k[Z]/Ir+1(Z).

Then S ∈ ⋂`∈[r] VΦ` if and only if X ∈ UΩ. To see that UΩ is non-empty, first note
that ⋂`∈[r] VΦ` is the intersection of finitely many dense open sets and thus non-
empty. Let S ∈ ⋂`∈[r] VΦ` be any closed point and s`, ` ∈ [r] a k-basis for S. Define
X ∈ M(r,m×n) by setting xj = s` whenever j ∈ J`. Then pψ(X) ≠ 0 for any ψ that
contains exactly one index from each J`, i.e. X ∈ UΩ.

Let π′Ω ∶ UΩ → AΩ be the restriction of πΩ to UΩ. Let X ′ ∈ π′−1
Ω (π′Ω(X)) be a

closed point in the fiber over the X defined above. Let S′ be the column-space of X ′.
Then by construction πφ`j(s`) ∈ πφ`j(S

′) for every j ∈ [m−r] and every ` ∈ [r]. Since

X ′ ∈ UΩ we have S′ ∈ ⋂`∈[r] VΦ` so that by Lemma 3.14 we must have that s` ∈ S
′

for every ` ∈ [r]. But then S′ = S. By Lemma 3.13 dimπωj(S
′) = dimπωj(S) = r

for every j ∈ [n], and so Lemma 3.10 gives X ′ = X. Since X is the only closed
point of the fiber, and since the fiber is a Jacobson space [Sta20], it is equal to the
closure of X, i.e., π′−1

Ω (π′Ω(X)) = {X} as a topological space and thus π′−1
Ω (π′Ω(X))

is a zero-dimensional scheme.
Now πΩ is a morphism of integral schemes. Since an open subscheme of an

integral subscheme is integral, we have that π′Ω is also a morphism of integral
schemes. Since dimUΩ = dimAΩ = dim M(r,m × n), if π′Ω were not dominant then
the minimum fiber dimension of π′Ω would be positive (Proposition 3.9). But as we
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just saw dimπ′−1
Ω (π′Ω(X)) = 0 and so π′Ω must be dominant. But then πΩ must also

be dominant. Since a ring homomorphism A→ B of integral domains is injective if
and only if the corresponding morphism Spec(B)→ Spec(A) is dominant, we have
that k[ZΩ]→ k[Z]/Ir+1(Z) is injective, i.e. Ω is a base set of the algebraic matroid
of k[Z]/Ir+1(Z).

B.II. Proof of Proposition 3.3. By Lemma 3.15 we may assume that k
is algebraically closed. Suppose Ω is a base set of M(r,m × n). Then there is a
non-empty open set UΩ ⊂ M(r,m × n) such that the fiber π−1

Ω (πΩ(X)) is a zero-
dimensional scheme for any X ∈ UΩ. Fix an X = [x1⋯xn] ∈ UΩ whose column-
space has dimension r and preserves that dimension upon projection onto any r
coordinates. Denote by xij the i-th coordinate of xj . For any j ∈ [n] fix a ψj ⊂ ωj
with #ψj = r and for every κ ∈ ωj ∖ψj let φj,κ = ψj ∪{κ} = {i1, . . . , ir+1} ∈ Ωj . With
this we define a linear form in Plücker coordinates

lj,κ = ∑
α∈[r+1]

(−1)α−1 xiαj [φj,κ ∖ {iα}] ∈ T

Let LΩ be the ideal of T generated by lj,κ for all j’s and κ’s. Let p be the product
of all Plücker coordinates, p̄ its class in T /p and (T /p)(p̄) the homogeneous local-

ization of T /p at the multiplicatively closed set {1, p̄, p̄2, . . .}. In view of Lemmas
3.11 and 3.12 every closed point of Proj ((T /p +LΩ)(p̄)) is an r-dimensional linear
subspace S of km for which πωj(xj) ∈ πωj(S) for every j ∈ [n]. Thus by Lemma

3.10 every such S gives a unique closed point X ′ ∈ π−1
Ω (πΩ(X)), i.e. a completion

of πΩ(X). If rank(X ′) = r the column-space of X ′ is necessarily equal to S. Since
π−1

Ω (πΩ(X)) is a finite set, there are only finitely many closed points S in Gr(r,m)

that give rank-r completions of πΩ(X). In fact, the locus V ⊂ Proj ((T /p+LΩ)(p̄))
where every closed point gives a rank-r completion is non-empty and open. Let
LΩ,1 be the k-vector space of linear forms in LΩ. By Krull’s height theorem
dimV ≥ dim Gr(r,m) − dimk LΩ,1. By the finiteness of π−1

Ω (πΩ(X)) we must have
dimV = 0 and so dimk LΩ,1 ≥ r(m − r). That is, there must be at least r(m − r)
linearly independent lj,κ’s. On the other hand, since necessarily #ωj ≥ r and since

∑j∈[n] #ωj = r(m+n− r), there are exactly ∑j∈[n] max{#ωj − r,0} = r(m− r) lj,κ’s.

This is the condition in the definition of an (r, r,m)-SLMF obtained for I = [m]

and it here implies that all lj,κ’s must be linearly independent. Note that this must
be true for any choice of the ψj ’s.

Suppose there is some I ⊊ [m] for which ∑j∈[n] max{#ωj ∩I−r,0} > r(#I−r).

Let us write ∑j∈[n] max{#ωj ∩ I − r,0} = ∑j∈J (#ωj ∩ I − r) where the terms for
j ∈ J are those that have a non-zero contribution. Now for every j ∈ J choose
ψj to lie in I ∩ ωj . Then the inequality above says that there are more than
r(#I −r) lj,κ’s contributed by the ωj ’s indexed by j ∈ J , and they must be linearly
independent by what we said above. On the other hand, these lj,k’s are linear forms
in Plücker coordinates that are supported inside I and thus the maximal number of
linearly independent such forms can not exceed the dimension of the corresponding
Grassmannian, which is r(#I − r). This contradiction shows that Ω must be a
relaxed (r, r,m)-SLMF.

B.III. Proof of Corollary 3.6. By Theorem 3.2 Ω is a base set of the matroid
of T /I. Thus the ring homomorphism of integral domains TΩ → T /I is injective
and so the induced morphism πΩ ∶ Spec(T /I) → Spec(TΩ) is dominant. Then the
claim follows from Proposition 3.9.
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B.IV. Proof of Proposition 3.7. We prove the first statement for k̄ the
algebraic closure of k. Set Mk̄(r,m×n) = Spec(k[Z]/Ir+1(Z)⊗k k̄) and Grk̄(r,m) =

Gr(r,m) ×k Spec(k̄) = Proj(T /p) ×k Spec(k̄). Write Φ` = Φ = ⋃j∈[m−r] φj × {j} for
every `. Then for every α ∈ [m − r] there is a subset Lα ⊆ [n] of cardinality r such
that φα ⊆ ωj , ∀j ∈ Lα. For a closed point X = [x1⋯xn] ∈ Mk̄(r,m × n) denote by
c(X) the column-space of X. Call UΩ,k̄ the non-empty open set of Mk̄(r,m × n)
on which c(X) lies in VΦ,k̄ ⊆ Grk̄(r,m), none of the Plücker coordinates of c(X)

vanishes and the {xj ∶ j ∈ Lα} are linearly independent for every α ∈ [m − r].
Since Span(xj ∶ j ∈ Lα) is the same as c(X) so will be their projections under πφα .

Proposition 3.8 asserts that the data πφα(c(X)), α ∈ [m − r] uniquely determine

c(X) on VΦ,k̄. Since #ωj ≥ r, ∀j ∈ [n] and πωj(c(X)) does not drop dimension,
Lemma 3.10 gives that the data c(X), πΩ(X) uniquely determine X. Hence, the
following data uniquely determine X for any closed X ∈ UΩ,k̄:

πφα(Span(xj ∶ j ∈ Lα)), α ∈ [m − r] and πΩ(X)

We have proved that the restriction of πΩ,k̄ on the dense open set UΩ,k̄ ⊆

Mk̄(r,m × n) is injective at closed points. Now note that the defining polynomials
of UΩ,k̄ do not depend on the field k̄. Since UΩ,k̄ is non-empty not all of these

polynomials are zero in T /I ⊗k k̄. But then not all of them will be zero in T /I.
Hence, they also define a non-empty open set UΩ of M(r,m×n). This UΩ must be
dense because M(r,m × n) is an integral scheme and thus it is irreducible. Then
the injectivity at k-valued points of the restriction of πΩ on UΩ is inherited from
the injectivity at closed points of πΩ,k̄ restricted on UΩ,k̄.

We now prove the second claim of the statement. Let Φ ⊆ [m] × [m − r]
be any (r,m)-SLMF. We prove the existence of an Ω ⊆ [m] × [n] such that 1)
#Ω = dim M(r,m × n), 2) #ωj ≥ r and 3) for every α ∈ [m − r] there is a subset
Lα ⊆ [n] of cardinality r with φα ⊆ ωj , ∀j ∈ Lα. We argue by induction on n. For
n = r take Ω = [m]× [n]. Suppose n > r. By induction there is an Ω′ ⊆ [m]× [n− 1]
with the required as above properties. Then take Ω = Ω′ ∪ ([r] × {n}).

C. On Conjecture 3.4

We prove the conjecture for the following extreme rank values:

Proposition 3.18. Conjecture 3.4 is true for r = 1,m − 2,m − 1.

Proof. Only the only if part needs proving. For r = 1 there is nothing to
prove. Recall that the conjecture is stated under the hypothesis that #ωj ≥ r + 1
for every j ∈ [n]. We may also assume m ≤ n without loss of generality. Thus when
r =m−1 we have ωj = [m] for every j ∈ [n]. Since dim M(m−1,m×n) = (m−1)(n+1)
and this value must be equal to mn we necessarily have n =m− 1. Taking J` = {`}
for every ` ∈ [n] = [m−1] gives the required partition and proves the conjecture for
r =m − 1.

When r =m−2 each ωj is either equal to [m] or has cardinality m−1. Without
loss of generality we assume that ωj = [m] for j = n − α + 1, . . . , n and #ωj =m − 1
for j ∈ [α], for some non-negative integer α. A counting argument as before shows
that n = 2m − 4 − α. We construct the partition [n] = ⋃`∈[m−2]J` as follows. For
` = m − 1 − α, . . . ,m − 2 set J` = {`}. The rest of the J`’s for ` ∈ [m − 2 − α] will
contain two elements and we show how to get them. For j ∈ [n−α] = [2m− 4− 2α]
we re-order the ωj ’s such that equal ωj ’s are placed consecutively. Then we assign
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cyclically these ωj ’s to m − 2 − α ordered cells J1, . . . ,Jm−2−α, by placing ωj to
Jmax{j mod m−1−α,1}. We claim that each J` is a relaxed (1,m − 2,m)-SLMF. For
` > m − 2 − α this is clear. So suppose that Jκ = {ωi, ωi+m−2−α} is not a relaxed
(1,m − 2,m)-SLMF for some κ ∈ [m − 2 − α] and some i ∈ [n − α]. The only way
this can happen is if ωi = ωi+m−2−α. In that case for I = ωi we have

∑
j∈[n]

(#ωj ∩ I − (m − 2)) = ∑
j∈[n−α]

(#ωj ∩ I − (m − 2)) + ∑
j≥n−α+1

(#ωj ∩ I − (m − 2))

≥ ((m − 2 − α) + 1) + α =m − 2 + 1 > r(#I − r) =m − 2

which violates the hypothesis of relaxed (m − 2,m − 2,m)-SLMF on Ω. �

On the other hand, it is not clear how to generalize the clustering algorithm
described in the proof for r = m − 2, the difficulty being determining the ordering
of the ωj ’s. To get a better feeling for the statement of the conjecture we consider
it in the boundary case where n = r(m − r) and #ωj = r + 1 for every j ∈ [n]. By
Hall’s marriage theorem Φ = ⋃j∈[m−r] φj × {j} ⊂ [m] × [m − r] is an (r,m)-SLMF if
and only if there exists a perfect matching in the bipartite subgraph of Φ induced
by removing any r indices from [m]. In turn, this is equivalent to saying that for
any I ⊂ [m] with #I =m−r the φj ’s have a system of distinct representatives in I,
in the sense that we can write I = {i1, . . . , im−r} with ij ∈ φj for every j ∈ [m − r].
In this terminology Conjecture 3.4 becomes equivalent to:

Conjecture 3.19. Suppose that n = r(m−r) and #ωj = r+1 for every j ∈ [n].
Then for any I ⊂ [m] with #I = m − r there exists a partition [n] = ⋃`∈[r]J` (in
general depending on I) with #J` =m−r such that every {ωj ∶ j ∈ J`} has a system
of distinct representatives in I, if and only if there exists a partition [n] = ⋃`∈[r]J`
such that for any I ⊂ [m] with #I = m − r every {ωj ∶ j ∈ J`} has a system of
distinct representatives in I.

D. Examples

Example 3.20. Let r = 2,m = 6 and Φ = ⋃j∈[4] φj × {j} ⊂ [m] × [m − r]:

Φ = {2,4,6} × {1} ∪ {1,2,4} × {2} ∪ {1,2,5} × {3} ∪ {1,3,5} × {4}

and its representation by its indicator matrix:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1
1 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is a (2,6)-SLMF since it satisfies condition (18). It defines an open set VΦ in
Gr(2,6) on which the rational map Gr(2,6)→ P2 × P2 × P2 × P2 given by

S ↦
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[46]S
−[26]S
[24]S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[24]S
−[14]S
[12]S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[25]S
−[15]S
[12]S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[35]S
−[15]S
[13]S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

is injective. These 4 elements of P2 are precisely the normal vectors of the 4 planes
in k3 that one gets by projecting a general 2-dimensional subspace S in k6 onto the
3 coordinates indicated by each of the φj’s.
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For each S ∈ VΦ there is a unique up to a scaling of its columns 6 × 4 matrix
with the same sparsity pattern as Φ whose column-space is S⊥:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 [24]S [25]S [35]S
[46]S −[14]S −[15]S 0

0 0 0 −[15]S
−[26]S [12]S 0 0

0 0 [12]S [13]S
[24]S 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The polynomial that defines the complement of VΦ is

pΦ = det
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[24]S [25]S [35]S
0 0 −[15]S
0 [12]S [13]S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
= [12]S[24]S[15]S

The following two examples illustrate Theorem 3.2.

Example 3.21. Let r = 2, m = 6, n = 5 and consider the following Ω ⊂ [6] × [5]
with #Ω = 18 = dim M(2,6 × 5) represented by its indicator matrix:

Ω =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 1
1 0 1 1 0
1 0 0 0 1
1 1 1 1 0
1 1 0 1 1
0 1 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Consider the partition [5] = T1 ∪ T2 with T1 = {1,2} and T2 = {3,4,5}. Now take

Φ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0
1 1 1 0
1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Φ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1
1 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Φ1,Φ2 are (2,6)-SLMF’s since they satisfy (18). Φ1 is associated with the first 2
columns of Ω (T1), while Φ2 with the last 2 columns of Ω (T2). A computation with
Macaulay2 suggests that π−1

Ω (πΩ(X)) consists only of X, for general X.

Example 3.22. Let r = 2,m = 6, n = 8 and Ω with #Ω = 24 = dimMk(2,6 × 8)

Ω =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 1 1 1
1 0 1 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 0 0 0 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With T1 = {1,2,3,4},T2 = {5,6,7,8}, Φ1,Φ2 are the leftmost and rightmost respec-
tively blocks of Ω and both satisfy (18). A computation with Macaulay2 suggests
that π−1

Ω (πΩ(X)) consists of 2 points over a non-algebraically closed field k and 4
points otherwise.
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CHAPTER 4

Determinantal conditions for homomorphic
sensing

In a fascinating line of research in signal processing termed unlabeled sensing,
it has been recently established that uniquely recovering a signal from shuffled
and subsampled measurements is possible as long as the number of measurements
is at least twice the intrinsic dimension of the signal [UHV18], while the source
generating the signal is sufficiently exciting. In abstract terms, this says that if
V is a general[1] n-dimensional linear subspace of Rm, for some m ≥ 2n, π1, π2

permutations on the m coordinates of Rm and ρ1, ρ2 coordinate projections viewed
as endomorphisms, then ρ1π1(v1) = ρ2π2(v2) implies v1 = v2 whenever v1, v2 ∈ V ,
provided that each ρi preserves at least 2n coordinates. A similar phenomenon has
been identified in real phase retrieval [LS18, HLS18]. In both cases the proofs
involve lengthy combinatorial arguments which show that certain determinants do
not vanish. In this chapter we provide an abstract justification for this phenomenon,
that may very well go under the name homomorphic sensing.

Let k be an infinite field and τ1, τ2 endomorphisms of km. Let ρ be a lin-
ear projection onto im(τ2), that is ρ is an idempotent endomorphism of km with
im(ρ) = im(τ2). Let R,T1, T2 ∈ km×m be matrix representations of ρ, τ1, τ2 on
the canonical basis of km. Let k[x] = k[x1, . . . , xm] be a polynomial ring and
Iρτ1,τ2 the ideal generated by all 2-minors of the m × 2 matrix [RT1x T2x] with
x = x1, . . . , xn arranged as column vector. Consider the closed subscheme Yρτ1,τ2 =
Spec(k[x]/Iρτ1,τ2) of Amk = Spec(k[x]). Its k-valued points correspond to w’s in km

for which ρτ1(w), τ2(w) are linearly dependent. For a k-subspace V ⊆ km denote

by V = Spec(k[x]/IV ) the closed subscheme of Amk corresponding to V , where IV
is the vanishing ideal of V . The key object is the locally closed subscheme

Uρτ1,τ2 = Yρτ1,τ2 ∖ (ker(ρτ1 − τ2) ∪ ker(ρτ1) ∪ ker(τ2))

Let Gr(n,m) be the Grassmannian of n-dimensional k-subspaces of km, iden-
tified by the image of the Plücker embedding with an irreducible projective variety.
Our main result is:

Theorem 4.1. For n ≤m/2 suppose dimUρτ1,τ2 ≤m−n, dimk im(τ2) ≥ 2n and
dimk im(τ1) ≥ n. Then there is an open dense set U ⊆ Gr(n,m) such that for V ∈ U

and v1, v2 ∈ V we have τ1(v1) = τ2(v2) only if v1 = v2.

By a coordinate projection ρ we mean an endomorphism of km which preserves
the values of rank(ρ) coordinates and sets the rest to zero.

[1]The attribute general is used in the algebraic geometry sense, to indicate that the claimed
property is true for every V on a dense open set of the Grassmannian.
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Theorem 4.2. Let π1, π2 be permutations on the m coordinates of km and
ρ1, ρ2 coordinate projections. Then dimUρ2ρ1π1,ρ2π2 ≤m − ⌊rank(ρ2)/2⌋.

Using Theorems 4.1-4.2 we obtain a generalization of the main theorem of
[UHV18]. The generalization consists in allowing one of the projections to preserve
at least n coordinates (and not 2n for both projections) as well as considering sign
changes. We call ρ ∶ km → km a signed coordinate projection, if it is the composition
of a coordinate projection with a map represented by a diagonal matrix with ±1 on
the diagonal.

Corollary 4.3. Let Pm be the group of permutations on the m coordinates
of km, and Rn,R2n,Sn, S2n the set of all coordinate projections (Rn, R2n) and
signed coordinate projections (Sn, S2n) of km, which preserve at least n and 2n
coordinates respectively, for some n ≤m/2. Then the following is true for a general
n-dimensional subspace V : if ρ1π1(v1) = ρ2π2(v2) for v1, v2 ∈ V with ρ1 ∈ Sn, ρ2 ∈

S2n, π1, π2 ∈ Pm, then v1 = v2 or v1 = −v2. Moreover, if ρ1 ∈ Rn and ρ2 ∈ R2n,
then v1 = v2.

Finally, using just linear algebra, a much simpler argument gives a version of
Theorem 4.1 for general points:

Proposition 4.4. Suppose τ1, τ2 have rank at least n + 1 and are not scalar
multiples of each other. Then for a general n-dimensional linear subspace V of km

and v a general point in V , we have τ1(v) = τ2(v
′) with v′ ∈ V only if v′ = v.

A. Proof of Theorem 4.1

For a positive integer s set [s] = {1, . . . , s} and [0] = 0. We first consider a
special case where one of the endomorphisms is the identity id. Let τ be the other
endomorphism with T ∈ km×m its matrix representation on the canonical basis of
km. Denote by Iτ the ideal of k[x] generated by the 2-minors of the 2 ×m matrix
[Tx x]. The k-valued points of the closed subscheme Yτ = Spec(k[x]/Iτ) form the
union of the eigenspaces of the endomorphism τ corresponding to eigenvalues that

lie in k. Set Uτ = Yτ ∖ker(τ − id) the open subscheme of Yτ with the locus associated
to eigenvalue 1 removed. We have:

Proposition 4.5. Suppose that dimUτ ≤m−n for some n with m ≥ 2n. Then
there is a dense open set U ⊂ Gr(n,m) such that for every V ∈ U and v1, v2 ∈ V we
have τ(v1) = v2 only if v1 = v2.

Proof. See §A.I. �

Denote by k[x]1 the k-vector space of degree-1 homogeneous polynomials in

k[x]. Write ker(ρτ1 − τ2) = Spec(k[x]/J) where J is generated by linear forms
pα ∈ k[x]1, α ∈ [codim ker(ρτ1 − τ2)]. Similarly, let qβ ’s and rγ ’s be linear forms
generating the vanishing ideals of ker(ρτ1) and ker(τ2) respectively. Set hαβγ =

pαqβrγ . Then

Uρτ1,τ2 = ⋃
α,β,γ

Spec (k[x]/Iρτ1,τ2)hαβγ

where (k[x]/Iρτ1,τ2)hαβγ
is the localization of k[x]/Iρτ1,τ2 at the multiplicatively

closed set {1, hαβγ , h
2
αβγ , . . .}.

Set ` = dimk im(τ2). There is a dense open set U1 ⊆ Gr(`,m) such that H ∩

ker(τ2) = 0 for every H ∈ U1. For any such H we have that τ2∣H establishes an
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isomorphism between H and im(τ2). Let (τ2∣H)−1 ∶ im(τ2) → H be the inverse
map. Consider the endomorphism of H given by τH = (τ2∣H)−1ρτ1∣H . Fixing a
basis Bim(τ2) ∈ k

m×` of im(τ2) we let R′ be the k`×m matrix that sends a vector
ξ ∈ km to the coefficients of the representation of ρ(ξ) on the basis Bim(τ2) and

note that R′R = R′. Fix a basis BH ∈ km×` of H. Then τ2∣H is represented by the
invertible matrix T2,H = R′T2BH ∈ k`×` and τH by TH = T −1

2,HR
′T1BH ∈ k`×`.

Let k[z] = k[z1, . . . , z`] be a polynomial ring of dimension ` and consider the
surjective ring homomorphism ψ ∶ k[x]→ k[z] that takes x to BHz. The kernel of ψ
is the vanishing ideal IH of H, so that ψ induces a ring isomorphism k[x]/IH ≅ k[z].
The further ring isomorphism k[x]/IH + (pα)α ≅ k[z]/(ψ(pα))α corresponds geo-
metrically to the identification ker(ρτ1−τ2)∩H ≅ ker(τH − id). That is, the ψ(pα)’s
generate the vanishing ideal of ker(τH−id). Similarly, the ψ(qβ)’s generate the van-
ishing ideal of ker(τH), while the ψ(rγ)’s generate the irrelevant ideal (z1, . . . , z`).
Now define IτH to be the ideal of k[z] generated by all 2 × 2 determinants of the
` × 2 matrix [THz z]. We have:

Lemma 4.6. IτH = ψ(Iρτ1,τ2).

Proof. Since τ2(τ2∣H)−1ρ = ρ we have ψ([RT1x T2x]) = T2BH[THz z]. Recall
that if C is a 2 × ` row-submatrix of T2BH then

det(C[THz z]) = ∑
J ⊂[`],#J =2

det(CJ )det(J [THz z])

where CJ and J [THz z] denote column and row 2 × 2 submatrices repsectively,
indexed by J . This shows that the ideal of 2 × 2 determinants of ψ([RT1x T2x])
is contained in the ideal of 2 × 2 determinants of [THz z]. For the reverse inclu-
sion, note that T2BH has rank ` and so there is an invertible row-submatrix A of
T2BH of size ` × `. It is enough to prove that the ideal of 2 × 2 determinants of
A[THz z] coincides with that of [THz z]. The matrix A induces a k-automorphism
f ∶ (k[z])` → (k[z])` given by u ↦ Au. This further induces a k-linear map of ex-

terior powers f (2) ∶ ∧2(k[z])` → ∧2(k[z])` by taking u ∧ v to Au ∧Av. Note that
u∧v is the vector of 2×2 determinants of the matrix [u v]. Similarly A−1 induces a

k-linear map g(2) ∶ ∧2(k[z])` → ∧2(k[z])`. Since f (2), g(2) are inverses, the vectors
of 2 × 2 determinants of A[THz z] and [THz z] can be obtained from each other
via matrix multiplication over k, thus they generate the same ideal. �

Lemma 4.6 gives the ring isomorphism ψ′ ∶ k[x]/Iρτ1,τ2 + IH ≅ k[z]/IτH . To-
gether with the definition of UτH this gives

UτH ∖ ker(τH) = Spec(k[z]/IτH ) ∖ ker(τH − id) ∪ ker(τH)

≅ ⋃
α,β

Spec (k[x]/Iρτ1,τ2 + IH)
pαqβ

Let Gr(c, k[x]1) be the Grassmannian of k-subspaces W of k[x]1 of dimension
c. The following is a folklore fact in commutative algebra.

Lemma 4.7. Let I be a homogeneous ideal of k[x]. Then there exists a dense
open set U∗ ⊆ Gr(c, k[x]1) such that

dim (k[x]/I + (W )) = max{dim (k[x]/I) − c,0}

for every W ∈ U∗, with (W ) the ideal generated by W .
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Let P be the minimal set of homogeneous prime ideals of k[x] such that
√
Iρτ1,τ2 = ⋂P ∈P P . Let Pα,β be the subset of P consisting of those P ’s that

do not contain pαqβ for some α,β. Each such P corresponds to an irreducible

component of Spec (k[x]/Iρτ1,τ2)pαqβ
. For P ∈ Pα,β Lemma 4.7 with c =m− ` and

I = P gives a dense open set U∗P ⊆ Gr(m− `, k[x]1) on which dim (k[x]/P + (W )) =

max{dim (k[x]/P) −m + `,0} for every W ∈ U∗P . Set U∗α,β = ⋂P ∈Pα,β
U∗P . For every

W ∈ U∗α,β we have dim (k[x]/Iρτ1,τ2 +(W ))
pαqβ

= max{dim (k[x]/Iρτ1,τ2)pαqβ
−m+

`,0}. By hypothesis dimUρτ1,τ2 ≤ m − n so dim (k[x]/Iρτ1,τ2)pαqβ
≤ m − n. With

U∗ = ⋂α,β U
∗
α,β , for every W ∈ U∗ we have that dim (k[x]/Iρτ1,τ2 + (W ))

pαqβ
≤ `−n

for every α,β. Now under the isomorphism Gr(m − `, k[x]1) ≅ Gr(`,m) the open
set U∗ gives an open set U2 ⊂ Gr(`,m) such that H ∈ U2 if and only if IH ∈ U∗. We

conclude that dimUτH ∖ ker(τH) ≤ ` − n for every H ∈ U2.
The locus of H’s in U1∩U2 for which i) dimk ker(τH) is minimal, ii) dimkEτH ,1 =

` − rank(R′T1BH − R′T2BH) is minimal, iii) a unique basis BH exists with the
top ` × ` block the identity matrix, is also open and non-empty; call it U3. For
every H ∈ U3 the above mentioned unique representation BH of H establishes
a k-vector space isomorphism H ≅ k` by sending the jth column of BH to the
jth canonical vector of k`. This further establishes an isomorphism of projective

varieties γH ∶ Gr(n,H)
∼
Ð→ Gr(n, `). By the definition of U3 dimk ker(τH) is constant

for every H ∈ U3, call that value α. If α ≤ n then τH satisfies the hypothesis of
Proposition 4.5 for every H ∈ U3. Hence there is a dense open set UH ⊆ Gr(n,H)

such that for every V ∈ UH and v1, v2 ∈ V we have τH(v1) = v2 only if v1 = v2. If
on the other hand α > n, it is easy to see that there is another dense open set that
we also call UH ⊆ Gr(n,H), such that for every V ∈ UH and v1, v2 ∈ V the equality
τH(v1) = v2 implies v1 = v2 = 0.

We now show that the incidence correspondence V ⊂H with H ∈ U4 and V ∈ UH
contains a non-empty open set of the flag variety F(n, `,m), the latter defined as the
closed subset of Gr(n,m)×Gr(`,m) cut out by the relation V ∈ Gr(n,H). Towards
that end, it is enough to show that the equations that define UH are polynomials
in the Plücker coordinates of V via γH with rational coefficients in BH . Denote by
k(BH) the field of fractions of the polynomial ring k[BH] with the free entries of BH
viewed as variables. The parametrization of UH by H depends on the two numbers
α = dimk ker(τH) and β = dimkEτH ,1. Both these dimensions are constant for every
H ∈ U3 and there are three possibilities for the structure of UH determined by the
cases i) α ≤ n, β ≤m − n, ii) α ≤ n, β >m − n, iii) α > n. We only discuss i) and ii).
For case i) the last part of the proof of Proposition 4.5 shows that UH is determined
via γH by the condition rank[THA A] = 2n, where A ∈ k`×n is any basis of γH(V ).
This amounts to the non-simultaneous vanishing of certain quadratic equations
in the Plücker coordinates of γH(V ) with coefficients in k(BH). For case ii) we
note that the number β is equal to the k(BH)-vector space dimension of the right
nullspace of the matrix TH − I, where I is the identity matrix of size `. By Gauss-
Jordan elimination over k(BH) we compute a k(BH)-basis s1, . . . , sβ ∈ k(BH)` for

that nullspace. We extend this sequence by adding vectors s1, . . . , s`−β ∈ k` such

that the matrix S = [s1⋯sβ s1⋯s`−β] ∈ k(BH)`×` is invertible over k(BH). The
last part of the proof of Proposition 4.5 shows that now UH is determined via γH
as the γH(V )’s with basis A ∈ k`×n for which det(S−1

[n]A) ≠ 0, where S−1
[n] is the top
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n ×m block of S−1. This is a linear equation in the Plücker coordinates of γH(V )

with rational coefficients in BH .
We have a non-empty open set O ⊂ F(n, `,m) such that for every (V,H) ∈ O we

have that V satisfies the property of interest: if τ1(v1) = τ2(v2) for v1, v2 ∈ V then
τH(v1) = v2 and thus necessarily v1 = v2. The equations that define O also define

a non-empty open subscheme O of the flag scheme F(n, `,m), where the overline

notation indicates scheme structure. Now, since both F(n, `,m) and Gr(n,m) are

irreducible, the image of O under the canonical projection F(n, `,m) → Gr(n,m)

is dense. By Chevalley’s theorem that image is constructible and thus it con-
tains a non-empty open set U5 whose k-valued points satisfy our property of in-
terest. It remains to show how to get the open set U ⊂ Gr(n,m) of the theo-

rem. Gr(n,m),Gr(n,m) are locally isomorphic to the affine space of dimension

n(m − n). Let U6 be the open set of Gr(n,m) where some Plücker coordinate

does not vanish. With Y an n × (m − n) matrix of indeterminates, U6 is isomor-

phic to An(m−n) = Speck[Y ]. The non-vanishing of the same Plücker coordinate in

Gr(n,m) gives an open set U7 ⊂ Gr(n,m), which is isomorphic to kn(m−n). Replac-

ing U5 by its intersection with U6, we may assume that it lies in An(m−n). As U5

is covered by basic affine open sets, we may further assume that U5 = Spec(k[Y ])p
for some non-zero polynomial p ∈ k[Y ]. Our open set U is the non-vanishing locus
of p in U7, which is non-empty by the infinity of k.

A.I. Proof of Proposition 4.5. We recall some notions from linear algebra
following [Rom08]. For simplicity we write τv instead of τ(v). We say that a
k-subspace C of km is τ -cyclic if it admits a basis of the form v, τv, τ2v, . . . , τd−1v
for some v ∈ km with d = dimk C. Let y be a transcendental element over k.
Then km admits a k[y]-module structure under the action p(y) ∈ k[y] ↦ p(τ) ∈

Homk(k
m, km). Let mτ(y) be the monic minimal polynomial of τ and let mτ(y) =

p`11 (y)⋯p`ss (y) be its unique factorization into powers of irreducible polynomials
pi(y) ∈ k[y]. Then km admits a primary cyclic decomposition as a k[y]-module
into the direct sum of τ -cyclic subspaces on which the minimal polynomial of τ is
a power of one of the pi(y)’s. Now τ admits an eigenvalue λ ∈ k if and only if y −λ
divides mτ(y), that is if and only if one of the pi(y)’s is equal to y −λ. Let C be a
τ -cyclic subspace as above in the primary decomposition with minimal polynomial
of the form (y − λ)e. Then wi = (τ − λ)d−iv, i ∈ [d] is a basis of C with τw1 = λw1

and τwi = λwi +wi−1, i = 2, . . . , d. We call this basis a Jordan basis and the matrix
representation of τ ∣C on that basis is a Jordan block

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 ⋯ 0 0
0 λ 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ λ 1
0 0 0 ⋯ 0 λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ kd×d

Thus the geometric multiplicity of the eigenvalue λ ∈ k is the number of τ -cyclic
subspaces in the primary decomposition of km for which mτ ∣C (y) = (y−λ)d for some

d ≥ 1. Now τ induces an endomorphism of k̄m in a natural way, which we also call τ .
With λi, i ∈ [s] the eigenvalues of τ over k̄ we have that k̄m admits a decomposition
k̄m = ⊕t,iCt,λi into τ -cyclic k̄-subspaces with Ct,λi corresponding to eigenvalue
λi. That is each Ct,λi admits a Jordan basis w1, . . . ,wdti such that τw1 = λiw1 and
τwj = τiwj+wj−1, ∀j = 2, . . . , dti. We denote by Eτ,λ the eigenspace of τ associated
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to eigenvalue λ. We note that if λ ∈ k then dimkEτ,λ = dimk̄Eτ,λ. Finally, with
K = k, k̄ we denote by GrK(n,m) the set of all n-dimensional K-subspaces of Km.

We prove the proposition in several stages, starting with the boundary situation
described in the next lemma.

Lemma 4.8. Suppose m = 2n and dimk̄Eτ,λ = n for some λ ∈ k̄. Then there
exists a V ∈ Grk̄(n,m) such that k̄m = V ⊕ τ(V ).

Proof. Let λi, i ∈ [s] be the spectrum of τ over k̄ and suppose that λ1 = λ is
the said eigenvalue. Then in the decomposition above of k̄2n there are exactly n
subspaces Ct,λ1 , t ∈ [n] associated to λ1 each of them contributing a single eigen-
vector. With wt,1, . . . ,wt,dt a Jordan basis for Ct,λ1 that eigenvector is wt,1 and we
set vt = wt,1 for t ∈ [n]. We produce n linearly independent vectors ut, t ∈ [n] to be
taken as a basis for the claimed subspace V , by summing pairwise the vt’s with the
remaining Jordan basis vectors across all Ct,λi ’s in a manner prescribed below.

First, suppose that all Ct,λ1 ’s are 1-dimensional. Then C1,λ2 is a non-trivial
subspace with Jordan basis say w1, . . . ,wd, for some d ≥ 1. We construct the first d
basis vectors u1, . . . , ud for V as uj = vj +wj , j ∈ [d]. A forward induction on the
relations

τu1 = λ1v1 + λ2w1; τuj = λ1vj + λ2wj +wj−1, j = 2, . . . , d,

together with λ1 ≠ λ2, gives

Span(u1, τu1, . . . , ud, τud) = (⊕t∈[d]Ct,λ1
)⊕ C1,λ2

If d = n we are done, otherwise either C2,λ2 or C1,λ3 is a non-trivial subspace and
we inductively repeat the argument above until all Ct,λi ’s are exhausted.

Next, suppose that not all Ct,λ1 ’s are 1-dimensional. We may assume that
there exists integer 0 ≤ r < n such that dimCt,λ1 = 1 for every t ≤ r and dimCt,λ1 =

dj > 1 for every t > r. If r = 0, then each Ct,λ1 is necessarily 2-dimensional and
τ has only one eigenvalue λ1. Letting w1,t,w2,t be the Jordan basis for Ct,λ1 , we
define ut = w2,t, ∀t ∈ [n]. Clearly, Span(ut, τut) = Span(w1,t,w2,t), in which case

Span ({ut, τut}t∈[n]) = ⊕t∈[n]Ct,λ1 = k̄
2n. So suppose 1 ≤ r < n. Let w1, . . . ,wdr+1 be

a Jordan basis for Cr+1,λ1 . Since

2(n − r − 1) ≤ dim⊕
n
t=r+2Ct,λ1 ≤ codim⊕

r+1
t=1Ct,λ1 = 2n − r − dr+1,

we must have
dr+1 − 2 ≤ r

Recall that w1 = vr+1 and define u1 = vr+1 + wdr+1 and uj = vj−1 + wj for j =

2, . . . , dr+1 − 1. Noting that {wj ∶ j ∈ [dr+1 − 1]} = {τuj − λuj ∶ j ∈ [dr+1 − 1]}, we
have

Span ({uj , τuj}
dr+1−1
j=1 ) = (⊕

dr+1−2
t=1 Ct,λ1

)⊕Cr+1,λ1

If r = n−1, we have found a (dn−1)-dimensional subspace V ′ ∶= Span(uj ∶ j ∈ [dr+1−

1]) such that V ′ + τ(V ′) = ⊕nt=1Ct,λ1 . Otherwise if r < n − 1, Cr+2,λ1 is a nontrivial
subspace of dimension dr+2 ≥ 2, which must satisfy r+dr+1 +dr+2 +2(n− r−2) ≤ 2n
or

dr+2 − 2 ≤ r − (dr+1 − 2)

Letting w1, . . . ,wdr+2 be a Jordan basis for Cr+2,λ1 and recalling the convention
vr+2 = w1, we define udr+1 , . . . , udr+1+dr+2−2 as

udr+1 = vr+2 +wdr+2 , udr+1−1+j = vdr+1−3+j +wj , ∀j = 2, . . . , dr+2 − 1
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Then one verifies that

Span ({udr+1−1+j , τudr+1−1+j}dr+2−1
j=1 ) = (⊕dr+2−2

t=1 Cdr+1−2+t,λ1)⊕Cr+2,λ1

and in particular

Span ({uj , τuj}dr+1+dr+2−2
j=1 ) = (⊕dr+1+dr+2−4

t=1 Ct,λ1)⊕ (⊕t∈[2] Cr+t,λ1)

Continuing inductively like this we exhaust all Ct,λ1 ’s that have dimension greater
than 1 and obtain

V ′
= Span ({uj ∶ j = 1, . . . , ∑

j∈[n−r]
(dr+j − 1)})

V ′
+ τ(V ′

) = (⊕
t∈[∑n−rj=1 (dr+j−2)] Ct,λ1)⊕ (⊕t∈[n−r] Cr+t,λ1)

with ∑
n−r
j=1 (dr+j−2) ≤ r. If equality is achieved then dimV ′ = n and we can take V =

V ′; note that in that case s = 1. Otherwise, dim⊕t;i>1Ct,λi = r−∑
n−r
j=1 (dr+j −2) =∶ α

and this is precisely the number of 1-dimensional Ct,λ1 ’s that have not been used
so far. Letting ξ1, . . . , ξα be the union of all Jordan bases of all Ct,λi ’s for i > 1, we
define the remaining α basis vectors of V as un−α+j = vr−α+j + ξj , j ∈ [α], and since

Span ({un−α+j , τ(un−α+j)}
α
j=1) = (⊕

α
j=1 Cr−α+j,λ1)⊕ (⊕t;i>1 Ct,λi)

the proof is complete. �

We now use Lemma 4.8 to get a stronger statement for eigenspace dimensions
less than or equal to half of the ambient dimension.

Lemma 4.9. Suppose m = 2n and dimk̄Eτ,λ ≤ n for every λ ∈ k̄. Then there
exists a V ∈ Grk̄(n,m) such that k̄m = V ⊕ τ(V ).

Proof. Let λi, i ∈ [s] be the eigenvalues of τ over k̄ and proceed by induction
on n. For n = 1 we have s ≤ 2 and dimEτ,λi = 1, whence the claim follows from
Lemma 4.8. So let n > 1. If dimk̄Eτ,λi = n for some i, then we are done by Lemma
4.8. Hence suppose throughout that dimk̄Eτ,λi < n, ∀i ∈ [s]. Since the induction
hypothesis applied on any 2(n−1)-dimensional τ -invariant subspace S furnishes an
(n − 1)-dimensional subspace V ′ ⊂ S such that V ′ ⊕ τ(V ′) = S, our strategy is to
suitably select S so that for a 2-dimensional complement T there is a vector u ∈ T
such that Span(u, τu) = T . Then we can take V = V ′ + Span(u).

If there are two 1-dimensional subspaces C1,λ1 , C1,λ2 spanned by v1, v2 respec-
tively, we let S = ⊕(t,i)≠(1,1),(1,2)Ct,λi and u = v1 + v2. So suppose that there
is at most one eigenvalue, say λ1, that possibly contributes 1-dimensional sub-
spaces Ct,λ1 ’s. In that case, there exist t′, i′ such that d ∶= dimk̄ Ct′,λi′ > 1. Let

w1, . . . ,wd be a Jordan basis for Ct′,λi′ . Define the τ -invariant subspace C̃t,λi =

Span(w1, . . . ,wd−2), taken to be zero if d = 2. Then we let S = (⊕(t,i)≠(t′,i′)Ct,λi)⊕

C̃t,λi and u = wd. �

We take one step further by allowing m ≥ 2n.

Lemma 4.10. Suppose m ≥ 2n and dimk̄Eτ,λ ≤ m − n for every λ ∈ k̄. Then
there exists a V ∈ Grk̄(n,m) such that dimk̄ V ⊕ τ(V ) = 2n.
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Proof. The strategy is to find a 2n-dimensional τ -invariant subspace S ⊂ k̄m

for which dimk̄Eτ ∣S ,λi ≤ n; then the claim will follow from Lemma 4.9. We obtain
S by suitably truncating the Ct,λi ’s. Set µ = maxi∈[s] dimk̄Eτ,λi . If µ = 1 then τ has
m distinct eigenvalues and we may take S = ⊕i∈[2n]Ci,λi . Suppose that 1 < µ ≤ n.
Set c = m − 2n. If there is some Ct′,λi′ with d = dimk̄ Ct′,λi′ ≥ c, let w1, . . . ,wd be

a Jordan basis for Ct′,λi′ and take S = ( ⊕(t,i)≠(t′,i′) Ct,λi) ⊕ Span(w1, . . . ,wd−c).

Otherwise, let β > 1 be the smallest number of subspaces Ct1,λi1 , . . . ,Ctβ ,λiβ for

which dimk̄ ⊕j∈[β]Ctj ,λij = c + ` for some ` ≥ 0. Then by the minimality of β

we must have that dimk̄ Ct1,λi1 ≥ `. Now replace Ct1,λi1 by an `-dimensional τ -

invariant subspace C̃t1,λi1 obtained as the span of the first ` vectors of a Jordan

basis of Ct1,λi1 and take S = (⊕(t,i)≠(tj ,λij ), j∈[β] Ct,λi)⊕ C̃t1,λi1 .

Next, suppose that µ > n and we may assume that dimk̄Eτ,λ1 = µ = n+ c1 with
0 < c1 ≤ c. We first treat the case c1 = c. In such a case dimk̄Eτ,λi ≤ n for any i > 1.
Let r be the number of 1-dimensional Ct,λ1 ’s, say C1,λ1 , . . . ,Cr,λ1 . Then we must
have that

r + 2(n + c − r) ≤ 2n + c⇔ c ≤ r

and we can take S = ( ⊕n+ct=c+1 Ct,λ1) ⊕ ( ⊕t;i>1 Ct,λi). Next, suppose that c1 < c. If

dimk̄ Ct,λi = 1 for every t, i, then there are n+c−c1 1-dimensional Ct,λi ’s associated
to eigenvalues other than λ1. In that case we can take S to be the sum of n subspaces
associated to λ1 and any other subspaces associated to eigenvalues different than λ1.
If on the other hand dimk̄ Ct′,λi′ > 1 for some t′, i′, then we replace k̄m by U1, the
latter being the sum of all Ct,λi ’s with the exception that Ct′,λi′ has been replaced

by a C̃t′,λi′ ⊂ Ct′,λi′ of dimension one less which we rename to Ct′,λi′ . Notice that
this replacement does not change µ. If c− 1 = c1 or all Ct,λi ’s in the decomposition
of U1 are 1-dimensional, we are done by proceeding as above. If on the other hand
c−1 > c1 and there is a Ct′,λi′ of dimension larger than one, then replace U1 by U2,
where the latter is the sum of all Ct,λi ’s except the said Ct′,λi′ , which is replaced
as above by a Ct′,λi′ of dimension one less. Continuing inductively furnishes S. �

We are now in a position to complete the proof of Proposition 4.5. Suppose
first that dimk̄Eτ,1 ≤m−n. Then for V ∈ Grk(n,m) we have dimk(V + τ(V )) ≤ 2n
with equality on an open set U1 ⊂ Grk(n,m). With A ∈ km×n a basis of V this
open set is implicitly defined by the non-vanishing of some 2n × 2n minor of the
m × 2n matrix [A TA]. These minors are polynomials in A with coefficients over
k. By Lemma 4.10 there exists a non-zero evaluation for one of these polynomials
at some point A∗ ∈ k̄m×n so that U1 is non-empty. Set U = U1 ∩ U2 where U2 is the
non-empty open set of V ’s that do not intersect the kernel of τ . Then for every
V ∈ U we have V ∩ τ(V ) = 0 so that the equality τ(v1) = v2 implies v1 = v2 = 0.

Next, suppose that dimk̄Eτ,1 ≥ n. Then also dimkEτ,1 ≥ n. Thus in the
primary cyclic decomposition of km as a k[y]-module there are at least n τ -cyclic
subspaces associated to eigenvalue 1. Pick a basis of km that consists of the union of
bases of each and every of the τ -cyclic subspaces choosing a Jordan basis whenever
eigenvalue 1 is involved. Stack this basis in the columns of a matrix S and write
T = SJS−1 where J is the matrix representation of τ on that basis. Note that J is
block diagonal with at least n Jordan blocks present and associated to eigenvalue 1.
Hence there are indices I = {i1, . . . , in} for which the ij-th row of J is the canonical
vector eij of all zeros except a 1 at position ij . Let S−1

I be the row-submatrix of S−1
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made out of the rows indexed by I. Now let U ⊂ Grk(n,m) be the non-empty open
set of V ’s for which there is a basis A ∈ km×n such that the matrix S−1

I A ∈ kn×n is
invertible. Let V ∈ U and suppose that τ(v1) = v2 with v1, v2 ∈ V . Let A be a basis
of V and write vi = Aξi. Then the relation SJS−1v1 = v2 implies S−1

I Aξ1 = S
−1
I Aξ2

and so ξ1 = ξ2.

B. Proof of Theorem 4.2

We first need two lemmas.

Lemma 4.11. Let Π be an `× ` permutation matrix consisting of a single cycle,
and let Σ be an ` × ` diagonal matrix with its diagonal entries taking values in
{1,−1}. Let Q be the ideal generated by the 2-minors of the matrix [ΣΠz z] over
the `-dimensional polynomial ring k[z] = k[z1, . . . , z`]. Then height(Q) = ` − 1.

Proof. Note that the height of Q is the same as the height of the extension
of Q in k̄[z], so we may assume that k = k̄. Let Y ⊂ k̄` be the vanishing locus of
Q. Clearly v ∈ Y if and only if v is an eigenvector of ΣΠ. Hence Y is the union
of the eigenspaces of ΣΠ, the latter being the irreducible components of Y . With
σi ∈ {1,−1} the i-th diagonal element of Σ, the eigenvalues of ΣΠ are the ` distinct
roots of the equation x` = σ1⋯σ`. Hence ΣΠ is diagonalizable with ` distinct
eigenvalues, i.e., each eigenspace has dimension 1. Thus Y has pure dimension
1 = dimY = dim k̄[z]/IΣΠ whence height(Q) = 1. �

Lemma 4.12. Let Π be an m×m permutation matrix consisting of c cycles and
Σ an m ×m diagonal matrix with diagonal entries taking values in {1,−1}. For
every i ∈ [c] let Ii ⊂ [m] be the indices that are cycled by cycle i. Let Ī ⊂ [m]

such that #Ī ≥ 2 and Ii /⊂ Ī for every i ∈ [c]. Let Q be the ideal generated by the
2-minors of the row-submatrix Φ of [x ΣΠx] indexed by Ī. Viewing Q as an ideal
of the polynomial ring over k in the indeterminates that appear in Φ, we have that
height(Q) = #Ī − 1.

Proof. Let Φ = [x ΣΠx]Ī be the said submatrix. Let r ∈ [c] be such that
Ī ∩ Ir ≠ ∅. Since Ir /⊂ Ī, we can partition Ī ∩ Ir into subsets Īrj for j ∈ [sr] for
some sr, such that each Φrj = [x ΣΠx]Īrj has up to a permutation of the rows the
form

Φrj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xα σβxβ
xα+1 σαxα
⋮ ⋮

xα+`−2 σα+`−3xα+`−3

xγ σα+`−2xα+`−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here σi ∈ {1,−1} and xα, . . . , xα+`−2, xβ , xγ are distinct variables appearing only in
Φrj . Note that there is a total of s = ∑Īr≠∅ sr blocks Φrj and a total of #Ī + s
distinct indeterminates appearing in Φ. Let T be the general determinantal ring
over k of 2-minors of a #Ī × 2 matrix of variables. Then it is very well known that
T is Cohen-Macaulay of dimension #Ī + 1 [BV88]. Taking quotient with #Ī − s
suitable linear forms we obtain the quotient ring associated to Q. Taking quotient
with extra s linear forms we can obtain the quotient ring of an ideal of the form
appearing in Lemma 4.11. Then as per Lemma 4.11 this is 1-dimensional so that
the total sequence of #Ī linear forms is a T -regular sequence. �
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Remark 4.13. Ignoring the sign matrix Σ, a geometric view of the proof of
Lemma 4.12 is the following. When k = k̄ the ideal Q corresponds to a rational
normal scroll of dimension s+ 1. Then we take a sequence of s hyperplane sections
of that scroll, each time getting a new scroll of dimension one less until the scroll
degenerates to the union of eigenspaces of a cyclic permutation. See [CF17] for a
complete classification of rational normal scrolls that arise as hyperplane sections of
rational normal scrolls, see also [CJ97] for the free resolution of ideals of 2-minors
of a matrix of linear forms with two columns.

It is enough to bound as claimed the dimension of Uρ2ρ1π,ρ2 where π is some
permutation. Since the dimension of locally finite type k-schemes is preserved under
any field extension (exercise 11.2.J in [Vak17]) we may assume that k = k̄. Let
R1,R2,Π be matrix representations of ρ1, ρ2, π on the canonical basis of km. For a
closed point v ∈ Uρ2ρ1π,ρ2 we have R2R1Πv = λR2v for some λ ≠ 0,1. For i = 1,2,
let Ii ⊂ [m] be the indices that correspond to im(Ri), and similarly Ki the indices
that correspond to ker(Ri). If i ∈ I2 ∩K1, then it is clear that vi must be zero,
because λ ≠ 0. If π(i) ∈ I2 ∩K1, then we must also have vπ(i) = 0 for the same
reason. If π(i) ∈ I2 ∩ I1, then again vπ(i) = 0 because we already have vi = 0 and
λ ≠ 0. This domino effect either forces v to be zero in the entire orbit of i, or until
an index j in the orbit of i is reached such that π(j) ∈ K2 ∩K1. Let Idomino ⊂ I2
be the coordinates of v that are forced to zero by the union of the domino effects
for every i ∈ I2 ∩K1. Clearly I2 ∖ Idomino ⊂ I2 ∩ I1. Let i ∈ I2 ∖ Idomino; if it so
happens that π(i) = i, then we must have that vi = 0 because λ ≠ 1. Consequently
the coordinates of v that correspond to fixed points of π and lie in I2 ∖ Idomino

must be zero. Letting Ifixed ⊂ I2 ∖ Idomino be the set containing these indices, v
must lie in the linear variety defined by the vanishing of the coordinates indexed
by Idomino ∪ Ifixed.

Next, let π̄1, . . . , π̄c′ be all the c′ ≥ 0 cycles of π of length at least two that lie
entirely in I2 ∖ (Idomino ∪ Ifixed). Let Ci ⊂ [m] be the indices cycled by π̄i. Since
λ ≠ 0, it is clear that vCi must be an eigenvector of π̄i, and so by Lemma 4.11 vCi
must lie in a codimension-(#Ci −1) variety. Adding codimensions over i ∈ [c′], and
letting Icycles = ⋃i∈[c′]Ci, we get that vIcycles

must lie in a variety of codimension

∑i∈[c′](#Ci − 1). Moreover, we may assume that the set Iincomplete = I2 ∖ (Idomino ∪

Ifixed ∪ Icycles) does not contain any complete cycles, and if Iincomplete ≠ ∅ Lemma
4.12 gives that vIincomplete

must lie in a codimension-(#Iincomplete − 1) variety.
Let Ydomino,Yfixed,Ycycles,Yincomplete be the varieties defined by the vanishing

of the coordinates in Idomino, the vanishing of the coordinates in Ifixed, as well as
the vanishing of the 2-minors of the matrix [x Πx] indexed by Icycles and Iincomplete

respectively. Noting that these varieties are all associated with disjoint polynomial
rings and that #Idomino +#Ifixed +#Icycles +#Iincomplete = #I2, the above analysis
gives that v must lie in a variety Y = Ydomino ×Yfixed ×Ycycles ×Yincomplete so that

codimY ≥ #Idomino +#Ifixed + ∑
i∈[c′]

(#Ci − 1) +max{#Iincomplete − 1,0}

= #I2 − c
′
−#Iincomplete +max{#Iincomplete − 1,0}.

If Iincomplete = ∅, then codimY ≥ #I2−c
′. Since c′ ≤ #I2/2, we have that codimY ≥

#I2/2 ≥ ⌊#I2/2⌋. If on the other hand Iincomplete ≠ ∅, then c′ ≤ ⌊(#I2 − 1)/2⌋, so
that codimY ≥ #I2−⌊(#I2 − 1)/2⌋−1 ≥ ⌊#I2/2⌋, with the last inequality separately
verified for #I2 odd or even.

46



C. Proof of Corollary 4.3

If ρ1 ∈ Rn and ρ2 ∈ R2n, then the claim is a direct corollary of Theorems
4.1 and 4.2. Otherwise, a similar set of arguments as in the proof of Theorem
4.2 establishes that dimU±ρ2ρ1π1,ρ2π2

≤ m − ⌊rank(ρ2)/2⌋, where now U±ρ2ρ1π1,ρ2π2
=

Uρ2ρ1π1,ρ2π2 ∖ ker(ρτ1 + τ2). Moreover, an identical argument as in the end of the
proof of Proposition 4.5 shows that we can adjust that proposition as follows:
“Suppose dimk̄Eτ,λ ≤ m − n for every λ ≠ 1,−1. Then for a general n-dimensional
subspace V and v1, v2 ∈ V we have τ(v1) = v2 only if v1 = v2 or v1 = −v2.” Combining
everything together establishes the claim.

D. Proof of Proposition 4.4

Let A ∈ km×n be a basis of V . If τ1(v1) = τ2(v2) then τ2(v2) ∈ τ1(V ) and so
rank([T1A T2Aξ]) ≤ n for ξ ∈ kn with v2 = Aξ. We show that for general V, ξ this
can not happen unless τ1 = τ2, in which case v1−v2 ∈ ker(τ1) and so v1 = v2. Suppose
τ1 ≠ τ2. We show the existence of A, ξ such that rank([T1A T2Aξ]) = n + 1. Since
τ1 ≠ λτ2 for all λ ∈ k, there exists some v ∈ km such that τ1(v), τ2(v) are linearly
independent. Let W = Span (τ1(v), τ2(v)). Since rank(τ1) ≥ n+ 1, any complement
C of W ∩ im(τ1) in im(τ1) has dimension at least n− 1. Let C1 be a subspace of C
of dimension n − 1. Let V1 be a subspace of τ−1

1 (C1) of dimension n − 1 such that
C1 = τ1(V1). Then for V = V1 + Span(v) we have dim (τ1(V ) + τ2(v)) = n + 1.
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