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Chapter 1

Introduction

Quantum Markov Semigroups (QMS) are a tool originally introduced in the
realm of physics in order to be able to study open quantum systems (hence the
name), and more specifically their time evolution. Specifically, when considering
open quantum systems the physical system itself is let free to interact with
the environment allowing for the study of a wider range of problems. Such
problems are of great interest since they are a closer representation of real world
application such as quantum optics or quantum computation, the latter a field
that is gaining a lot of attention in recent years and where the interaction is one
of the focal point of the theory. From a mathematical point of view, a QMS
represents the natural generalization of a classical Markov semigroup justifying
much of the interest gathered from the mathematical community. The main
aim of this Thesis is not to study a QMS in and of itself, but we are rather
going to focus on their behavior and their structure in the presence of some
kind of symmetry. The concept of symmetry is again very central in the realm
of physics, and one the recurs very frequently and which make their study quite
interesting. In order to give some more details in this introduction we need to
briefly present some of the basic mathematical tools we are going to go over in
greater detail in later Chapters. In the theory of QMS the algebraic approach to
quantum physics is used, therefore we are going to use as von Neumann algebra
A (whose self-adjoint elements represent the observable physical properties of
the underlying physical system) and a QMS is described by a semigroup on
the algebra itself. More precisely, a QMS T = {Tt}t≥0 is, in the more general
case, is a weakly* continuous semigroup of linear, bounded, normal, completely
positive and identity preserving maps

T : A → A ∀t ≥ 0.

In this work we are going to consider uniformly continuous QMS defined on
B(H) for some Hilbert space H. One of the most important tool in the theory,
and one that we are going to use extensively throughout this Thesis, is the
generator L of a QMS, which is defined as

L(a) = lim
t→0+

Tt − 1

t
.

which is equivalent to Tt = etL. On the other hand, a symmetry is described as
a group G with an associated (unitary) representation π acting on the Hilbert
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2 CHAPTER 1. INTRODUCTION

space H. With this notation, the property that we are going to focus on in this
work is called covariance and mathematically expressed as

Tt(π(g)∗aπ(g)) = π(g)
∗Tt(a)π(g)

or, as we are going to see later, equivalently as

L(π(g)∗aπ(g)) = π(g)
∗L(a)π(g)

Such property is been extensively studied by Holevo in a series of papers (see [1,
2, 3, 4, 5]) in which he gave a comprehensive analysis of the structure of a
generator satisfying the covariance property. Moreover, there are also been some
application to specific symmetries like translation invariance in [6] and [7] to
name a few. Our goal is then to expand on these results giving a characterization
of the so called decoherence free subalgebra N (T ) of a uniformly continuous QMS
in the presence of a symmetry. This object is defined as the biggest subalgebra
on which the time evolution acts as a *-automorphism or, in other words, as a
set of operators on which the semigroup acts in a unitary way, resembling the
simpler case of a reversible time evolution. N (T ) has been studied widely in
the literature and its structure has been described, in the non covariant case,
by for example in [8, 9, 10]. More specifically, whenever the decoherence free
subalgebra is atomic, that is when there exists a (at most countable) family of
mutually orthogonal projection {pi}i∈I that are minimal in the center of N (T )
and that satisfy

∑
i∈I pi = 1, allowing to decompose the subalgebra as

N (T ) =
⊕
i∈I

piN (T )pi

were each piN (T )pi is a type I factor, they showed there exist two sequences
of Hilbert spaces {Ki}i∈I and {Mi}i∈I such that the above decomposition of
N (T ) can be rewritten as

N (T ) =
⊕
i∈I

(B(Ki)⊗ 1Mi
) .

In the first place, we are interested in studying the relationship between an
atomic decoherence-free subalgebra and the symmetry property satisfied by
the QMS with respect to an irreducible representation, in particular which, if
any, properties can be imposed on the sequences of Hilbert spaces {Ki}i∈I and
{Mi}i∈I . Subsequently, we try and extend these in the case of a generic repre-
sentation, with particular focus on the intertwining of the atomic decomposition
and the Peter-Weyl decomposition of the representation. The atomicity prop-
erty of N (T ) is limiting in the study of covariance, indeed we know that there
exists non-atomic covariant semigroups for which we are interested in extending
our techniques. In order to do so we introduce the concept of direct integral,
which by itself is a generalization of the direct sum, allowing us to consider more
general decomposition of the decoherence-free subalgebra. This last section of
our work is limited in scope and we reserve the possibility of studying such
problem more in depth in future works. For example, one possible direction of
development is to study if there is any connection between the direct integral
decomposition of the decoherence-free subalgebra and the one of the symmetry
representation.
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The structure of the Thesis is the following:

Chapter 1 We introduce the main mathematical concepts needed to our study.
Specifically we recall the basic properties of completely positive maps and their
decompositions such as the Stinespring Theorem and the Kraus decomposition.
We then move to describe the QMS theory in its basic definitions, specializ-
ing our selves to the case of uniformly continuous QMSs and their generators.
We fully describe their characterization and we recall the crucial GKSL repre-
sentation the generator L. We conclude the Chapter with the classification of
projections according to the action of a QMS T which are going to be crucial
in proving our main results.
Chapter 2 This Chapter represents the biggest original contribution of this
Thesis. After recalling the results from the series of papers by Holevo on the
structure of a covariant QMS generator, we proceed to prove a few simple results
that are directly implied by such papers in Corollary 3.1.1, in which we show
that the operators of any GKSL representation of L intertwines any unitary
representation implementing the covariance property. Also Proposition 3.1.1,
in which we show that the covariance property implies a simplified represen-
tation for L, and Proposition 3.1.2 which provides the conditions under which
an equivalent GKSL representation to a covariant one preserve the covariance
property. Finally, we conclude the first section showing that N (T ) and the set
of fixed points w.r.t. a QMS T are invariant under conjugation by unitary rep-
resentation. In the subsequent Section we temporarily specialize to the case of
a covariant QMS w.r.t. an irreducible representation π which allows us to prove
the most important result of this work. Namely, in Proposition 3.2.2 we prove
that the action of the representation on the atomic decomposition of N (T ) is
to permute the factors piN (T )pi of the decomposition itself, which in turn di-
rectly implies that such factors must be all isomorphic to each other as stated in
Proposition 3.2.3. These two results are then put together in Theorem 3.2.1 that
proves that the covariance property implies the following simplified structure for
the decoherence free subalgebra

N (T ) = (B(K)⊗ 1M)
d

where d is number of factors in the original atomic decomposition. At the same
time, we manage to provide an extremely simplified structure for the GKSL
representation whenever the covariance property is satisfied w.r.t. an irreducible
representation. We conclude the Section proving a strong connection between
the topology of the group and the property of N (T ). Strikingly, we prove in
Theorem 3.2.4 that the number of connected components of the symmetry group
G and the number of factors in the decomposition of N (T ) are interdependent,
and as a side result we proved in Corollary 3.2.1 that N (T ) can be a factor if
and only if G is a connected group. In the following Section we generalize the
previous results to the case of a generic (i.e. non irreducible) representation π for
the symmetry group G. In order to do so we leverage the Peter-Weyl Theorem
to show that for each subspace on which the representation acts irreducibly,
the results of the previous Section hold true. We then, conclude the Chapter
with come result to help the reader get a better understanding of this Chapter
results, namely we analyze the U(2) symmetry group, the so called circulant
QMS, and finally we show an example of a covariant QMS for which N (T ) is
type II1 factor, thus justifying the need for a more general theory we try to
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introduce in the next Chapter.
Chapter 4 In the first Section of this Chapter we recall the basic results about
direct integrals, how is possible to decompose Hilbert spaces, operators acting
on such Hilbert spaces, and finally how to decompose von Neumann algebras
which are our main focus. In the following two Sections we prove that N (T )
is actually decomposable as a direct integral in Theorem 4.2.1, that any GKSL
representation of a QMS can be decomposed in Proposition 4.3.2 and finally
how from is possible to obtain the specific decomposition of a QMS T and its
decoherence free subalgebra N (T ) in Corollary 4.3.1.



Chapter 2

Preliminary material on
QMS

In this Chapter we collect all the main definitions that are needed in the fol-
lowing Chapters.

2.1 Completely positive linear maps
Let A and B be two von Neumann algebras with unit 1A and 1B respectively.
We will denote the unit with simply 1 whenever it is clear from the context
whether it belongs to A or B.

Definition 2.1.1. A linear map ϕ : A → B is said to be

1. n-positive if for every a1, . . . , an inA and every b1, . . . , bn in B the following
holds

n∑
i,j=1

b∗iϕ(a
∗
i aj)bj ≥ 0;

2. completely positive if it is n-positive for every integer n ≥ 1;

3. Schwartz if for every a ∈ A

ϕ(a)
∗
ϕ(a) ≤ ϕ(a∗a)

The following Proposition follows easily from this definition.

Proposition 2.1.1. If a linear map ϕ : A → B is a *-homomorphism, then it
is completely positive.

Proof. Let a1, . . . , an in A and b1, . . . , bn in B then we have
n∑

i,j=1

b∗iϕ(a
∗
i aj)bj =

n∑
i,j=1

(ϕ(ai)bi)
∗
(ϕ(aj)bj) ≥ 0

since ϕ is a *-homomorphism. Finally, this expression holds for every n, thus
we have the thesis.

5
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To further characterize these properties of linear maps between von Neu-
mann algebras, we introduce the set of n× n matrices, that we denote by Mn,
and its elements Eij defined as

(Eij)hk =

{
1, if i = h and k = j

0, otherwise

for every i, j = 1, . . . , n. Particularly useful to us are the algebraic tensor
products A⊗Mn and B⊗Mn, which can be represented as the n×n matrices
with entries in A and B respectively. Elements of such tensor products admit a
simple representation; indeed, every element x ∈ A⊗Mn can be written as

x =

n∑
i,j=1

xij ⊗ Eij (2.1)

for some xij ∈ A. Similarly, we can extend a linear map ϕ : A → B to a map
ϕ(n) : A ⊗ Mn → B ⊗ Mn for every n ≥ 1 by defining it on a decomposable
element such as a⊗ Eij as follows

ϕ(n)(a⊗ Eij) = ϕ(a)⊗ Eij (2.2)

These extended map allow us to give a more useful characterization of complete
positivity which is equivalent to the previous one. In order to do so, we need
first to prove the following Proposition

Proposition 2.1.2. Let A be a von Neumann algebra and x ∈ A ⊗Mn with
x =

∑n
i,j=1 xij ⊗ Eij. Then, the following conditions are equivalent

1. x is positive;

2. x can be written as a finite sum of matrices of the form
n∑

i,j=1

a∗i aj ⊗ Eij

where a1, . . . , an in A;

3. for every a1, . . . , an in A the following holds
n∑

i,j=1

a∗i xijaj ≥ 0

Proof. 1 =⇒ 2 Since x is a positive element it can be written as y∗y for some
y ∈ A⊗Mn (see, [11, Theorem 2.2.10]). Writing y as in (2.1) we obtain

x =

n∑
l=1

n∑
i,j=1

y∗liylj ⊗ Eij

2 =⇒ 3 Trivial.
3 =⇒ 1 The von Neumann algebra A can be represented as a sub-algebra
of all bounded operators on some Hilbert space H (see [11, Theorem 2.1.10]).
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Such representation admits a cyclic vector v, and therefore Condition 3 directly
implies

n∑
i,j=1

〈aiv, xijajv〉 ≥ 0

Since v is cyclic its associated cyclic subspace is dense in H and therefore wi =
aiv ∈ H for every i = 1, . . . , n. Thus we conclude

∑n
i,j=1 〈wi, xijwj〉 ≥ 0 for

every w1, . . . , wn.

With this result we are ready to recast the complete positivity condition for
a linear map ϕ in terms of its extension ϕ(n).

Proposition 2.1.3. Let A and B be von Neumann algebras and let ϕ : A → B
be a linear map. Then the following conditions are equivalent

1. ϕ is completely positive;

2. for every integer n ≥ 1 the map ϕ(n) defined in Equation (2.2) is positive.

Proof. 2 =⇒ 1 Consider the element x =
∑n

i,j=1 a
∗
i aj ⊗ Eij ∈ A ⊗ Mn, by

Item 2 of Proposition 2.1.2 we know it is positive and therefore also ϕ(n)(x) =∑n
i,j=1 ϕ(a

∗
i aj)⊗ Eij is positive. We conclude by Item 3 of Proposition 2.1.2.

1 =⇒ 2 Since ϕ is completely positive
∑n

i,j=1 ϕ(a
∗
i aj) ⊗ Eij is positive and

therefore ϕ(n) is positive by the equivalence of Item 1 and 2 of Proposition 2.1.2.

This condition can be further simplified whenever we suppose more structure
on the target algebra B.

Proposition 2.1.4. Let ϕ : A → B(K) be a linear map between a von Neumann
algebra A and B(K) the algebra of all bounded operators on a Hilbert space K.
Then ϕ is completely positive if and only if for every integer n ≥ 1, for every
a1, . . . , an ∈ A and for every v1, . . . , vn ∈ K the following holds

n∑
i,j=1

〈vi, ϕ(a∗i aj)uj〉 ≥ 0

Proof. First of all notice that the algebraic tensor product B(K)⊗Mn can be
represented as the algebra of bounded operators on

⊕n
i=1 K. Thus the above

conditions is equivalent to requiring positivity of ϕ(n) for every positive integer,
which in turn is equivalent to complete positivity of ϕ by Proposition 2.1.3.

In order to find the relationships that exist between 2-positivity, complete
positivity, Markov and Schwarz, we give the following characterization of 2-
positive linear maps.

Proposition 2.1.5. Let ϕ : A → B(K) be a linear 2-positive map. Then the
following properties are all satisfied

1. if ϕ(1) is invertible in B, the we have the Schwarz inequality for all a ∈ A

ϕ(a∗)ϕ(1)
−1
ϕ(a) ≤ ϕ(a∗a)
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2. for all a ∈ A we have

ϕ(a∗)ϕ(a) ≤ ‖ϕ(1)‖ϕ(a∗a)

3. ϕ is continuous and satisfies

‖ϕ‖ = ‖ϕ(1)‖

Proof. Given ϵ > 0, consider the following operator in B(K)⊗M2(
ϕ(a∗a) ϕ(a∗)
ϕ(a) ϕ(1) + ϵ1

)
= ϕ(2)

(
a∗a a∗

a 1

)
+

(
0 0
0 ϵ1

)
Such operator is positive for every ϵ > 0 since it is the sum of two positive
operators. Thus, for every v, w ∈ K we have

〈v, ϕ(a∗a)v〉+ 〈v, ϕ(a∗)w〉+ 〈w, ϕ(a)v〉+ 〈w, (ϕ(1) + ϵ1)w〉 ≥ 0

Now, since ϕ(1) is positive the operator ϕ(1) + ϵ1 has bounded inverse and
therefore we can take w = −(ϕ(1) + ϵ1)

−1
ϕ(a)v which yields the following

inequality 〈
w, ϕ(a∗)(ϕ(1) + ϵ1)

−1
ϕ(a)w

〉
≤ 〈w, ϕ(a∗a)w〉

for every w ∈ K. If we suppose ϕ(1) to be invertible then we directly obtain
Item 1 of the Proposition by taking the limit ϵ → 0. Moving to Item 2, first of
all we note that

1 ≤ ‖ϕ(1) + ϵ1‖(ϕ(1) + ϵ1)
−1

thus we have

ϕ(a∗)ϕ(a) ≤ ‖ϕ(1) + ϵ1‖ϕ(a∗)(ϕ(1) + ϵ1)
−1
ϕ(a) ≤ ‖ϕ(1) + ϵ1‖ϕ(a∗a)

taking again the limit ϵ → 0 we obtain Item 2. Finally, recalling that for any
element x of some C∗ algebra we have the property ‖x∗x‖ = ‖x‖2, together
with Item 2 we have

‖ϕ(a)‖2 = ‖ϕ(a∗)ϕ(a)‖
≤ ‖ϕ(1)‖‖ϕ(a∗a)‖
≤ ‖ϕ(1)‖‖ϕ(‖a‖21)‖
≤ ‖a‖2‖ϕ(1)‖2

thus, dividing by ‖a‖2 and taking the sup over a ∈ A we have Item 3.

Corollary 2.1.1. Proposition 2.1.5 directly implies the following result. If
ϕ : A → B is a completely positive linear map and is also Markov, i.e. ϕ(1) = 1,
then it is Schwarz.

Finally, we give a last definition closely related to complete positivity that
we are going to need in the rest of the Thesis.

Definition 2.1.2. A linear map ϕ on a von Neumann algebra A on a Hilbert
space H is called conditionally positive if given au = 0 with aa∗ ∈ D(ϕ) and
u ∈ H implies 〈u, ϕ(aa∗)u〉 ≥ 0.
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Now that we have recollected the basic properties of completely positive
maps we are ready to give the following Theorem which describe any completely
positive map in terms of representations of C∗-algebras.

Theorem 2.1.1 (Stinespring). Let A be a C∗-algebra with unit and B a sub
C∗-algebra of the algebra of all bounded operators B(K) for some Hilbert space
K. Then a linear map ϕ : A → B is completely positive if and only if it can be
written as

ϕ(a) = V ∗π(a)V (2.3)
where (π,H) is a representation of A on H for some Hilbert space H and
V : H → K is a bounded operator.

Proof. Let ϕ as in Equation (2.3) and (aij)i,j=1,...,n be a positive element in A⊗
Mn. Then such a map is completely positive; indeed, for all vectors v1, . . . , vn ∈
K we have that

n∑
i,j=1

〈vi, ϕ(aij)vj〉 =
n∑

i,j=1

〈V vi, π(aij)V vj〉 ≥ 0

by Proposition 2.1.1 since π is a *-homomorphism, and this condition is equiv-
alent to complete positivity by Proposition 2.1.4. We now prove the converse.
Consider a completely positive map ϕ and the vector space given by the al-
gebraic tensor product A ⊗ K. Given any two elements x =

∑
i ai ⊗ vi and

y =
∑

i bi ⊗ wi in A⊗K, we can define a bilinear form (· , ·) as follows

(x, y) =
∑
i,j

〈vi, ϕ(a∗i bj)wj〉

By the complete positivity of ϕ we immediately get

(x, x) =
∑
i,j

〈vi, ϕ(a∗i aj)vj〉 ≥ 0

and therefore the bilinear form we just defined is positive. Let π0 be the algebra
homomorphism between A and the linear operators on A⊗K defined as

π0(a)

(∑
i

ai ⊗ vi

)
=
∑
i

(aai)⊗ vi

then for any x, y ∈ A⊗K we have

(x, π0(a)y) = (π0(a
∗)x, y).

Thus, the linear map

ω : A 3 a 7→ (x, π0(a)x) ∈ C

is a positive linear functional over A. Then, by [11, Proposition 2.3.11] we have
that

‖π0(a)x‖2 = (x, π0(a
∗a)x) ≤ ‖a∗a‖ω(1) = ‖a‖2‖x‖2

Let N be the kernel of the bilinear form we just defined. By the last inequality
we proved, it follows that N is invariant under the action of π0(a) for every
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a ∈ A. We can therefore consider the pre-Hilbert space given by the quotient
A ⊗ K/N with pre-scalar product defined as

(x+N , x+N ) = (x, x)

If we let H be the Hilbert space obtained by completion, the *-homomorphism
π0 extends to a representation π of A on H defined as

π(a)(x+N ) = π0(a)x+N

for every a ∈ A and every x ∈ A⊗K. Finally, defining the operator V as

V v = 1⊗ v +N

is bounded, indeed

‖V v‖2 = 〈v, ϕ(1)v〉 ≤ ‖ϕ(1)‖‖v‖2

therefore we have the thesis.

In the remaining of this Thesis we will call the pair π, V a Stinespring rep-
resentation of the completely positive map ϕ. With the following Proposition
we show that Stinespring representations are not unique.

Proposition 2.1.6. Let π1 and π2 be two representation of A on the Hilbert
spaces K1 and K2 respectively, and let Vi : H → Ki be two bounded operators
such that

{ πi(a)Viv | a ∈ A, v ∈ H }

is total in Ki for i = 1, 2 and such that

ϕ(a) = V ∗
i πi(a)Vi

for i = 1, 2. Then there exists a unitary map U : K1 → K2 such that

UV1 = V2 and Uπ1(a) = π2(a)U

for every a ∈ A.

Proof. We start by defining the linear map U : K1 → K2 as

U

 n∑
j=1

π1(aj)V1vj

 =

n∑
j=1

π2(aj)V2vj

for every integer n ≥ 1, every a1, . . . an ∈ A and every v1, . . . vn. By a direct
computation we get

〈Uπ1(b)V1v, Uπ1(a)V1w〉K2
= 〈v, ϕ(b∗a)w〉H = 〈V1v, π1(b∗a)V1w〉K1

for all a, b ∈ A and v, w ∈ H. Therefore U is an isometry, and similarly it
can be shown that U∗ : K2 → K1 is an isometry, and therefore U is unitary.
Concluding, since

UV1v = Uπ1(1)V1v = π2(1)V2v = V2v and Uπ1(a)V1v = π2(a)V2v

for all v ∈ H, the thesis follows.
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We complete this section by a characterization of completely positive maps
between von Neumann algebras as given by Kraus in [12]. Before stating the
main Theorem, we need the following Lemma.

Lemma 2.1.1. Let A and B be two von Neumann algebras on Hilbert spaces H
and K respectively. A normal completely map ϕ : A → B can be written as

ϕ(a) = V ∗π(a)V

where V is a bounded operator from K to a Hilbert space K1 and π is a normal
representation of A in B(K1).

Proof. Let π, V be a minimal Stinespring representation of ϕ, where V : K → K1.
The only thing left to prove is that π is normal. Let (xi)i be an increasing net
of operators in A such that supi xi = x ∈ A. Then (xi)i converges to x in the
σ-weak topology. For all vector u, v ∈ K and all operators a, b ∈ A we have

lim
i

〈π(b)V v, π(xi)π(a)V u〉 = lim
i

〈V v, π(b∗xia)V u〉

= lim
i

〈v, ϕ(b∗xia)u〉

= 〈v, ϕ(b∗xa)u〉
= 〈π(b)V v, π(x)π(a)V u〉

since ϕ is normal, therefore so is π.

Theorem 2.1.2 (Kraus). Let A be a von Neumann algebra of operators on a
Hilbert space H and let K be another Hilbert space. A linear map ϕ : A → B(K)
is normal and completely positive if and only if it can be represented in the form

ϕ(a) =

∞∑
i=1

V ∗
i aVi (2.4)

where the operators Vi : K → H are linear bounded operators for every i ≥ 1
such that the series

∑∞
i=1 V

∗
i aVi converges strongly for all a ∈ A.

Proof. Consider a completely positive map ϕ as in Equation (2.4). Such a map
is normal; indeed, consider a non-decreasing net (xi)i of positive operators in A
converging strongly to x ∈ A, then for every u ∈ K we have

sup
i

〈u, ϕ(xi)u〉 =
∑
j

sup
i

〈Vju, xiVju〉

=
∑
j

〈Vju, xVju〉

= 〈u, ϕ(x)u〉

We now show the converse. Consider the representation of a completely positive
map ϕ(a) = V ∗π(a)V with a normal map π as in Lemma 2.1.1. We just need to
recast such representation as in Equation (2.4). By decomposing K1 into cyclic
orthogonal subspaces we can suppose that there exists a cyclic vector w ∈ K1

for π(A). The state on A
a 7→ 〈w, π(a)w〉
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is normal because so is π. Therefore (see [11, Theorem 2.4.21]) there exists a
sequence (ui)i≥1 of vectors in H such that

∞∑
i=1

‖ui‖2 = 1 and 〈w, π(a)w〉 =
∞∑
i=1

〈ui, aui〉

for every a ∈ A. Therefore there exists contractions Vi : K1 → K such that

Viπ(x)w = xui.

We also have for all x ∈ A

〈π(x)w, π(a)π(x)w〉 = 〈w, π(x∗ax)w〉

=

∞∑
i=1

〈ui, x∗axui〉

=

∞∑
i=1

〈Viπ(x)w, aViπ(x)w〉

=

∞∑
i=1

〈π(x)w, V ∗
i aViπ(x)w〉

and since w is cyclic for π this concludes the proof.

2.2 Quantum Markov Semigroups
Having discussed the basics on the representation of completely positive maps,
we can now discuss the main concepts about Quantum Markov Semigroups
(QMS).

2.2.1 Definitions & Basic Results
Let A be a von Neumann algebra with unit 1 acting on a Hilbert space H. The
following definition completely characterize the concept of a Quantum Markov
Semigroup.

Definition 2.2.1. A Quantum Markov Semigroup (QMS) on A is a family of
bounded operators T = (Tt)t≥0 on A satisfying the following properties

1. T0(a) = a for all a ∈ A;

2. Tt+s(a) = Tt(Ts(a)) for all t, s ≥ 0 and all a ∈ A;

3. Tt is completely positive for all t ≥ 0

4. Tt is σ-weakly continuous in A for all t ≥ 0;

5. the map t 7→ Tt(a) is continuous with respect to the σ-weak topology on
A for every a ∈ A;

6. T is Markov, i.e. Tt(1) = 1 for all t ≥ 0.
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A QMS T admits what is called an infinitesimal generator which can be
seen as a generalization of the time derivative of the QMS at t = 0. This fuzzy
idea is formalized in the following definition.

Definition 2.2.2. Let T be a QMS. Then we define its infinitesimal generator
as the operator L on A whose action is defined as

L(a) := w∗− lim
t→0

Tt(a)− a

t

for every element a ∈ A for which the limits exists in the σ-weak topology.

The definitions we just gave describe time evolution for observables only, but
these definitions can be moved onto state by duality as stated in the following.

Definition 2.2.3. The predual semigroup of a QMS T on a von Neumann
algebra A is the semigroup denoted by T∗ and defined on A∗ as

(T∗t(ω))(a) = ω(Tt(a))

for every a ∈ A and for every ω ∈ A∗.

The continuity hypothesis on T induce continuity properties on T∗. Indeed,
since T is continuous w.r.t. the σ-weak topology on A, then the semigroup T∗ is
continuous w.r.t. the weak topology on the Banach space A∗. Therefore T∗ is a
strongly continuous semigroup on A∗ (see [11, Corollart 3.1.8]). Finally, since T
is Markov, both T and T∗ are semigroups of contractions by Proposition 2.1.5.
The Markovian property allows us to also prove that T∗ maps states into states.
Indeed, given a normal state ω ∈ A∗, T∗t(ω) is positive and

‖T∗t(ω)‖ = (T∗t(ω))(1) = ω(Tt(1)) = ω(1) = 1

which directly implies that T∗t(ω) is again a state. Now that we have introduced
an idea of time evolution on both the states and the observables of a quantum
system, we can also define what it means to be invariant to such evolution.

Definition 2.2.4. A normal functional ω ∈ A∗ is said to invariant w.r.t. T (or
T -invariant for short) if ω is a fixed point of T∗, i.e. (T∗t(ω))(a) = ω(Tt(a)) =
ω(a) for all a ∈ A and all t ≥ 0. We denote with F(T∗) the set of all such
invariant functionals, and by F(T∗)1 the set of all invariant states. Analogously,
we can define the set of invariant observables as

F(T ) := { a ∈ A | Tt(a) = a ∀ t ≥ 0 }

Unfortunately, in general F(T ) is not an algebra but it can be one with
additional hypothesis. In particular we need the existence of a faithful family of
normal invariant states, that is a family G of invariant states for which a ∈ A+

together with ω(a) = 0 for all ω ∈ G implies a = 0. Before proceeding, we need
the following Lemma.

Lemma 2.2.1. Let ϕ : A → A be a completely positive map such that ϕ(1) = 1.
Then, defining

D(x, y) := ϕ(x∗y)− ϕ(x)∗ϕ(y)

is a positive sesquilinear form on A. Moreover, for every x, y ∈ A we have

D(x, x) = 0 ⇐⇒ D(x, y) = 0
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Proof. D is sesquilinear directly by its own definition. Also, D is positive by
Schwarz inequality which is satisfied due to Corollary 2.1.1. Finally, applying the
Cauchy-Schwarz inequality on the sesquilinear form ω(D(· , ·)) for some ω ∈ A∗,
we obtain that D(x, x) = 0 implies ω(D(x, y)) = 0 for all ω ∈ A∗ and all y ∈ A
and therefore we have D(x, y) = 0 for all y ∈ A. The converse is trivial and
therefore we have the thesis.

Proposition 2.2.1. Suppose there exists a family G of faithful normal invariant
states on A. Then F(T ) is a von Neumann sub-algebra of A.

Proof. Given an element x ∈ F(T ) we have for all t ≥ 0

Tt(x∗x) = x∗x (2.5)

Indeed, ω(Tt(x∗x)−x∗x) = 0 for all ω ∈ G and all t ≥ 0, but Schwarz inequality
implies

Tt(x∗x)− x∗x = Tt(x∗x)− Tt(x)∗Tt(x) ≥ 0 ∀ t ≥ 0

and by the faithfulness of G we obtain Equation (2.5). Defining Dt as the
sesquilinear form in Lemma 2.2.1 with ϕ = Tt, we have Dt(b, b) = 0 for all
b ∈ F(T ) and for all t ≥ 0 by Equation (2.5). Then, by Lemma 2.2.1Dt(x, b) = 0
for all x ∈ A and for all t ≥ 0. In particular, given a, b ∈ F(T ) we have
Dt(a

∗, b) = 0 implies

Tt(ab) = Tt(a)Tt(b) = ab ∀ t ≥ 0

i.e. ab ∈ F(T ). Thus, F(T ) is a weakly* closed sub-algebra of A, that is F(T )
is a von Neumann sub-algebra of A.

Remark 2.2.1. It is important to note that, under the same hypotheses of
Proposition 2.2.1, it possible to show (see [10, Proposition 17]) the predual of
the algebra of fixed points of a QMS T is isomorphic to the algebra of fixed
points of the predual of the QMS itself. More concisely, the following holds true

F(T∗) = F(T )∗

2.2.2 Uniformly continuous QMSs
In this Thesis we focus mainly on a specific family of QMSs that presents a
particular regularity property described in the following Definition.

Definition 2.2.5. A QMS T is said to be uniformly continuous if

lim
t→0

‖Tt − 1‖ = 0

Such QMSs are interesting to us since they have additional properties thanks
to their regularity as detailed in the following Proposition.

Proposition 2.2.2. Let T be a semigroup of bounded operators on a Banach
space E. Then the following conditions are equivalent:

1. the map t 7→ Tt is uniformly continuous;

2. the map t 7→ Tt is uniformly differentiable;
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3. the infinitesimal generator L is a bounded operator such that the series

Tt =
∞∑

n=0

tn

n!
Ln

is uniformly convergent for every t ∈ R.

If any of these conditions are satisfied, then T can be extended to a uniformly
continuous group of operators on E such that

‖Tt‖ ≤ e|t|∥L∥

See [11, Proposition 3.1.1] for a proof. The regularity of QMS can also
be linked to regularity of its infinitesimal generator as stated in the following
Proposition.

Proposition 2.2.3. Let T be a uniformly continuous semigroup of bounded op-
erators Tt on a von Neumann algebra A, and let L be its infinitesimal generator.
Then the following are equivalent:

1. Tt is σ-weakly continuous for every t ≥ 0;

2. L is σ-weakly continuous.

In a similar way as we did to define complete positivity starting from posi-
tivity, we can define the following property associated to conditional positivity.

Definition 2.2.6. A bounded linear operator L on a von Neumann algebra A
is called conditionally completely positive if for every integer n ≥ 1, the linear
map L(n) defined on A⊗Mn as L(n)(a⊗Eij) = L(a)⊗Eij with i, j = 1, . . . , n
satisfies the inequality

L(n)(x∗x)− x∗L(n)(x)− L(n)(x∗)x+ x∗L(n)(1)x ≥ 0 (2.6)

for every x ∈ A⊗Mn.

The following Lemma shows a connection between conditional completely
positivity and conditional positivity.

Lemma 2.2.2. Let L be conditionally completely positive operator on a von
Neumann algebra A acting on a Hilbert space H. Then for every integer n ≥ 1,
every a1, . . . , an in A and u1, . . . , un in H such that

n∑
i=1

aiui = 0

we have
n∑

i,j=1

〈ui,L(a∗i aj)uj〉 ≥ 0
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Proof. Consider the element x =
∑n

j=1 aj ⊗ Ej
1 ∈ A ⊗ Mn and the vector

u = (u1, . . . , un) ∈ ⊕n
i=1H, then we have

0 ≤
〈
u,
(
L(n)(x∗x)− x∗L(n)(x)− L(n)(x∗)x+ x∗L(n)(1)x

)
u
〉

=

n∑
i,j=1

〈ui, (L(a∗i aj)− a∗iL(aj)− L(a∗i )aj + a∗iL(1)aj)uj〉

=

n∑
i,j=1

〈ui,L(a∗i aj)uj〉

which concludes the proof.

Proposition 2.2.4. Let T be a uniformly continuous semigroup on a von Neu-
mann algebra A with infinitesimal generator L. Then Tt is completely pos-
itive for every t ≥ 0 if and only if L is conditionally completely positive and
L(a∗) = L(a)∗ for every a ∈ A. Let H be an Hilbert space and B(H) the set of all
bounded operators on H. Then a linear map L on B(H) such that L(a∗) = L(a)∗
for every a ∈ B(H) is conditionally completely positive if and only if there exists
a completely positive map ϕ on B(H) and an element G ∈ B(H) such that

L(a) = ϕ(a) +G∗a+ aG (2.7)

for every a ∈ B(H). Moreover, G is also such that

G+G∗ ≤ L(1)

Note that the choice of the operator G in Equation (2.7) is not unique.
Indeed, defining G′ = G− c1 for any c > 0 it is possible to decompose L as

L(a) = (ϕ+ 2c1)(a) +G′∗a+ aG′

which is an admissible choice since ϕ+ 2c is again completely positive.
We can now state the most important decomposition and characterization

on the infinitesimal generator L of a QMS T due to Lindblad [13].

Theorem 2.2.1 (Lindblad). Let T be a uniformly continuous semigroup on
B(H). Then T is a QMS if and only if there exists a complex separable Hilbert
space K, a bounded operator L : H → H⊗K and an operator G on H such that
its (bounded) generator is given by

L(a) = L∗(a⊗ 1)L+G∗a+ aG (2.8)

for all a ∈ B(H). The operator L can be chosen so that the set

{ (a⊗ 1)Lu | a ∈ B(H), u ∈ H }

is total in H⊗K.

Proof. It T is a QMS then the infinitesimal generator L is conditionally com-
pletely positive by the first part of Proposition 2.2.4 and can therefore be rep-
resented in the same form as in Equation (2.7) by the second part of Propo-
sition 2.2.4, and is also σ-weakly continuous by Proposition 2.2.3. Since the
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map a 7→ G∗a + aG is σ-weakly continuous, by Kraus’ Theorem 2.1.2 applied
to the map ϕ in Equation 2.7 we obtain the desired representation of L. Con-
versely, if an operator L can be written as in Equation 2.8 then it is σ-weakly
continuous and conditionally completely positive by Proposition 2.2.4. Thus we
can say that is the infinitesimal generator of a uniformly continuous QMS by
Proposition 2.2.3 and Proposition 2.2.4.

The following corollary summarizes the properties and the characterization
of the infinitesimal generator of a uniformly continuous QMS obtained so far.
Corollary 2.2.1. Let T be a uniformly continuous QMS on a von Neumann
algebra A, and let L be a its infinitesimal generator. Then the following state-
ments hold:

1. L is σ-weakly continuous;

2. L is conditionally completely positive;

3. L(a∗) = L(a)∗ for all a ∈ A.
Moreover, if A = B(H) for some Hilbert space H, then there exist G ∈ B(H)
and a sequence of operators (Ll)l≥1 in B(H) such that

L(a) =
∞∑
l=1

L∗
l aLl +G∗a+ aG (2.9)

for all a ∈ B(H) and
∞∑
l=1

L∗
l Ll +G∗ +G = 0

Proof. We already prove everything in the previous Propositions and Theorems,
we are only left to prove that the decomposition of the infinitesimal generator
L given in Equation (2.7) can be rewritten as in Equation (2.9). Consider the
orthonormal basis (ei)dimK

i=1 of the Hilbert space K introduced in Theorem 2.2.1
and defined the operators Ll = πl ◦ L where

πl : H⊗K −→ H
u⊗ ei 7−→ uδil

for every l ≥ 1. Then the action of L can be decomposed as Lu =
∑

i=l(Llu)⊗el
for every u ∈ H so that L∗aL =

∑∞
l=1 L

∗
l aLl for all a ∈ B(H) and therefore

Equation 2.9 follows directly. Finally, since T is Markov, we have

L(1) =
∞∑
l=1

L∗
l Ll +G∗ +G = 0

To conclude this subsection, note that whenever A = B(H) the operator G
can be decomposed as

G = −1

2

∑
l

L∗
l Ll − iH

for some bounded self-adjoint operator on H. Therefore we can rewrite what is
usually called the Lindblad form of L as

L(a) = −1

2

(∑
l

L∗
l Lla+

∑
l

aL∗
l Ll − 2

∑
l

L∗
l aLl

)
+ i[H, a] (2.10)
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Theorem 2.2.2. Let L be the generator of a uniformly continuous QMS on
B(H). Then there exists a bounded self-adjoint operator H a sequence (Lk)k≥1

of elements in B(H) such that

1.
∑

k≥1 L
∗
kLk is strongly convergent;

2. if
∑

k≥1 |ck|2 <∞ and c01+
∑

k≥1 ckLk = 0 for some sequence of scalars
(ck)k≥0, then ck = 0 for every k ≥ 0;

3. L(a) = − 1
2 (
∑

l L
∗
l Lla+

∑
l aL

∗
l Ll − 2

∑
l L

∗
l aLl) + i[H, a] for every x ∈

B(H).

Moreover, if H ′ and (L′
k)k≥1 is another set of bounded operators in B(H) with

H ′ self-adjoint, then it satisfies Item 1 – 3 if and only if the length of the
sequences (Lk)k≥1 and (L′

k)k≥1 are is the same and there exists a sequence of
complex numbers (αk)k≥1 with

∑
k≥1 αk <∞ and β ∈ R such that

H ′ = H + β1+
1

2i
(S − S∗) L′

K =
∑
j≥1

ukjLj + αk1 (2.11)

for some unitary matrix U = (ukj)kj and where S :=
∑

j,k≥1 ᾱkukjLj.

Definition 2.2.7. Let T be a uniformly continuous QMS on B(H), and let L
be its generator. Then a set of operators {(Lk)k≥1,H} such that Theorem 2.2.2
holds true is called a GKSL representation of L.

2.3 Subharmonic projections
In this Section we are going to show the strong connection between the structure
and properties of a QMS and its action on the projections contained in the von
Neumann algebra. In order to do so, we first need to give a characterization of
operators in the von Neumann algebra depending on the way a QMS T acts on
them as in the following Definition.

Definition 2.3.1. Let T be a QMS on a von Neumann algebra. Then a positive
operator a ∈ A is said to be

1. subharmonic if Tt(a) ≥ a;

2. harmonic if Tt(a) = a;

3. superharmonic if Tt(a) ≤ a

for all t ≥ 0.

Subharmonic projections will be fundamental in the proving the main results
of this thesis. For this reason will be now stating some of the most important
properties about them.

Lemma 2.3.1. Let a, p ∈ A, and p a projection. If a ≥ 0 and p⊥ap⊥ = 0, then
a = pap.
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Proof. Let u ∈ pH⊥ and v ∈ pH. Since a is positive, we have

〈λu+ v, a(λu+ v)〉 = 2Re 〈λu, av〉+ 〈v, av〉 ≥ 0 λ ∈ C (2.12)

But, if λ ∈ R, Equation (2.12) implies Re 〈u, av〉 = 0, while if λ ∈ iR the same
Equation implies Im 〈u, av〉 = 0. Therefore 〈u, va〉 = 0 for all u ∈ pH⊥ and
v ∈ pH, i.e. p⊥ap = 0; similarly it possible to prove pap⊥ = 0 which implies
a = pap.

Definition 2.3.2. Let ω a linear positive functional on A. If ω(x∗x) 6= 0 for
every non zero x ∈ A, then ω is said to be faithful.

Definition 2.3.3. Let ω be a normal, positive linear functional on A and define

L := { a ∈ A | ω(a∗a) = 0 }

Then L is weakly closed left ideal, and therefore L = Ap for some projection
p ∈ A (see [14, Definition 1.14.2]). The orthogonal projection p⊥ is called the
support of ω and is denoted by s(ω).

Proposition 2.3.1. Let ω be a positive normal functional on A and s(ω) its
support, then ω is faithful on s(ω)As(ω).

Proof. Let p = s(ω) and assume ω(a) = 0 for some a ∈ pAp+. Denoting with
qn the spectral decomposition of a in the interval (1/n, ‖a‖] with n ≥ 1, we have

ω(qn) ≤ nω(a) = 0 ∀n ≥ 1

which implies qn ≤ p⊥ for all n ≥ 1. Since qn ≤ na ≤ n‖a‖p, this means that
qn = 0 for all n ≥ 1, which in turn implies that q = supn qn = 0. But given
that q is the projection onto the closure of the range of a, we conclude that
a = 0.

Theorem 2.3.1. The support projection of a normal invariant state for a QMS
is subharmonic.

Proof. Let ω be a normal invariant state on A, p = s(ω), and fix t ≥ 0. By the
invariance of ω we get

ω(p− pTt(p)p) = ω(p− Tt(p)) = 0

that implies pTt(p)p = p because pTt(p)p ≤ p and ω is faithful on pAp according
to Proposition 2.3.1. Therefore the projection p⊥ satisfies pTt(p⊥)p = 0, so
that Tt(p⊥) = p⊥Tt(p⊥)p⊥ by Lemma 2.3.1. It follows that Tt(p⊥) ≤ p⊥ and
consequently Tt(p) ≥ p.

Proposition 2.3.2. Let T be a QMS on A and p a projection in A. Then the
following properties are equivalent:

1. pAp is T -invariant;

2. Tt(p) ≤ p for all t ≥ 0;

3. for every normal state ω in B(H) such that p⊥ρp⊥ = ρ, we have that
tr [ρTt(p)] = 0 for all t ≥ 0.
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Proof. 1 =⇒ 2 — If Item 1 holds then we have

Tt(p) = pTt(p)p ≤ pTt(1)p = p

for all t ≥ 0.
2 =⇒ 3 · The inequality Tt(p) ≤ p implies p⊥Tt(p)p⊥ = 0 and

0 ≤ tr [ρTt(p)] = tr
[
p⊥ρp⊥Tt(p)

]
= tr

[
ρp⊥Tt(p)p⊥

]
= 0

for all t ≥ 0.
3 =⇒ 1 — For every ρ such that p⊥ρp⊥ = ρ for all t ≥ 0 we have

0 = tr [ρTt(p)] = tr
[
p⊥ρp⊥Tt(p)

]
= tr

[
ρp⊥Tt(p)p⊥

]
It follows then that p⊥Tt(p)p⊥ = 0 and that Tt(p) = pTt(p)p with Tt(p) is
positive. Finally, for any positive x ∈ pAp it holds that

0 ≤ Tt(x) ≤ ‖x‖Tt(p) = ‖x‖p

and therefore each Tt(x) belongs to pAp, i.e. is T -invariant.

Definition 2.3.4. A QMS on A is said to be irreducible if there exists no
non-trivial superharmonic projections.

Proposition 2.3.3. Let T be an irreducible QMS on A. If ω is a normal
invariant state, then it is faithful.

Proof. Let p = s(ω), since ω is invariant then p is subharmonic by Theo-
rem 2.3.1. Therefore we have p = 1 or p = 0 because T is irreducible. But
p = 0 implies ω(1) = 0, i.e. ω = 0 that is a contradiction, hence p = 1 which
means ω is faithful.

Lemma 2.3.2. Let p a projection in A and ω a normal state on A. Then
ω ∈ pA∗p if and only if s(ω) ≤ p.

Proof. Supposing that ω ∈ pA∗p, then it is clear that ω(p⊥) = 0, and therefore
s(ω) ≤ p. Conversely, suppose that s(ω) ≤ p, then

pωp(a) = ω(pap) = ω(s(ω)paps(ω)) = ω(s(ω)as(ω)) = ω(a)

for all a ∈ A, that is ω = pωp ∈ pAp.

Proposition 2.3.4. Let T be a QMS on A and p a projection in A. Then the
following properties hold

1. p is subharmonic;

2. pA∗p is T∗-invariant;

3. pTt(p)p = pTt(pap)p for all a ∈ A and t ≥ 0.

Proof. 1 =⇒ 2 — If ω is a state in pA∗p then

T∗t(ω)p⊥ = ω(Tt(p⊥)) ≤ ω(p⊥) = 0
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i.e. T∗t(ω) ∈ pA∗p by Lemma 2.3.2.
2 =⇒ 3 — Let ω ∈ A∗ and a ∈ A, since T∗t(pωp) is in pA∗p, we have that

ω(pTt(pap)p) = (pT∗t(pωp)p)(a) = T∗t(pωp)(a) = ω(pTt(a)p)

for all t ≥ 0, and since ω is arbitrary we have Item 3.
3 =⇒ 1—Taking a = 1 in Item 3, we get p = Tt(p)p and therefore pT(p⊥)p = 0
which implies that p is subharmonic by Lemma 2.3.1.

Given a QMS T on A we can define a reduced semigroup thanks a subhar-
monic projection p ∈ A. Indeed, since pA∗p is T∗-invariant we can restrict T∗
to a weakly continuous semigroup on pA∗p. Denoting by {T p

t }t≥0 the dual of
the restriction, for every a ∈ pAp = (pA∗p)

∗ and ω ∈ pA∗p we have

((T∗t|pA∗p)
∗(a))(ω) = (T∗t(ω))(a) = ω(Tt(a)) = ω(pT(a)p)

for all t ≥ 0, i.e. we have
T p
t (a) = pTt(a)p (2.13)

for all a ∈ pAp and t ≥ 0. More interestingly the restricted QMS T p
t is a QMS.

Indeed, is normal, completely positive and T p
t (p) = p since

p = pTt(1)p ≥ pTt(p)p ≥ p





Chapter 3

Covariant QMS

Now that we introduced all the needed basic concepts about QMSs we are ready
to study the main property we set off to study in this thesis, i.e. covariant QMSs.
To this purpose we first need to define one last object that will play a pivotal
role in this chapter.

Definition 3.0.1. Let T : B(H) → B(H) be a uniformly continuous QMS. Then
the decoherence-free (DF) subalgebra of T , denoted by N (T ), is defined by

N (T ) =
{
x ∈ B(H)

∣∣ Tt(x∗x) = Tt(x)∗Tt(x), Tt(xx∗) = Tt(x)Tt(x)∗ ∀ t ≥ 0
}
.

(3.1)

The following Proposition gives some basics properties of N (T ).

Proposition 3.0.1. Let T be a uniformly continuous QMS and N (T ) the
associated DF algebra, then we have

1. N (T ) is Tt-invariant for all t ≥ 0;

2. the equalities Tt(x∗y) = Tt(x)∗Tt(y) and Tt(yx∗) = Tt(y)Tt(x)∗ hold for all
x ∈ N (T ), y ∈ B(H) and t ≥ 0;

3. N (T ) is a von Neumann subalgebra of B(H).

Proof. (1) Let x ∈ N (T ) and t > 0. For all s > 0 we have

Ts(Tt(x∗x)) = Ts+t(x
∗x) = Ts+t(x

∗)Ts+t(x) = Ts(Tt(x∗))Ts(Tt(x)).

Moreover, by exchanging x and x∗, we obtain Ts(Tt(xx∗)) = Ts(Tt(x))Ts(Tt(x∗))
which proves that Tt(x) ∈ N (T ).
(2) For all t ≥ 0 and x, y ∈ B(H) define Dt(x, y) = Tt(x∗y) − Tt(x∗)Tt(y).
Clearly, if x ∈ N (T ), then Dt(x, x) = 0 for all t ≥ 0, therefore Dt(x, y) = 0 for
all x ∈ N (T ), y ∈ B(H) and t ≥ 0 by Lemma 2.2.1, which yields the Thesis for
Item (2).
(3) N (T ) is a vector space by Item (2). Given x, y ∈ N (T ) we can prove that
xy ∈ N (T ) by a direct computation

Tt((xy)∗(xy)) = Tt(y∗)Tt(x∗)Tt(x)Tt(y) = Tt((xy)∗)Tt(xy) ∀ t ≥ 0

23
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The invariance under conjugation is trivial. Finally, consider any net xγ of
elements in N (T ) converging σ-strongly to x ∈ B(H), then we have

Tt(x∗x) = lim
γ

Tt(x∗xγ) = lim
γ

Tt(x∗)Tt(xγ) = Tt(x∗)Tt(x)

which proves that x belongs to N (T ) and therefore Item (3) is proved.

The DF algebra is closely related to the set of operators x ∈ B(H) on which
the action of T is unitary as shown in the following.
Proposition 3.0.2. For any self-adjoint H in any GKSL representation of the
generator L of uniformly continuous QMS T we have

N (T ) ⊆
{
x ∈ B(H)

∣∣ Tt(x) = eitHxe−itH ∀t ≥ 0
}

Proof. It is trivial to show that if Tt(x) = eitHxe−itH then x ∈ N (T ). Suppose
now conversely that x ∈ N (T ), then by differentiating Tt(x∗x) = Tt(x)∗Tt(x)
we get L(x∗x) = x∗L(x) + L(x∗)x. But since we a also have for any y ∈ B(H)
that

L(y∗y)− y∗L(y)− L(y∗)y =
∑
l≥1

[Ll, y]
∗
[Ll, y] (3.2)

we conclude that [Ll, x] = 0 for all x ∈ N (T ). Moreover, we have x∗ ∈ N (T )
given that N (T ) is a *-algebra and therefore [Ll, x

∗] = 0 which implies [L∗
l , x] =

0 from which we conclude that L(x) = i[H,x] for all x ∈ N (T ). Finally, let
t > 0 and x ∈ N (T ), then for all 0 ≤ s ≤ t we have Ts(x) ∈ N (T ) and
d

ds
ei(t−s)HTs(x)e−i(t−s)H = iei(t−s)H [H, Ts(x)]e−i(t−s)H

− iei(t−s)HHTs(x)e−i(t−s)H − iei(t−s)HTs(x)e−i(t−s)H

= 0

Thus, the function s 7→ ei(t−s)HTs(x)e−i(t−s)H is constant on [0, t] and therefore
taking s = 0 we get Tt(x) = eitHxe−itH .

Proposition 3.0.3. N (T ) is the biggest von Neumann sub-algebra on B(H) on
which every operator Tt is a *-automorphism.
Proof. Thank to Proposition 3.0.2 it is clear that the restriction of Tt to N (T )
is injective. We are therefore left to prove that given x ∈ N (T ) there exists a
t ∈ N (T ) such that x = Tt(y). Note first that, since T is a uniformly continuous
QMS, it can be extended to a uniformly continuous group Tt with t ∈ R which,
by analyticity, can be expressed as T−t(x) = e−itHxeitH . Thus, we only need
to prove that T−t(x) ∈ N (T ) for all t > 0 and x ∈ N (T ). Fix then s, t > 0 and
x ∈ N (T ), clearly also xx∗ ∈ N (T ) and Ts(x∗x) ∈ N (T ). Moreover we have

Ts(T−t(x)
∗T−t(x)) = Ts(e−itHx∗xeitH)

= Ts−t(x
∗x)

= T−t(Ts(x∗x))
= e−i(t−s)Hx∗xei(t−s)H

= eisHe−itHx∗eitHe−isHeisHe−itHxeitHe−isH

= Ts(T−t(x
∗))Ts(T−t(x))

that is T−t(x) ∈ N (T ).
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Finally, we have one more characterization of the DF algebra through the
operators of a GKSL representation of T . Indeed, let H and Ll be the operators
of a GKSL representation of the generator L of a QMS T , then we can define the
iterated commutators δnH(x) for any x ∈ B(H) as δ0H(x) = x, δ1H(x) = [H,x] and
δn+1
H (x) = [H, δnH(x)]. With these definitions we have the following Proposition.

Proposition 3.0.4. The DF subalgebra of a uniformly continuous QMS T can
be expressed as

N (T ) =
{
δnH(Ll), δ

n
H(Ll)

∗ ∣∣ n ≥ 0, l ≥ 1
}′

Proof. We are going to prove the Thesis by induction. Let x ∈ N (T ), then
Tt(x) ∈ N (T ) by Proposition 3.0.1 and consequently L(x) = limt→0 t

−1(Tt(x)−
x) ∈ N (T ). Moreover, recalling the proof of Proposition 3.0.2, we have [Ll, x] =
[L∗

l , x] = 0 and L(x) = iδ1H(x) ∈ N (T ). We start the induction argument by
noting that all elements of N (T ) commute with δ0H(Ll) = Ll and δ0H(L∗

l ) = L∗
l .

Suppose then that they commute with δnH(Ll) and δnH(L∗
l ) for some positive n,

by the Jacobi identity we get

[x, δn+1
H (Ll)] = −[H, [δnH(Ll), x]]− [δnH(Ll), [x,H]] = 0

since [x,H] = iL(x) ∈ N (T ). Therefore we have that all elements of N (T )

commute with δn+1
H (Ll) and δn+1

H (L∗
l ) = −δn+1

H (Ll)
∗, where the last equality

follows from the fact that N (T ) is a *-algebra. With this have proved that
N (T ) ⊂

{
δnH(Ll), δ

n
H(Ll)

∗ ∣∣ n ≥ 0, l ≥ 1
}′. To prove the converse, suppose

that x ∈
{
δnH(Ll), δ

n
H(Ll)

∗ ∣∣ n ≥ 0, l ≥ 1
}′, then it commutes with both Ll and

L∗
l so that L(x) = iδ1H(x). Therefore also δ1H(x) commutes with both Ll and

L∗
l by the Jacobi identity

[Ll, δ
1
H(x)] = −[H, [x, Ll]]− [x, δ1H(Ll)] = 0

and similarly for [L∗
l , δ

1
H(x)]. Suppose now by induction that Ln(x) = inδnH(x)

and δkH(x) commute with δn−k
H (Ll) and δn−k

H (L∗
l ) for some n and all k ≤ n.

Then Ln+1(x) = inL(δnH(x)) so that

Ln+1(x) = in+1δn+1
H (x) +

1

2

∑
l≥1

(L∗
L[δ

n
H(x), Ll] + [L∗

l , δ
n
H(x)]Ll)

= in+1δn+1
H (x)

By a repeated use of the Jacobi identity we obtain

[δkH(x), δn−k+1
H (Ll)] = −[[δk−1

H (x), δn+1−k
H (Ll)],H]− [[δn−k+1

H (Ll),H], δk−1
H (x)]

= [δk−1
H (x), δn+2−k

H (Ll)]

= . . .

= [x, δn+1
H (Ll)]

= 0

and [δkH(x), δn−k+1
H (L∗

l )] = 0 analogously. It follows that L(x)n = inδnH(x) for all
n ≥ 0 so that Tt(x) = eitHxe−itH and thus x ∈ N (T ) by Proposition 3.0.2.
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When N (T ) is atomic (i.e. for every non-zero projection p ∈ N (T ) there exists
a non-zero minimal projection q ∈ N (T ) such that q ≤ p), we obtain some
additional information on the structure of the semigroup. In particular, in [8]
the following result has been proved:

Theorem 3.0.1. N (T ) is an atomic algebra if and only if there exist two
countable sequences of Hilbert spaces (Ki)i∈I , (Mi)i∈I such that H = ⊕i∈I(Ki⊗
Mi) and N (T ) = ⊕i∈I (B(Ki)⊗ 1Mi

) up to a unitary isomorphism. In this
case:

1. for every GKSL representation of L by means of operators H, (Lℓ)ℓ≥1, up
to a unitary isomorphism we have

Lℓ = ⊕i∈I

(
1Ki

⊗M
(i)
ℓ

)
for a collection (M

(i)
ℓ )

ℓ≥1
of operators in B(Mi), such that the series∑

ℓ≥1M
(i)∗
ℓ M

(i)
ℓ strongly convergent for all i ∈ I, and

H = ⊕i∈I

(
Ki ⊗ 1Mi

+ 1Ki
⊗M

(i)
0

)
for self-adjoint operators Ki ∈ B(Ki) and M (i)

0 ∈ B(Mi), i ∈ I,

2. we have Tt(x ⊗ y) = eitKixe−itKi ⊗ T Mi
t (y) for all x ∈ B(Ki) and y ∈

B(Mi), where T Mi
t is the QMS on B(Mi) generated by

LMi(y) = i[M
(i)
0 , y]+

− 1

2

∑
ℓ≥1

(
(M

(i)
ℓ )∗M

(i)
ℓ y − 2(M

(i)
ℓ )∗yM

(i)
ℓ + y(M

(i)
ℓ )∗M

(i)
ℓ

)
.

(3.3)

Note that, setting pi the orthogonal projection onto Ki ⊗Mi for all i ∈ I,
we get a family of mutually orthogonal projections which are minimal in the
center of N (T ) and such that

∑
i pi = 1.

Remark 3.0.1. Note that whenever there exists a normal faithful invariant
state, then N (T ) is atomic (see [15]) and we can therefore always consider the
decomposition N (T ) = ⊕i∈I (B(Ki)⊗ 1Mi

).

We conclude this Section showing the relationship between the DF subalge-
bra and the set of fixed point with respect to T . Recall the definition of the set
of fixed point

F(T ) = { x ∈ B(H) | Tt(x) = x ∀ t ≥ 0 } = { x ∈ B(H) | L(x) = 0 } . (3.4)

then we have the following results about projection in F(T ).

Lemma 3.0.1. An orthogonal projection p ∈ B(H) belongs to F(T ) if and only
if it commutes with the operators Ll and H of any GKSL representation of the
generator L.
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Proof. Clearly, if p commutes with both Ll and H then L(p) = 0 and thus
Tt(p) = p. Conversely, if p ∈ F(T ) then L(p) = 0 and multiplying on both sides
by p⊥ = 1− p we obtain

0 = p⊥L(p)p⊥ = p⊥
∑
l≥1

L∗
l pLlp

⊥

and therefore pLlp
⊥ = 0. In an analogous way, from L(p⊥) = L(1 − p) =

L(1) − L(p) = 0 we obtain p⊥Llp = 0. Moreover, by taking the conjugate we
get p⊥L∗

l p = p⊥L∗
l p = 0 and thus p commutes with Ll and L∗

l . In this way
we have that the action of the generator is reduced to L(p) = i[H, p] = 0 from
which we see that p also commutes with H.

In general F(T ) is not an algebra unlike N (T ) as shown in the following exam-
ple.

Example 3.0.1. Let H = C3 and {ei}i=0,1,2 its canonical basis. We can define
a generator L through its GKSL generator as L = |e0〉〈e2| and H = L∗L =
|e0〉〈e0|. For any matrix a ∈M3(C) we have

L(a) = (a00 − a22) |e2〉〈e2| −
(
1

2
+ i

)
(a02 |e0〉〈e2|+ a12 |e1〉〈e2|)

=

(
1

2
− i

)
(a20 |e2〉〈e0|+ a21 |e2〉〈e1|)

From this we can see that a is a fixed point for the QMS associated to L if and
only if a00 = a22 and a02 = a20 = a12 = a21. Therefore, given a fixed point a it
satisfies L(a∗a) = 0 if and only if a commutes with L by Equation (3.2), which
is equivalent to a10 = 0. By Proposition 3.0.4 we have that a matrix a belongs
to N (T ) if and only if it commutes with all the iterated commutators, but since
in this example it is easy to show that δnH(L) = L and δnH(L∗) = L∗ for all n ≥ 0
it is sufficient for a to commute with L and L∗ for it to belong to N (T ). By a
simple computation, it is possible to see that [a, L] = 0 and [a, L∗] = 0 if and
only if aij = 0 for i 6= j and a22 = a00. Therefore we can conclude that for this
example N (T ) ⊆ F(T ) and that F(T ) is not an algebra.

Despite not being an algebra in general, there are still some cases in which
F(T ) can be one. The following Proposition gives a full characterization of the
situations in which F(T ) is an algebra.

Proposition 3.0.5. The following statements hold for every uniformly contin-
uous QMS T :

1. the set of fixed points F(T ) is a *-algebra if and only if it is contained in
the DF subalgebra N (T );

2. if the QMS T has a faithful invariant state, then F(T ) is a von Neumann
subalgebra of B(H);

3. if F(T ) is a von Neumann subalgebra of B(H), then it coincides with
{ Ll, L

∗
l ,H | L ≥ 1 }′.
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Proof. (1) If F(T ) is contained in N (T ) then for every x ∈ F(T ) we have
Tt(x∗x) = Tt(x∗)Tt(x) = x∗x which means that x∗x ∈ F(T ) and therefore
F(T ) is a *-algebra. Conversely, if F(T ) is a *-algebra, then for all x ∈ F(T )
we have x∗x ∈ F(T ) and therefore Tt(x∗x) = x∗x = Tt(x∗)Tt(x) and therefore
x ∈ N (T ).
(2) Let ρ be a faithful invariant state for T . If x is a fixed point, then by
the complete positivity of the QMS we have x∗x = Tt(x∗)Tt(x) ≤ Tt(x∗x) and
tr [ρ(Tt(x∗x)− x∗x)] = 0 by invariance of ρ. Thus, Tt(x∗x) = x∗x for all t ≥ 0
since ρ is faithful and therefore x∗x ∈ F(T ).
(3) If F(T ) is a von Neumann subalgebra of B(H) it is generated by its pro-
jections which belong to { Ll, L

∗
l ,H | L ≥ 1 }′ by Lemma 3.0.1 and therefore

F(T ) ∈ { Ll, L
∗
l ,H | L ≥ 1 }′. Conversely, every x ∈ { Ll, L

∗
l ,H | L ≥ 1 }′ sat-

isfy L(x) = 0 and so Tt(x) = x.

3.1 Structure of the generator of a covariant QMS
The concept of covariance in physics describes a property of the observables
under the action of the set of transformations associated to some symmetry.
More precisely, a symmetry is represented mathematically as a group G while
its action by a suitable representation π of G on a Hilbert space H, so that a
law of physics is said to be covariant if its predictions are not affected by the
action of π(g) for any g ∈ G. The following definition specifies what we mean
by this vague description in the context of QMSs and time evolution of open
quantum systems.

Definition 3.1.1. Let G be a locally compact group and π : g 7→ π(g) a con-
tinuous unitary representation of G on an Hilbert space H. Then a uniformly
continuous QMS T on B(H) is said to be covariant with respect to the repre-
sentation π if

Tt(π(g)∗xπ(g)) = π(g)
∗Tt(x)π(g) (3.5)

for all x ∈ B(H), g ∈ G and t ≥ 0. Equivalently, if L is the generator of T the
covariance property reads

L(π(g)∗xπ(g)) = π(g)
∗L(x)π(g) (3.6)

for all x ∈ B(H) and g ∈ G.

To give some intuition about this definition think of G as the group describ-
ing the change of reference frame in physical system (i.e. the Galilean group or
the Poincaré group), then Equation (3.5) simply states that the we are free to
compute the time evolution of any x according to T before or after changing
the reference frame without any change in the result.

From now on we will study covariant QMSs and whether this additional
hypothesis allows us to give a richer structure to the associated generators and
DF subalgebras. First of all we note that the structure of the generator of a
covariant uniformly continuous QMS was fully characterized by Holevo in [1],
Section 2, in the case of amenable locally compact groups. When T is uniformly
continuous and G is compact, the result can be restated as follows.

Theorem 3.1.1. Let G be a compact group, π : g 7→ π(g) a continuous unitary
representation of G on H. If T is a uniformly continuous covariant QMS



3.1. STRUCTURE OF THE GENERATOR OF A COVARIANT QMS 29

on B(H), then there exists a GKSL representation of L given by operators
{H,Lk : k ≥ 1} satisfying:

1.
∑

k L
∗
kπ(g)

∗
xπ(g)Lk =

∑
k π(g)

∗
L∗
kxLkπ(g) for all x ∈ B(H) and g ∈ G,

2. H ∈ { π(g) | g ∈ G }′.

Moreover, the condition in Item 1 is equivalent to

π(g)
∗
Ljπ(g) =

∑
k

v(g)jkLk (3.7)

for all g ∈ G, where V (g) = (v(g)jk)jk is a unitary matrix. In particular,
for all g ∈ G, the operators

{
H, π(g)

∗
Lkπ(g)

∣∣ k ≥ 1
}
give the same GKSL

representation of L.

Proof. Consider the algebraic tensor product H⊗ B(H) generated by elements
of the form u ⊗ X for some u ∈ H and X ∈ B(H). We can define an inner
product on H⊗ B(H) as follows

〈u⊗X, v ⊗ Y 〉H⊗B(H) = 〈u,DL[X,Y ]v〉H
where we have put

DL[X,Y ] := L(X∗Y )−X∗L(Y )− L(X)
∗
Y

thus we can render H ⊗ B(H) an Hilbert space by completing w.r.t. this inner
product. We will also need the following maps: a ∗-representation ψ of B(H) in
H⊗ B(H) defined as

ψ(Y )(u⊗X) = u⊗XY −Xu⊗ Y ;

a continuous unitary representation of G on H⊗ B(H) defined as

ρ(g)(u⊗X) = π(g)u⊗ π(g)Xπ(g)
∗
;

and finally a linear map B : B(H) → B(H,H⊗ B(H)) defined as

B(X)u = u⊗X

which clearly satisfies

B(XY ) = ψ(Y )B(X) +B(Y )X (3.8)
B(X)

∗
B(Y ) = DL[X,Y ]. (3.9)

Indeed we have for any v ∈ H

(ψ(Y )B(X) +B(Y )X) v = ψ(Y )(v ⊗X) +Xv ⊗ Y

= v ⊗XY

= B(XY )v

While for the second property, given any v, w ∈ H we have〈
v,B(X)

∗
B(Y )w

〉
H = 〈B(X)v,B(Y )w〉H

= 〈v ⊗X,w ⊗ Y 〉H⊗B(H)

= 〈v,DL[X,Y ]w〉H



30 CHAPTER 3. COVARIANT QMS

By the definition of ψ and B respectively, and the covariance of the generator
L we have immediately that

ψ(π(g)
∗
Xπ(g)) = ρ(g)

∗
ψ(X)ρ(g) (3.10)

B(π(g)
∗
Xπ(g)) = ρ(g)

∗
B(X)π(g) (3.11)

Moreover, in [16] is shown that a map satisfying Equation (3.8) can be
written as

B(X) = ψ(X)C − CX (3.12)

for some C ∈ {B(X)Y | X,Y ∈ B(H) }
w∗. Given C we can define the map

A : G→ B(H,H⊗ B(H))

A(g) := ρ(g)
∗
Cπ(g)− C

which, intertwines ψ(X) with X by Equation (3.10) and (3.11) as follows

ψ(X)A(g) = A(g)X (3.13)

Indeed, by a direct computation

ψ(X)A(g) = ψ(X)ρ(g)
∗
Cπ(g)− ψ(X)C

= ρ(g)
∗
ψ(π(g)Xπ(g)

∗
)Cπ(g)−B(X)− CX

= ρ(g)
∗
B(π(g)Xπ(g)

∗
)π(g) + ρ(g)

∗
Cπ(g)X −B(X)− CX

= B(X) + ρ(g)
∗
Cπ(g)X −B(X)− CX

= (ρ(g)
∗
Cπ(g)− C)X

= A(g)X

The map A(g) satisfies also the following cocycle relation for every g, h ∈ G

A(gh) = ρ(h)
∗
A(g)π(h) +A(h) (3.14)

Since G is compact we can integrate over it with respect to the Haar measure
µ. Therefore we can define the operator

Ā =

∫
G

A(g) dµ(g)

such that averaging Equation (3.13) we obtain

ψ(X)Ā = ĀX

while averaging (3.14) we get∫
G

A(gh) dµ(g) =

∫
G

ρ(h)
∗
A(g)π(h) dµ(g) +

∫
G

A(h) dµ(g)

So by the left-invariance of the Haar measure µ we get

Ā = ρ(h)
∗
Āπ(h) +A(h)

and finally, by reordering we get

A(h) = −ρ(h)∗Āπ(h) + Ā
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respectively. We can now define yet another operator as A0 = C + Ā that
satisfies

B(X) = ψ(X)A0 −A0X

which is easily provable recalling that ψ(X)Ā = ĀX. Defining the map

ϕ(X) = A∗
0ψ(X)A0

we can prove that DL(X,Y ) = Dϕ(X,Y ), where

Dϕ(X,Y ) = ϕ(X∗Y )−X∗ϕ(Y )− ϕ(X∗)Y +X∗ϕ(1)Y

First of all note that ϕ(X) = A∗
0B(X)+A∗

0A0X, and since Equation (3.8) implies
B(1) = 0, we immediately see that ϕ(1) = A∗

0A0. Plugging these relation into
the definition of Dϕ we get

Dϕ(X,Y ) = A∗
0B(X∗Y ) +A∗

0A0X
∗Y −X∗A0B(Y )−X∗A∗

0A0Y

−A∗
0B(X∗)Y −A∗

0A0X
∗Y +X∗A∗

0A0Y

= A∗
0ψ(X

∗)B(Y ) +A∗
0B(X∗)Y −X∗A∗

0B(Y )−A∗
0B(X∗)Y

= (A∗
0ψ(X

∗)−X∗A∗
0)B(Y )

= B(X)
∗
B(Y )

= DL(X,Y )

In [16, Theorem 3.1] it is been proven that this equality together with Equa-
tion (3.9) imply that the generator can be written as follows

L(x) = ϕ(x)− 1

2
(ϕ(1)x+ xϕ(1)) + i[H,x]

where H is some self-adjoint operator in B(H). We now need to prove that the
newly found map ϕ is covariant. Let’s start by showing the following transfor-
mation property of A0

ρ(g)A0 = ρ(g)C + ρ(g)Ā

= Cπ(g)− ρ(g)A(g) + ρ(g)A(g) + Āπ(g)

= (C + Ā)π(g)

= A0π(g)

which directly implies the covariance of ϕ

π(g)
∗
ϕ(x)π(g) = π(g)

∗
A∗

0ψ(x)A0π(g)

= A∗
0ρ(g)

∗
ψ(x)ρ(g)A0

= A∗
0ψ(π(g)

∗
xπ(g))A0

= ϕ(π(g)
∗
xπ(g))

Again by the results of Subsection 2.2.2 and since ϕ is a completely positive map,
we know there exists a family of operators (Lk)k≥0 such that ϕ(x) =

∑
k L

∗
kxLk

which gives Item 1 of the Theorem. Indeed, we can show that ϕ is a completely
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positive map by a direct computation. Let a1, . . . , an and b1, . . . , bn be operators
in B(H), the we have

n∑
i,j=1

b∗iϕ(a
∗
i aj)bj =

n∑
i,j=1

b∗iA
∗
0ψ(a

∗
i aj)A0bj

=

n∑
i,j=1

b∗iA
∗
0ψ(a

∗
i )ψ(aj)A0bj

=

n∑
i,j=1

(ψ(ai)A0bi)
∗
(ψ(aj)A0bj) ≥ 0

where the second equality holds since ψ is a *-representation. Therefore ϕ is
completely positive since this relations holds for every n. Moreover, since both
L and ϕ are covariant, this implies that also [H,x] must be so and therefore
[π(g)

∗
Hπ(g)−H,x] = 0 for every x ∈ B(H). So, if similarly to what we did for

A, we define
H(g) = π(g)

∗
Hπ(g)−H

we know that H(g) ∈ B(H)′ for every g ∈ G. Once again, H(g) satisfies the
cocycle relation

H(gh) = π(g)
∗
Hπ(g) +H(h)

and furthermore, if we average over G we obtain an operator H̄ ∈ Z(B(H)) such
that

H(h) = −π(g)∗H̄π(g) + H̄

Finally, let H0 = H + H̄, which satisfies π(g)∗H0π(g) = H0 for every g ∈ G,
that is H0 ∈ { π(g) | g ∈ G }′, and also [H0, x] = [H,x] for every x ∈ B(H)
implying H ∈ { π(g) | g ∈ G }′ and thus concluding the proof.

Definition 3.1.2. We say that a special representation of L by means of op-
erators H and (Lk)k≥1 is covariant if H commutes with every π(g) and Lk’s
satisfies Equation (3.7).

Theorem 3.1.1 directly implies the following corollary that we will widely
use in the reminder of this Chapter.

Corollary 3.1.1. Let H, (Lk)k and π as in Theorem 3.1.1. Then H and∑
k L

∗
kLk intertwine the representation π.

Proof. By Theorem 3.1.1 we already know that π(g)H = Hπ(g) for all g ∈ G.
To conclude the proof is enough to note that by Item 1 of the same Theorem
and the unitarity of π we have

π(g)
∗

(∑
k

L∗
kLk

)
π(g) =

∑
k

L∗
k(π(g)

∗
π(g))Lk =

∑
k

L∗
kLk.

Therefore π(g) (
∑

k L
∗
kLk) = (

∑
k L

∗
kLk)π(g) for all g ∈ G.

Whenever the representation π is irreducible it is possible to further specify
the structure of the generator L.



3.1. STRUCTURE OF THE GENERATOR OF A COVARIANT QMS 33

Proposition 3.1.1. Let G be a compact group, π : g 7→ π(g) an irreducible
unitary representation of G on a finite dimensional Hilbert space H. Let also
H, (Lk)k operators in a covariant GKSL representation of L. Then L can be
written as

L(x) =
∑
k

L∗
kxLk − ϵx (3.15)

where ϵ is a real positive constant such that
∑

k L
∗
kLk = ϵ1.

Proof. By Corollary 3.1.1 both H and
∑

k L
∗
kLk intertwine the representation

π, therefore we have that H,
∑

k L
∗
kLk ∈ C1 by the irreducibility of π and

Schur’s Lemma. Moreover, since
∑

k L
∗
kLk is a positive operator, there exists a

constant ϵ > 0 such that
∑

k L
∗
kLk = ϵ1. Equation (3.15) directly follows being

H proportional to the identity matrix.

In Theorem 3.1.1 we characterized the behavior of the operators {H, (Lk)k≥1 }
of a specific GKSL representation of a covariant generator L. We also know that
a GKSL representation is not unique as stated in Theorem 2.2.2, indeed any
other representation {H ′, (L′

k)k≥1 } related to the original according to Equa-
tion 2.11 is still a valid representation of the same generator L. A natural
question, that we are going to address in the following Proposition, is therefore
whether the transformation between equivalent GKSL representations preserves
the covariance properties stated in Theorem 3.1.1 or not.

Proposition 3.1.2. Let T be a uniformly continuous QMS w.r.t. a unitary
representation π of a compact group G, and let {H, (Lk)k≥1 } be a GKSL rep-
resentation of the generator L satisfying Theorem 3.1.1. Then another GKSL
representation {H ′, (L′

k)k≥1 } satisfies Theorem (3.1.1) if and only if it is con-
nected to the former by Equation (2.11) with

αk =
∑
h

(UV (g)U∗)khαh, (3.16)

where V (g) = (v(g)ij)ij is the unitary matrix that appears in Equation (3.7).

Proof. We begin proving that Equation (3.16) ensure the existence of a unitary
matrix V ′(g) such that Equation (3.7) holds also for the operators (L′

k)k≥1.
Since {H, (Lk)k≥1 } and {H ′, (L′

k)k≥1 } are two equivalent GKSL represen-
tations of L, by Equation (2.11) and Equation (3.7) applied to (Lk)k≥1 we have

π(g)
∗
L′
kπ(g) =

∑
h

ukhπ(g)
∗
Lhπ(g) + αk1

=
∑
h

(UV (g))khLh + αk1

=
∑
h

(UV (g)U∗)kh(L
′
h − αh1) + αk1

=
∑
h

(UV (g)U∗)khL
′
h +

(
αk −

∑
h

(UV (g)U∗)khαh

)
1.

If condition (3.16) holds, then (L′
k)k clearly satisfies the covariance condi-

tion (3.7) with respect to the unitary matrix V ′(g) = UV (g)U∗. On the other
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hand, since L is covariant, there exists a unitary matrix W (g) = (w(g)kh)kh
such that π(g)∗L′

kπ(g) =
∑

h w(g)khL
′
h which implies∑

h

(UV (g)U∗ −W (g))khL
′
h +

(
αk −

∑
h

(UV (g)U∗)khαh

)
1 = 0.

Since { 1, (L′
k)k≥1 } are linearly independent and we have both∑

k

|(UV (g)U∗ −W (g))kh|2 ≤
∑
k

|(UV (g)U∗)kh|2 +
∑
k

|(W (g))kh|2 = 2 <∞

and∑
k

∣∣∣∣∣αk −
∑
h

(UV (g)U∗)khαh

∣∣∣∣∣
2

≤
∑
k

|αk|2 +
∑
k

∣∣∣∣∣∑
h

(UV (g)U∗)khαh

∣∣∣∣∣
2

<∞,

We immediately have UV (g)U∗ = W (g) and αk =
∑

h(UV (g)U∗)khαh, i.e.
Equation (3.16) is fulfilled. This condition is also sufficient to ensure [H ′, π(g)] =
0 to hold for all g ∈ G. First of all we note that

[H ′, π(g)] = [H + β1+
1

2i
(S − S∗), π(g)] =

1

2i
[S − S∗, π(g)]

for all g ∈ G and β ∈ R. Moreover, since [S∗, π(g)] = −[S, π(g−1)]
∗, it is enough

to prove that [S, π(g)] = 0 for all g ∈ G to conclude the proof. Indeed we have

Sπ(g) =
∑
i,j

αiuijLjπ(g)

= π(g)
∑
i,j

αi(UV (g))ijLj

= π(g)
∑
h,j

αh(UV (g)∗U∗UV (g))hjLj

= π(g)S

for all g ∈ G and therefore [H ′, π(g)] = 0 for all g ∈ G.

Before moving on to study how the results we just found about covariant
generators affect the overall structure of the associated QMSs, we give a simple
result describing the direct action of a representation π on N (T ) and F(T ).
Proposition 3.1.3. Let T be a uniformly continuous QMS covariant w.r.t. a
unitary representation π of a compact group G. Then

π(g)
∗N (T )π(g) = N (T ) and π(g)

∗F(T )π(g) = F(T )

for all g ∈ G.
Proof. Let g ∈ G and x be in N (T ). We have to prove that y := π(g)

∗
xπ(g)

belongs to N (T ). The covariance of T gives

T (y∗y) = Tt(π(g)∗x∗xπ(g)) = π(g)∗Tt(x∗x)π(g)
= (π(g)∗Tt(x∗)π(g)) (π(g)∗Tt(x)π(g)) = Tt(π(g)∗x∗π(g))Tt(π(g)∗xπ(g))
= Tt(y∗)Tt(y).

In the same way we can show the equality Tt(y∗y) = Tt(y)Tt(y∗), i.e. y ∈ N (T ).
For the set of fixed points F(T ) the proof is very similar.
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3.1.1 Example – Circulant QMS

In this subsection we present as simple but explicit example of a covariant QMS
in order to clarify the very abstract results given up until now. Let p ≥ 2,
H = Cp and consider the von Neumann algebra of p× p matrices with complex
entries Mp(C). Instead of indexing the canonical basis { ek } of Cp with the set
{ 1, . . . , p }, we use Zp which is the cyclic group of order p. This choice naturally
gives rise to a group to consider for the covariance while leaving the index
untouched. In order to define the QMS generator, we introduce the primary
permutation matrix defined as

J =
∑
k∈Zp

|ek〉〈ek+1|

with this we can give the GKSL representation of the generator L for every
x ∈Mp(C) as

L(x) =
p−1∑
k=1

γ(p− k)J∗kxJk − x (3.17)

where γ ∈ Cp−1 such that its component γ(k) > 0 for all k = 1, . . . , p − 1 and∑p−1
k=1 γ(k) = 1. In the usual GKSL notation (as defined in Theorem 2.2.2),

we have that Lk =
√
γ(p− k)Jk for all k = 1, . . . , p − 1 and H = 1. There-

fore, for every γ ∈ Cp−1 satisfying the above conditions we have a valid cir-
culant generator, which in turns gives rise to a uniformly continuous QMS
T . From Proposition 3.0.4 we can obtain a characterization of the decoher-
ence free subalgebra associated to T . Indeed, in the general case we have that
N (T ) = { δnH(Lk), δ

n
H(Lk)

∗ | n ≥ 0, k ≥ 1 }′, but in this case we can greatly sim-
plify this expression by noting that δnH(Lk) = δnH(L∗

k) = 0 for all n ≥ 1 since
H = 1 and that δ0H(Lk) = Lk and δ0H(L∗

k) = L∗
k. Moreover, by Item 3 of

Proposition 3.0.5 we have that N (T ) = F(T ) and they are both given by

N (T ) = F(T ) =
{
Jk, J∗k ∣∣ k ∈ Zp

}′
Moreover, noticing that J∗ = Jp−1, and that, for any x ∈ Mp(C), if [J, x] = 0
then [Jk, x] = 0 for all k ∈ Zp, we can simplify the previous expression to

N (T ) = F(T ) = { J }′

The structure of matrix that commutes with matrices like J , that is a permu-
tation matrix associated to a p-cycle, is been widely studied and can be for
example seen in [17]. Now that we have introduced the QMS we can move
on to study its covariance with respect to Zp. Let π : Zp → Mp(C) defined
as π(k) = Jk. To prove that the circulant generator is covariant under this
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representation directly prove the condition in Equation (3.6)

L(π(n)∗xπ(n)) =
p−1∑
k=1

γ(p− k)J∗kπ(n)∗xπ(n)Jk − π(n)∗xπ(n)

=

p−1∑
k=1

γ(p− k)J∗kJ∗nxJnJk − π(n)∗xπ(n)

=

p−1∑
k=1

γ(p− k)J∗nJ∗kxJkJn − π(n)∗xπ(n)

= π(n)∗

(
p−1∑
k=1

γ(p− k)J∗kxJk

)
π(n)− π(n)∗xπ(n)

= π(n)∗

(
p−1∑
k=1

γ(p− k)J∗kxJk − x

)
π(n)

= π(n)∗L(x)π(n)

for all n ∈ Zp and all x ∈ Mp(C). Moreover, Theorem 3.1.1 translates the
covariance condition in the context of a GKSL representation of L. To adapt
the results of this general Theorem to this example it suffices to note that

π(n)∗Ljπ(n) = π(n)∗JjJ∗n = π(n)∗J∗nJj = π(n)∗π(n)Lj = Lj

and therefore Item (1) follows immediately, while Equation (3.7), which we recall
in the general case reads as

π(g)∗Ljπ(g) =
∑
k≥1

v(g)jkLk

also follows by taking V (n) = 1 for all n ∈ Zp. Finally, Item (2) follows
immediately since H = 1. From this we can see that the Lindblad operators are
invariant under conjugation by the representation, while in the general case such
conjugation would yield a linear combination of Lindblad operators. This result
has direct implications on the results of Proposition 3.1.2. Indeed, recall that the
Proposition states that, given one covariant GKSL representation of a generator
L, all the other equivalent GKSL representations of the same generator are not
necessarily covariant. An equivalent GKSL representation preserves covariance
if the associated transformation satisfied the condition of Equation (3.16), which
for circulant QMSs is always trivially satisfied simply because V (k) = 1 for all
k ∈ Zp, which in turn implies that all equivalent GKSL representations of
circulant QMS are covariant. Another important result for covariant QMSs is
given by Proposition 3.1.3, which for circulant QMSs is equivalent to ask

π(j)∗ { J }′ π(j) = { J }′

for all j ∈ Zp. To prove this for circulant QMSs, we fix any x ∈ N (T ) and we
compute

[π(j)∗xπ(j), J ] = J∗j [xJj , J ] + [J∗j , J ]xJj

= J∗j [x, J ]Jj + J∗jx[Jj , J ] + [J∗j , J ]xJj
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Since x ∈ N (T ) we have [x, J ] = 0, also obviously [Jj , J ] = 0 and finally
recalling that J∗j = Jp−j as noted before, we conclude that [π(j)∗xπ(j), J ] = 0.
This allows us to conclude that π(j)∗xπ(j) ∈ N (T ) for all j ∈ Zp and x ∈ N (T ).
In particular we can see that, since any x ∈ N (T ) commutes with both Jk and
J∗k for all k ∈ Zp by construction, then it is invariant under conjugation by the
representation, i.e. π(n)∗xπ(n) = x for all x ∈ N (T ) and n ∈ Zp. Finally we
conclude this Section noting that the result involving irreducible representations
do not apply in this example since the chosen representation π of Zp is not
irreducible. To see this simply note that, fixed v = (1, . . . , 1) ∈ Cp we have

Jv = v =⇒ Jkv = v ∀ k ∈ Zp

which implies that span(v) is an invariant subspace for π.

3.2 Irreducible representations
At the start of this Chapter we saw how, in the atomic case, the DF subalgebra
N (T ) associated to a QMS uniformly continuous T can be decomposed as a
direct sum inducing a decomposition of the underlying Hilbert space H. At the
same time, a representation π of a compact group G can be decomposed into
the sum of irreducible representation (see Appendix A) inducing another de-
composition of H. In this section we start studying the interplay between these
two decomposition of the underlying Hilbert space starting from the simplest
case, i.e. when π is an irreducible representation of a compact group G. In the
following Proposition we begin recalling some known results.

Proposition 3.2.1. If π is an irreducible representation, the following facts
hold.

1. H is finite-dimensional.

2. N (T ) is an atomic algebra.

3. The cardinality of the index set I enumerating the terms of the atomic
decomposition of N (T ) is finite.

Proof. 1. See Theorem A.2.3 in the Appendix.
2. It is a well know fact that every finite-dimensional algebra is atomic (see
e.g. [18], Theorem 4.4.1). Last statement is simply a characterization of atomic
algebras.
3. It is clear, since H is a finite-dimensional space.

In Theorem 3.0.1 we saw that there exists family of mutually orthogonal
projections (pi)i∈I minimal in Z(N (T )) such that N (T ) =

⊕
i∈I piN (T )pi.

Therefore, a natural way to study how π acts on the decomposition of N (T )
is to study the relationship between π and the family (pi)i∈I as shown in the
following Proposition.

Proposition 3.2.2. Let T be a uniformly continuous QMS on B(H) covariant
w.r.t. an irreducible representation π : G → B(H). Then for each g ∈ G there
exists a unique permutation σg of I such that

pi = π(g)∗pσg(i) π(g), ∀ i ∈ I. (3.18)
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Moreover, if N (T ) is not a factor, there is at least one g ∈ G such that σg is
not trivial.

Proof. IfN (T ) is a factor then card I = 1 which implies that the permutation σg
must be trivial for all g ∈ G, and therefore Equation (3.18) is trivially satisfied.
Assume then that N (T ) is not a factor so that card I > 1, and let i ∈ I and
g ∈ G. Since π(g) is unitary and π(g)∗N (T )π(g) = N (T ) by Proposition 3.1.3,
there exists a unique projection qi ∈ N (T ) depending on g, such that

pi = π(g)∗qiπ(g). (3.19)

As a first step we claim that qi is minimal in Z(N (T )) since so is pi. Let’s start
by showing that qi ∈ Z(N (T )). Consider any x ∈ N (T ), then we have

π(g)∗qixπ(g) = (π(g)∗qiπ(g)) (π(g)
∗xπ(g)) = pi (π(g)

∗xπ(g))

but since π(g)∗xπ(g) ∈ N (T ) and pi ∈ Z(N (T )) they commute and so we get

π(g)∗qixπ(g) = (π(g)∗xπ(g)) pi = (π(g)∗xπ(g)) (π(g)∗qiπ(g)) .

Finally, the unitarity of π(g) implies qix = xqi, which is the thesis. Suppose
now that there exists a non zero projection q′i ∈ Z(N (T )) satisfying q′i ≤ qi.
Clearly π(g)∗q′iπ(g) belongs to Z(N (T )) by Proposition 3.1.3 and therefore

π(g)∗q′iπ(g) ≤ π(g)∗qiπ(g) = pi,

but by the minimality of pi we either have π(g)∗q′iπ(g) = 0 or π(g)∗q′iπ(g) = pi.
The first case implies q′i = 0, which is a contradiction since we assumed q′i to be
non zero, therefore we are left with the following chain of equalities

π(g)∗q′iπ(g) = π(g)∗qiπ(g) = pi

But, again by the unitarity of π, this means q′i = qi, i.e. qi is minimal in
Z(N (T )), proving the claim. Now, since item 2 of Proposition 3.2.1 gives

qi =
∑
j∈I

qj(i) ⊗ 1Mj(i)

for some projection qj(i) ∈ B(Kj(i)), we immediately obtain qi ≥ ql(i) ⊗ 1Ml(i)

for all l(i) ∈ I. But qi is minimal in Z(N (T )), to which also ql(i) ⊗ 1Ml(i)

belongs, and so we either have ql(i) ⊗ 1Ml(i)
= 0 or ql(i) ⊗ 1Ml(i)

= qi. Now, if
ql(i) ⊗ 1Ml(i)

= 0 for all l(i) ∈ I, we have qi = 0 contradicting the assumption
pi 6= 0. Hence, there exists a unique l(i) ∈ I satisfying ql(i) ⊗ 1Ml(i)

= qi, and
moreover we can define a map σ : I → I as σ(i) = l(i). The uniqueness of l(i)
is a consequence of the the fact that {qi}i∈I is a set of orthogonal projections.
It follows that

pi = π(g)∗
(
qσ(i) ⊗ 1Mσ(i)

)
π(g) ≤ π(g)∗

(
pσ(i)

)
π(g),

being qσ(i) ⊗ 1Mσ(i)
a projection in B(Kσ(i) ⊗ Mσ(i)) and pσ(i) the unit of

this space. Since pσ(i) is minimal in Z(N (T )) we get pi = π(g)∗pσ(i)π(g), i.e.
equality (3.18) holds. The only step left is to prove that σ is a permutation.
Indeed σ(i) = σ(j) with i 6= j implies

pi = π(g)∗pσ(i)π(g) = π(g)∗pσ(j)π(g) = pj ,
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which is impossible by construction. Finally, since N (T ) is not a factor, we
have that pi 6= 1H for all i ∈ I. If for all g ∈ G there exists a permutation σg of
I such that σg(i) = i, then

pi = π(g)∗pi π(g) ∀ g ∈ G.

Therefore, Schur’s Lemma implies pi ∈ C1H, contradicting the assumption.

Given the complexity of the proof, some clarification about the meaning of
this last Proposition is due. What we found is that, given the decomposition
N (T ) =

⊕
i∈I B(Ki⊗Mi), whenever we conjugate one of the blocks B(Ki⊗Mi)

by π(g) we map it into one of the other blocks B(Kj ⊗ Mj) according to the
permutation σg, that is σg(i) = j. It’s also worth noting that some of the blocks
can remain fixed, i.e. σg(i) = i, since we are ensured that this does not happen
for all g ∈ G and therefore Ki ⊗Mi does not represent a invariant subspace of
H w.r.t. π, since that would contradict the irreducibility of the representation.
From this picture should be clear that this result imposes strong limitations on
the decomposition of N (T ), indeed in the next Proposition we prove that all
the blocks are isomorphic to each other.

Proposition 3.2.3. Let T be a uniformly continuous QMS on B(H) covariant
w.r.t an irreducible representation π of a compact group G, and let N (T ) =⊕

i∈I B(Ki⊗Mi) be the atomic decomposition of the DF subalgebra with card I =
d. Then the following statements hold:

1. For all i, j ∈ I there exists gij ∈ G such that pi = π(gij)
∗pjπ(gij), i.e.

π(gij)
∗(Kj ⊗Mj) = Ki ⊗Mi.

In particular, all the spaces Kj ⊗Mj are unitarily isomorphic and

π(gij)B(Kj ⊗Mj)π(gij)
∗ = B(Ki ⊗Mi). (3.20)

2. Fixed one element i ∈ I and set Ki ⊗ Mi = K ⊗ M, the space H is
isometrically isomorphic to (K ⊗M)d through the unitary operator

U : H →
⊕
j∈I

(K ⊗M) = (K ⊗M)d

given by U :=
⊕

j∈I π(gij)
∗. Moreover we have

UB(H)U∗ = B
(
(K ⊗M)d

)
=Md(K ⊗M).

Proof. 1. Fix i, j ∈ I. If i = j the statement is trivial taking gii = e, the unit of
G. Assume then i 6= j. Since the operator

P =

∫
G

π(g) piπ(g)
∗dg

intertwines π (see Lemma A.2.4 in the Appendix) and π is irreducible, Schur’s
Lemma gives P = λ1H, with λ ∈ C \ {0}. Therefore, by equation (3.18), we
obtain

λpj = pj

∫
G

π(g)piπ(g)
∗dg =

∫
G

pjpσg(i) dg.
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Since the projections (pk)k∈I are mutually orthogonal and pj 6= 0, this implies
that there exists a gij ∈ G such that pj = pσgij

(i), i.e. pi = π(gij)
∗pjπ(gij). This

means that π(gij)∗(Kj ⊗Mj) = Ki ⊗Mi.
2. It is a trivial consequence of equation (3.20).

As we have seen in Theorem 3.0.1, from the atomic decomposition of N (T )
it is possible to characterize the associated QMS T and its generator L. Since
we have been able to determine the atomic decomposition in the covariant case,
we are now ready to give a new Theorem in which we detail the structure of a
covariant generator putting together Theorem 3.1.1 and Proposition 3.2.3.

Theorem 3.2.1. Let T be a uniformly continuous QMS on B(H) covariant
w.r.t. an irreducible representation π of a compact group G, then, following the
notations of Proposition 3.2.3, (up to a unitary isomorphism) any covariant
GKSL representation of the generator L is given by operators{

1(K⊗M)d , (1K ⊗Ml)
d : l ≥ 1

}
for a collection (Ml)l of operators in B(M) such that

∑
lM

∗
l Ml is strongly

convergent, specifically there exists ϵ > 0 such that
∑

lM
∗
l Ml = ϵ1M. Moreover,

we have
N (T ) = (B(K)⊗ 1M)

d
. (3.21)

Proof. First of all we recall that, since N (T ) = ⊕j∈I

(
B(Kj)⊗ 1Mj

)
is an

atomic algebra, in any GKSL representation of L we have

H = ⊕j∈I

(
Kj ⊗ 1Mj

+ 1Kj
⊗M

(j)
0

)
, Ll = ⊕j∈I

(
1Kj

⊗M
(j)
l

)
for self-adjoint operators Kj ∈ B(Kj), M

(j)
0 ∈ B(Mj), and M (j)

l ∈ B(Ml) such
that

∑
l(M

(j)
l )∗M

(j)
l is strongly convergent. Moreover, the covariance of T gives

in particular by Theorem 3.1.1

H = λ1 = ⊕j∈I(λ1Kj
⊗ 1Mj

)

for some λ ∈ C, so that
piHpi = λ1Ki

⊗ 1Mi
.

Now, we fix i ∈ I and set Ki = K, Mi = M, M (i)
0 = M0, M (i)

h = Mh for all
h ≥ 1, and given j ∈ I, we choose gij ∈ G such that π(gij)pi = pjπ(gij) as of
item 1 of Proposition 3.2.3. Therefore, multiplying on the right and on the left
by pi both sides of Equation (3.7), we obtain both

piπ(gij)
∗Lhπ(gij)pi =

∑
l

α
(gij)
hl piLlpi =

∑
l

α
(gij)
hl (1K ⊗Ml)

and

piπ(gij)
∗Lhπ(gij)pi = π(gij)

∗pjLhpjπ(gij) = π(gij)
∗
(
1Kj ⊗M

(j)
h

)
π(gij).

So that by putting this two relations together we get

π(gij)
∗
(
1Kj

⊗M
(j)
h

)
π(gij) =

∑
l

α
(gij)
hl (1K ⊗Ml),
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i.e. {1Kj⊗Mj , π(gij)
∗(1Kj ⊗M

(j)
h )π(gij) : h ≥ 1} and {1K⊗M,1K ⊗Mh : h ≥

1} induce, by Theorem 2.2.2, the same GKSL representation of LK⊗M, the
generator of the QMS T K⊗M = T Ki⊗Mi on B(K⊗M) obtained by restriction.
Since equation (3.20) holds, we can conclude that

π(gij)
∗ LKj⊗Mj (π(gij)xπ(gij)

∗) π(gij) = LK⊗M(x) ∀x ∈ K ⊗M,

that is all QMSs T Kj⊗Mj are isometrically isomorphic to T K⊗M. Finally, re-
calling the definition of U in item 2 in Proposition 3.2.3, we have

UHU∗ =
∑
j∈I

(λ1K⊗M) = λ1(K⊗M)d

ULhU
∗ = ⊕j∈I (1K ⊗Mh) = ⊕d times (1K ⊗Mh) .

and by a direct application of Proposition 3.1.1 we get
∑

lM
∗
l Ml = ϵ1M. In

order to conclude the proof we have to prove Equation (3.21): so, let x ∈ B(Kj)
and consider the product

U(x⊗ 1Mj
)U∗ = π(gij)

∗(x⊗ 1Mj
)π(gij).

Since x⊗1Mj
belongs to N (T ), by Proposition 3.1.3 also π(gij)∗(x⊗1Mj )π(gij)

is in this algebra. On the other hand it belongs to B(K ⊗ M) for item 1 in
Proposition 3.2.3, and then π(gij)∗(x⊗1Mj )π(gij) ∈ B(K)⊗1M. This happens
for all j ∈ J , allowing us to conclude that

UN (T )U∗ = ⊕j∈Jπ(gij)
∗ (B(Kj)⊗Mj))π(gij)

= ⊕j∈J(B(K)⊗M)

= (B(K)⊗M)d.

Up until now we avoided any hypothesis on the group G other than com-
pactness and we focused solely on its representation π. In the following we will
show that the topology of G actually plays a big role on the properties of the
DF subalgebra for a covariant QMS. More precisely there is a strong connection
between the number of connected components of G and the number of factors
that appear in the decomposition of N (T ).

Theorem 3.2.2. If G is connected and T is a uniformly continuous QMS
covariant with respect to an irreducible representation π, then N (T ) is a type I
factor.

Proof. Let I be the index set in the decomposition of N (T ), assume it to have
a cardinality strictly greater than 1, and let i ∈ I. Given v ∈ pi(H), ‖v‖ = 1,
using the continuity at e of the map G 3 g 7→ π(g)v ∈ H, there exists a open
neighborhood U of e such that

‖v − π(g)v‖ < 1 ∀ g ∈ U. (3.22)

Taken g ∈ U \{e}, by Proposition 3.2.2 we have π(g)pi = pjπ(g) for some j ∈ I;
now, if j 6= i, then

‖v − π(g)v‖2 = ‖v‖2 + ‖π(g)v‖2 = 2,
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since v and π(g)v are orthogonal (recall that v ∈ pi(H) and π(g)v ∈ pj(H)).
This clearly contradicts inequality (3.22) giving π(g)pi = piπ(g) for all g ∈ U .
Since G is connected and U is an open neighborhood of e, we have G = ∪n≥1U

n

(see [19]), and so we can write any h ∈ G as h = g1 · · · gn for some n ≥ 1 and
g1, . . . , gn ∈ U . Hence, we obtain

π(h)pi = π(g1) · · ·π(gn)pi = π(g1) · · · piπ(gn) = . . . = piπ(g1) · · ·π(gn) = piπ(h)

i.e. pi intertwines π, and then pi = 1 by Schur’s Lemma. This means that I has
cardinality 1, and consequently, N (T ) is a type I factor.

This result, despite being very easy to prove, is very powerful, since it tells us
that by just assuming that the group is connected and compact we completely
fix the decomposition of the DF subalgebra N (T ) (namely there is no decom-
position at all). Moreover, we can further extend this result to not connected
groups and show that the structure of the group has to be very rich in order for
the decomposition of N (T ) to be comprised of many elements. To be able to
prove such result we first recall that, if G is not connected, it can be written as
disjoint union of its connected components {Gα}α∈A for some set A, i.e.

G = ∪α∈AGα, (3.23)

where Gαe , αe ∈ A, contains the identity e. In addition Gαe is a (normal)
connected subgroup of G, so that, for all open neighborhood V of e, we have

Gαe = ∪n≥1V
n. (3.24)

Following these notations we can prove the following results.

Theorem 3.2.3. Let T be a uniformly continuous QMS covariant w.r.t. an
irreducible representation π of G on H, then the following facts hold:

1. π(g)pl = plπ(g) for all g ∈ Gαe and l ∈ I,

2. given i, j ∈ I with i 6= j, there exists α = αij ∈ A, α 6= αe such that:

(i) π(g)pi = pjπ(g),
(ii) π(g)∗(Kj ⊗Mj) = Ki ⊗Mi,
(iii) π(g)∗B(Kj ⊗Mj)π(g) = B(Ki ⊗Mi)

for all g ∈ Gα,

3. the number of connected components of G is greater or equal than the
cardinality of I, i.e. card(A) ≥ card(I).

Proof. If G is connected, we can immediately conclude by Theorem 3.2.2. As-
sume then that G is not connected, so that we can express G as in equa-
tion (3.23), and let i ∈ I. Since Gαe is a connected group, in a similar way
to the proof of Theorem 3.2.2 (applied to Gαe), we obtain π(g)pi = piπ(g) for
all g ∈ Gαe

. Since the same argument holds for all i ∈ I simply changing the
choice of the open neighborhood U , we can conclude that

π(g)pi = piπ(g) ∀ g ∈ Gαe
, i ∈ I, (3.25)
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proving statement 1. 2. Let i, j ∈ I, i 6= j. By Proposition 3.2.3 there exists an
element g0 := gij ∈ G such that π(g0)pi = pjπ(g0). This means that g0 has to
belong to a connected component different from Gαe

(by equation (3.25)), i.e.
there exists α = αij 6= αe such that g0 ∈ Gα Now, since the map a : Gα×Gα →
G, defined as a(g, h) = gh−1 is continuous, its image is a connected subspace
containing e = a(g0, g0), and so it is in Gαe . Therefore, for all g ∈ Gα with
g 6= g0, we have gg−1

0 ∈ Gαe
, so that

pjπ(g)π(g0)
∗ = pjπ(gg

−1
0 ) = π(gg−1

0 )pj = π(g)π(g0)
∗pj = π(g)piπ(g0)

∗.

We then obtain
pjπ(g) = π(g)pi ∀ g ∈ Gα. (3.26)

Statement (ii) and (iii) trivially follow. 3. The arbitrariness of j 6= i implies that
the cardinality of A \ {αe} is greater than the number of indexes in I different
from i: indeed, if we have π(gik)pi = pkπ(gik) for some gik ∈ G with k 6= j and
k 6= i, then gik 6∈ Gαe

∩Gα by equations (3.25) and (3.26). We can then conclude
that the number of connected components of G is greater the cardinality of I,
i.e. the number of N (T )’s factors.

As a particular case of this result we obtain the vice-versa of Theorem 3.2.2.

Corollary 3.2.1. N (T ) is a factor if and only if G is connected.

In Theorem 3.2.3 we simply stated that the number of connected components
of G has to be greater than the number of factors of N (T ). This should not be
surprising since by Theorem 3.2.3 we now know that each connected component
represent only one of the many isomorphisms needed to achieve the results of
Proposition 3.2.3, and therefore a number of connected components at least
equal to the number of factors is needed. In the following Theorem we are able
to remove the vagueness left by Theorem 3.2.3 about the connection between
cardA and card I showing that there is actually a strong connection among the
two.

Theorem 3.2.4. Assume T to be a uniformly continuous QMS covariant w.r.t.
an irreducible representation π of G on H. Given i, j ∈ I, let kij be the number
of different connected components Gα such that π(g)pi = pjπ(g) with g ∈ Gα.
Then:

1. kij is independent by i, j, i.e. kij = k for some k ≥ 1 and for all i, j ∈ I;

2. if n is the number of connected components of G, and d the cardinality of
I, then n = kd.

Proof. In the proof of Proposition 3.2.3, we observed that

λ1H =

∫
G

π(g) piπ(g)
∗dg =

∫
G

pσg(i) dg ∀ l ∈ I

with σg(i) such that pi = π(g)∗pσg(i)π(g). In particular

λ

d∑
i=1

1H =

d∑
i=1

∫
G

π(g) piπ(g)
∗dg = 1H,
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so λ = 1/d, where d is number of type I factors of N (T ). Thus, by Theo-
rem 3.2.3, we have that

1

d
= w({g ∈ G : pσg(i) = pj}) =

∑
α∈Aij

w(Gα), (3.27)

where Aij = {α ∈ A : π(g)pi = pjπ(g) ∀ g ∈ Gα} e w is the Haar measure.
Since every Gα = gGαe

for some g ∈ Gα, w(Gα) = w(gGαe
) = w(Gαe

). This
implies that

1

d
= kij w(Gαe

),

where kij is the cardinality of Aij . As a consequence kij = k independent with
respect to i and j. Now, since the union of all n connected components is a
partition of G, we deduce that

nw(Gαe
) = w(∪αGα) = 1

i.e. n = kd and this concludes the proof.

With this result we have concluded the characterization of a QMS T co-
variant w.r.t. an irreducible representation π. In the next section we will build
upon the knowledge we gained about the action of irreducible representation to
obtain results about more general representation.

3.3 Arbitrary unitary representations
The next step in the study covariant QMSs is to consider a generic representa-
tion π instead of a irreducible one. To achieve this we are going to leverage the
Peter-Weyl Theorem which states that any representation π on an Hilbert space
H can be decomposed as a direct sum of irreducible representations, and that
also H decomposes accordingly (see Appendix A for the details). The idea is
thus to exploit the results we obtained in the previous section about irreducible
representations and applying them to every irreducible sub-representation. Be-
fore directing our attention to the implications of the Peter-Weyl Theorem,
given covariant QMS T w.r.t. a representation π, we want to study what hap-
pens when we restrict the representation to a closed subspace. In this regard
we recall that given a closed subspace V of H it is possible to consider the
restriction πV of π to V , πV : G→ B(V ) by setting

πV (g)v = π(g)v ∀ v ∈ V, g ∈ G. (3.28)

obtaining in this way a unitary sub-representation of π. First of all we show
that, if πV is irreducible, the reduced semigroup T p associated to the orthogonal
projection p onto V is a QMS on B(V ) .

Proposition 3.3.1. Let V be a finite-dimensional π-invariant subspace of H
such that the restriction πV of π to V is irreducible, and q the orthogonal
projection onto V . Let T be uniformly continuous QMS covariant w.r.t. π.
Then the following facts hold:

1. π(g)q = q π(g) for all g ∈ G, so that the representation πV : G→ B(V ) is
given by

πV (g) = qπ(g)q = π(g)q = qπ(g) ∀ g ∈ G, (3.29)
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2. q is T -subharmonic (see Section 2.3 for the relevant results),

3. the reduced semigroup T q on B(V ),

T q
t (x) = qTt(x)q ∀x ∈ B(V ), t ≥ 0,

is a πV -covariant QMS.

Proof. 1. Since π(g)q(H) = π(g)V ⊆ q(H), we have π(g)q = qπ(g)q for all
g ∈ G. Taking the adjoint we get

qπ(g)∗ = (π(g)q)∗ = (qπ(g)q)∗ = qπ(g−1)q = π(g)∗q.

As a consequence πV (g) = π(g)q = qπ(g)q = qπ(g)q, i.e Equation (3.29) holds.
2. The commutation between π(g) and q, and the covariance of T imply

Tt(q) = Tt(π(g)∗π(g)q) = Tt(π(g)∗q π(g)) = π(g)∗Tt(q)π(g)

for all g ∈ G and t ≥ 0. Therefore, multiplying Tt(q) by q on both sides, we get

qTt(q)q = π(g)∗qTt(q)q π(g) = πV (g)
∗ (qTt(q)q)πV (g) (3.30)

for all g ∈ G and t ≥ 0. Since qTt(q)q belongs to B(V ) = B(q(H)), it intertwines
πV , so that qTt(q)q ∈ C1 by Schur’s Lemma (being πV irreducible). That is,
for each t ≥ 0 there exists λ(t) ∈ C such that qTt(q)q = λ(t)q. In particular, by
the inequalities

0 ≤ qTt(q)q ≤ q ∀ t ≥ 0

and the continuity of the map t 7→ qTt(q)q = λ(t)q, we obtain a continuous
function λ : [0,+∞) → [0, 1] such that λ(0) = 1. We want to show that λ(t) = 1
also for all t > 0, so that qTt(q)q = q for all t ≥ 0, i.e. q is subharmonic. If we
assume this not to be true, then we can find t0 > 0 such that 0 < λ(t0) < 1.
Indeed, in the opposite case, for all t > 0 we either have λ(t) = 0 or λ(t) = 1, i.e.
the function λ takes value in {0, 1}. But the continuity of λ forces to either have
λ(t) = 0 for all t > 0 or λ(t) = 1 for all t > 0. The second case contradicts the
assumption done on λ, whether the first one gives 1 = λ(0) = limt→0 λ(t) = 0
which is impossible. Therefore, there exists t0 > 0 such that 0 < λ(t0) < 1. Now,
taken v ∈ V = q(H) with ‖v‖ = 1, the vector w := qTt0(q)qv = λ(t0)qv = λ(t0)v
is then a non-zero element in V , so that the set {π(g)w : g ∈ G} is dense
in V , being πV an irreducible representation on V . Therefore, if we define
ϵ := 1− λ(t0) > 0, there exists g ∈ G satisfying

‖π(g)λ(t0)v − v‖ = ‖π(g)w − v‖ < 1− λ(t0).

As a consequence, by the Cauchy-Schwarz inequality,

(1− λ(t0))
2
> ‖π(g)λ(t0)v − v‖2

= λ(t0)
2‖v‖2 + ‖v‖2 − 2λ(t0)Re 〈π(g)v, v〉

≥ λ(t0)
2 + 1− 2λ(t0)‖π(g)v‖‖v‖

= λ(t0)
2 + 1− 2λ(t0)

= (1− λ(t0))
2
,
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which is a contradiction. Therefore λ(t) = 1 for all t ≥ 0, giving q subharmonic.
3. Let g ∈ G, t ≥ 0 and x = qxq ∈ B(q(H). The π-covariance of T and item 1
give

T q(π(g)∗xπ(g)) = qTt(π(g)∗xπ(g))q = π(g)∗qTt(x)q π(g) = πV (g)
∗T q

t (x)πV (g),

which is the thesis.

We can now analyze the general case. Indeed, by applying the Peter-Weyl
Theorem, we know that there exists a family of closed, finite-dimensional, mu-
tually orthogonal subspaces (Vj)j∈J of H such that H = ⊕j∈JVj . Moreover,
each Vj is π-invariant and such that the restriction πj of π to Vj is irreducible.
By Equation (3.28), the representation πj : G→ B(Vj) is given by

πj(g) = qjπ(g)qj = π(g)qj = qjπ(g) ∀ g ∈ G,

where every qj denotes the orthogonal projection onto Vj . Clearly each of the
subspaces Vj falls in the context of the previous Proposition and we can use
those results.

Theorem 3.3.1. Let H = ⊕j∈JVj be the decomposition obtained through the
Peter-Weyl Theorem applied to a representation π of G, and (qj)j∈J be the
family of projections onto each Vj. Also, let T be uniformly continuous QMS
covariant with respect to π. Then the family (qj)j∈J is a collection of finite-
dimensional mutually orthogonal non-zero projections such that

∑
j∈J qj = 1.

Moreover, if there exists a normal faithful invariant state, then every qj is a
fixed point of T .

As a consequence of Theorem 3.3.1, since every qj is a fixed point, we im-
mediately obtain the equality N (T j) = qjN (T )qj , where the reduced semi-
group T j associated with the projection qj is simply the restriction of T to
B(qj(H)) = B(Vj). Moreover T j is covariant with respect to the irreducible
representation πj . We want then to analyze the relations between the atomic
decomposition of every N (T j), and that one of N (T ). Let’s start with the
simplest case, i.e. when N (T ) is a type I factor.

Proposition 3.3.2. Let T be a uniformly continuous QMS with a faithful
invariant state such that N (T ) = B(K)⊗1M is a type I factor for some Hilbert
spaces K, M satisfying H = K ⊗M, and let (qj)j∈J be a family of harmonic
mutually orthogonal projections summing up to the identity. Then:

1. qj(H) = K′
j ⊗M for some K′

j closed subspace of K, j ∈ J ,

2. ⊕j∈JK′
j = K,

3. qjN (T ) qj = B(K′
j)⊗ 1M,

Proof. Let j ∈ J . Since qj belongs to N (T ) (it is a fixed point), we have
qj = q′j ⊗ 1M for some q′j projection in B(K), i.e. qj(H) = K′

j ⊗ M with
K′

j = q′j(H) a closed subspace of K. Therefore the equalities

K ⊗M = H = ⊕j∈J

(
K′

j ⊗M
)
=
(
⊕j∈JK′

j

)
⊗M
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give K = ⊕j∈JK′
j . Moreover qjN (T ) qj = qj (B(K)⊗ 1M) qj = B(K′

j) ⊗ 1M,
and so

⊕j∈JqjN (T ) qj = ⊕j∈J

(
B(K′

j)⊗ 1M
)
=
(
⊕j∈JB(K′

j)
)
⊗ 1M.

This means in particular that we can have N (T ) = ⊕j∈JqjN (T ) qj if and only
if B(K) = ⊕j∈JB(K′

j), i.e. J = {j0} and q′j0 = 1K. Clearly this is equivalent to
have qj0 = 1.

We can then extend the previous result to the case N (T ) atomic.

Theorem 3.3.2. Let π be a unitary representation of a compact group G on
B(H) such that H = ⊕j∈JVj with (Vj)j∈J a family of invariant subspaces on
which the restriction of π is irreducible. Denote by qj the orthogonal projec-
tion onto Vj. Let T be a π-covariant uniformly continuous QMS on B(H)
having a faithful invariant state, and assume N (T ) = ⊕i∈I (B(Ki)⊗ 1Mi

)
for some collection (K)i and (Mi)i of separable Hilbert spaces such that H =
⊕i∈I (Ki ⊗Mi). Then for all j ∈ J we have

Vj = qj(H) = ⊕i∈Ij

(
Kj

i ⊗Mi

)
=
(
Kj

i0
⊗Mi0

)dj

(3.31)

for some family (Kj
i )i∈Ij of non zero closed subspaces of Ki, i0 ∈ Ij given

by Ij := {i ∈ I : qjpi 6= 0} and dj the cardinality of this set. Moreover,
⊕j∈JKj

i = Ki for all i ∈ I, and

qjN (T ) qj =
(
B(Kj

i0
)⊗ 1Mi0

)dj

for all j ∈ J .

Proof. Define pi the orthogonal projection onto Ki ⊗ Mi, i ∈ I. Since pi and
qj commute for all j ∈ J and i ∈ I (pi is in the center of N (T ) and qj belongs
to it), qjpi = piqj is a projection satisfying Tt(qjpi) = qjpi for all t ≥ 0 (see
Theorem 3.3.1). Therefore, fixed i ∈ Ij to have qjpi non zero, (qjpi)j∈J is a
family of harmonic mutually orthogonal projections on Ki ⊗Mi such that∑

j∈J

qjpi = pi = 1Ki⊗Mi
.

Moreover, called T i the restriction of T to B(pi(H)), the equalities N (T i) =
piN (T ) pi = B(Ki)⊗ 1Mi

hold. We can then apply Proposition 3.3.2 getting

qjpi(H) = qj(Ki ⊗Mi) = Kj
i ⊗Mi and qjN (T i) qj = B(Kj

i )⊗ 1Mi

for some non zero closed subspace Kj
i of Ki such that ⊕j∈JKj

i = Ki. Therefore

qj(H) = ⊕i∈Ijqjpi(H) = ⊕i∈Ij

(
Kj

i ⊗Mi

)
∀ j ∈ J

and

qjN (T ) qj = ⊕i∈Ij

(
qjN (T i) qj

)
= ⊕i∈Ij

(
B(Kj

i )⊗ 1Mi

)
, (3.32)
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being N (T ) = ⊕i∈IpiN (T ) pi = ⊕i∈IN (T i) and qjpi = 0 for i ∈ Ij . Denoting
by T qj the restriction of T to B(qj(H)), Equation (3.32) gives exactly the atomic
decomposition of N (T qj ) = qjN (T ) qj . Finally, since the restriction of the
representation π to qj(H) is irreducible, Proposition 3.2.3 and Theorem 3.2.1
imply

qj(H) =
(
Kj

i0
⊗Mi0

)dj

and qjN (T ) qj =
(
B(Kj

i0
)⊗ 1Mi0

)dj

with dj the cardinality of Ij .

3.4 Examples
We conclude this section on the analysis of covariant QMSs with some exam-
ples on non irreducible representations in order to give a clearer exposition on
the results proven so far. Note that in general, if the representation π is not
irreducible, the decoherence-free subalgebra of a π-covariant QMS could be not
atomic.

Example 3.4.1. Let be consider G = U(2), the compact group of unitary 2×2
matrices, and define a unitary representation π of G on H = C4 = C2 ⊕ C2 by
setting

π(g)(u⊕ v) = gu⊕ gv ∀ g ∈ G u, v ∈ C2.

In other words, π is the direct sum of irreducible representations π1 and π2
of G on V1 = V2 = C2, with πi(g) = gz for all g ∈ G and z ∈ C2. If we
consider on B the trivial QMS T , defined by Tt(x) = x for each x ∈ B and
t ≥ 0, this is obviously covariant with respect to π and N (T ) = B. In according
with the notations of the previous theorem, qj is the orthogonal projection into
Vj , for j = 1, 2, and qjN (T )qj = B(C2). We can observe that in this case
N (T ) 6= ⊕j=1,2B(C2).

Example 3.4.2. In this example we are going to provide a concrete realization
of a covariant QMS where its decoherence free algebra is not type I but of type
II1. In order to do so, we first recall a few simple objects from the theory of
(discrete) groups. Let G be a discrete group with unit element e and consider
the Hilbert space of square integrable functions defined on the group, that is
H = ℓ2(G). Such Hilbert space has a natural orthonormal basis that we denote
as { 1g }g∈G, and defined as

1g(h) =

{
1 g = h

0 otherwise

Given two elements u, v ∈ ℓ2(G) there is a natural definition of convolution,
denote by u ∗ v, which gives an element in ℓ∞(G) as

(u ∗ v)(g) =
∑
h∈G

u(gh−1)v(h) ∀g ∈ G

Thanks to the convolution we can define two linear maps from ℓ2(G) to ℓ∞(G)
for each u ∈ ℓ2(G) as

Lu(v) = u ∗ v Ru(v) = v ∗ u
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and from these maps we define the following associated algebras

LG =
{
Lu

∣∣ u ∈ ℓ2(G), Lu ∈ B(ℓ2(G))
}

RG =
{
Ru

∣∣ u ∈ ℓ2(G), Ru ∈ B(ℓ2(G))
}

For readability sake, we recall also a few key properties satisfied by the objects
just defined:

1.
(
L1gu

)
(h) = u(g−1h) and

(
R1gu

)
(h) = u(hg−1) for all g, h ∈ G and all

u ∈ ℓ2(G);

2. L1g + L1h = L1g+1h and αL1g = Lα1g for all g, h ∈ G and α ∈ C;

3. L1gL1h = L1g∗1h = L1g−1 and L∗
1g = L1g−1 for all g, h ∈ G;

4. L1e = 1

where analogous properties to item 2, 3, and 4 can be proven for R1g . Moreover,
the maps L1g and R1g belong to B(ℓ2(G)) and are unitary operators for all
g ∈ G, they generate the two von Neumann algebras LG and RG respectively,
which allows to prove that L′

G = RG. For a complete proof of the properties just
listed see [20, Theorem 6.7.2]. The following Theorem, which descends directly
from [20, Proposition 6.7.4, Theorem 6.7.5], allows us to classify the algebras
LG and RG.

Theorem 3.4.1. The von Neumann algebras LG and RG are finite. Moreover,
if G 6= { e } and the conjugacy class of every g 6= e is infinite, then LG and RG

are type II1 factors.

A group satisfying the hypothesis of the Theorem just stated is the free
group Fn of n 6= 2 generators, that is the group of words of arbitrary length
generated from n letters (see [20, Example 6.7.6.]). Finally, we have introduced
all the required notions needed to define and study a covariant QMS with a
type II1 decoherence free subalgebra. Consider the group Fn for some n > 2
and the Hilbert space ℓ2(Fn) exactly as before. Then, for every x ∈ B(ℓ2(Fn))
we define the bounded operator

L(x) =
∑
g∈G

R∗
1gxR1g − x

where the sum in countable since Fn is a discrete group. Since L is expressed
in a GKSL form it generates a uniformly continuous QMS T on B(ℓ2(Fn)) such
that

N (T ) =
{
R1g

∣∣ g ∈ G
}′

= R′
G = L′′

G = LG

since the Hamiltonian is a multiple of the identity by construction. This is then
an example of a QMS with a decoherence free algebra that is also a type II1
factor. To conclude this example, we are therefore left to show that such QMS
is also covariant with respect to some unitary representation of some symmetry
group. Luckily, we already carried out most of the work. Indeed, it is enough
to note that the map π : g 7→ L1g is a unitary representation, which is simple to
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prove since we have that(
L1gL1hu

)
(g0) =

(
L1hu)(g

−1g0
)

= u(h−1g−1g0)

= u((gh)
−1
g0)

=
(
L1ghu

)
(g0)

for all g, h ∈ Fn and u ∈ ℓ2(Fn) and each L1g is unitary as already stated
previously. The commutativity property for the QMS generator L is also trivial
since we already stated that L′

G = RG and therefore

L∗
1h
L(x)L1h =

∑
g∈G

L∗
1h
R∗

1gxR1gL1h − L∗
1h
xL1h

=
∑
g∈G

R∗
1gL

∗
1h
xL1hR1g − L∗

1h
xL1h

= L(L∗
1h
xL1h)

for all h,∈ B(ℓ2(Fn)) and x ∈ Fn

Example 3.4.3. For this example we go back to the case of circulant QMSs
introduced in Subsection 3.1.1. Recall that the generator for such QMSs for any
x ∈Mp(C) is defined as

L(x) =
n−1∑
k=1

γ(p− k)J∗kxJk − x

where all the operations between indices are considered modulo p for some
p ≥ 2, γ is a vector in Cp−1 such that its components satisfy γ(k) > 0 for all
k = 1, . . . , p − 1 and

∑p−1
k=1 γ(k) = 1, and finally J =

∑
k∈Zp

|ek〉〈ek+1| given
the canonical basis {ek}k∈Zp of Cp. Previously we noted that this generator is
covariant with respect to the representation π : Zp →Mp(C) defined as π(k) =
Jk and we concluded the example stressing the fact that this representation is
not irreducible. We will now proceed to give the decomposition in irreducible
representations of π and then show how this induces a decomposition of the DF
subalgebra of the QMS according to our general results. In order to do so we
need to give some preliminary results about the relationship between projections
and the matrix J . Recall that we proved that

N (T ) = F(T ) = { J }′

which implies that any invariant projection p, i.e. Tt(p) = p for all t ≥ 0, will
also satisfy J∗kpJk = p. From this we immediately have the following Lemma.

Lemma 3.4.1. Every projection p =
∑

i,j∈Zp
pi,j |ei〉〈ej | invariant with respect

to a circulant QMS T satisfies pi+1,j+1 = pi,j.

Proof. We now that p commutes with Jk for every k ∈ Zp since it is invariant,
in particular taking k = 1 we have Jp = pJ . Computing both sides of the
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equality we obtain

Jp =
∑
k∈Zp

|ek〉〈ek+1|
∑

i,j∈Zp

pi,j |ei〉〈ej |

=
∑

i,j,k∈Zp

δk+1,i pi,j |ek〉〈ej |

=
∑
ij∈Zp

pi+1,j |ei〉〈ej |

=
∑
ij∈Zp

pi+1,j+1 |ei〉〈ej+1|

where the last equality has been obtained by renaming j in j + 1. Analogously

pJ =
∑

i,j∈Zp

pi,j |ei〉〈ej |
∑
k∈Zp

|ek〉〈ek+1|

=
∑

i,j,k∈Zp

δj,k pi,j |ei〉〈ek+1|

=
∑
ij∈Zp

pi,j |ei〉〈ej+1|

and by direct inspection we have the proof.

By Peter-Weyl Theorem (see Theorem A.2.3) we know that the represen-
tation π can be decomposed into irreducible sub-representations {πi}i∈I acting
on pairwise orthogonal subspaces {Vi}i∈I . Moreover, by Proposition 3.3.1 and
Theorem 3.3.1 we know that the family of projections {qi}i∈I onto each Vi is
minimal in F(T ) and each restriction T i to Vi is covariant with respect to πi.
In order to give an explicit expression for these projections we need to introduce
the discrete Fourier transform F which is defined as

F =
1
√
p

∑
i,j∈Zp

ωij |ei〉〈ej |

where ω is a primitive p-root of the unity. With this definition we can give the
following Lemma characterizing the relation between J and F .

Lemma 3.4.2. The primary permutation matrix J is diagonalized by the dis-
crete Fourier transform, i.e.

FJF ∗ =
∑
i∈Zp

ω̄i |ei〉〈ei|
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Proof. The proof is a straightforward computation

FJF ∗ =
1

p

∑
i,j∈Zp

ωij |ei〉〈ej |
∑
k∈Zp

|ek〉〈ek+1|
∑

l,m∈Zp

ω̄lm |em〉〈el|

=
1

p

∑
i,j,k,l,m∈Zp

ωijω̄lmδj,kδk+1,m |ei〉〈el|

=
1

p

∑
i,k,l∈Zp

ωikω̄lkω̄l |ei〉〈el|

=
∑

i,l∈Zp

δi,lω̄
l |ei〉〈el|

=
∑
i∈Zp

ω̄i |ei〉〈ei|

where we have used the orthogonality relation
∑

k∈Zp
ωikω̄lk = pδi,l.

From this Lemma we immediately see that the vectors {Fei}i∈Zp are an
orthonormal basis for Cp. If we define the projection qi as

qi = |Fei〉〈Fei| =
1

p

∑
j,k∈Zp

ω(j−k)i |ej〉〈ek|

it is easy to see that we have obtained a family of mutually orthogonal projec-
tions such that

∑
i∈Zp

qi = 1. Moreover, they are also invariant with respect
to T since (qi)jk = ω(j−k)i and therefore they satisfy Lemma 3.4.1. Since each
qi commutes with Jk for every k ∈ Zp by construction, it also commutes with
π(k) for every k ∈ Zp and therefore its range Vi = qiH is π-invariant and as a
result the restriction πi = qiπqi to Vi is a sub-representation of π for all i ∈ Zp.
Finally, since dim qiH = 1 for all i ∈ Zp we can conclude that we have de-
composed π is the direct sum of irreducible representations. We conclude this
example showing how these projections decompose the DF subalgebra.

Lemma 3.4.3. Let Z(N (T )) be the center of N (T ), then qi ∈ Z(N (T )) for
all i ∈ Zp.

Proof. Let p be a projection inN (T ). Since it commutes with J by construction,
it must also commutes with its spectral projection, and in particular with each
qi = |Fei〉 〈Fei|. Moreover, since N (T ) = F(T ) is generated by its projections,
we can conclude that qi ∈ Z(N (T )).

Thank to this result we can give the decomposition of N (T ).

Lemma 3.4.4. Let T be a circulant QMS, {ei}i∈Zp
the canonical basis in Cp and

F be the discrete Fourier transform. Defining the projections qi = |Fei〉〈Fei|
for all i ∈ Zp we have

N (T ) = F(T ) =
⊕
i∈Zp

Cqi

Proof. By Lemma 3.4.3 we know that qi ∈ Z(N (T )) and therefore

N (T ) =
⊕
i∈Zp

qiN (T )qi
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but since the range of each qi is one dimensional we have qiN (T )qi = Cqi which
concludes the proof.

This decomposition of F(T ) can be found also in [21, Proposition 3.1]. In-
deed, the authors characterize F(T ) as the span of the projections |Fei+j〉〈Fei|
for all i, j ∈ Zp such that L(|Fei+j〉〈Fei|) = 0. To reconcile such decomposition
with ours it suffices to note that an operator is in the kernel of L if it commutes
with J , since F(T ) = { J }′, and that a projection p commutes with J if its
matrix elements satisfy pi+1,j+1 = pi,j according to Lemma 3.4.1. Therefore,
since (|Fei+j〉〈Fei|)lm = ω(l−m)iωlj , we see that |Fei+j〉〈Fei| commutes with
J if j = 0, that is if its equal to qi, which tells us that the two decompositions
of F(T ) are equivalent.





Chapter 4

Direct Integrals

In this Chapter we introduce the concept of direct integrals that will allow us to
obtain a decomposition of both Hilbert spaces and von Neumann algebras that
are more general than direct sums. After recalling the basic definitions about
direct integral we will try to use these results to the study of the structure of
QMS in an effort to expand the existing theory presented so far.

4.1 Basic notions
Definition 4.1.1. Let Γ be a σ-compact, locally compact space and Borel
measurable space, let µ be the completion of a Borel measure on Γ, and finally
let {H(γ)} a family of separable Hilbert spaces indexed by the points γ ∈ Γ.
Then we say that a separable Hilbert space H is the direct integral of {H(γ)}γ∈Γ

over (Γ, µ) and we write

H =

∫ ⊕

Γ

H(γ) dµ(γ)

when for each u ∈ H there exists a function γ 7→ u(γ) on Γ such that u(γ) ∈
H(γ) for all γ ∈ Γ. Moreover, the map γ 7→ 〈u(γ), v(γ)〉 has to be µ-integrable
for all u, v ∈ H and

〈u, v〉 =
∫
Γ

〈u(γ), v(γ)〉dµ(γ)

Finally, if uγ ∈ H(γ) for each γ ∈ Γ and if the map γ 7→ 〈uγ , v(γ)〉 is integrable
for all v ∈ H, then there exists a function u ∈ H such that u(γ) = uγ for almost
every γ. In such case we say that

∫ ⊕
Γ

H(γ) dµ(γ) and γ 7→ u(γ) are the direct
integral decomposition of H and u respectively.

Note that the separability hypothesis for the Hilbert space H will allow us
to consider denumerable sequences that span the entire space, for this reason we
will always consider H to be separable for the rest of the Chapter. The previous
definition directly implies a couple of simple results that we are going to clarify
in the following.

Remark 4.1.1. Definition 4.1.1 directly implies that for any u, v ∈ H there
exists an element w ∈ H such that αu(γ) + v(γ) = w(γ) for all α ∈ C and for

55
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almost every γ. Indeed, we have that

〈αu+ v − w, a〉 =
∫
Γ

〈αu(γ) + v(γ)− w(γ), a(γ)〉dµ(γ) = 0

for all a ∈ H, which implies that w = αu+v. From this we see that if u(γ) = v(γ)
almost everywhere, then u = v because the hypothesis implies that (u−v)(γ) =
0 almost everywhere and therefore ‖u− v‖2 = 0.

From Definition 4.1.1 is easy to see that the span of { u(γ) | u ∈ H } is H(γ)
for almost every γ ∈ Γ, but in the following Lemma we are going to show that
it is actually possible to prove a more general property than this.

Lemma 4.1.1. Let {uj}j be denumerable total set in H, and let H0(γ) =

span{uj(γ)} Then H0(γ) = H(γ) for almost every γ ∈ Γ.

Proof. Let Γ0 =
{
γ
∣∣ γ ∈ Γ, H0(γ) 6= H(γ)

}
, and let uγ be a unit vector in

H(γ) 	H0(γ) =
{
u ∈ H(γ)

∣∣ 〈u, v〉 = 0 ∀v ∈ H0(γ)
}
if γ ∈ Γ0, or 0 if γ /∈ Γ0.

Then 〈uγ , uj(γ)〉 = 0 for all γ. Given v ∈ H, by assumption there exists a
sequence {vn} ⊆ span{uj} such that ‖v−vn‖ → 0. Since vj = b1ua1

+· · ·+bnuan

then vj(γ) = b1ua1
(γ) + · · ·+ bnuan

(γ) except for γ in a null set Nj , and so we
have that 〈uγ , vj(γ)〉 = 0 for γ ∈ X \Nj . Moreover, given that

‖v − vn‖2 =

∫
Γ

‖v(γ)− vn(γ)‖2dµ(γ) → 0,

some subsequence { ‖v(γ)− vnk
(γ)‖ }k tends to zero except for γ in a null set

N0. Then, if γ is not in the null set
⋃∞

j=0Nj we have that 〈uγ , v(γ)〉 = 0. In
particular, we know that the map γ 7→ 〈uγ , v(γ)〉 is integrable for each v ∈ H,
and by Definition 4.1.1 we also know that there exists a u ∈ H such that
uγ = u(γ) almost everywhere. Therefore we find

0 = 〈uγ , u(γ)〉 = 〈uγ , uγ〉

almost everywhere. Therefore we conclude that since uγ is a unit vector when
γ is in Γ0 then Γ0 is a null set.

As a consequence of this result we obtain the equivalence between the Defini-
tion of direct integral just presented, and the one given by Takesaki in [22, Chap-
ter IV, Section 8]. More precisely, denoting by u(·) the map u(·) ∈

∏
γ∈Γ H(γ)

with u(γ) ∈ H(γ) for all γ ∈ Γ, we can define as M the subset of
∏

γ∈Γ H(γ)
given by all the elements u(·) ∈

∏
γ∈Γ H(γ) satisfying the following conditions

• the map γ 7→ 〈u(γ), v(γ)〉 is µ-measurable for all v(·) ∈
∏

γ∈Γ H(γ),

• there exists {un(·)} ∈
∏

γ∈Γ H(γ) such that {un(γ)}n is total in H(γ) for
all γ ∈ Γ.

Then we can identify H with the Hilbert space{
u(·) ∈ M

∣∣∣∣ ∫
Γ

‖u(γ)‖2 dµ(γ) < +∞
}

together with the scalar product 〈u, v〉 =
∫
Γ
〈u(γ), v(γ)〉dµ(γ).
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Example 4.1.1. If we consider a constant field, H(γ) = H for all γ ∈ Γ,
then the direct integral H =

∫ ⊕
Γ

H(γ) dµ(γ) is just the space of measurable
functions from Γ to H which are square-integrable with respect to µ, that is
H = L2(Γ, µ;H).

Example 4.1.2. If Γ is discrete and µ is counting measure on Γ, then

H =

∫ ⊕

Γ

H(γ) dµ(γ) = ⊕γ∈ΓH(γ).

Now that we have presented the basic results about the decomposition of
an Hilbert space H through direct integrals, a natural question that arises is if
this kind of decomposition extends to the bounded operators B(H) defined on
it. Naturally, given an Hilbert space H and its direct integral decomposition
as H =

∫ ⊕
Γ

H(γ) dµ(γ), we can easily construct the family { B(H(γ)) | γ ∈ Γ }
where each B(H(γ)) acts on H(γ). With the following definition we will see
how the concept of direct integral decomposition for Hilbert spaces naturally
extends to bounded operators.

Definition 4.1.2. Let H be the direct integral of the family {H(γ)}γ∈Γ over
(Γ, µ), then an operator x ∈ B(H) is said to be decomposable when there exists
a map γ 7→ x(γ) on Γ such that x(γ) ∈ B(H(γ)), and for every u ∈ H, we
have x(γ)u(γ) = (xu)(γ) for almost every γ. Moreover, given a scalar function
f : Γ → C, if x(γ) = f(γ)1(γ), where 1(γ) is identity operator on H(γ), then
we say that x is diagonalizable.

In the following remark we show that the decomposition of an operator is
unique.

Remark 4.1.2. If x(γ) and x′(γ) are both decomposition of x, then x(γ) =
x′(γ), i.e. every decomposable operator has a unique decomposition. Indeed, let
{uj}j be a denumerable total set in H, then from Lemma 4.1.1 there exists a
null set N0 such that {uj(γ)}j is total in {H(γ)} for γ ∈ Γ0 \N0. At the same
time we also know from the same Lemma that

x(γ)uj(γ) = (xuj)(γ) = x′(γ)uj(γ)

except for γ in a null set Nj . Therefore it follows that the bounded operators
x(γ) and x′(γ) coincide on Γ\

⋃∞
j=0Nj . Conversely, if x and y are decomposable

and x(γ) = y(γ) almost everywhere, then x = y. To prove this, for all u, v ∈ H
consider

〈xu, v〉 =
∫
Γ

〈(xu)(γ), v(γ)〉dµ(γ)

=

∫
Γ

〈x(γ)u(γ), v(γ)〉dµ(γ)

=

∫
Γ

〈y(γ)u(γ), v(γ)〉 dµ(γ)

= 〈yu, v〉

In order to have a complete theory for the decomposition of operators we are
now going to describe how they behave under the operation of sum, composition
and conjugation.
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Proposition 4.1.1. Let H be the direct integral of {H(γ)} over (Γ, µ), and let
x1, x2 be decomposable operators in B(H). Then αx1 + x2, x1x2, x∗1 and 1 are
all decomposable and the following properties hold true for almost every γ:

1. (αx1 + x2)(γ) = αx1(γ) + x2(γ);

2. (x1x2)(γ) = x1(γ)x2(γ);

3. x∗1(γ) = x1(γ)
∗;

4. 1(γ) = 1H(γ);

5. if x1(γ) ≤ x2(γ) almost everywhere, then x1 ≤ x2.

Proof. 1. Note that defining (αx1 + x2)(γ) to be αx1(γ) + x2(γ), then for all
u ∈ H and almost every γ we have

(αx1 + x2)(γ)u(γ) = αx1(γ)x(γ) + x2(γ)u(γ)

= (αx1u)(γ) + (x2u)(γ)

= (αx1u+ x2u)(γ)

= ((αx1 + x2)u)(γ)

directly from Definition 4.1.2 and Remark 4.1.1. Therefore αx1 + x2 is decom-
posable with decomposition γ 7→ αx1(γ) + x2(γ).
2. Similarly to before, define (x1x2)(γ) to be x1(γ)x2(γ), then we have

(x1x2)(γ)u(γ) = x1(γ)(x2(γ)u(γ)) = x1(γ)((x2u)(γ)) = (x1x2u)(γ)

almost everywhere for all u ∈ H and therefore we conclude that x1x2 is decom-
posable with decomposition γ 7→ x1(γ)x2(γ).
3. Once again, define x∗(γ) to be x(γ)∗ then for all u, v ∈ H and almost every
γ we have

〈x∗(γ)u(γ), v(γ)〉 = 〈u(γ), x(γ)v(γ)〉 = 〈u(γ), (xv)(γ)〉

and the map γ 7→ 〈u(γ), (xv)(γ)〉 is integrable. From Definition 4.1.1 we know
there exists a w ∈ H such that x∗(γ)u(γ) = w(γ) almost everywhere. Moreover,
since

〈x∗u− w, v〉 = 〈u, xv〉 − 〈w, v〉

=

∫
Γ

〈u(γ)x(γ)v(γ)〉 dµ(γ)−
∫
Γ

〈x∗(γ)u(γ), v(γ)〉dµ(γ) = 0

for all v ∈ H we have that x∗u − w = 0. Thus (x∗u)(γ) = w(γ) = x(γ)∗u(γ)
almost everywhere and x∗ is decomposable with decomposition γ 7→ x(γ)∗.
4. Also in this case, by analogously defining 1(γ) to be 1H(γ) we have

1(γ)u(γ) = 1H(γ)u(γ) = (1u)(γ)

which implies that 1 is decomposable with decomposition γ 7→ 1H(γ).
5. Finally suppose that x1(γ) ≤ x2(γ) almost everywhere, then for all u ∈ H
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we have

〈x1u, u〉 =
∫
Γ

〈(x1u)(γ), u(γ)〉dµ(γ)

=

∫
Γ

〈x1(γ)u(γ), u(γ)〉dµ(γ)

≤
∫
Γ

〈x2(γ)u(γ), u(γ)〉dµ(γ)

= 〈x2u, u〉

and therefore x1 ≤ x2.

The following Proposition proves a converse of Item 5 of Definition 4.1.1.

Proposition 4.1.2. Let H be the direct integral of H(γ) over (Γ, µ), and let x1
and x2 be two decomposable self-adjoint operators on H such that x1 ≤ x2, then
x1(γ) ≤ x2(γ) almost everywhere. Moreover, if x is decomposable, then the map
γ 7→ ‖x(γ)‖ is essentially bounded, measurable and with essential bound ‖x‖.

Proof. From Item 1, Proposition 4.1.1, we know that x2 − x1 is a positive,
decomposable operator with decomposition x2(γ) − x1(γ), therefore it will be
sufficient to prove that if 0 ≤ H and H is decomposable, then 0 ≤ H(γ) almost
everywhere. Let {uj}j ⊆ H a total set. Then there exists a null set N ⊆ Γ
such that {uj(γ)}j is total in H(γ) for all γ /∈ N . Suppose then that 0 ≤ H,
then 0 ≤ 〈Huj , uj〉 =

∫
Γ
〈H(γ)uj(γ), uj(γ)〉dµ(γ) for all j, by contradiction

there are j and a < 0 such that 〈h(γ)uj(γ), uj(γ)〉 ≤ a < 0 for γ in some subset
Γ0 ⊆ Γ of finite positive measure. Let f be the characteristic function of Γ0,
then γ 7→ 〈f(γ)uj(γ), v(γ)〉 is integrable for each v ∈ H so that for some w ∈ H
we have w(γ) = f(γ)uj(γ) almost everywhere. With this in mind, we have that

〈Hw,w〉 =
∫
Γ

〈H(γ)f(γ)uj(γ), f(γ)uj(γ)〉dµ(γ)

=

∫
Γ0

〈H(γ)uj(γ), uj(γ)〉 dµ(γ) ≤ aµ(Γ0) < 0

contradicting the assumption that 0 ≤ H. Therefore we conclude that for all
j we have 0 ≤ 〈H(γ)uj(γ), uj(γ)〉 except for γ in a null set Mj . Letting then
M =

⋃∞
j=0Mj , if γ /∈M ∪N we have that 0 ≤ 〈H(γ)uj(γ), uj(γ)〉 with {uj(γ)}

a total set in H(γ). It follows that 0 ≤ H(γ) for γ /∈M ∪N .
Let now x be a decomposable operator, we know then that x∗ and x∗x

are both decomposable with decompositions x∗(γ) and x∗(γ)x(γ) respectively.
Since ‖x(γ)‖2 = ‖x∗(γ)x(γ)‖, in order to show that γ 7→ ‖x(γ)‖ is measurable
and essentially bounded it will suffice to deal with a positive decomposable
operator H on H. Now, since 0 ≤ H ≤ ‖H‖1, from the previous part of the
proof we have that 0 ≤ H(γ) ≤ ‖H‖1(γ) almost everywhere. Conversely, from
Proposition 4.1.1, if 0 ≤ H(γ) ≤ a1(γ) almost everywhere, then 0 ≤ H ≤ a1
and ‖H‖ ≤ a. It follows than that the essential bound of γ 7→ ‖H(γ)‖ is ‖H‖.
In order to establish that this map is also measurable, we make use of {uj} and
N introduced above. It is enough to prove that { γ ∈ Γ \N | a < ‖H(γ)‖ < b }
is a measurable set for all 0 < a < b. Now, the relation a < ‖H(γ)‖ < b holds if
and only if there exists r, s ∈ Q∩ (a, b) such that r < ‖H(γ)‖ ≤ s for all γ /∈ N ,
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or, in an equivalent way, r1(γ) < H(γ) ≤ s1(γ) for all γ /∈ N . Since the set
{uj}j is total in H(γ) for all γ /∈ N , we get the equality

Γs := {γ ∈ Γ \N |H(γ) ≤ s1(γ)}

=
⋂
j

{γ ∈ Γ \N | 〈uj(γ),H(γ)uj〉 ≤ s‖uj(γ)‖2}

and moreover, the set Γs is measurable due to the measurability of the maps
γ 7→ 〈uj(γ),H(γ)uj(γ)〉 and γ 7→ s‖uj(γ)‖2. We can then conclude that

{γ ∈ Γ \N | a < ‖H(γ)‖ < b} =
⋃

r,s∈Q∩(a,b)

Γs \ Γr

is a measurable set.

The following is Corollary 8.16 from [22], that we report without proof,
provides a simple way of determining whether an operator is decomposable or
not.
Corollary 4.1.1. Let H =

∫ ⊕
Γ

H(γ) dµ(γ). A bounded operator x on H is
decomposable if and only if it commutes with the algebra of all diagonal oper-
ators. More precisely, the set R of all decomposable operators on H is a von
Neumann algebra whose commutant R′ coincides with the abelian algebra of
diagonal operators.

With this in mind, we can give the general Theorem characterizing the de-
composition in direct integral of a generic von Neumann algebra (see Definition
8.17 in [22] for further details).

Definition 4.1.3. Let H =
∫ ⊕
Γ

H(γ) dµ(γ) and let {M(γ)}γ∈Γ be a family
of von Neumann algebras on H(γ). If there exists a countable set {xn}n≥1

of decomposable operators on H such that M(γ) is the von Neumann algebra
generated by {xn(γ)}n≥1 for almost every γ ∈ Γ, then the von Neumann algebra
M generated by {xn}n≥1 and the diagonalizable operators is called the direct
integral of {M(γ)}. Moreover, M is written as M =

∫ ⊕
Γ

M(γ) dµ(γ)

Theorem 4.1.1. LetM be a direct integral of von Neumann algebras {M(γ)}γ∈Γ.
Then M is uniquely determined by {M(γ)}γ , i.e. an operator x belongs to M
if and only if x is decomposable with x(γ) ∈ M(γ) for almost every γ ∈ Γ.
This means in particular that the algebra of all decomposable operators x such
that x(γ) ∈ M(γ) almost everywhere is the direct integral of M(γ). Then its
commutant M′ is given by M′ =

∫ ⊕
Γ

M(γ)′ dµ(γ). Finally, the diagonal algebra
is contained in the center Z(M) of M.

Note that M is uniquely determined by the set {M(γ)}γ∈Γ, i.e. an operator
x belongs to M if and only if x is decomposable with x(γ) ∈ M(γ) for almost
all γ ∈ Γ. See Theorem 8.18 and Definition 8.19 in [22].

Corollary 4.1.2. Let M =
∫ ⊕
Γ

M(γ) dµ(γ) be a direct integral of von Neumann
algebras. Its center Z(M) is also expressed as a direct integral

Z(M) =

∫ ⊕

Γ

Z(M(γ)) dµ(γ) (4.1)

In particular, Z(M) coincides with the diagonal algebra if and only if M(γ) is
a factor for almost every γ ∈ Γ.
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The following Theorem explains how to obtain the direct integral decompo-
sition of any von Neumann algebra M.

Theorem 4.1.2. Let A be an abelian von Neumann algebra on the separable
Hilbert space H, then the following hold

• there is a (locally compact, complete, separable, metric) measurable space
(Γ, µ) such that H is (up to unitary equivalence) the direct integral of the
Hilbert spaces {H(γ)}γ∈Γ over (Γ, µ)

• A is (again, up to unitary equivalence) the algebra of diagonalizable oper-
ators relative to such decomposition.

Moreover, if we also suppose that A is a abelian subalgebra of Z(M) for a von
Neumann algebra M acting on a separable Hilbert space H decomposable as
H =

∫ ⊕
Γ

H(γ) dµ(γ) with respect to A, then we have

• (Z(M))(γ) is the center of M(γ), that is Z(M))(γ) = Z(M(γ)), almost
everywhere,

• M(γ) is a factor almost everywhere if and only if A = Z(M).

Proof. See [20, Theorem 14.2.1] and [20, Theorem 14.2.2].

The following Theorem gives a characterization of a decomposition of a von
Neumann algebra starting from its commutant. For a proof see Theorem 14.2.4
of [23] (pag. 646).

Theorem 4.1.3. If R is a von Neumann algebra acting on a separable Hilbert
space H and H is the direct integral of {H(γ)} in a decomposition relative to
an abelian von Neumann subalgebra A of R′. Then R(γ) = B(H(γ)) almost
everywhere if and only if A is a maximal abelian subalgebra of R′.

Proposition 4.1.3. Let M be a von Neumann algebra acting on a separable
Hilbert space H admitting a direct integral decomposition with respect to Z(M).
Then there exist a decomposition for M

M = Mc ⊕

(⊕
i∈I

Mi

)

such that Mc is either zero or its center has no minimal projections, and each
Mi is a factor.

Proof. First of all, consider the decomposition of H with respect to Z(M), then
we note that, without any loss of generality, we can consider the space Γ as the
union of the unit interval [0, 1] and an at most countable set of atoms {Γn}n∈N
(see [20, Chapter 14, pag. 998]). Thus, the measure µ can be decomposed as
the sum of a “continuous” component µc (i.e. a Lebesgue measure on [0, 1]) and
a discrete measure for each discrete atom. Therefore, recalling Example 4.1.2,
the decomposition of H can be written as

H =

∫ ⊕

[0,1]

H(γ) dµc(γ)⊕

(⊕
n∈N

H(γn)

)
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Given such decomposition, we naturally obtain a family of orthogonal projec-
tions. For sake of brevity, let Hd = ⊕n∈NH(γn) be the discrete part of H, and
denote by {emi }i∈Im

an orthonormal basis for H(γm). Then, it is clear that the
family {emi }m∈N, i∈Im

is an orthonormal basis for Hd. By denoting I = ∪m∈NIm
we see that for each pair m ∈ N and i ∈ Im there exists one n ∈ I. Therefore,
by relabeling the orthonormal basis as fn = emi according to the correspondence
above, we can define a family of orthonormal projections as

pn = |fn〉〈fn|

such that pnH = H(γn). Analogously for the continuous component, we can
define the projection

q =

∫ ⊕

[0,1]

1(γ) dµc(γ)

such that qH =
∫ ⊕
[0,1]

H(γ) dµc(γ). Putting these projections together, we obtain
a countable family {q, pi}i∈I of orthonormal, diagonal projections summing up
to the identity, and belonging to Z(M), with each pi minimal in Z(M). Thus,
we immediately have the desired decomposition of the von Neumann algebra

M = qM⊕

(⊕
i∈I

piM

)

Moreover, by Theorem 4.1.2, each piM is a factor, while Z(qM) is the diagonal
algebra with respect to the direct integral decomposition

∫ ⊕
[0,1]

H(γ) dµc(γ), so
that it is isomorphic to the multiplication algebra of L2([0, 1], µc) (see for exam-
ple [20, Example 14.1.4(a), Example 14.1.11(a)]) allowing us to conclude that
it does not contain any minimal projection.

4.2 N (T ) as direct integral of factors
Recall the definition ofN (T ) given in Proposition 3.0.2. We will show that every
element of N (T ) is decomposable with respect to a suitable “disintegration” of
H in the direct integral on a measurable space (Γ, µ). Moreover, this structure
of the DF algebra induces a decomposition of Lindblad operators {H,Lk}k wrt
the same direct integral decomposition. Applying Theorem 4.1.2 to the abelian
von Neumann subalgebra A = Z(N (T )) of the center of the von Neumann
algebra M = Z(N (T ))′, there exist von Neumann algebras {R(γ)} acting on
Hilbert spaces {H(γ)} such that

Z(N (T ))′ =

∫ ⊕

Γ

R(γ) dµ(γ), H =

∫ ⊕

Γ

H(γ) dµ(γ)

and Z(N (T )) is the diagonal algebra. Moreover, since Z(N (T )) is a max-
imal abelian subalgebra of (Z(N (T ))′)′ (they coincide), Theorem 4.1.3 gives
R(γ) = B(H(γ)) almost everywhere. Consequently, since N (T ) is contained in
(Z(N (T )))′, we obtain the following result

Theorem 4.2.1. Z(N (T ))′ is the algebra of all decomposable operators and
every element of N (T ) is decomposable. Moreover, the center Z(N (T )) of
N (T ) is the diagonal algebra with respect to this decomposition.



4.3. FROM N (T ) TO DECOMPOSITION OF TT 63

4.3 From N (T ) to decomposition of Tt
Let L be the generator of T expressed in a GKSL representation

L(x) = i[H,x]− 1

2

∑
k≥1

(L∗
kLkx− 2L∗

kxLk + xL∗
kLk)

Lemma 4.3.1. If M is a von Neumann algebra, then

Z(M) = Z(Z(M)′)

Proof. The equality can be shown by a direct computation. Indeed, by the def-
inition of center we have that Z(Z(M)′) = Z(M)′′ ∩ Z(M)′. But by the
double commutant Theorem we also have that Z(M)′′ = Z(M), therefore
Z(Z(M)′) = Z(M) ∩ Z(M)′. Finally, applying the definition of center again
we have that Z(M) ∩ Z(M)′ = Z(Z(M)), but since the center of a von Neu-
mann algebra is always abelian it holds that Z(Z(M)) = Z(M) and therefore
we have the thesis.

In order to give a decomposition of a QMS T and its GKSL representation
we need this Lemma characterizing *-automorphisms of von Neumann algebras
that leave invariant its center.

Lemma 4.3.2. Let α : M → M be a *-automorphism of type I von Neumann
algebras. If α preserves Z(M) then α is inner, that is there exists a unitary
operator U ∈ M such that α(x) = UxU∗ for all x ∈ M.

The following proposition shows that, as was in the case of DF subalgebras,
in the general framework every operator in the center of N (T ) is a fixed point
for the semigroup.

Proposition 4.3.1. The restriction of every Tt to Z(N (T )) is a *-automorphism.
In particular we have Z(N (T )) ⊆ F(T ).

Proof. Since Tt acts a *-automorphism onto N (T ), it is enough to show that its
restriction to Z(N (T )) is bijective. So, let x ∈ Z(N (T )) and y ∈ N (T ); then
there exists zt ∈ N (T ) such that y = Tt(zt), and thus

Tt(x)y = Tt(x)Tt(zt) = Tt(xzt) = Tt(ztx) = yTt(x),

i.e. Tt(x) belongs to Z(N (T )). Vice versa, if y ∈ Z(N (T )), in particular there
exists x ∈ N (T ) such that Tt(x) = y, i.e x = e−itHyeitH and so for every
z ∈ N (T )

zx = ze−itHyeitH = e−itHTt(z)yeitH = e−itHyTt(z)eitH = xz.

This means x ∈ Z(N (T )). In order to conclude the proof we have to show that
every x in Z(N (T )) is a fixed point. Since the restriction of Tt to Z(N (T )) is a
*-automorphism on a type I algebra coinciding with its center (being Z(N (T ))
commutative), Lemma 4.3.2 gives Tt(x) = UxU∗ for all x ∈ Z(N (T )), with U
a unitary operator in Z(N (T )). Therefore, the equality Tt(x) = x holds for all
x ∈ Z(N (T )).
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Thanks to the result just proven we can show that any GKSL representation
of T admits a decomposition in direct integral in a natural way.

Proposition 4.3.2. The Lindblad operators {H,Lk}k are decomposable. In
particular, there exist H(γ), Lk(γ) ∈ B(H(γ)) for almost every γ ∈ Γ, such that

H =

∫ ⊕

Γ

H(γ) dµ(γ)

Lk =

∫ ⊕

Γ

Lk(γ) dµ(γ)

Proof. We know that N (T ) is contained in the commutant of Lk and L∗
k, so

that Lk and L∗
k belong to the commutant of N (T ), that is decomposable by

Theorem 4.1.1 Now we want to prove the thesis for H. By Proposition 4.3.1 we
have that the von Neumann algebra Z(N (T )) is contained in the set of fixed
points F(T ) (see for example [8, Lemma 2.1]), and so every projection of it
commutes with the Lindblad operators Lk and H. Consequently H belongs to
Z(N (T ))′, since Z(N (T )) is generated by its projections.

We can then define on B(H(γ)) the uniformly continuous QMS T γ generated by
the Lindblad operators associated with {H(γ), Lk(γ)}k, for almost every γ ∈ Γ.

Corollary 4.3.1. Let be N (T ) =
∫ ⊕
Γ

N (T )(γ) dµ(γ) the decomposition of N (T )
in direct integrals, then N (T )(γ) = N (T γ) for almost every γ.

Proof. If x ∈ N (T ), then x =
∫ ⊕
Γ
x(γ) dµ(γ) and Tt(x) ∈ N (T ), in particular

Tt(x) =
∫ ⊕

Γ

Tt(x)(γ) dµ(γ) =
∫ ⊕

Γ

T γ(x(γ)) dµ(γ).

If x ∈ N (T ), Tt(x∗x) = Tt(x∗)Tt(x) and∫ ⊕

Γ

T γ(x∗(γ)x(γ)) dµ(γ) =

∫ ⊕

Γ

T γ(x∗(γ))Tt(x(γ))) dµ(γ)

So T γ(x∗(γ)x(γ)) = T γ(x∗(γ))Tt(x(γ)) for almost every γ, i.e. x(γ) ∈ N (T γ)
for almost every γ. This prove that N (T )(γ) ⊆ N (T γ). Vice versa it is trivial.



Appendix A

Haar measures and group
representation theory

A.1 Haar measures
Definition A.1.1. A group G is topological if it admits a topology such that
the map (x, y) 7→ xy−1 from G×G to G is continuous or, equivalently, if both
(x, y) 7→ xy from G×G to G and x 7→ x−1 from G to G are continuous.

For sake of simplicity we introduce a few notations use throughout the The-
sis. Let A,B be two subsets of G then we define their product as

AB = { ab | a ∈ A, b ∈ B }

Analogously, given any g ∈ G, we will use gA and Ag in place of {g}A and
A{g} respectively. Moreover, we will use the notation A2 for AA (and so on for
higher powers) and also

A−1 =
{
a−1

∣∣ a ∈ A
}

Definition A.1.2. A topological group G is locally compact if its topology is
locally compact.

Let G be a locally compact group, we denote with σ(G) the σ-algebra of
Borel sets of G. Note that gA and Ag are in σ(G) for every A ∈ σ(G) and every
g ∈ G.

Definition A.1.3. A positive regular Borel measure µ on G is said to be a left
(resp. right) Haar measure if satisfies µ(gA) = µ(A) (resp. µ(Ag) = µ(A)) for
every A ∈ σ(G) and every g ∈ G.

The property of invariance under left (resp. right) translation of Borel sets
is also often called left (resp. right) invariance and is further clarified in the
following proposition.

Proposition A.1.1. A positive regular Borel measure µ is a left (resp. right)
Haar measure on G if and only if in satisfies for every Cc(G) and every g ∈ G∫

G

f(gx) dµ(x) =

∫
G

f(x) dµ(x)

65
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for left measures, and ∫
G

f(xg) dµ(x) =

∫
G

f(x) dµ(x)

for right measure

The following Theorem ensures the existence of Haar measures (for a proof
see [24, Theorem 2.10]).

Theorem A.1.1. Every locally compact group admits a left Haar measure.

We report a few useful properties of Haar measures

Proposition A.1.2. Let µ be a Haar measure on G, then µ(A) > 0 for every
open subset A of G, and µ(G) < +∞ if and only if G is compact.

Proposition A.1.3. Let µ1 and µ2 be two left Haar measures, then there exists
a constant c > 0 such that µ1 = cµ2.

By the last two Proposition in clear that whenever G is a compact group
there always exists a left Haar measure such that µ(G) = 1. It’s important to
note that in general left and right Haar measures are different mathematical
objects that do not coincide. To further explore this point, consider a locally
compact group G and a left Haar measure µ on it. Then, for any g ∈ G, we can
define another measure ρg as the right translation of µ, that is

ρg(A) = µ(Ag) A ∈ σ(G)

which is a left Haar measure. Indeed, for every h ∈ G and A ∈ σ(G) we have

ρg(hA) = µ(hAg) = µ(Ag) = ρg(A)

But, by Proposition A.1.3, we know that there must exists a positive constant
for every possible g ∈ G, that we will denote as ∆(g), such that ρg = ∆(g)µ.
Moreover, the value of ∆(g) is independent from the choice of µ. Indeed, by the
definition of ρg we have

∆(g) =
µ(Ag)

µ(A)
∀A ∈ σ(G)

which is clearly independent from µ by Proposition A.1.3.

Definition A.1.4. The function ∆: G→ R+ just discussed is called the modu-
lar function of G. A group is said to be unimodular if ∆(g) = 1 for every g ∈ G,
which is equivalent to say that left Haar measures are also right Haar measures.

Remark A.1.1. Every compact group is unimodular

A.2 Group representation theory
Definition A.2.1. Let G be a locally compact group, andH a separable Hilbert
space. Then an homomorphism π : G → B(H) which is continuous w.r.t. the
strong topology of B(H) is called a representation of G on H. A representation
π is said to be unitary if π(g) is an unitary operator for every g ∈ G.
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Lemma A.2.1. Let G be locally compact group, and π a representation of G
on a Hilbert space H. Then the application (g, v) 7→ π(g)v from G×H to H is
continuous.

Given two elements u, v ∈ H, the continuous function g 7→ 〈π(g)u, v〉 from
G to C is called a representation coefficient of π. Whenever u = v it is called a
diagonal coefficient. If the Hilbert space H on which the representation π acts
is finite dimensional with dimH = d then the representation pi is said to have
dimension d.

Definition A.2.2. Let G be locally compact group and π a representation of
G on a Hilbert space H, then a closed subspace K ⊆ H is said to be π-invariant
(or just invariant) if π(g)K ⊆ K for every g ∈ G. The representation π is said
to be irreducible if the only invariant subspaces are H and { 0 }.

Given any π-invariant subspace K ⊆ H, it is possible to obtain a represen-
tation of G on K by restricting to K every operator π(g). Such representation
is called a subrepresentation of the original one.

Lemma A.2.2. Let π be an unitary representation of G on a Hilbert space
H. If K ⊆ H is a π-invariant subspace, then also the orthogonal space K⊥ is
π-invariant.

Proof. Consider u ∈ K⊥, then, for every g ∈ G and v ∈ K, we have

〈π(g)u, v〉 =
〈
u, π(g)

∗
v
〉
=
〈
u, π(g)

−1
v
〉
=
〈
u, π(g−1)v

〉
= 0

since π(g−1)v ∈ K. Therefore, we can conclude that π(g)u ∈ K⊥

In order to see that the previous Lemma is not necessarily true for non
unitary representation, consider the representation π : R → B(C2) given by

π(t) =

(
1 t
0 1

)
Then it is straightforward to see that the only non trivial invariant subspace is
given by span

{
(1, 0)

t
}
, contradicting the previous Lemma.

Definition A.2.3. Let π be a representation of G on a Hilbert space H. A
vector v ∈ H is said to be cyclic if the subspace generated by { π(g)v | g ∈ G }
is dense in H.

Definition A.2.4. Let π1 and π2 be two unitary representations of G on H1

andH2 respectively. Then, an operator A ∈ B(H1,H2) is said to be intertwining
π1 and π2 if the following diagram

H1 H1

H2 H2

A

π1(g)

A

π2(g)

is commutative for every g ∈ G, or equivalently if the identity Aπ1(g) = π2(g)A
holds for every g ∈ G. If there exist an unitary intertwining operator, then the
two representations are said to be unitarily equivalent.
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We will denote by I(π1, π2) the set of all operators intertwining π1 and π2.
When the two representation are the same, i.e. π1 = π2 = π, the set I(π, π) is a
C*-subalgebra of B(H) comprised of all the operator commuting with π(g) for
every g ∈ G, that is I(π, π) = { π(g) | g ∈ G }′. The following Lemma is crucial
in the characterization of irreducible representations.

Lemma A.2.3 (Schur’s Lemma). Let π be a unitary representations, then it is
irreducible if and only if I(π, π) = C1. Moreover, let π1 and π2 be two unitary
irreducible representations, then

• if they are equivalent and A ∈ I(π1, π2) =⇒ I(π1, π2) = CA;

• if they are not equivalent =⇒ I(π1, π2) = { 0 }.

Proof. First of all, suppose π is a not irreducible representation, and K ⊆ H
a proper non trivial invariant subspace. Let p be the projection onto K and
u ∈ H, then π(g)pu ∈ K and π(g)(u−pu) ∈ K⊥ for any g ∈ G by Lemma A.2.2.
By a direct computation we have that for every g ∈ G and every u ∈ H

pπ(g)u = pπ(g)pu+ pπ(g)(u− pu) = pπ(g)pu = π(g)pu

and therefore p ∈ I(π, π), from which I(π, π) 6= C1. Vice versa, suppose
there exists an operator A ∈ I(π, π) such that A /∈ C1. Since I(π, π) is a
C*-subalgebra of B(H), it must also contain the self-adjoint operators A + A∗

and i(A − A∗). It simple to see that at least one of the two, let’s call it B,
does in fact not belong to C1. By the spectral Theorem we have that the
spectrum σ(B) of B must contain more than one element, otherwise we would
have B =

∫
σ(B)

λ dE(λ) = b1 for some b ∈ C. We can therefore say that there
exist at least two disjoint nonempty open sets ω1, ω2 ∈ σ(B) such that the as-
sociated spectral projections E(ωj) for j = 1, 2 satisfy E(ωj) 6= 0 for j = 1, 2
and E(ω1)E(ω2) = 0. From this we see that E(ω1), for example, is a non triv-
ial orthogonal projection that commutes with π(g) for every g ∈ G. Indeed,
since A ∈ I(π, π), then also B ∈ I(π, π), and again by the spectral Theorem,
E(ω1) ∈ I(π, π). Letting then K = E(ω1)H and u ∈ K we have

π(g)u = π(g)E(ω1)u = E(ω1)π(g)u

for every g ∈ G which implies that π(g)u ∈ K, proving that π admits a nontrivial
invariant subspace and concluding the proof of the first part of the Lemma.
Suppose now that π1 and π2 are two irreducible non equivalent representations.
Let A ∈ I(π1, π2), then A∗ ∈ I(π2, π1). Indeed, for every g ∈ G we have that

A∗π2(g) =
(
π2(g

−1)A
)∗

=
(
Aπ1(g

−1)
)∗

= π1(g)A

This directly implies that A∗A ∈ I(π1, π1) and AA∗ ∈ I(π2, π2). But, since
both π1 and π2 are irreducible, by the first part of the Lemma we know that
there exist c1, c2 ∈ C such that A∗A = c11H1 and AA∗ = c21H2 . Moreover,
since both A∗A and AA∗ are positive semidefinite, and since ‖A∗A‖ = ‖AA∗‖ =
‖A‖2 (given that both I(π1, π1) and I(π2, π2) are C*-subalgebras), we have that
c1 = c2 = c ≥ 0. If it was c > 0, than c

1
2A would be unitary, but this is

impossible since π1 and π2 are non equivalent. Therefore we must have c = 0
and thus A = 0 proving the first item on the list. Finally, suppose that π1 and
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π2 are two irreducible and equivalent representations. Let U ∈ I(π1, π2) be a
unitary operator. If A ∈ I(π1, π2) then U−1A ∈ I(π1, π1). But again, since π1
is irreducible, by the first part of the Lemma, we have that there exists c ∈ C
such that U−1A = c1, and therefore A = cU concluding the proof.

Let G be compact group and µ the normalized Haar measure on G. The fol-
lowing Theorem show how is possible to always consider unitary representations
of G.

Theorem A.2.1. Let π be a representation of G on a Hilbert space H with
scalar product 〈· , ·〉. Define a map 〈〈· , ·〉〉 : H×H → C as

〈〈u, v〉〉 =
∫
G

〈π(g)u, π(g)v〉dµ(g)

then 〈〈· , ·〉〉 is a scalar product on H inducing an equivalent norm to the original
one and respect to which π is unitary.

Thanks to this Theorem, from now one we will always consider unitary
representations unless specified otherwise. This was just an example of how
powerful of a tool integration can be. In the next Lemma we prove a crucial
result for the main problem of the Thesis.

Lemma A.2.4. Let π1 and π2 two representations of G on H1 and H2 respec-
tively. Given the operator T ∈ B(H1,H2) we define

T̃ =

∫
G

π2(g)
∗Tπ1(g) dµ(g) (A.1)

where the integral converges in the strong topology of B(H1,H2) and T̃ ∈
I(π1, π2). Moreover, if T is compact, the T̃ is compact.

Proof. The convergence of the integral is directly implied by the fact that
the map g 7→ π2(g)

∗Tπ1(g) is composition of continuous maps according to
Lemma A.2.1. Given U ∈ B(H1) and V ∈ B(H2), again by continuity, we have

V T̃ =

∫
G

V π2(g)
∗Tπ1(g) dµ(g) T̃U =

∫
G

V π2(g)
∗Tπ1(g)U dµ(g)

There we can compute

π2(h)T̃ =

∫
G

π2(gh
−1)∗Tπ1(g) dµ(g)

=

∫
G

π2(g)
∗Tπ1(gh) dµ(g)

=

∫
G

π2(g)
∗Tπ1(g)π1(h) dµ(g)

= T̃ π1(g)

that is T̃ ∈ I(π1, π2). Suppose now that T is a compact operator, and let {un}
in H1 converging weakly to 0, then we have

‖T̃ un‖ ≤
∫
G

‖π2(g)−1Tπ1(g)un‖ dµ(g) =
∫
G

‖Tπ1(g)un‖ dµ(g)
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Clearly, limn→+∞‖Tπ1(g)un‖ = 0 and ‖Tπ1(g)un‖ ≤ ‖T‖ supn‖un‖ for every
g ∈ G. Therefore, by dominated convergence the sequence {Tun} converges to
0 in norm.

Lemma A.2.5. Every unitary representation of G admits a non trivial invari-
ant subspace of finite dimension.

Proof. Let π be a unitary representation of G on H, and let v0 ∈ H be such
that ‖v0‖ = 1. Define p as the orthogonal projection of H onto Cv0, i.e. pv =
〈v, v0〉 v0. Moreover, let p̃ be the averaged operator associated to p according to
Equation (A.1), then p̃ is compact (by Lemma A.2.4) and self-adjoint. Indeed,
we have

〈v, p̃w〉 =
∫
G

〈
v, π(g)−1pπ(g)w

〉
dµ(g)

=

∫
G

〈
π(g)−1pπ(g)v, w

〉
dµ(g)

= 〈p̃v, w〉

and also

〈p̃v0, v0〉 =
∫
G

〈
π(g)−1pπ(g)v0, v0

〉
dµ(g)

=

∫
G

‖pπ(g)v0‖dµ(g)

Since the argument of the integral is continuous and its value is 1 when evalu-
ated at g = e we can say that p̃ 6= 0 and therefore that its spectrum is such that
σ(p̃) 6= { 0 }. Thus, there exists a compact set K ⊂ σ(p̃) \ { 0 } such that the
orthogonal projection E(K) given by the spectral decomposition is non zero.
Now, since p̃ ∈ I(π, π) by Lemma A.2.4 then also E(K) ∈ I(π, π) and therefore
the subspace K = E(K)H is invariant. To conclude the proof we are only left
to prove that dimK < +∞. Suppose that K admits an infinite dimensional or-
thonormal basis {en}, then tends weakly to 0 and therefore {p̃en} tends strongly
to 0. But, at the same time we know that p̃ admits a spectral decomposition
p̃ =

∫
σ(p̃)

λ dE(λ), so if we define the measure ρen,en = 〈E(λ)en, en〉, we can
compute

‖p̃en‖2 =
〈
p̃2en, en

〉
=

∫
σ(p̃)

|λ|2 dρen,en(λ)

≥ min
K

|λ|2
∫
K

dρen,en(λ)

= min
K

|λ|2 〈E(K)en, en〉

= min
K

|λ|2

which clearly contradicts the hypothesis.

From this Lemma immediately follows the next Theorem which is crucial to
prove the decomposability of every unitary representation of a compact group.
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Theorem A.2.2. Let π be a unitary representation of a compact group G on
an Hilbert space H. If π is irreducible, then H is finite dimensional.

We conclude this Appendix with (a part of) the Peter-Weyl Theorem which
we heavily exploit to prove the main results of this Thesis.

Theorem A.2.3. Let π be a unitary representation of a compact group G on
a Hilbert space H. Then π can be decomposed as the direct sum of irreducible
finite dimensional subrepresentations acting on subspaces of H that are pairwise
orthogonal.

Proof. Let C be the class of families {Ki}i∈I of finite dimensional π-invariant
subspaces, that are also pairwise orthogonal and such that the subrepresenta-
tions π|Ki

obtained by restriction are irreducible for every i ∈ I. We first show
that C is a non empty class. By Lemma A.2.5 we know that π admits a non
trivial, invariant and finite dimensional subspace K. If the restricted represen-
tation π|K is reducible, we can apply Lemma A.2.5 again obtaining a non trivial,
invariant and finite dimensional subspace of K. By iterating the procedure a
finite number of time we are ensured to obtain a non trivial, invariant and finite
dimensional subspace on which the restriction of π acts irreducibly. This clearly
implies that C is non empty. By ordering C by inclusion, we can apply Zorn’s
Lemma and say that there exists maximal family {Ki}i∈I whose direct sum is
exactly the starting space H. In order to show this, suppose the opposite is
true, that is that K = ⊕i∈IKi is properly contained in H. Since K is invariant
by construction, then also K⊥ is invariant by Lemma A.2.2 but this implies
the existence of an invariant subspace of K⊥ by Lemma A.2.5. This is a clear
contradiction to the maximality of {Ki}i∈I from which we can conclude that
H = ⊕i∈IKi.





Appendix B

Type theory of von
Neumann algebras

In this Chapter we recall some of the basic definition about von Neumann al-
gebras and type theory.

B.1 Type theory
Let A be a von Neumann algebra acting on a Hilbert space H, then the com-
mutant of A is defined as

A′ = { x ∈ B(H) | xy = yx ∀y ∈ A } .

Similarly, the center of A is defined as

Z(A) = { x ∈ A | xy = yx ∀y ∈ A }

from which we see that Z(A) = A ∩A′.

Definition B.1.1. A von Neumann algebra A is said to be factor if its center
satisfies Z(A) = C1.

In order to define what is a “type” in the context of von Neumann algebras,
we have to first classify the projections contained in the algebra itself.

Definition B.1.2. Let A be a von Neumann algebra, and p, q ∈ A two projec-
tions. Then, we say that p is equivalent to q, denote as p ∼ q, if there exists a
partial isometry v ∈ A such that v∗v = p and vv∗ = q.

Definition B.1.3. Let A be a von Neumann algebra acting on a Hilbert space
H, and p, q ∈ A two projections. Then p is said to be:

• minimal if p 6= 0 and q ≤ p implies either q = 0 or q = p;

• abelian if pAp is an abelian algebra;

• finite if q ≤ p and q ∼ p implies q = p;
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• semi-finite if there exists a family of projections {pi}i∈I such that p =∑
i∈I pi;

• purely infinite if p 6= 0 and there does not exist ant non-zero finite
projection q ≤ p;

• properly infinite if p 6= 0 and for all projections z ∈ Z(A) the projection
zp is not finite.

As is common, we say that an von Neumann algebra A is either minimal,
semi-finite, finite, purely infinite or properly infinite, if the unit operator 1 ∈ A
as the corresponding property. Directly from Definition B.1.3 it is straightfor-
ward to see that we have following chains of implications

minimal =⇒ abelian =⇒ finite =⇒ semi-finite =⇒ not purely infinite

and
purely infinite =⇒ properly infinite

With this in mind we can give the following definition

Definition B.1.4. A von Neumann algebra A acting on a Hilbert space H is
said to be

• type I if every non-zero projection has a non-zero abelian subprojection;

• type II if it is semi-finite and has no non-zero abelian projection;

• type III if it is purely infinite.

This type classification allows to completely characterize von Neumann al-
gebras as denoted in the following Theorem

Theorem B.1.1. Let A be a von Neumann algebra action on a Hilbert space
H. Then there exist unique, central, and pairwise orthogonal projections p I, p II,
p III such that p I + p II + p III = 1 and Api is of type i for i = I, II, III.

Corollary B.1.1. Let A be a factor, then it can only be of either type I, type
II or type III.

Theorem B.1.2. Let A be a von Neumann algebra on a Hilbert space H, and
p a projection with central support z(p) = 1. Then A is of a given type if and
only if pAp is of the same type.

Theorem B.1.3. Let A be a von Neumann algebra on a Hilbert space H. Then
A is of a given type if and only if A′ is of the same type.

Now that we have delineated the general results about type theory we can
recall a few finer details about each algebra type.

B.1.1 Type I algebras
Definition B.1.5. Let A be a type I von Neumann algebra acting on a Hilbert
space H. A is said to be of type In if there exists n ∈ N such that the unit oper-
ator 1 can be written as the sum of n equivalent non-zero abelian projections.
We denote the type as I∞ when the number of required projections is infinite.
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Proposition B.1.1. Let A be a type I von Neumann algebra. Then it can be
uniquely decomposed as a direct sum of type In von Neumann algebras.

Corollary B.1.2. A type I factor is of type In only for one n ∈ N.

Theorem B.1.4. Let A be a type In von Neumann algebra acting on a Hilbert
space H. Then A ' Z(A)⊗B(K) for some Hilbert space K such that dimK = n.
Moreover, if A is abelian then is of type I1, meanwhile, if A is a type In factor
then A ' B(K).

B.1.2 Type II algebras
Definition B.1.6. A type II von Neumann algebra A is said to be of type II1
if is finite, and is said to be of type II∞ if is properly infinite.

Theorem B.1.5. Let A be a type II von Neumann algebra acting on a Hilbert
space H. Then there exist unique central projections p II1 , p II∞ such that p II1 +
p II∞ = 1, and such that Ap II1 is of type II1 and Ap II∞ is of type II∞.
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