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Abstract
Following the emergency caused by the Covid-19 pandemic, there is the need, among

other measures, to modify urban mobility plans in order to reduce the use of collec-

tive public transport, reducing the crowding of people while also preventing traffic

congestion through discouraging the use of private vehicles. From this perspective,

retail companies operating within cities must also reorganize themselves, consid-

ering both the unpredictable requirements of environmental sustainability and the

new mobility needs calling for the promotion of bicycles and electric scooters. In

this context, we deal with the need to determine minimum cost routes in urban areas

for delivering orders placed through e-channels. More precisely, we face a variant

of the green vehicle routing problem of heterogeneous fleets, in which the objective

function includes environmental impact cost components that differ by vehicle type.

Moreover, as a novel issue, attention must be paid to avoid crossing and passing close

to bicycle lanes; therefore, penalties are associated with the transit of vehicles near

bicycle lanes. To address this problem, we propose a mixed integer linear program-

ming model and a matheuristic associated with it. The proposed approach is then

used to analyze different scenarios derived from the transportation network of the

city of Milan, Italy. Milan is one of the smartest cities in Europe from the mobility

point of view but also one of the most affected by the Covid-19 pandemic, and the

municipality is making a big investment to promote the use of bicycles.
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1 INTRODUCTION

The emergency caused by the Covid-19 pandemic at the beginning of 2020 is imposing new rules on society at the level of both

individual and collective behavior. Cities are now forced to modify their mobility plans to consider, among other issues, new

social distancing needs. In fact, in spring 2020, one of the effects observed in large cities immediately after the so-called first

lockdown phase and during the temporary resumption of production activity was the propensity for more individual rather than

collective mobility, with a strong focus on environmental sustainability. Great economic support has been directed toward this

transportation paradigm. For example, the European economic community has made efforts to promote sustainable mobility in

urban areas, taking into account the strong limitations that have necessarily been imposed on collective public transport, such

as metro and city buses, which now have a lower maximum number of passengers allowed on board. From the citizens’ point

of view, the trend toward individual mobility is due to a certain reluctance to use collective urban transport for fear of being
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infected by Covid-19. At the same time, at the level of local administrators, there is concern that the increase in the use of private

transport, that is, cars, may lead to high traffic situations and consequently cause excessive delays in home-work transport times.

For this reason, in many countries including Italy, local initiatives now encourage the use of bicycles and scooters, both electric

and nonelectric. However, it is noted that at the end of the first emergency phase caused by Covid-19, when the resumption of

production and commercial activity was very partial and therefore traffic was very limited, bicycles were indeed a very safe

means of transport in urban areas. Now, however, there is concern that with the imminent reopening, even if partial, of economic

activities as well as schools, universities, etc., the increase in traffic will certainly increase the risk for cyclists. Indeed, in many

cities it is not always possible to circulate in urban areas while keeping to the cycle paths, and there are many dangers for

cyclists, including intersections, roads with rails, and bumpy sidewalks.

In this scenario, large-scale retail companies and B2C organizations in general that operate within cities are experiencing a

period of great difficulty. They are challenged to determine distribution plans that will supply their customers while also meeting

both environmental sustainability requirements and the new mobility rules discussed above. Therefore, particular attention must

be paid to finding delivery routes that minimize environmental impact, that is, external costs due to pollution, climate change

and accidents, while paying attention to two-wheeled traffic, trying to intersect cycle lanes as little as possible and avoid passing

near them. Yet since minimizing cost is one of the most important and well-known objectives for logistics companies, it is still

not quite clear how such companies can minimize the costs of emissions impacts. This is despite the fact that much attention

has been given to this topic, usually classified as the green vehicle routing problem (GVRP) [12], in the recent operations

research and management science literature. Lin et al. [15] provide a classification of the GVRP into several subtypes: the

green-VRP, the pollution routing problem (PRP) and the VRP in reverse logistics. Yavaz [20] presents a variant of the GVRP

with a homogeneous fleet of green vehicles. Further, some authors have recently focused on evaluating environmental impacts

on optimal routes. In particular, Ehmke et al. [11] compare the total cost of a route with respect to different components, such as

driving cost and emissions cost, and analyze the impact of each component in the search for the optimal solution. Cerulli et al.

[9] determine distribution plans for a B2C company that include negative externalities due to emissions of the vehicle used, and

they show that better results, in terms of both business and environmental performance, are obtained if environmental issues are

included in the distribution model from the beginning. Behnke and Kirschstein [4] consider different origin–destination paths

with respect to their emissions and calculate the possible emission savings depending on the road type. Zhang et al. [21] analyze

a VRP in many different cities, considering different congestion charge hypotheses.

However, to the best of our knowledge, no studies in the recent literature examine how the incidence of urban bicycle flow

can affect the determination of routes for logistic services. One related effort comes from Masłowskia et al. [17], who give an

overview of existing routing algorithms when different road traffic conditions and urban policies are considered. In addition, a

survey by Asghari et al. [3] contains a systematic and very up-to-date analysis of the literature on GVRP.

To meet this need, this paper focuses on determining the fleet and the routes of nonhomogeneous vehicles of a B2C com-

pany that serves customers within a city. We propose a variant of the GVRP in which the objective function includes external

costs related to pollutant emissions and which penalizes the transit of commercial vehicles along roads running parallel to or

intersecting cycle lanes. The company’s vehicles differ from each other in capacity and environmental impact. Further, as a

novel issue, attention is paid to the increasing traffic due to bicycles and scooters. More precisely, in order to minimize inter-

sections and proximity bicycle lanes along the new routes, penalties are associated with some arcs of the underlying network

models representing urban streets where bicycles circulate. The idea is to analyze whether and how these street crossing penal-

ties promote the choice of alternative routes compared to those more naturally chosen when only the classic shortest path is

considered. This problem thus bears some similarity to the routing problem with penalties proposed in Bräysy et al. [5], where

the authors use exact models and existing heuristics to optimally solve capacitated VRP instances when turning penalties are

assigned. Yet in contrast, the penalties proposed in the present paper vary according to both the street that is crossed and the

type of vehicle driving the route. At least to the authors’ knowledge, this is the first time that this type of penalty is considered

in the objective function of a GVRP problem aimed at minimizing the cost components, which include length, traveling, pol-

lutant emission costs, and urban streets to cross. To address this problem, we propose an approach that combines the classic

max-saving algorithm [10, 19] hybridized with the carousel greedy (CG, [8]) and an integer programming optimization. As a

blend of metaheuristic and exact approaches, this method is usually called matheuristic [16].

CG is a technique capable of improving the performance of greedy algorithms, successfully used in conjunction with

other heuristic and metaheuristic approaches (see References [7, 14]). The proposed approach can be classified as a “one-shot

approach” (see [2]); in fact, to set variables in order to execute the MILP model only once using a reduced input, we use a novel

metaheuristic algorithm based on a combination of max-saving-CG.

The paper is organized as follows. In Section 2 we present in detail the urban distribution problem under consideration along

with its related network model. Section 3 gives the proposed MILP model, while Section 4 presents the resolution approach,

based on a suitable modification of the max-saving algorithm and a matheuristic procedure. Section 5 presents the computational

experimentation performed on some instances involving the distribution plans of a large-scale B2C company operating in the
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city of Milan (Italy), where a huge investment is being made to increase cycle paths in preparation for increased demand after

Covid-19 emergency. Finally, we give some conclusions and direction for future work.

2 THE DISTRIBUTION PROBLEM AND THE RELATED URBAN
NETWORK MODEL

The problem we focused on can be seen as a particular case of the GVRP, originating from the need to deliver grocery goods

ordered via e-channels. In particular, the problem lies in determining the fleet and the routes of nonhomogeneous vehicles to

be used for delivering, at minimum cost, the required goods to customers located in urban areas. More formally, the minimum

cost routes have to be determined within the transportation network of the city where the delivery service is carried out. Then,

as a first step, we represent the urban transportation network as a digraph G = (N, A) where the set of nodes N contains the

depot d (or node 0), that is, the set contains n customers and also the origin and destination nodes of each route. Let C denote

the set of customers to be served. N = C ∪ {d} then has n+ 1 nodes. The arcs of set A are the shortest paths between each

pair of nodes of N, computed along the streets of the city on the basis of the travel distance (in km) between nodes i and j, ∀
i, j ∈N weighted with the unit cost coefficient described below. Note that in this way, no transit nodes are considered in our

network model. Hence, let lij be the weight of arc (i,j)∈A expressing the shortest distance from node i to node j. Therefore, we

have to determine a set of routes originating and terminating at a depot and serving all customers, and we also must determine

which vehicles to select for traveling along the routes. Let us then have associated with each customer i ∈ C the value qip, which

represents the required units of goods, expressed in boxes, and the type of products p. Since we are dealing with delivery plans

for grocery goods, note that a product p can be fresh, dry or a combination of both.

As in any VRP formulation, each node can only be served once by one vehicle. Concerning the vehicles, they differ by weight

class, Euro class, size, capacity and their ability to serve customer i ∈ N with product p. Hence, let V be the set of all available

vehicles of v different types. We assume that a maximum number mv of vehicles of type v is available for the delivery service.

A feasible vehicle route 𝜌 = {d, c1, c2,… , cl− 1, cl, d} of length l is an ordered sequence of different customers to be served

such that the total capacity of the vehicle is not exceeded and all the constraints are respected. A feasible solution S = {𝜌1,

𝜌2,… , 𝜌k} of the problem is a collection of feasible routes.

The goal is to minimize the total cost, which includes traveling, loading and pollutant cost components, depending on the

type of the chosen vehicle.

Further, as explained in Section 1, we associate a penalty δijv with each arc (i,j)∈A with the aim of avoiding the crossing of

bicycle lanes in the routes. More precisely, as we will explain in more detail in Section 5, the values 𝛿ijv depend on the vehicle

type v, the road between node i and node j, and the proximity of the road to bicycle lanes and intersections. The total unit cost

cijv per km for a vehicle of type v, ∀v∈V , traveling along arc (i,j) ∈ A, is then given in (1).

cijv = (tv + ev) ⋅ 𝛿ijv, (1)

where tv is the unit traveling cost and ev is the pollutant emission cost. We denote by c(𝜌) the total cost of route 𝜌 and by c(S)

=
∑

pi∈S c(𝜌i) the total cost of a feasible solution S. Our GVRP problem consists in computing the minimum cost set S = {𝜌1,
𝜌2,..., 𝜌k} of feasible routes such that all the customers are served and each customer is visited by a single vehicle that is suitable

for delivering the type of product they require.

3 THE MILP MODEL

In this section we present the proposed MILP model. We first present the relevant notations:

d depot of the delivery network, origin and destination node of the route;

cijv unit traveling cost of arc (i,j) ∈ A of vehicle of type v (defined in (1));

ev unit emission class cost of vehicle of type v;

tv unit traveling cost of vehicle of type v;

wv weight class of vehicle of type v;

mv maximum number of vehicles of type v available for delivery;
lij length of arc (i,j) ∈ A;

𝛿ijv street crossing penalty, depending on arc (i,j) ∈ A and the type of vehicle v;

kv capacity of vehicle of type v (maximum number of boxes);

qip demand of product p (expressed in number of boxes) of customer i ∈C;

qi =
∑

p qip total demand of customer i ∈C.
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TABLE 1 Characteristics of the vehicles

Authorized to deliver
Vehicle type Weight (t)

Euro
class Size (l ⋅ w ⋅ h) (m)

Capacity
(Boxes) Fresh Dry Mix

1 — — 0.5 ⋅ 0.5 ⋅ 0.5 3 x x

2 ≤ 1.5 V-VI 4.5 ⋅ 2 ⋅ 1.8 36 x

3 ≤ 3 V-VI 6 ⋅ 2 ⋅ 2.5 135 x x x

The considered decision variables of the B2C distribution problem under study are the following:

xijv binary variable, assuming value 1 if a vehicle of type v travels from i to j, and 0 otherwise;

yijv continuous variable, representing the amount of goods carried by a vehicle of type v from i to j; yijv ∈ [0, kv].

Note that we decided not to generate, instead of setting to zero, each variable xijv or yijv corresponding to an arc (i,j) ∈ A,

which connects a customer whose demand qip relates to products that cannot be delivered by a vehicle of type v (see Table 1).

To consider the green and penalty components of our problem, we modified the definition of the costs associated with the

arcs of the digraph, as given in (1); therefore, the following model is formally identical to the classic VRP model.

min
∑
v∈V

∑
(i,j)∈A

cijv ⋅ lij ⋅ xijv, (2)

s.t.

∑
v∈V

∑
i∈N

xijv = 1 ∀j ∈ C, (3)

∑
i∈N

xikv −
∑
j∈N

xkjv = 0 ∀k ∈ N∖{𝑑},∀v ∈ V , (4)

∑
i∈N

yikv −
∑
j∈N

ykjv = qkxikv ∀k ∈ N∖{𝑑},∀v ∈ V , (5)

yijv ≤ (kv − qi)xijv ∀(i, j) ∈ A,∀v ∈ V , (6)

yijv ≥ qjxijv ∀(i, j) ∈ A,∀v ∈ V , (7)

∑
j∈C

xdjv ≤ mv ∀v ∈ V , (8)

xijv ∈ {0, 1} ∀i, j ∈ N,∀v ∈ V . (9)

yijv ≥ 0 ∀(i, j) ∈ A,∀v ∈ V . (10)
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In the above formulation, the objective function (2) minimizes the total cost to serve all customers with the chosen fleet of

vehicles. Note that value cijv is computed according to the unit cost per km associated with the pollutant emissions and weight

class of vehicle v and the street crossing penalty 𝛿ijv, depending on both the street and the vehicle. This unit cost is then multiplied

by the length lij of arc (i,j)∈A. Constraint (3) specifies that a customer is visited exactly once, while constraint (4) specifies

that if a vehicle visits a customer, it must also depart from them. Constraint (5) is the so-called flow-commodity constraint,

specifying the difference between the quantity of goods a vehicle carries before and after visiting a node. Constraint (6) ensures

that the capacity of the selected vehicle is never exceeded. Constraint (7) guarantees that the value yijv must be at least equal to

qj if a vehicle v crosses the arc (i,j)∈A. Constraint (8) fixes the maximum number of vehicles of each type v that may leave the

depot. Finally, (9) and (10) define the decision variables.

4 THE RESOLUTION APPROACH

In this section we describe in detail the main components of the proposed matheuristic. It has been designed as a resolution

technique by combining the well-known max-saving (MS) heuristic [10, 19] with the MILP model, presented in functions

(2)–(10) in the previous section. In particular, we suitably modified the MS heuristics to solve the GVRP related to the grocery

distribution problem under analysis.

A technique often used to apply a matheuristic is to partition the problem into smaller subproblems through the use of

any heuristic procedure [1]. The generated subproblems are then solved by the corresponding mathematical model. Eventually,

the solutions of these subproblems are used to obtain a solution of the original problem. In a recent paper [13], the authors

proposed this kind of matheuristic approach to solve a problem arising in the management of a bike-sharing system. In our

approach, in contrast, the MS heuristic is first modified in order to obtain not just one but a very large number of feasible

solutions. We then use the modified heuristic to determine which arcs of the graph have a high likelihood of being part of a

good feasible solution and, at the same time, which arcs have a high probability of being discarded. More precisely, the goal

of our proposed matheuristic is to check if there is, in the considered urban transportation network G, any type of arc that is

very often either excluded or selected in the solutions found by MS heuristics. In particular, we are confident that this approach

prioritizes selection of the arcs with lower values of the penalty 𝛿ijv, thus modifying what would be the optimal path, which

would ordinarily have the minimum distance as its objective function. Note that a feasible solution is always ensured by MS

heuristics. However, in the design of our matheuristic we will carry out a careful tuning analysis of the various parameters

involved in the instance. Thus we will highlight the relationship (if any) between the various parameters associated with the

arcs and the variations of the solutions produced.

This information about the probability of each arc being selected will be used to appropriately reduce the number of arcs

of graph G by removing those arcs with low probability of being selected in the optimal solution. Consequently, the model will

have an easier instance to solve. In some sense, we are looking for the “core” of the problem and are interested in narrowing

down the potential solutions as much as possible.

4.1 MS implementation and CG technique
In this subsection we describe in detail the modified MS procedure used to generate many different solutions (not necessarily

feasible) that we will use to “reduce” the size of the instances to be solved by model (2)–(10). It is worth observing that the MS

procedure we implemented is not intended to create feasible solutions, but only to create sets of routes useful for suggesting the

set of arcs, that is variables, to be considered in the MILP model. The procedure suggests to us which arcs of G to remove and

which arcs we should confidently choose (and so it also suggests which model variables should be, a priori, set equal to 0 and

which variables should be set equal to 1).

The whole procedure is as follows. We execute the MS procedure by selecting each type v of vehicle one at a time, and

we create a number of routes equal to the number of customers that can be served by a vehicle of type v. The MS solution

is represented by a set of routes S such that |S|≤ |C|. These mini routes, which each serve only one customer, will be of the

type d-j-d for each served customer j ∈ C. Then, for each pair of routes, say 𝜌1 and 𝜌2, the savings resulting from both the

𝜌1-𝜌2 merger and the 𝜌2−𝜌1 merger are calculated (see Figure 1); this is done by either queuing the customers of 𝜌2 to 𝜌1 or by

queuing the customers of 𝜌1 to 𝜌2. If there are no positive savings, the procedure ends. Finally, all possible savings are sorted

in nonascending order and, from these, a random savings belonging to the first 25% of the ordered savings is chosen. The route

merger associated with this last savings is applied.

To improve the solutions provided by the MS procedure, we apply the CG technique proposed by Cerrone et al. [8]. This

previous study experimentally showed that compared to the solutions provided by a classic greedy algorithm, the solutions

produced by CG contain more elements belonging at the same time to some optimal solution of the problem. Assuming that
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FIGURE 1 Routes p1 and p2 in (A) are merged into a single route shown in (B). Arcs (2, d) and (d, 5) are removed from the solution and arc (2,5) is inserted

in their place. The cost difference between the two cases determines the savings obtained [Color figure can be viewed at wileyonlinelibrary.com]

CG will do the same for the GVRP currently under study, we apply the technique in conjunction with our randomized version

of the savings algorithm.

The basic steps of the CG algorithm, applied to our MS procedure, can be summarized as follows:

Step 1: A partial solution is built.
Run MS algorithm;

(A) After the merge iteration, a pair of routes are merged according to their greedy function (the saving function).

Each route defined in this merging operation is induced by a choice made by the algorithm; the chosen operations

(choices) are stored in the order in which the MS algorithm performs them.

In our implementation, the sequence of merge operations is stored as an array of arcs CL for each arc used to

merge two routes together.

(B) Drop some of the last 𝛽 choices (usually 𝛽 = 3).

Since CG works on incomplete solutions, we use the 𝛽 parameter to define how many (of the latest route merging

operations) have to be undone.

Step 2: For a given number 𝛼 of iterations (usually 𝛼 = 1 ride), the partial solution is modified by iteratively discarding the
oldest merger of routes and making a new one.
Drop the oldest merger of routes;

Choose a new one using the MS algorithm.

Since CG is used to give greedy algorithms the possibility of repeating the choices made several times, the 𝛼

parameter is used to establish how many times to re-elaborate each choice. Each route merger operation performed

by the MS is canceled and, if necessary, recreated exactly 𝛼 times, in the same order in which the MS algorithm

originally performed them.

Step 3: The partial solution is completed.

Run MS procedure initialized with the routes obtained after Step 2.

Figure 2 reports an example of the CG-MS algorithm execution. Figure 2.1–5 shows the execution of the MS algorithm, as

described in step 1.A above. The algorithm starts with one route per customer and sequentially merges the routes by using arcs

(1,3), (4,5), (3,2) and (2–4). In Figure 2.6 the execution of step 1.B is represented in the case of parameter 𝛽 = 2. In Figure 2.7–10

the 𝛼|CL| iterations of step 2 are represented. In particular, Figure 2.7 shows the elimination of arc (1,3) from the solution and

then the selection of arc (5,2) by using the greedy technique of MS; it should be noted that the total number of routes does not

change in these iterations. Figure 2.8 and 9 shows, respectively, the elimination of arcs (4,5) and (5,2) from the solution and

then the selection of arcs (2,3) and (3,1). Unlike in the previous iterations, Figure 2.10 shows us that, after arc (2,3) is removed

from the solution, it can be selected again. Finally, Figure 2.11 and 12 are related to step 3; in this step the carousel scheme

selects arcs to add to the solution until the stopping criterion is reached.

For each type of vehicle v the procedure described above is iterated 1000 times, and the frequency FR with which this

vehicle is present in the solution generated is associated with each arc. Therefore, the value of FR, which is between 0 and 1000,

represents an estimate that variable xijv is set to 1 in the final optimal solution.

Finally, we consider three different measures to select the most promising arcs belonging to graph G to be given as input to

model (2)–(10). More precisely, for each node i ∈ V we select only the first k arcs leaving from i having:

1) larger FR (k/3 arcs are selected);

2) smaller cost/FR (k/3 new arcs are selected);

3) larger cost*FR (the remaining k/3 arcs are selected).

http://wileyonlinelibrary.com
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FIGURE 2 An example of the carousel greedy-max-saving algorithm execution [Color figure can be viewed at wileyonlinelibrary.com]

Note that (condition 1) implies that we select the arcs most frequently chosen by CG in its solutions. Condition 2 means that

we choose the least expensive arcs with respect to the number of times they have been selected by CG. This policy obviously

favors the arcs associated with smaller 𝛿ijv values. Finally, selecting arcs with a large cost*FR value means rewarding those arcs

which, although expensive, have been selected often by CG.

In this procedure, the role of the parameter k is very important; in fact, as this value increases, the number of xijv and yijv
variables present in the model will increase. This increases the probability of improving the value of the solution produced, but

it greatly penalizes the execution time of the technique.

5 TEST CASE: THE URBAN NETWORK OF THE CITY OF MILAN

In this section we report the computational experimentation of the proposed MILP model and matheuristic together with the

evaluation of the impact of the penalty parameters δijv for avoiding the crossing of bicycle lanes on the optimal routes.

We assume that set V of the fleet of nonhomogeneous vehicles is given by V = V1 ∪ V2 ∪ V3. Table 1 reports the main

characteristics of the three classes of vehicles considered in this study. In particular, the “Weight” and “Euro Class” columns

give the information necessary to compute the coefficient cijv given in Equation (1) defining the traveling unit cost of each type

of vehicle; values cijv, ∀v∈V and ∀v(i, j)∈A are then used in the objective function (2) of the proposed MILP model reported

in Section 3. The “Size” and “Capacity (expressed in Boxes)” columns provide information about the loading capacity of the

vehicles. In fact, for simplicity of representation, we consider that the goods to be delivered are contained in boxes of equal

size and the boxes are such that they can also be transported by scooter; therefore, the capacity of each vehicle refers to the

maximum number of boxes that vehicles can contain. Finally, the “Authorized to deliver” column expresses the compatibility

of a vehicle of type vt, to serve customer i ∈ N with product p; this compatibility depends on the type of order, that is, fresh or

dry products or a combination.

http://wileyonlinelibrary.com
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TABLE 2 Unit cost per km for each type of vehicle

Vehicle type Traveling cost (€) Air pollution cost (€)

1 0.020 —

2 0.142 0.039

3 0.246 0.053

FIGURE 3 (A) Private transportation network of Milan; (B) Map of the bicycle lanes [Color figure can be viewed at wileyonlinelibrary.com]

Table 2 reports the unit traveling cost tv and the pollutant emission cost ev of the considered types of vehicles. Note that all

vehicles of the same type v have the same costs and capacity.

All the instances that are tested and reported here originated in the urban and metropolitan areas of the city of Milan (Italy).

We chose Milan because it is one of the smartest European cities from a sustainable mobility point of view; at the same time, it is

unfortunately also one of the cities most affected by the coronavirus pandemic. For this reason, the municipality is implementing

tactical urban planning to offer alternatives to cars and to expand the cycle paths. In particular, the urban mobility plan foresees

the construction of 35 km of new bike paths by spring 2021. Half of the cycle lanes will start from the suburbs of the city and

will arrive near the center, thus offering a valid alternative to public transport. Note that cycling in Milan is easy because the

city is not large (the distance between the districts located on the east and west sides is about 13 km) and it is flat. The street

map of Milan is shown in Figure 3; in particular, Figure 3(A) depicts the roads traveled by private vehicles, while Figure 3(B)

shows only the bicycle lanes. To better show the incidence of the bicycle lanes in the whole transportation network of the city,

Figure 4 integrates these two maps into a single road map.

In order to generate the digraphs used as input for all instances of the problem, the GIS data related to the map of the city

of Milan have been extracted from the repository OpenStreetMap [6, 18]. Using this data source, we created a road graph G
containing 20.554 nodes and 36.073 arcs. For each arc (i,j) ∈ A thus derived, some information relevant to the cycling conditions

on the corresponding street have been additionally extracted. More precisely, a numerical value has been associated with each

street in the most central area of Milan that can be covered by bicycle. This value, ranging from [1, 3], has been used to fix the

street crossing penalty 𝛿ijv, according to the values reported in Table 3. In practice, since we decided to penalize commercial

vehicle traffic on roads shared with bicycles, we have chosen to use an increasing value for the parameter 𝛿ijv, as the space

dedicated to bicycles on the roadway decreases. We observe that no penalty is associated with vehicles of type v = 1, that is,

electric scooters.

The streets of Milan mainly penalized by parameter 𝛿ijv = 3 are enhanced in Figure 5 by red lines, while those penalized by

parameter 𝛿ijv = 2 are represented by orange lines; the more lightly penalized streets having parameter 𝛿ijv = 1 are represented

in green. A light color represents the streets without any active penalization. Figure 5 illustrates an instance of the problem: the

depot, where the grocery goods are stored, is identified by a black dot inside a circle, while the green points are the residential

customers (here |C| = 50).

http://wileyonlinelibrary.com
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FIGURE 4 Road map of the city of Milan [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 The chosen street crossing penalty values

𝜹ij

Type of street v = 1 v = 2 v = 3

Ample bicycle space 1 1.5 1.5

Sufficient bicycle space 1 2 2

Scarce bicycle space 1.5 3 3

It is worth noting that all of our computational experimentations are performed by randomly generating customer demand,

splitting it among fresh, dry and mixed orders. Finally, in each instance customers are selected within the residential areas

among nodes of the network. The number of customers varies from 20 to 140.

In the following, we report the computational results based on 11 different test instances, depending on the number of

customers. All the code has been implemented in Java, using CPLEX version 12:8 as a solver. All tests were performed on a

laptop with the following hardware features: MacBook Pro, processor Intel 2.3GHz, 4 core 32GB RAM.

In all instances assume that each type of vehicle v, v = 1, 2, 3, deliver to at most five routes; therefore, we set the corre-

sponding values of mv to m1 = 15 and m2 = m3 = 3, which corresponds to the maximum allowed number of routes traveled by

each type of vehicle equal to 45, 15, and 15, respectively. With regard to the demand, each customer i∈C is randomly associ-

ated with a quantity qip > 1 such that the total number of boxes to deliver is equal to |C| *3, that is, three times the number of

customers. This demand is then divided between 20% fresh and 80% dry products.

Table 4 reports the results of the proposed MILP model (2)–(10): the first columns report the results of model (2)–(10)

when the street crossing penalty values 𝛿ijv are considered in the definition of the unit cost (see Equation (1)), while the last

columns report the results when these penalty values are not considered. The column headings, which provide more detail, are

as follows. “Customers” refers to the number of customers of the corresponding class of instance. For the information related to

model (2)–(10), both with and without the penalty values, the column “Obj. value (2)” gives the optimal value of the objective

function of the proposed MILP model (2)–(10), while “CPU Time (sec)” is the running time of the model required to find the

optimal solution. Note that, since the maximum execution time has been fixed to 1 h, a value equal to 3600 s means that the

model was not able to return the optimal solution within the given amount of time; in this case, for the last four instances we

obtain optimality gaps equal to (0.49, 0.98, 3.25, 9.14)%, respectively. “Length (km)” is the sum of the length of all the generated

routes, while “Routes” is the number of routes required to serve all customers. Finally, the “Vehicles (v1/v2/v3)” column gives

the value that corresponds, respectively, to the number of routes traveled by vehicles of type v = 1, 2, 3. We again note that

the vehicles not suitable for delivering the type of products (fresh, dry or both fresh and dry) required by customers were not

generated a priori and hence are not considered in the model.

Based on Table 4, it is easy to see that the retail company for which we are conducting the study would be able to guarantee

the delivery of the required products to customers by maintaining its fleet of light commercial vehicles of type v = 2 and v = 3

http://wileyonlinelibrary.com
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FIGURE 5 An instance of the problem, showing penalization for each street [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Computation results of the proposed MILP model

MILP MODEL
MILP MODEL WITHOUT STREET

CROSSING PENALTY

Customers
Obj.
value (2)

CPU
time (sec)

Length
(km) Routes

Vehicles
(1/2/3)

Obj.
value (2)

CPU
time (sec)

Length
(km) Routes

Vehicles
(v1/v2/v3)

20 14.37 1 11.55 10 9/0/1 10.85 1 11.31 10 9/0/1

30 17.72 2 19.97 14 13/0/1 12.63 2 17.10 11 10/0/1

40 22.36 22 22.92 18 16/1/1 16.27 30 21.17 18 16/1/1

50 28.31 43 22.02 19 18/0/1 21.03 45 19.30 16 15/0/1

60 32.02 144 32.37 24 23/0/1 22.82 127 27.37 20 19/0/1

70 34.07 151 39.57 30 29/0/1 25.17 190 37.42 28 27/0/1

80 42.01 408 38.99 28 26/1/1 29.76 883 37.64 28 26/1/1

90 37.07 3600 40.30 30 28/0/2 28.39 3609 35.02 27 25/0/2

100 41.72 3608 48.02 42 40/0/2 30.41 3606 38.36 32 30/0/2

120 47.71 3600 37.45 29 25/2/2 33.51 3601 36.46 30 27/1/2

140 62.46 3600 67.27 55 52/1/2 44.62 3600 52.94 45 41/2/2

TABLE 5 Comparison (%) between the optimal
solution obtained by the MILP model with and
without the street crossing penalty with respect to
the selected routes

GAP

Customers Length (km) Routes v = 1

20 2% 0% 0%

30 17% 27% 30%

40 8% 0% 0%

50 14% 19% 20%

60 18% 20% 21%

70 6% 7% 7%

80 4% 0% 0%

AVG 10% 10% 11%

http://wileyonlinelibrary.com
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TABLE 6 Computation results of the proposed matheuristic with a time limit of 600 s

Matheuristic

Customers k Obj. Value (2) % gap CPU Time Length Routes Vehicles

20 8 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 3 19.97 14 13/0/1

40 22.36 0.0% 20 22.99 18 16/1/1

50 28.39 0.3% 8 21.19 18 17/0/1

60 33.38 4.2% 56 28.41 19 17/1/1

70 36.51 7.2% 55 33.75 22 20/1/1

80 44.14 5.1% 514 34.20 21 18/2/1

90 35.33 4.5% 603 35.53 23 21/0/2

100 45.88 10.0% 604 32.59 22 20/0/2

120 45.04 1.3% 604 36.89 24 20/2/2

140 63.91 2.3% 607 40.00 24 19/3/2

20 10 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 3 19.97 14 13/0/1

40 22.36 0.0% 27 23.06 18 16/1/1

50 28.31 0.0% 18 22.02 19 18/0/1

60 32.45 1.3% 71 32.45 23 22/0/1

70 35.16 3.2% 73 38.20 26 24/1/1

80 43.48 3.5% 602 37.25 25 22/2/1

90 37.27 2.3% 330 37.86 26 23/1/2

100 45.66 9.4% 603 36.33 26 23/1/2

120 47.82 4.2% 604 38.64 26 23/1/2

140 64.94 4.0% 606 41.99 26 21/3/2

20 12 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 3 19.97 14 13/0/1

40 22.36 0.0% 21 22.94 18 16/1/1

50 28.31 0.0% 18 22.02 19 18/0/1

60 32.02 0.0% 61 32.38 24 23/0/1

70 34.12 0.1% 64 37.52 27 25/1/1

80 43.18 2.8% 526 39.75 27 24/2/1

90 36.61 0.5% 462 40.14 28 25/1/2

100 42.93 2.9% 605 40.85 32 29/1/2

120 43.94 0.6% 604 37.21 28 25/1/2

140 58.21 −6.8% 606 49.07 33 29/2/2

20 14 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 3 19.97 14 13/0/1

40 22.36 0.0% 31 22.92 18 16/1/1

50 28.31 0.0% 36 22.02 19 18/0/1

60 32.02 0.0% 79 32.37 24 23/0/1

70 34.11 0.1% 81 36.32 27 25/1/1

80 42.35 0.8% 167 39.46 28 26/1/1

90 36.48 0.2% 602 39.77 29 27/0/2

100 42.59 2.1% 603 42.48 34 32/0/2

120 42.13 −0.2% 605 38.81 28 25/1/2

140 59.64 −4.5% 607 48.05 33 29/2/2

and involving more scooters. Further, in order to avoid traveling along the bicycle paths as much as possible, the total length of

the routes increases by 9.84% on average, with minimum and maximum values, respectively, of 2.13% and 18.26%. Note that

these values refer only to the instances solved to optimality, that is, those with 20–80 customers. Moreover, when the penalty

values 𝛿ijv are considered in the objective function (2), in the MILP model the overall distribution cost increases by about 8.5%

on average, with the increase ranging from 2% to 15.5%. Further, considering that the average increase in the length of the route

(9.84%) is greater than the increase in cost (8.52%), it can be assumed that the MILP model favors the use of less-expensive

vehicles, such as electric scooters.
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TABLE 7 Computation results of the proposed matheuristic with a time limit of 1800 s

Matheuristic

Customers k Obj. Value (2) % gap CPU Time Length Routes Vehicles

20 8 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 2 19.97 14 13/0/1

40 22.36 0.0% 17 22.99 18 16/1/1

50 28.39 0.3% 6 21.19 18 17/0/1

60 33.38 4.2% 50 28.41 19 17/1/1

70 36.51 7.2% 45 33.75 22 20/1/1

80 44.14 5.1% 518 34.20 21 18/2/1

90 35.33 4.5% 1803 35.53 23 21/0/2

100 45.6 9.3% 1804 32.41 22 20/0/2

120 45.04 1.3% 1805 36.89 24 20/2/2

140 62.44 0.0% 1807 39.91 24 19/3/2

20 10 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 3 19.97 14 13/0/1

40 22.36 0.0% 25 23.06 18 16/1/1

50 28.31 0.0% 17 22.02 19 18/0/1

60 32.45 1.3% 61 32.45 23 22/0/1

70 35.16 3.2% 64 38.20 26 24/1/1

80 43.48 3.5% 887 37.25 25 22/2/1

90 37.27 2.3% 392 37.86 26 23/1/2

100 45.33 8.7% 1803 36.30 26 23/1/2

120 42.94 −1.4% 1806 36.48 26 23/1/2

140 60.85 −2.6% 1814 46.16 29 24/3/2

20 12 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 2 19.97 14 13/0/1

40 22.36 0.0% 23 22.94 18 16/1/1

50 28.31 0.0% 22 22.02 19 18/0/1

60 32.02 0.0% 72 32.38 24 23/0/1

70 34.12 0.1% 69 37.52 27 25/1/1

80 43.18 2.8% 649 39.75 27 24/2/1

90 36.61 0.5% 560 40.14 28 25/1/2

100 42.86 2.7% 1804 40.90 32 29/1/2

120 41.43 −1.3% 1807 36.20 28 25/1/2

140 57.98 −7.2% 1809 47.24 31 27/2/2

20 14 14.37 0.0% 1 11.55 10 9/0/1

30 17.72 0.0% 2 19.97 14 13/0/1

40 22.36 0.0% 30 22.92 18 16/1/1

50 28.31 0.0% 37 22.02 19 18/0/1

60 32.02 0.0% 83 32.37 24 23/0/1

70 34.11 0.1% 91 36.32 27 25/1/1

80 42.35 0.8% 196 39.46 28 26/1/1

90 36.48 0.2% 888 39.81 29 27/0/2

100 42.39 1.6% 1804 43.31 35 33/0/2

120 42.14 −0.3% 1806 37.11 28 25/1/2

140 58.54 −6.3% 1811 47.08 32 27/3/2

Table 5 provides a more detailed comparison between the results obtained by model (2)–(10) in two cases, one with and

one without the penalty values 𝛿ijv for the transit of commercial vehicles near bicycle lanes. We see that when considering the

penalty values 𝛿ijv, the overall length of the selected routes increases, on average, by 10%. This result is expected because in

order to avoid traveling on the streets used by bicycles as much as possible, it is quite unavoidable that the route will become

longer. The total number of routes increases as well. The reason for this increase can be seen from column “v = 1,” which shows

the number of routes traveled by type 1 vehicles when the penalty is active. In fact, these vehicles have 𝛿ij1 = 1, corresponding to

no penalty, on almost all streets; thus the models favor their use, although these vehicles have a much smaller capacity than the
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TABLE 8 MILP gap (in %) of the solution obtained by the matheuristic in
600 seconds of CPU time with respect to the MILP model

Customers k = 8 k = 10 k = 12 k = 14 Average

20 0.0% 0.0% 0.0% 0.0% 0.0%
30 0.0% 0.0% 0.0% 0.0% 0.0%
40 0.0% 0.0% 0.0% 0.0% 0.0%
50 0.3% 0.0% 0.0% 0.0% 0.1%
60 4.2% 1.3% 0.0% 0.0% 1.4%
70 7.2% 3.2% 0.1% 0.1% 2.6%
80 5.1% 3.5% 2.8% 0.8% 3.0%
90 4.5% 2.3% 0.5% 0.2% 1.9%
100 10.0% 9.4% 2.9% 2.1% 6.1%
120 1.3% 4.2% 0.6% −0.2% 1.5%
140 2.3% 4.0% −6.8% −4.5% −1.3%
AVG 3.2% 2.5% 0.0% −0.1%

TABLE 9 MILP gap (in %) of the solution obtained by the matheuristic in
1800 seconds of CPU time with respect to the MILP model

Customers k = 8 k = 10 k = 12 k = 14 Average

20 0.0% 0.0% 0.0% 0.0% 0.0%
30 0.0% 0.0% 0.0% 0.0% 0.0%
40 0.0% 0.0% 0.0% 0.0% 0.0%
50 0.3% 0.0% 0.0% 0.0% 0.1%
60 4.2% 1.3% 0.0% 0.0% 1.4%
70 7.2% 3.2% 0.1% 0.1% 2.6%
80 5.1% 3.5% 2.8% 0.8% 3.0%
90 4.5% 2.3% 0.5% 0.2% 1.9%
100 9.3% 8.7% 2.7% 1.6% 5.6%
120 1.3% −1.4% −1.3% −0.3% −0.4%
140 0.0% −2.6% −7.2% −6.3% −4.0%
AVG 2.9% 1.4% −0.2% −0.3%

other types of vehicles. In particular, it is easy to observe that the increase in the number of routes corresponds to the increase

of routes performed with type 1 vehicles. Note that Table 5 reports only the values up to 80 customers, for which we obtain the

optimal solution by the MILP model within the time limit of 3600 s.

Tables 6 and 7 show the results of the proposed matheuristic with the processing time of the MILP model fixed at 10 and

30 min, respectively. In both tables we have hypothesized four values for the parameter k: k = 8, 10, 12, and 14. As in Table 4,

for each scenario we report the value of the objective function (2), the optimality gap (in %) with respect to the MILP model

(2)–(10) (after 3600 s), the CPU time (seconds), the total length traveled by the vehicles (km), and the number of routes and

vehicles used for each type.

To better understand the data reported in Tables 6 and 7, Tables 8 and 9 provide a more in-depth analysis of the results,

showing the values of the optimality gap as the number of customers and the value of the parameter k increase. A positive

gap (enhanced in red) indicates that the matheuristic has produced a worse result than the MILP model, while a negative value

(highlighted in green) indicates a better result than that of the MILP model. As expected, it is possible to have better values only

in the case of instances that have not been resolved by the mathematical model within the time limit of 3600 s.

Table 8 shows that as k increases, the solutions produced improve significantly. In fact, as discussed in Section 4, as parameter

k increases, the number of variables not fixed to zero by the matheuristic procedure increases. This means that the MILP model

could potentially produce better solutions having more free variables. Thus, we begin to see a penalty for widening the research

space by adding more variables. This behavior is evident when observing the scenario related to k = 14, where the improvement

compared to the MILP model solutions obtained in 1 h of processing time is very low compared to the results obtained with

the other values of k. Remembering that the results reported in Table 8 refer to the results reported in Table 4, we note that the

optimal solution for the MILP model has only been obtained with instances up to 80 customers. To better verify this behavior,

Table 9 shows the results obtained in 600 s of CPU time for the matheuristic procedure. In these cases, we are able to improve

the results obtained for the largest instances and k = 14. As a further consideration, readers can note that as k increases, the
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FIGURE 6 Optimality gap (in %) of the solution obtained by the matheuristic in 600 s of CPU time with respect to the MILP model [Color figure can be

viewed at wileyonlinelibrary.com]

FIGURE 7 Optimality gap (in %) of the solution obtained by the matheuristic in 1800 seconds of CPU time with respect to the MILP model [Color figure

can be viewed at wileyonlinelibrary.com]

processing time increases. Moreover, there are no significant differences between Tables 8 and 9 up to instances with more than

90 customers. This means that it is sufficient to set the maximum CPU time to 10 min. Finally, in the column corresponding to

k = 14 up to 90 customers, the gap is always less than 1%.

At a first glance, it would seem obvious that the parameter k should be increased, and the execution time for the matheuristic

should possibly be increased as well. However, looking at the results of the instance with 140 customers in Table 8 and the

instances with 120 and 140 customers in Table 9, we observe that the best result is obtained with k = 12. From these tests it is

clear that, once the time available for our procedure has been fixed, the parameter k must be chosen in relation to the size of

the instance to solve. In particular and as we can see from the last two rows of Table 9, as the size of the instance increases,

a smaller value k helps us to contain the growth in the number of variables and, consequently, to improve the quality of the

solution produced in a given time limit.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The optimality gap of the proposed matheuristic with time limits of 600 and 1800 s, respectively, is represented in Figures 6

and 7. For all instances when the time limit is reached, we compared the matheuristic with the best solution produced by the

MILP model in the corresponding time limit of 3600 s.

6 CONCLUSION AND FUTURE WORK

In this paper we have addressed a variant of the GVRP of heterogeneous fleets, in which the objective function includes environ-

mental impact cost components. In addition, we have introduced a new family of constraints that explicitly penalize routes that

intersect or pass too close to bicycle lanes. For this problem we have proposed a mixed integer linear programming model and

a matheuristic associated with it. We used this approach to analyze numerous instances related to the city of Milan (Italy). The

present problem originated from the need for a B2C company to facilitate mobility on two wheels, as requested by the munici-

pality of Milan to cope with the reduction in public transport capacity following the Covid-19 pandemic while also minimizing

vehicular traffic congestion.

The reported results related to instances of different sizes, all derived from the graph representing the urban and metropolitan

areas of Milan, which has more than 20 500 nodes and 36 000 arcs, demonstrate the effectiveness of the proposed matheuristic.

Moreover, it is evident that the value of the penalty parameters, which depend on both the arcs of the graph and the type of

vehicle chosen, affected the solutions obtained. As predicted, the need for safe cycling routes leads to a higher traveling cost

for vehicle routing solutions. Yet surprisingly, the cost of the routes, considering the penalty coefficient, is on average only 9%

greater than the cost of the routes obtained without considering the penalty, while the total length increase is only about 10%

on average. In the future, we aim to carry out new computational experiments for instances related to different European cities.

These new tests will allow us to verify whether the results obtained for the city of Milan are exceptional (due to the particular

structure of the city road network) or whether they are independent of city-specific factors and it is therefore reasonable to

expect similar results for other cities.
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