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Abstract: Thermal, electrical and mechanical stresses age the electrical insulation systems of high
voltage (HV) apparatuses until the breakdown. The monitoring of the partial discharges (PDs)
effectively assesses the insulation condition. PDs are both the symptoms and the causes of insulation
aging and—in the long term—can lead to a breakdown, with a burdensome economic loss. This paper
proposes the convolutional neural networks (CNNs) to investigate and analyze the aging process of
enameled wires, thus predicting the life status of the insulation systems. The CNNs training does
not require any kind of assumption of how the factors (e.g., voltage, frequency and temperature)
contribute to the life model. The experiments confirm that the proposal obtains better estimations of
the life status of twisted pair specimens concerning existing solutions, which are based on strong
hypotheses about the life model dependency on the factors.

Keywords: predictive maintenance; convolutional neural networks; partial discharges

1. Introduction

The online monitoring of high voltage (HV) apparatuses prevents economic losses
due to the breakdown of an insulation system [1,2]. Usually, the conditions of an electrical
machine are assessed via periodical checks, which cause a temporary disservice and a waste
of money. Conversely, online predictive maintenance estimates the status of the insulation
system without interrupting the normal functioning [3]. As a consequence, interventions
are scheduled only if needed. Automated online monitoring, though, should be supported
by effective models that can reliably assess aging phenomena. From this perspective,
the literature shows that existing solutions still need to be improved. Among the diagnostic
techniques, partial discharges (PDs) are a valuable indicator of the insulation condition [4,5].
According to the standard IEC 60270, a partial discharge is a localized, electrical discharge
that only partially bridges the insulation between conductors; it can (or cannot) occur
adjacent to a conductor. In practice, PDs are both the symptoms and the causes of electrical
aging in insulation systems. The phenomenon starts when the electric field locally exceeds
the breakdown strength limit of insulating material: a local concentration of electrons
yields a polarization that causes an electron avalanche. PDs can lead to the breakdown of
the insulation. Thus, by detecting PDs, one can estimate the aging status of the insulation.
Accordingly, one can program the corresponding maintenance intervention [6].

The literature proved that online monitoring systems can exploit PD detection to
support predictive maintenance. Indeed, this paper aims to address three prominent
issues of automated online aging monitoring. The first issue is the ability to infer the
lifespan of the apparatus under analysis by exploiting a mathematical model. Most of the
existing solutions rely on explicit models, which require a high level of expertise in the
system [7]. In fact, one, in general, uses empirical observations to set the parameters of such
a mathematical model. Explicit models become impracticable when the complexity of the
device under analysis grows, as the challenge is to identify, a priori, a proper function that
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fits the relation between inputs and outputs well [8]. In real applications, the monitored
apparatus (e.g., industrial motor, oiled-paper insulated transformers, gas-insulated systems,
etc.) is compounded by many electrical and mechanical parts, making it troublesome,
considering all kinds of factors that can age the insulation during normal functioning.
Furthermore, it is very difficult to take into account disruptive changes (e.g., power supply
over-voltage), which may accelerate the degradation of the system. Indeed, the explicit
models cannot predict online the current status of the insulation system, but they can
only state the expected time-to-failure [9,10]. Thus, it seems unrealistic to build an explicit
empirical model that can reliably predict the aging status of a complex apparatus. Artificial
Intelligence (AI) overcomes this issue by learning models directly from the data (namely,
a data-driven approach), without any kind of prior knowledge of the problem. The existing
approaches that use AI for the predictive maintenance of insulation systems are categorized
as severity techniques and are mostly based on clustering strategies [11–13]. Thus, they
assign the apparatus to one among a predefined set of levels, which qualitatively represent
the life conditions of the insulation system [14].

The second issue is the selection of the features that will be processed by the model
that infers the aging phenomena. First of all, the features must characterize the phenomena.
Indeed, aging prediction requires information about the status of the insulation system.
A valuable option is the phase-resolved partial discharge (PRPD) pattern [15], also known
as the PD pattern: a two-dimensional array containing the occurrences of the PDs’ quan-
tized amplitudes with respect to the power supply phase. Skilled human annotators can
extract significant information about the aging of an apparatus using PD patterns [16].
In addition, these patterns are often adopted with AI techniques for the severity classifica-
tion task. Actually, most of the AI techniques cannot process PD patterns directly; hence,
expert designers proposed hand-crafted descriptors [14,17]. However, the definition of the
feature set is critical and is influenced by the characteristics of the device under analysis, in-
volving cost and technical difficulties. Convolutional Neural Networks (CNNs), conversely,
do not require a predefined feature space as input. The CNN architectures are organized
as stacked layers that exploit the convolution operation; overall, the layers act as filters
that progressively extract meaningful features from the input signal. Actually, the training
procedure has the objective of properly tuning such filters; as a major result, the task of
feature extraction is implicitly transferred to the CNN. In the application at-hand, CNNs
can receive as input the raw PRPD, which in practice is a 2-dimensional signal. Moreover,
CNNs have already been successfully employed in pattern recognition problems involving
partial discharges [18–20]. In view of these considerations, this paper proposes the use of
CNNs to automatically extract the feature set from the data.

PD patterns are also useful for overcoming the last issue: existing models struggle
to monitor disruptive events that abruptly change the status of the insulation system.
Explicit empirical approaches lead to ideal models that, by construction, miss this kind
of phenomena [21]. Severity detection techniques can provide qualitative information,
as they can distinguish run-time changes in the lifespan of an apparatus. However, they
fail in assessing the actual aging of the insulation system online [14,21–25]. In this paper,
the proposed framework assigns, at run-time, an aging score to the apparatus by periodically
extracting a PD pattern from the monitored device. Thus, it can detect disruptive events
in real-time.

This research shows that CNNs can support an effective model for the real-time
assessment of the aging status of electrical insulation systems. The proposed approach
inherently addresses the three issues analyzed above. Given the availability of a training set,
the inference function can be learned without any prior information about the monitored
apparatus. Moreover, CNNs extract significant features from raw data naturally. Finally,
once the training phase is concluded, the model infers the aging status of the device at time
t? by using only the single PD pattern extracted at time t?.

The paper addresses three fundamental aspects for the development of the CNN-
based framework: (1) the definition of a proper loss function; (2) the selection of the most
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convenient architecture for the CNN; and (3) the techniques to be employed to obtain good
accuracy even when exploiting a limited amount of data during the training phase.

The experimental session involved a set of specimens that underwent aging tests
according to standard IEC 60851-5. Experimental outcomes proved that the CNN-based
framework improved over state-of-the-art techniques in terms of prediction accuracy.

Contribution

This paper shows that CNNs can support an effective methodology to assess insulation
lifetime. In the proposed end-to-end approach, a 2-D CNN receives as input PRPD images
to estimate the aging status of twisted pairs specimens, thus implementing a regression
function. As far as the authors know, this is the first time that an automatic method
based on CNN has been employed to predict the remaining life of insulation systems,
without exploiting any knowledge of the domain.

Overall, the contribution of the paper can be summarized as follows:

• The use of CNNs in the online assessment of the aging status of electrical insulation sys-
tems;

• A design strategy for the effective training of CNNs involving the problem definition,
data processing, and model selection;

• An empirical study, with data collected in the laboratory, that confirms the effective-
ness of the proposed solution.

The remainder of the paper is organized as follows: Section 2 revises the state-of-
the-art; Section 3 introduces the proposed framework and the adopted CNN architecture;
Section 4 presents the experimental setup; while Section 5 analyzes the outcomes of the
experimental session. Eventually, Section 6 compares the proposal with the state-of-the-
art algorithms.

2. Related Works

In the literature, two main categories of works targeted the design of frameworks that
assess the status of the insulation system using PDs. The first category addressed the sever-
ity classification problem by grouping the PDs based on the condition of the specimen’s
life status. The severity classification may assess the changes of the apparatus lifespan,
but the choice of the number of the classes may yield inaccurate prediction: the higher
the number of classes, the higher the number of data required for the training; the lower
the number of classes, the higher the risk of classifying apparatuses that can still live for
years or are close to breakdown within the same severity category. Indeed, all the methods
provide only a qualitative analysis of the aging status of the insulation, without scoring
the actual condition. The upper part of Table 1 summarizes the references about severity
classification [14,22–25]. The table provides the testing environment, the feature extraction
and reduction strategy, and the prediction method in columns 2, 3 and 4, respectively.
Finally, a check symbol in the last column distinguishes methods that can detect changes in
the insulation system, shortening the life span of the apparatus.

The second category of works builds a life prediction model of aged specimens af-
fected by PDs based on several factors (i.e., power supply voltage and frequency, aging
temperature, humidity, pressure, etc.) and their interactions. These works set the influ-
ence of each factor on the life model using experimental techniques, such as the design
of experiment (DoE) and the response surface method (RSM). Other works used linear
regression techniques on features extracted from PRPDs to estimate the lifetime of twisted
pairs specimens. All these methods made a strong hypothesis on the relation between
the factors and the life duration of the aged specimens. The lower part of Table 1 reports
the references for the explicit empirical models [21,26–30]. In [31], a fully unsupervised
approach detected changes in the life status of a specimen. The authors showed that such
an approach could be combined with the method proposed [29,30] to improve the insu-
lation lifetime predictions. A few drawbacks affect explicit empirical techniques. In fact,
these models handle only a limited number of factors, impose strong assumptions on the
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relations between the life duration and the factors, and fail at detecting disruptive changes
during aging.

In the last years, several studies involved deep neural networks (DNNs) and in
particular convolutional neural networks (CNNs), which obtained excellent results in the
pattern recognition fields [32–34]. In [35], the authors proved the effectiveness of CNNs for
the maintenance of surfaces, predicting pavement cracks in advance. Specifically, in the
last 5 years, scientists have employed CNNs to distinguish PD sources [36]. In [37], the
authors proposed a framework in which a CNN received as input PRPD images; the
framework distinguished six different PD defects created in oil. In [20], a CNN classified
PD sources in a gas insulated system (GIS); this approach performed better with respect
to the state-of-the-art algorithms. Similarly, other works proved that CNNs obtain an
interesting performance in the recognition and classification of PDs [19,38–41].

In the literature, all the methods based on the deep networks identify and classify the
defects affecting the insulation systems. Differently, in our proposal, the goal is to adopt
CNN to predict the remaining lifetime of the apparatus under monitoring, without explic-
itly detecting the kind of PDs sources.
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Table 1. References table.

Reference Environment Feature Extraction and Reduction Prediction Model Change
Detection

Severity Classification

[14] Aged oil–paper insulation sys-
tem

Statistical parameters from PDs + PCA-based
method Hierarchical clustering X

[22] GIS increasing the tension ev-
ery 60 minutes

PRPDs analysis and their statistical distributions. Clustering X

[23] Protrusion defects in GIS 9 features from PRPD distributions Two-level fuzzy logic X

[24] Aged oil–paper insulation sys-
tem

PRPD distributions + principle component factor
extraction SVM and Weibull distribution X

[25] Power Trasformers PRDP images Template matching X

Lifetime Assessment

[26] Electrical treeing in epoxy resin PRPD distributions and pulse sequence analysis Empirical model upon the best factor in terms of mono-
tonicity, prognosability and trendability ×

[21] Steel plates coated with PEI Life duration time by varying voltage, frequency,
and temperature

Empirical model trained trough Design of Experiment
(DoE) ×

[27] Insulation materials of thermal
classes 1 and 2

Life duration time by varying voltage, frequency,
and temperature

DoE, RSM, Random Tree (RT) and hybrid model (HM) ×

[28] Three kinds of enamels Life duration time by varying voltage, frequency
and temperature

Lifespan prediction using the Weibull distribution with
scatter ×

[29,30] Twisted pairs specimens PRPDs features and life duration time with fixed
aging factors Linear regression model X
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3. CNNs for Aging Assessment

The present paper introduces a model for aging assessment based on CNNs, exploiting
the ability of CNNs to deal with complex, non-linear problems when input data can be
represented as tensors. A PD pattern represents partial discharges as a 2-dimensional
array, that is, a second order tensor. Figure 1 shows how the data collection mechanism
is organized. In this plot, the blue line refers to the power supply voltage that sets the
reference system for the apparatus under testing; the orange line refers to the partial
discharges measured by a suitable sensor. In this example, three occurrences of PDs have
been registered; each occurrence is characterized by a pair amplitude–phase. It is worth
noting that this pair corresponds to the peak amplitude of a PD.
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Figure 1. PD impulses over the power supply voltage waveform.

The corresponding PD pattern is organized as a matrix, the columns of which cor-
respond to the power supply phases, and rows mark the maximum amplitudes of the
discharges. Thus, each element in the matrix identifies an amplitude–phase pair; cell con-
tents give the occurrences of discharges in a time window Ta. Figure 2 shows an example
of a PD pattern.

Accordingly, PD patterns act as inputs for a 2-D CNN designed to infer the aging
score of the monitored apparatus. Thus, the CNN supports a regression model that relies
on the convolution operation. The regression model is trained by utilizing a proper dataset
collected by monitoring a suitable number of apparatuses. Once trained, the model can
assess the aging status of new, unseen apparatuses. The Appendix provides details about
the general CNN architecture.

The first step in the design of the proposed framework is the definition of the aging
score that characterizes the status of the monitored apparatus. The aging phenomena of
electrical devices are expected to follow non-linear mechanisms. However, the output of
the assessment framework should be analyzed by human users. Hence, a linear aging
score seems more informative and easily understandable. Accordingly, an aging score
of 0 is assigned to a specimen when the first PD phenomenon arises. An aging score of
0.5 characterizes a specimen at its half-life, while an aging score of 1 is reached when the
breakdown is about to occur. This simple rule ensures that the network, when properly
trained, will output a score that is user-friendly.

The collection of training data is another fundamental step. A dataset represents
a specimen and it is collected from the inception of the first PD until the breakdown,
capturing PD patterns at regular steps. Thus, a dataset is an ordered collection of PD
patterns. The aging score assigned to the ith PD pattern is:

Scoreipattern =
tipattern − tstart

tbreak − tstart
, (1)
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where tstart is the starting acquisition time, tbreak is the breakdown time, and tipattern repre-
sents the acquisition time of ith PD pattern in the dataset.

Phase Resolved Partial Discharges Pattern
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Figure 2. Phase resolved partial discharge pattern representation.

Eventually, the number of datasets matches the number of monitored specimens,
and each dataset contains a variable number of PD patterns depending on the lifetime of
the specimen, from the PD inception until the breakdown. The union of all the datasets
makes the training set T = {(X, y)i; X i ∈ Z256×256; yi ∈ [0, 1]; i = 1, ..., N}, where X i is a
PD pattern and yi the corresponding aging score. The cost function supporting the CNN
training is the mean absolute error between the score inferred by the trained model, f (X i),
and the reference score yi:

loss =
1
N

N

∑
i=1
|yi − f (X i)|. (2)

Thus, the loss function can be defined as the difference between the score inferred by
the CNN and the score expected by assuming a linear behavior in the aging of the apparatus.

Summarizing the previous points, the proposed framework adopts a CNN to address a
regression problem. At run-time, the CNN receives a PD pattern and infers the correspond-
ing aging score of the monitored insulation system. To train this CNN, a set of specimens
should be monitored until their breakdown to extract the PD patterns and the corresponding
aging scores. These data make up the training set, that is, the ground truth supporting the
learning process.

In addition, training involves model selection. In principle, the goal of model selection
is to properly tune the parameters that characterize the CNN architecture; this process
should lead to the final architecture of the CNN, that is, the architecture supporting aging
assessment in the framework. On the one hand, the obvious target of model selection is to
find the parameters setting that can lead to high accuracy in the prediction. Nonetheless,
other constraints should be considered. As the number of layers grows, the number of
parameters to be learned also grows. Moreover, the deeper the architecture, the larger the
training set; in fact, one may face convergence problems in the training process if the size
of the training set is not commensurate with the number of parameters to be learned. This
aspect represents a crucial issue for the envisioned application because building a dataset
is time consuming; as mentioned above, each specimen should be monitored from the
PD inception until the breakdown. Hence, the admissible ranges for the parameters to be
tuned should be set by also taking into account such constraints. In practice, one needs to
balance the performance in terms of accuracy and the eventual complexity of the involved
CNN. Table 2 summarizes the quantities that were set via model selection, along with the
admissible values:
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• The depth of the network, that is, the number of convolutional layers. The values
ranged from 3 to 6;

• The kernel size, which admitted two options: 4× 4 and 8× 8;
• The number of neurons in the fully connected layer, which in the proposed framework

involved a single hidden layer. The search space included three values: 16, 32 and 64.

The eventual architecture was also organized according to a few guidelines. First,
each convolutional layer was followed by a non-linearity. Second, an average pooling
was always stacked on top of two consecutive pairs (convolutional, non-linearity). Third,
the number of kernels in the first convolutional layer was set to four. Indeed, starting
from the second convolutional layer, the number of kernels always doubled. Doubling
progressively the number of kernels is a common practice in deep learning; actually,
each layer is designed to learn filters of increasing complexity. Accordingly, the level of
abstraction of the features increases in the last layers of the CNNs. Thus, in an architecture
with six convolutional layers one would see the following progression in the number of
kernels: 4, 8, 16, 32, 64 and 128. Stride was always set to one.

Table 2. Network configurations involved in model selection.

Parameter Search Space

Kernel size 4× 4, 8× 8

Number of layers 3, 4, 5, 6

Size of fully connected layer 16, 32, 64

4. Experimental Setup

The proposed framework has been tested on a specific scenario: the aging of twisted
pair specimens. Low voltage stator windings of electrical machines are realized by means of
wires insulated by enamels. Thus, the aging of twisted pair specimens can roughly simulate
the turn-to-turn failures that can occur during the normal functioning of a winding motor.
As a result, the development of predictive techniques for these specimens can be very
useful to support the monitoring of low voltage motors insulated by enamels. Accordingly,
all the twisted pair specimens involved in the present experimental session, insulated
by conventional polyamide–imide enamel, were prepared according to the EIC 60851–5
standard. The following sections explain how training data were collected and how the
training process was conducted.

4.1. Data Acquisition

Figure 3 sketches the measurement system adopted to acquire data from a given
specimen. A power supply generator provided a sinusoidal waveform with the frequency
set to 500 Hz. PD signals affecting the specimen were measured via an HCFT sensor
placed around the ground cable, with a band-pass behavior in the range [3 20] MHz.
A Picoscope with a resolution of 8 bit, a maximum sampling frequency of 1 GSamples/s
and a bandwidth of [0 200] MHz, sampled the PD signals and the power supply voltage.
An oven sets the temperature to 150 ◦C, limiting the impact of environmental effects on the
tests (i.e., humidity, non constant temperature, dust, etc.). For each specimen, the peak-to-
peak voltage was kept constant. The experiment started at the inception of the first PD and
ended at the breakdown of the specimen itself.

The experiments involved different settings for the voltage, as general aging phe-
nomena depends on this parameter [21,27–30]. In particular, aging is faster as the voltage
increases. A total of 9 specimens were tested, with voltages ranging between 2000 V and
4000 V. In each experiment, the signals were sampled at regular steps ∆. The amplitude of
the input voltage determined the value of ∆, which shortened as voltage increased. Table 3
summarizes the acquisition features of the nine tests. The first column gives the supply
voltage; for each row, the table provides the number of specimens tested, the number
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of PD patterns collected for each specimen, the value of ∆, and the acquisition time Ta
utilized for extracting a PD pattern. Figure 4 shows three PD patterns of a twisted pair
specimen aged with a supply voltage of 2000 V. The PD patterns have been acquired in
three different moments of the specimen lifespan: at the beginning of the PD activity
(score = 0), at the half of the life (score = 0.5), and when the breakdown occurred (score =
1). During the aging of this kind of specimens, the partial discharges tend to increase their
number, diminishing the amplitudes by taking into consideration the same acquisition
time Ta. For each specimen, the whole PD pattern activity has been acquired from the
beginning of the aging phenomenon until the disruptive discharge.

Figure 3. Measurement system.

Table 3. Sub-datasets configurations.

Supply Voltages [V] Specimens Num ∆ [sec] Ta [sec]

2000 2 61 900 4073

2500 3
47

900 1056
71

3000 1 52 600 10

3500 2 46 600 1051

4000 1 78 300 10
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(a) PD pattern with score = 0.
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(b) PD pattern with score = 0.5.

Phase Resolved Partial Discharges Pattern
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(c) PD pattern with score = 1.

Figure 4. PD Patterns acquired from a specimen aged with a supply voltage of 2000 V at (a) the PD
activity inception time (score = 0), (b) half of the life time (score = 0.5), and (c) at the breakdown time
(score = 1).
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4.2. Training and Model Selection

The whole setup of the training and model selection took into consideration a major
constraint: the limited availability of data acquired by monitoring the entire lifespan of a
specimen. Such a process is usually expensive and time-consuming. Thus, it is reasonable
to assume that one can only exploit a very small dataset. This constraint was indeed taken
into account in the setup of the CNN architecture, as discussed in Section 3. Actually,
the present framework is designed to rely on a CNN characterized by a limited number of
parameters just to avoid convergence issues in the training process.

In the present case, a total of nine specimens with as many experiments were available
(as per Table 3): Tj = {(X, y)i; X i ∈ Z256×256; yi ∈ [0, 1]; i = 1, ..., Nj} with j = 1, ..., 9.
The available dataset has been split into two non overlapping subsets, that is, a training set
and a development set. The training set TT included the data collected by seven out of the
nine experiments. The development set TD included the data collected by the remaining
two experiments. This setup was adopted because consecutive PD patterns collected from
the same specimen are expected to be strongly correlated.

Model selection was implemented according to the standard hold-out procedure.
Thus, for each of the 24 admissible architectures resulting from the search space of Table 2:

1. The learning procedure was completed by using the training set TT ;
2. The generalization performance was estimated by computing the mean absolute

error (2) of the development set TD.

The architecture leading to the lowest mean absolute error was selected for the imple-
mentation of the eventual regression model. Algorithm 1 formalizes the steps.

Algorithm 1 Model selection.
Input
• Training set TT and development set TD.
• Twenty-four architectures (NA = 24), according to Table 2.
1. Learning and selection

for k = 1; k ≤ NA; k++ do
Train the k-th architecture with TT
Test the k-th architecture with TD obtaining a loss score Lk, according to (2)

end for
2. Output Return the best model configuration

Ω = argmin
k
L

5. Experimental Results

The experimental session aimed to evaluate the ability of the CNN-based model to
infer the life status of a specimen. The implementation relied on Keras and Tensorflow.

Procedure 1 was adopted to set the configuration of the CNN architecture. The de-
velopment set TD included data from one experiment at 2500 V and one experiment at
3500 V. The selected configuration Ω corresponded to the following setup: 5 layers, kernel
size = 8× 8 and 16 neurons in the fully connected layer.

The generalization performance of the model was evaluated by using a leave-one-
out procedure. Thus, given the set TT , six specimens out of seven were utilized in the
learning process, while accuracy was assessed on the remaining specimen. This process
was repeated seven times to cover all the possible configurations. Accordingly, in the
following, Sj will refer to the vector of aging scores obtained when testing with specimen j
a CNN trained with the remaining six specimens. Sj is a vector as it collects the ordered
sequence of predicted aging scores from tstart (first PD pattern extracted from the specimen
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under test) to tbreak (last PD pattern extracted from the specimen under test). Algorithm 2
formalizes the evaluation process.

Algorithm 2 Evaluation.
Input

• Dataset TT = {(X, y)(j)
i ; X i ∈ Z256×256; yi ∈ [0, 1]; j = 1, ..., 7; i = 1, ..., Nj}

• Model configuration Ω
1. Test the best model

for j = 1; j <= 7; j ++ do
Train the model with TT , excluding the j-th specimen
Test the trained model with the j-th specimen of TT
Save the vector of aging scores in Sj

end for
2. Output Return Sj, with j = 1, ..., 7.

The outcomes of the seven experiments are grouped in two figures (Figure 5a,b).
Figure 5a refers to the test involving the four specimens aged with a power supply voltage
in the range [2000 2500] V. For each specimen, the figures show all the predicted scores
Sj, that is, from the PD inception until the breakdown. It is worth stressing that during
the online monitoring the CNN outputs only a score at a time, that is, when a PD pattern
is collected. The figure shows the normalized aging time on the x-axis; that is, a value
of 0.5 indicates that the specimen in that instant reached half of its lifetime. The y-axis
shows the aging score inferred by the CNN after processing the PD pattern extracted at
that instant: four different markers identify the outcomes of the four different experiments.
The black line sets the ideal reference; in principle, at any instant the CNN should infer an
aging score that corresponds to the normalized aging time. In general, the CNN proved
able to estimate accurately the aging phenomena. Problems arise only in the very first part
of the lifetime of the specimen. In fact, fast changes affect the insulation material when
the PD inception occurs [30,31]. Hence, one may expect the model to be less accurate in
that phase.

Figure 5b refers to the test involving the three specimens aged with a power supply
voltage in the range [3000 4000] V. In this case, the level of accuracy reached by the CNN is
lower. Actually, such an outcome confirms that aging phenomena significantly changes as
voltage increases. Nevertheless, all the predictions show a similar trend, where the aging
score increases almost monotonically. Thus, it is still possible to assess the aging status of
the specimen. As, in practice, a predictive maintenance system aims to detect the insulation
deterioration well before the breakdown, even a less accurate prediction can be useful.
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Figure 5. TPs aged with a power supply in the range [2000 2500] V (a) and in the range [3000 4000] V (b).

6. Comparison with State-of-the-Art

This section compares the performance of the proposed CNN-based model with state-
of-the-art approaches for aging assessment. The comparison involves (1) ML-based models
and (2) explicit models that use empirical observation to set internal parameters.

The ML-based models rely on the approach utilized in designing the proposed frame-
work: the features extracted from the PD pattern feed a regression model implemented
by a standard machine learning paradigm. In this case, three different paradigms have
been compared: multi-layer Neural Network (NN), linear Support Vector Machine (SVM),
and kernel Support Vector Machine (K-SVM). The state-of-the-art provides works that
proved the effectiveness of feature extraction techniques for PD pattern classification.
In particular:

1. In [42] the features are extracted using Local Binary Pattern (LBP) and Histogram of
Oriented Gradient (HOG);

2. In [43], the principal component analysis (PCA) of PD patterns sub-groups based
on phase intervals is computed. Besides, the statistical moments (STAT) and the
Weibull parameters (WB) from the PD pattern mean–pulse–height distribution and
pulse–count distribution are extracted.

Such feature extraction methods can indeed support an aging assessment model.
In addition, they proved effectiveness in other applications involving monitoring prob-
lems [44,45]. Actually, severity classification methods massively adopt PRPD statistical
distributions and techniques based on the PCA to reduce the feature space [14,22–24].



Energies 2021, 14, 4711 14 of 23

The comparison with explicit models involved the approach presented in [29,30],
which shares with the present work the experimental setup (i.e., only the voltage factor
influenced the specimens under test, keeping the frequency and the temperature constant).
In fact, several papers [21,27,28] affirm that the most influencing factor on the aging
condition is the power supply voltage. In the following, Section 6.1 will present the
outcomes of the experiments involving approaches based on the pair {feature extractor,
ML}, while Section 6.2 will present the outcomes of the experiments involving the model
proposed in [29,30].

6.1. Comparison with Approaches Based on ML

The performance of an aging assessment model can be characterized by measuring
the absolute error between the predicted aging score ỹi at the instant i and the reference
score yi set by the ideal behavior. In fact, one is interested in the distribution of the
absolute error over a time window, since the goal is to evaluate the ability of the model
to assess aging as the specimen progressively degrades. To the purpose of properly
characterizing the performance of an aging assessment model in different conditions,
the distribution of the absolute error over a given segment of the specimen lifetime was
taken into account. Three segments were considered: the last 25% of the specimen lifespan,
the last 50% of the specimen lifespan, and the entire specimen lifespan. Accordingly,
the distribution of the absolute error over a given segment was characterized by computing
the following quantities:

• MAE: the mean absolute error over a segment

MAE =
1

N − N0

N

∑
i=N0

|yi − ỹi|; (3)

• STD: the standard deviation of the absolute error over a segment

STD =

√√√√ 1
N − N0

N

∑
i=N0

(yi − ỹi −MAE)2. (4)

Here, N0 identifies the starting point of the segment taken into consideration. Thus,
for example, to compute MAE and STD for the segment covering the last 50% of the
specimen lifespan, one should set N0 = N/2. For the sake of clarity, Figure 6 shows the
corresponding configuration. The plot is structured as the plots in Figure 5; thus, the x-axis
gives the normalized aging time, while the y-axis gives the aging score inferred by the
CNN after processing the PD pattern extracted at that instant. The blue markers identify
the outcomes ỹi of a predictor; the black line sets the ideal reference yi. To compute the
MAE for the segment involving the last 50% of the lifespan of a specimen, one relies only
on the distribution of the absolute errors marked in green.

Table 4 reports the results of the experiments. The first column gives the feature
extraction method. The second column identifies the segment of the lifespan utilized for
computing MAE and STD. The third column presents the MAE scored by the best predictor
over the three considered (NN, SVM, K-SVM). The fourth column displays the difference
between the MAE reported in the third column and the corresponding MAE scored by the
CNN-based model: a negative value means that the CNN-based model outperformed that
predictor. The last column gives the ratio between the STD of the predictor and the STD
obtained with the CNN-based model; a value larger than 1 means that the CNN-based
model was characterized by a lower STD. Numerical outcomes show that, in general,
the CNN-based framework always achieved better performances than the models based
on predetermined feature spaces, both in terms of MAE and STD. Figures 7 and 8 provide
further details on the outcomes of these experiments. Figure 7 shows the results of the
experiments involving a predictor based on linear SVM that processes STAT features; as
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per Table 4, this predictor attained interesting performance in terms of MAE over the whole
specimens lifespans. These plots are organized as the plots in Figure 5, which showed
the results of the experiments involving the CNN. Hence, Figure 7a refers to the test
involving the four specimens aged with a power supply voltage in the range [2000 2500] V,
while Figure 7b refers to the test involving the three specimens aged with a power supply
voltage in the range [3000 4000] V. Figure 7b proves that the predictor processing STAT
features could not reliably predict the aging of the specimens under the configuration with
a power supply voltage in the range [3000 4000] V. In particular, the unreliable predictions
in the second half of the specimens life could be very dangerous, as the apparatus under
monitoring is facing the risk of a sudden breakdown.
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Figure 6. MAE computed over the second half of the specimen lifetime.

Figure 8 shows the results of the experiments involving a predictor based on kernel
SVM that processes HOG features; as per Table 4, such predictor also performed effectively
in terms of MAE over the whole specimens lifespans. Again, the plots in Figure 8 follow
the same structure of the plots in Figure 5. Both Figure 8a,b show that this predictor lacked
consistency over the different configurations of power supply voltage. In particular, three
configurations proved critical: 2000V − A, 2500V − A, and 3000V.

Table 4. Comparison Results between CNN and AI algorithms.

Features Segment MAE MAE Gap STD Ratio

LBP
25 0.210 −0.141 3.077
50 0.159 −0.091 2.820

100 0.161 −0.097 2.746

HOG
25 0.103 −0.034 1.776
50 0.113 −0.046 2.003

100 0.093 −0.030 1.467

STAT + WB
25 0.118 −0.050 3.117
50 0.092 −0.024 2.414

100 0.096 −0.033 2.078

PCA 25 0.093 −0.024 1.580

50 0.083 −0.015 1.429
100 0.108 −0.044 2.133

6.2. Comparison with the Explicit Empirical Model

The approach presented in [29,30] infers the breakdown time D of an unseen spec-
imen under the hypothesis that voltage is the only aging factor. It relies on two linear
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regression models. The first model is entitled to estimate the specimen parameters (Q0 and
Ia, Equation (4) in [29]); the second model computes the multi-linear regression coefficients
characterizing the eventual prediction function (K, n1 and n2, Equation (6) in [29]). Param-
eters K, n1 and n2 are tuned by using a training set; however, Q0 and Ia can be set only by
monitoring the specimen itself for a certain amount of time.

According to the leave-one-out strategy (similarly to Procedure 2), six specimens out
of the seven included in the training set were utilized to tune K, n1 and n2. The remaining
specimen played the role of the new, unseen apparatus. Thus, Q0 and Ia were assessed
by assuming that a given amount of time could be utilized only to monitor the specimen.
In practice, given the specimen under test, D was obtained as follows:

1. Randomly set the starting point of the time window to be used to assess Q0 and Ia;
2. Set the length of the time window, collect data and compute Q0 and Ia;
3. Compute D.
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Figure 7. Linear SVM results with STAT features with a power supply in the range [2000 2500] V (a)
and in the range [3000 4000] V (b).
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Figure 8. Kernel SVM results with HOG features with a power supply in the range [2000 2500] V (a)
and in the range [3000 4000] V (b).

The performance of the empirical model was again estimated by computing the
absolute error between the predicted aging behavior (as per D) and the ideal behavior.
Three different settings were adopted for the length of the time window: 10%, 25% and
50% of the specimen lifetime. Moreover, the MAE was averaged over 100 different runs,
that is, 100 different random starting points.

Table 5 reports the outcomes of the experimental session. The organization of this
table is similar to that of Table 4. In the case of Table 5, the first column refers to the length
of the time window adopted in the experiments. The remaining columns give the same
quantities of Table 4 in the same order.

The table shows that the CNN-based framework was also able to outperform the
empirical model. It is worth noting, though, that the empirical model attained its best
performance when a longer time window was utilized to assess Q0 and Ia, showing that
this approach is not so effective for a real-time application. Such outcome emphasizes the
advantages of the proposed architecture in giving a score with only one PD pattern.

Figure 9 shows the outcomes of the experiments involving the empirical model; as
per Table 5, the plots refer to the predictor that exploited 50% of time window to assess
Q0 and Ia, since that predictor scored the best MAE. The plots in Figure 9 are structured
as in Figure 5. Hence, Figure 9a refers to the test involving the four specimens aged
with a power supply voltage in the range [2000 2500] V, while Figure 9b refers to the test
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involving the three specimens aged with a power supply voltage in the range [3000 4000] V.
As the empirical model relies on a prediction function built via linear regression, the seven
predictors (four in Figure 9a and three in Figure 9b) only differ in the pair (Q0, Ia). The
plots show that the empirical model failed to properly assess the aging process in particular
with power supply voltages of 3000 V and 3500 V. In general, by adopting a linear model,
one faces the risk of worsening the MAE in the last 25% of the specimen lifespan, which is
actually the most critical segment.

Table 5. Comparison Results between CNN and EM.

Time Window Segment MAE MAE Gap STD Ratio

10%
25 0.172 −0.104 3.256
50 0.179 −0.111 3.213

100 0.144 −0.080 3.313

25%
25 0.146 −0.078 2.755
50 0.160 −0.092 2.726

100 0.124 −0.060 2.539

50%
25 0.119 −0.051 2.028
50 0.131 −0.063 2.100

100 0.105 −0.041 2.216
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Figure 9. Empirical model with 50% of time window length with a power supply in the range
[2000 2500] V (a) and in the range [3000 4000] V (b).



Energies 2021, 14, 4711 19 of 23

7. Conclusions

This paper presented a novel strategy for the aging prediction of electrical insulation
systems. Online aging monitoring is a crucial element for predictive maintenance. Indeed,
the literature proves that this task is also very challenging. In several cases, aging prediction
is approached as a severity technique, where the goal is to assign the monitored apparatus
to a category that qualitatively characterizes the life conditions of the insulation system.
The present research, conversely, introduced a framework that—in each instant—can assign
an aging score to the insulation system.

The innovative content of the proposed method with respect to state-of-the-art ap-
proaches to aging monitoring lies in the ability of learning the feature set starting from
a known dataset. In general, state-of-the-art approaches rely on the design of (1) hand-
crafted features and (2) an explicit mathematical model that can properly map the feature
set into aging scores. Both the tasks, though, involve time-consuming activities and require
domain knowledge. In the proposed framework, the aging assessment model relies on PD
patterns to obtain information about the partial discharge activity at a given instant. Then,
a CNN architecture is demanded to complete feature extraction in the training process.
Overall, one exploits the properties of CNNs to avoid issues such as (a) imposing strong
assumptions on the relations between the life duration of the apparatus and factors such as
power supply voltage, temperature, humidity, and so forth, and (b) modelling disruptive
changes during aging.

The experimental activity focused on aging phenomena in twisted pair specimens,
which actually can simulate the turn-to-turn failures that occur in winding motors. The CNN-
based framework has been compared with two different state-of-the-art approaches:

• ML-based model: ML is exploited to learn the mapping function between a set of
hand-crafted features and the aging score;

• Empirical model: the breakdown time of the apparatus is predicted via a multi-linear
regression model.

In both cases, experimental outcomes showed the effectiveness of the CNN-based
framework, which outperformed the other approaches. The most significant result is
the ability of the CNN-based framework to attain consistent performances over different
settings of the power supply voltage. This in turn confirmed that a CNN-based approach
could better deal with the intricacies of the problem at-hand. The obtained results encour-
age the adoption of the same approach for more complex insulating systems with the aim
of monitoring the related degradation by means of partial discharge measurements.
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Appendix A

CNNs are deep networks that stack multiple layers of convolution, non-linearity and
pooling. In the proposed framework, the input I is a PD pattern. The 2-D CNN receives
the tensor I of dimensions n × d where n are the rows and d the columns. In general,
the architecture of a CNN involves several stacked convolutional layers that differ for the
kernel sizes and the number of filters.
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A fully connected layer is usually stacked at the top of architecture; this layer is
fed with the output of the last convolutional/pooling layer. The fully connected layer is
designed to actually implement classification/regression on a set of input features, which
in turn are computed by the underlying CNN architecture. In this sense, the CNN plays
the role of a feature extractor. The fully connected layer is a standard Artificial Neural
Network (ANN) including one or more hidden layers, with neurons embedding non-linear
activation functions (e.g., ReLU, sigmoid, tanh). The last hidden layer is directly connected
to the output layer, which has as many neurons as the number of classes of the problem
at-hand or, in the case of a regression problem, one neuron for each output.

The training procedure of a CNN aims at tuning the parameters characterizing the
architecture by exploiting a set of data (i.e., the training set). The amount of parameters
stems from the number of convolutional layers, the number of filters and their sizes, and the
configuration of the pooling layers. In practice, to train a classification/regression model
one should minimize a loss function; usually, in CNNs, stochastic gradient descent is
utilized for this purpose. Indeed, standard regularization techniques are employed to
avoid over-fitting. The CNN architecture and the optimizer set the computational cost
of the training phase. The optimizer determines the number of epochs (i.e., the number
of times the entire training set feeds the network), the batch size (sub-set of training data
that feeds the network at each training step), the learning rate (i.e., how much update the
weights in the gradient descent algorithm). The training procedure tunes the coefficients
characterizing the kernels; this in turn means tuning the filters that process input data.
Therefore, the CNN architecture is designed to learn the feature extraction process that
best models the problem at-hand. In practice, the networks automatically learn the best set
of filters.

The architecture of a CNN always involve three core layers:
Convolution. A convolutional layer receives as input a tensor I of dimensions

n× d× c where n are the rows, d the columns, and c are the channels. For example, in a
RGB image one has c = 3, since the image includes a red, green, and blue layer, respectively.
The convolution operation applies scalar products between patches of the tensor I and a
kernel tensor K of dimensions j× k× c (also called filter), with j ≤ n and k ≤ d; usually
j = k.

The kernel K is moved across I left to right, top to bottom to compute a new tensor O
having dimensions n′ × d′ × f (also called feature map), with n′ ≤ n, d′ ≤ d. Both n′ and
d′ depend on the step adopted when shifting the filter K over I ; such step is called stride.
The third dimension f stems from the number of filters applied to tensor I ; i.e., f is c times
the number of filters.

Figure A1a shows the convolution of I with a kernel K when n = d = 4, c = 1, j=k=2,
and stride equal to 1. Accordingly, the results of the scalar products are stored in the output
tensor O with dimensions 3× 3× 1. Figure A1b,c schematize a setup in which multiple
filters are applied to I . As per Figure A1b, the first channel of O will store the outputs
obtained by applying kernel K. Analogously, as per Figure A1c, the second channel of O
will store the outputs obtained by applying kernel K′

Non-linearity. Convolution is a linear operation; thus, a deep network involving
only convolutional layers can only model linear functions. Therefore, a convolutional
layer is usually followed by a non-linearity; i.e., a non-linear function (also called activation
function) is applied to the elements of O. The resulting tensor O′ has the same dimensions
of O. The most adopted activation function in CNNs is the Rectified Linear Unit (ReLU):
f (x) = max(0, x).

Pooling. A pooling layer reduces the dimensions of the input tensor by aggregating
local information, producing a tensor O′′. Basically, the pooling operation is applied after
splitting the input tensor in non overlapping patches. For each patch, pooling extracts a
scalar value corresponding to the maximum value in a patch (max pooling) or to the average
value over the patch (average pooling). Figure A1d presents an example of max pooling.
This operation reduces the tensor size and supports local invariance.
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(a) Kernel shifting.

(b) Scalar product with kernel K.

(c) Scalar product with kernel K′.

(d) Example of max pooling.

Figure A1. CNN kernel shifting (a), scalar products of the convolution operation (b,c) and max
pooling (d).
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