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ABSTRACT

This paper proposes a method for performing future-frame predic-
tion and anomaly detection on video data in a multi-modal frame-
work based on Dynamic Bayesian Networks (DBNs). In particular,
odometry data and video data from a moving vehicle are fused. A
Markov Jump Particle Filter (MJPF) is learned on odometry data,
and its features are used to aid the learning of a Kalman Variational
Autoencoder (KVAE) on video data. Consequently, anomaly detec-
tion can be performed on video data using the learned model. We
evaluate the proposed method using multi-modal data from a vehicle
performing different tasks in a closed environment.

Index Terms— Variational Autoencoder, anomaly detection,
Kalman Filter, data fusion, Dynamic Bayesian Networks

1. INTRODUCTION
Human beings are able to combine information obtained from their
senses to make deductions and perform decisions regarding their
own state and the state of the environment. Similarly, studies have
noticed how an artificial system can reach better learning perfor-
mances when stimuli from different sensors are considered [1]. Au-
tonomous vehicles, such as autonomous cars or drones, are endowed
of two types of sensors: exteroceptive sensors, which monitor the
changes in the environment surrounding the vehicles (e.g., camera
sensor); and proprioceptive sensors, that acquire the internal state
of the vehicle (e.g., steering wheel sensor). Consequently, models
can be learned to predict the evolution of the state of these differ-
ent sensors. This prediction capability has a variety of applications,
among which the detection of anomalies is a major one [2–4]. Infor-
mation from different sensors can be additionally fused in a variety
of ways. Models separately obtained from different sensors can be
joined together, when homogeneity is present. On the other hand,
the learning phase in sensors displaying higher dimensionality and
intrinsic non-linearity can be aided through the use of more simple
sensors (e.g., video data vs. odometry or control data). [5]

Additionally, recent research [6], starting from bio-inspired the-
ories [7–9], has also discussed the need for artificial agents to rep-
resent the information gained from sensors in a hierarchical way,
where the highest layers of the hierarchy correspond to more con-
ceptual representations. This characteristic mirrors the human abil-
ity to transform external or internal stimuli into multisensorial con-
cepts. For autonomous vehicles/agents, these concepts can be recon-
nected to simple notions about the content observed from sensors
and how the agents are moving. The learning of such a represen-
tation has been performed with the objective of anomaly detection
in [10] on odometry and in [11] on control data from moving vehi-
cles using a particular Switching Linear Dynamical System (SLDS)
called Markov Jump Particle Filter (MJPF). In this type of filter, the
state is subdivided into clusters displaying similar content and mo-
tion, and a linear model is assigned to each cluster.
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Fig. 1: DBN defined in [18].

However, SLDSs can not be directly applied to data coming
from high-dimensional sensors, such as video or lidar data. Genera-
tive Neural Networks such as Variational Autoencoders (VAEs [12])
and Generative Adversarial Networks (GANs [13]) can be used to
perform dimensionality reduction while learning at the same time
the underlying distribution of the data. In [14], an Adapted-MJPF
(A-MJPF) was introduced, with the objective of considering video
data in the framework proposed also in [10] and [11]. However, the
method proposed in this work still had the limitation of describing
the evolution of the low-dimensional state in a non-linear way.

Other works [15–18] have tried to combine VAEs and Dynamic
Bayesian Network (DBN). However, most of these works use simple
video data examples, and did not, to the best of our knowledge, apply
such methods for multi-modality or anomaly detection.

In this paper, we propose to leverage the work of [18] in this di-
rection, with the difference of observing the influence that the guid-
ance of another sensor can provide for model learning. Additionally,
we perform testing with anomaly detection methods coherent to the
ones in [10, 11]. Consequently, the main contributions of this paper
are: i) the use of a low-dimensionality sensor (odometry) to guide
the learning phase of a high-dimensional one (video), consequently
obtaining a common clustering displaying better properties; ii) the
application of the obtained model for anomaly detection purposes.

The rest of the paper is organized as follows: Section 2 briefly
summarizes the work in [18], Section 3 describes the proposed
method, Section 4 reports the employed dataset, Section 5 dis-
cusses the obtained results and Section 6 draws the conclusions and
suggests future developments.

2. RELATED WORK
Our research is based on the work by Fraccaro et al. presented
in [18], which considers video frames and represents them in a
lower-dimensional latent state. A method called Kalman Variational
Autoencoder (KVAE) was introduced, that performs unsupervised
learning to separate two different levels of abstraction. For each
input frame xt at time instant t, the following latent representations
are defined i) a continuous level at representing the content of the
images, as output from the VAE and as pseudo-observation input for
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Fig. 2: Training structure.

a Linear Gaussian State Space Model; ii) another continuous level
zt representing the motion between consequent images. This leads
to the DBN in Fig. 1. The links between at and zt are represented
by the encoder qφ(at|xt) and by the decoder pθ(xt|at) of a VAE,
respectively. The content-related state at is linked to the motion-
related state zt through the following pseudo-observation model:

at =

K∑
i=1

α
(i)
t Cizt + vt (1)

whereas zt at consequent time steps are connected through the
dynamical model:

zt+1 =

K∑
i=1

α
(i)
t ∗Ai ∗ zt +

C∑
i=1

α
(i)
t Bi ∗ ut + ωt (2)

The matrices {Ci}i=1...K , {Ai}i=1...K , {Ci}i=1...K represent
respectively a set of pseudo-observation models C, of transition
models A and a set of control matrices B, as defined in the tradi-
tional Kalman Filter equations. These models are combined through
a vector of probabilities αt.

Non linearity due to non linear motion of the object is tackled in-
troducing a Recurrent Neural Network with Long Short Term Mem-
ory (LSTM) cells that non linearly updates parameters of the net-
work over time, i.e., dt = LSTM(at−1, dt−1). The output of the
LSTM, passed to a softmax, generates the probabilities used to select
the combinations of models Ai, Bi, Ci, i.e. αt = softmax(dt).

3. METHOD DESCRIPTION

3.1. A multi-modal learning framework
We suppose to be provided with two types of data from a moving
vehicle, i.e., video acquired from an on-board sensor (First Person
Viewpoint - FPV), and the corresponding odometry data. We can di-
vide the proposed method in two parts: i) a training phase, in which
a training dataset is used to learn models for future-value prediction
of both the odometry and video data; ii) a testing phase, in which the
learned models are tested on another dataset; predictions that diverge
from the actual future values signal the presence of an anomaly.

During the training phase, we leverage the odometry data to per-
form learning in the video case. In the testing phase, the odometry
data is consequently passed again to the video module for perform-
ing future-frame prediction. Fig. 2 displays the training phase of the
method, whereas Fig. 3a refers to the testing procedure.

We define with {xot}t=1...T a set of odometry data observations,
where T corresponds to the total number of considered time instants.
Conversely, we define with {xvt }t=1...T a set of video data obser-
vations. When referring to the training set, we add the superscript
"train" (e.g., xo,traint ); we use the superscript "test" when describ-
ing the testing set.

3.2. Extraction of clustering distance values in odometry
As a first step of our method, we perform learning of the DBN model
on the odometry data, as described in [10]. From the odometry sen-
sor observations, xot , at each time instant t, we obtain the corre-
sponding Generalized Observations (GOs) x̃ot = [xot , ẋ

o
t ] including

the variable and its first-time derivative. Generalized States (GSs)
are correlated to the GOs supposing a linear relationship of type
x̃ot = Hz̃ot + νt, being νt a zero-mean Gaussian distribution with
covariance R, and being H an eye matrix.

Clustering is performed on the GSs using the Growing Neural
Gas (GNG) algorithm [19]. For each cluster S̃, with S̃ = 1 . . .K,
the following information is extracted: i) the cluster centroid M S̃,o;
ii) the cluster covarianceQS̃,o; iii) a transition matrix T defining the
probability of moving from one cluster to the other ones.

We additionally calculate the Bhattacharya distance DB be-
tween each GO x̃ot and each cluster:

dist
(S̃)
t = DB(λ(X̃

o
t ), P (X̃o

t |S̃t = S̃))

= −ln
∫ √

λ(X̃t)P (X̃t|S̃t = S̃)dX̃t
(3)

where λ(X̃o
t ) ∼ N (x̃ot , R) denotes a Gaussian distribution with

mean x̃ot and covariance R. P (X̃t|S̃t) ∼ N (M S̃,o, QS̃,o) denotes
a Gaussian distribution with mean M S̃,o and covariance QS̃,o

Consequently, we have obtained a set of T ∗ K distances. We
define with distt the set of K distances at each time step t. These
distances are given as input to the video training block to guide the
learning phase and setting the clustering division.

3.3. Use of odometry clustering distances to train the KVAE
As a second step of the proposed method, we perform the training
on the video dataset utilizing the KVAE algorithm presented in [18].
We propose to use the clustering obtained from the odometry data
and the found distances {dt}t=1...T to set the same clustering and
to guide the KVAE training phase. The paper [18] did not mention
the concept of clustering, but rather defined the presence of a set of
K combinable dynamics. We can see these K dynamics as a loose
clustering assignment. As the original KVAE requires the user to
set the number of clusters a priori, the proposed method allows us
to exploit the information from another modality (i.e., the odome-
try one) to fix this number. By using the distances {dt}t=1...T , we
further fix the two clusterings to overlap. This allows to perform a
joint anomaly detection testing of the two modalities, which are now
represented through similar information.

Consequently, we keep the same pseudo-observation model de-
fined in Eq. 1 and dynamics model described in Eq. 2, with the
difference that we do not include the (optional) control matrices Bi,
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Fig. 4: Employed dataset (original unreduced size): (a) PM. (b) ES.

as we already provide the odometry as control in an undirected way.
We additionally set

α
(S̃)
t =

1

(dist
(S̃)
t )n ∗

∑K
S̃=1

1

(dist
(S̃)
t )n

. (4)

Value n can optionally be increased to a certain degree to make
the assignment to the clusters more peaked around the closest cluster.

Fig. 2 summarizes the training phase of the method. In or-
ange, the training of the odometry block is performed, as in [10].
On the right, the KVAE is used for training the video block. We
take a sequence of length L of consequent images {xvt }t=1...L, and
give it as input to the VAE’s encoder qφ(at|xt), obtaining the latent
states {at}t=1...L and corresponding variances {σt}t=1...L. These
are given as input to both the decoder pθ(xt|at) and the KVAE
smoother. Optimization is performed on the parameters φ and θ of
the VAE, and on the matrices [Ak, Ck]k=1...K as described in [18].

Finally, as done for the odometry case, for each cluster S̃ we can
extract the cluster centroid M S̃,v over values of the latent states zt
and the cluster covariance QS̃,v .

The learned DBN is showed in Fig. 3b, with the learned ele-
ments corresponding to each link displayed in red.

This odometry-assisted assignment has differences w.r.t. the
case of dynamics learned from video: i) zones with similar visual
aspect and motion, but different position, are assigned to different
clusters. This could either be desirable or not, depending on the
case. If particular, if events are acceptable in certain areas of a map
but not in others, this is an advisable feature; ii) in certain situations,
video data could be different even if odometry data does not change,
e.g., the car is not moving and different events happen in front of it,
such as pedestrians and cars moving. However, these visual changes
are not correlated to motion changes and are less relevant for an in-
teraction analysis.

3.4. Testing
The second phase of the proposed method consists in the detection of
anomalies on a testing set {xo,testt ,xv,testt }t=1...T w.r.t. the model

learned in the training phase. At each time-instant, the MJPF de-
fined in [10] can be used to extract odometry anomalies. Addition-
ally, the distances distt are obtained from the odometry framework
and passed to the video framework. Each video frame xvt is given as
input to the VAE’s encoder and a Kalman Filtering step is performed
on it, where the observation model is defined as in Eq. 1 and dy-
namics model as in Eq. 2, with αt calculated as in Eq. 4. Predicted
values at+1|t can be decoded back to image level.

The learning of the DBN structure allows to detect anomalies at
different hierarchical levels.

At the image-level, MSE between predicted images xvt+1|t and
real images xvt+1 can be calculated. At the latent states level, we
can define error values errat = 1

N

∑N
n=1(an,t+1|t − an,t+1) and

errzt = 1
N

∑M
n=1(zn,t+1|t − zn,t+1|t+1), where N and M are the

dimensions of the two latent states, respectively.
Finally, Kullback-Leibler anomaly (KLDA) defined in [20] can

be adapted to the KVAE framework. First, the Bhattacharya dis-
tanceDB(λ(zvt+1|t+1), P (zvt |S̃t) = S̃)) is calculated for each clus-
ter, where λ(zvt+1|t+1) ∼ N (zvt+1|t+1, Pt+1|t+1) and P (zt|S̃t) ∼
N (M S̃,v, QS̃,v), being Pt+1|t+1 the updated covariance of zvt+1.
We call λ(S̃t+1) the inverse of this distance, similarly calculated as
αt in Eq. 4; it describes the probability of being in each video cluster
given the updated latent state value, and corresponds to a diagnostic
message of the DBN (i.e., a message from the observations). We de-
scribe the corresponding predictive message π(S̃t) as the sum of the
rows of T weighted by αt. We calculate the symmetric Kullback-
Leibler Divergence between these two probabilities, i.e.:

KLDA = DKL(π(S̃t)||λ(S̃t+1)) +DKL(λ(S̃t+1)||π(S̃t)) (5)

The KLDA allows to define an abnormality measure at the concep-
tual level, i.e., at the cluster level.

4. EMPLOYED DATASET

A real vehicle called "iCab" [21], is used to collect multi-sensory
data while a human is driving it to perform different tasks in a closed
environment. In this paper we use the positional and video data
from the vehicle. We consider two scenarios: Scenario I (Perime-
ter Monitoring - PM): the vehicle follows a rectangular trajectory
around a closed building (Fig. 4.a); Scenario II (Emergency Stop -
ES): while performing PM, the vehicle is repeatedly hindered by the
presence of a pedestrian and stops in front of it (Fig. 4.b). Scenario
I is used to perform training; Scenario II for testing. Video data is
reduced to 64x64 dimension.
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Fig. 5: State-level anomaly across time instants (on x-axis) obtained with MJPF [10] used on odometry data.
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Fig. 6: State-level anomaly across time instants (on x-axis) obtained with direct MJPF [10] used on direct VAE encodings.
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Fig. 7: Anomalies at the different levels using KVAE with LSTM. In red: on at; in red: on zt; in blue: on S̃t.
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Fig. 8: Anomalies at the different levels using KVAE with Odometry Clustering assignment.

Table I: Table displaying roughness, car speed correlation, and
Exit/Stay-in-cluster Entropy of T for state and features obtained with
each method.

Roughness (r) Vel. correlation (ρ) T Entropy (e)
VAE 0.1288 0.172 0.319

KVAE LSTM 0.0819 0.200 0.484
KVAE Clust. 0.0861 0.334 0.188

5. RESULTS
5.1. Training of the model on PM data
First, we train our model to learn normal patter: we use the PM
frames and odometry data as xo,traint and xv,traint , respectively.
From the odometry data training we obtain a value of 23 clusters
from the GNG. In the KVAE training, we set the dimension of at to
24, of zt to 4. We use sequences of lengths L = 20.

Table I reports different discriminators on three cases of latent
states: i) the one from a VAE performing direct reconstruction; ii)
at from the original KVAE with LSTM training; iii) at from KVAE
with odometry clustering assignment. Roughness describes how
smooth the state is and is calculated as r = 1

4
(ȧt,std − ȧt−1,std)

2,
where ȧt,std is the standardized value of at− at−1. We additionally
consider the mean absolute value of Pearson’s Linear Correlation
coefficients ρ between at and ẋot . Finally, the last column of the
Table displays the entropy e of the probability of leaving/remaing in
a cluster. We know that r, e, ρ ∈ [0, 1] and we desire r and e to be
low, and ρ to be high. We can observe how the simple VAE gives
the worst results over r and ρ. KVAE with odometry clustering dis-
plays the best entropy value, as it keeps the transition matrix of the
odometry data. This also would enable in future work for odometry
and video to be more easily combined during testing.

5.2. Testing of the model on ES data
We perform anomaly detection on the ES data, and compare different
cases. The innovation values for odometry data found as in [10] are
showed in Fig. 5. Applying the same MJPF directly on the latent

states of a VAE, we would obtain the error displayed in Fig. 6. As
can be observed, anomalies due to the presence of the pedestrian or
to abnormal motions (in red) are not well detected; whereas curving
zones (in yellow) always give high anomaly, due to the high non-
linearity in these areas. For this reason, a method such as the A-
MJPF [14] or the KVAE can be used instead.

Fig. 7 and Fig. 8 show anomalies at the different levels of the
DBN hierarchy obtained with KVAE with LSTM and with Odom-
etry Clustering, respectively. Color-codes show the different cases,
and some frame examples are given. Red areas correspond to the
presence of the pedestrian (1-2), green areas to the restarting motion
(3), violet areas to a zone that was in the shadows in training and is
in the light in testing; the blue area is the car steering to the left (4).
Frame (5) shows a curve example. It is to note that with KVAE curv-
ing motion have been better learned, and pedestrian anomalies can
be better recognized. KVAE with odometry clustering displays high
anomaly also for the zones that were in shadow in training, as it uses
the models of the corresponding area of the environment. It displays
better results on the S̃-level anomaly, due to the transition matrix
having lower entropy. In the showed example we displayed a case
with mostly synchronous anomaly between video and odometry. In
other cases, video anomaly could be used for providing an explana-
tion of the odometry anomaly (e.g., change in motion consequent to
visual detection of an obstacle).

6. CONCLUSIONS AND FUTURE WORK
The paper proposes a method to learn a linear predictive model for
high-dimensional data (video) using a KVAE assisted by models
learned on low-dimensional data (odometry). The use of odome-
try data for guiding the learning allows to associate each predictive
video model to the corresponding position, and to use a transition
matrix with better properties, resulting in better anomaly signals and
a more interpretable abstraction level representation. Future work
includes the complete fusion of the two modalities during the test-
ing phase and the use of the proposed KVAE-assisted method for
additional autonomous-vehicle related purposes.
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