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Abstract

This thesis arises in the context of the precision era of Higgs physics from
the recent high accuracy data at the Large Hadron Collider (LHC). With the
data of an unprecedented level of precision, the theoretical error is now lagging
behind. In addition, the accurate theoretical prediction of Standard Model (SM)
processes can also lead a path to the discovery of new physics, which thus far
has proven so elusive. Indeed, careful analyses of the QCD radiation pattern are
crucial to distinguish Standard Model physics from possible new physics signals.
In this context, studies of the internal structure of jets, i.e. jet substructure,
have proved a valuable addition to LHC phenomenology. Furthermore, in order
to obtain the precise predictions, the jet substructure calculations usually involve
resummation of the perturbative series, where large logarithms arise from the
multi-scale hierarchy.

The aim of this thesis is to explore novel approaches to probe color flow and soft
substructure of jets, which is beyond the traditional boundaries of Perturbative
Quantum Chromodynamics (pQCD), namely globalness and infrared & collinear
(IRC) safety. In this thesis, the impact of non-global logarithms (NGLs) and IRC
unsafe observables are studied in detail. In particular, for the non-global case,
a novel approach to solving differential equations using artificial neural networks
is presented, and we compare the results with the other methods in the litera-
ture. In the context of IRC unsafety, the first-principle calculation in resummed
perturbation theory for the jet pull angle is performed, along with the resumma-
tion formalism is reviewed and improved. As phenomenological applications, each
ingredient is studied independently. Moreover, because of the large theoretical
uncertainty of IRC unsafe observable, the result is improved by introducing IRC
safety projection for the jet pull vector. Additionally, with the purpose of assess-
ing sub-leading color correlations, the novel azimuthal asymmetry distribution is
introduced and studied in some detail.

Keywords— Quantum Chromodynamics, All-order Resummation, Evolution
Equation, Non-global Logarithms, Infrared and Collinear Unsafety, Jet Substruc-
ture, Color Flow
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That’s not right. That’s not even wrong.
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Introduction

O ne of the central goals of CERN Large Hadron Collider (LHC) is to reach
a detailed understanding of the Higgs sector. Besides deepening our under-

standing of the breaking of the electro-weak symmetry, the determination of the
Higgs couplings can also open up the possibility of discovering new physics. Despite
the extremely successful prediction of the Higgs boson, which formally completed
the Standard Model (SM) of particle physics, the full theory of higher energy scales
is still missing. One can view the SM as a low-energy effective field theory (EFT),
valid up to some high energy scale. However, intriguing question that cannot be
answered within this theory remains. Given the lack of direct evidence for new
physics in collider experiments, it becomes important to examine predictions of
the SM with an unprecedented precision.

Mathematically, the SM is a quantum field theory (QFT) that exhibits the
non-abelian gauge symmetry:

SU(3)C × SU(2)L × U(1)Y ,

where the electromagnetic and weak interactions are given by a unified field theory
with broken SU(2)L × U(1)Y symmetry, and the strong force, which originates in
a quantum number known as color, is described with SU(3)C gauge theory called
as Quantum Chromodynamics (QCD).

In this thesis, we concentrate on the theory of strong interaction, since it con-
stitutes the major contribution of both signal and background processes in any
collider experiments. The Lagrangian of QCD is:

L = −1

2
Tr (GµνG

µν) +

Nf∑
a=1

ψ̄a (iγµD
µ −ma)ψa,

where Dµ is the covariant derivative, Gµν is the field tensor and gs is the strong
coupling constant.

Dµ = ∂µ − igstaAa
µ,

Gµν =
∑
a

taGa
µν , G

a
µν = ∂µA

a
ν − ∂νAa

µ + gsfabcA
b
µA

c
ν .

1



2 Introduction

Calculations in quantum field theory are usually expanded in powers of the
coupling constant, where Feynman diagrams are used as a pictorial representation
of such perturbation theory. However, such calculations are only reliable, with a
small coupling constant αs < 1 that would assure the convergence of the perturba-
tive series. One of the most important properties of QCD is asymptotic freedom,
which allows the perturbative prediction of physics above the energy scale that
characterizes hadron masses.

Another key fact of QCD, which will be exploited in this thesis, is that physics
behaves differently at different energy scales, under renormalization group evolu-
tion (RGE). Generally speaking, the method of RGE is a method that is describes
how the dynamics of some system change when we change the scale. When per-
forming calculations in QFT, two types of singularities will arise from the radiative
correction diagrams at the corresponding high energy and low energy limit, which
are called ultraviolet (UV) and infrared (IR) singularities.

In particular, in QFT, we must consider arbitrarily short scale, which UV di-
vergent may appear. The theory is called renormalizable if all the information we
need from smaller scales can be absorbed with finitely many parameters, such as
masses and couplings.

Theorem 1 (Wilson’s renormalization procedure). Let M be the set of scales of
momenta, which is a homogeneous space of R+. And Λ, µ ∈ M are the scales of
momenta, with µ < Λ. For each theory L ∈ S, one finds another theory with
RΛµL ∈ S, which is the effective theory at the scale µ and the original theory L
at the scale Λ. Thus we have a map RΛµ : S → S and RΛ1Λ2 · RΛ2Λ3 = RΛ1Λ3.
Therefore an action of the semigroup R≤1+ on the space S ×M can be defined by

λ · (L,Λ) = (RΛ,λΛL, λΛ) .

Physicists call this semigroup the renormalization group, which is a slight abuse
of mathematical terminology. In other words, the RG is not a group in the tra-
ditional mathematical sense; it is only because it maps S → S, where S is a set
of couplings in a theory. The simplest example is the running coupling, but more
examples arise from the QCD factorization of hadron scattering. For a general the-
ory, the physical quantities after the renormalization procedure do not depend on
the renormalization scale µ. This statement is required for renormalized quantum
field theory, by fulfilling the Callan-Symanzik equation[

µ2 ∂

∂µ2
+ β (αs)

∂

∂αs

]
G

(
A2

µ2
, αs

)
= 0,

where the beta function describes the running of the coupling constant, defined as

β(αs) = µ2∂αs(µ)

∂µ2
.

With the intention of better describing the renormalization and running of
coupling constant in a theory, let’s consider the vacuum polarization diagram in
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+ + + ...1PI 1PI 1PI
µ ν µ ν µ ν

Figure 1. The geometric series for the exact propagator.

QED, also known as the photon self-energy. It can be viewed as a modification to
the photon propagator by the virtual electron-positron pair. For the second-order
(in e) contribution:

k

k + q

µ ν = iΠµν
2 (q) .

More generally, we can define the sum of all 1-particle-irreducible (1PI) inser-
tions, i.e. iΠµν (q), into the exact photon propagator, which can be interpreted as
a geometric series shown in Fig. 1. And the diagram is 1PI if it is still connected
after any line is cut. According to the Ward identity qµΠµν (q) = 0, which indicate
the tensor structure of Πµν (q) in the following form:

Πµν (q) = q2gµν − qµqνΠ
(
q2
)
.

Ward identity is a diagrammatic expression of the conservation of the electric
current (details about the Ward identity will be given in App. A). Moreover,
in any S-matrix calculation, the exact propagator will connect to a fermion line,
then the terms proportional to qµ or qν vanish. Therefore, geometric series can be
expressed as

µ ν =
−igµν

q2 (1− Π(q2))
,

where the exact propagator has a pole at q2 = 0, and the amplitude is modified
by the residue of the pole, Z3 =

1
1−Π(0)

, from the tree-level approximation

e2gµν
q2
→ Z3

e2gµν
q2

.

Therefore, we can define an effective charge eR =
√
Z3e, this replacement is

called charge renormalization. For the leading order correction of the coupling
constant α:

α→ αeff

(
q2
)
=

α

1− [Π (q2)− Π(0)]
,

we note that the coupling constant becomes q2-dependent after the renormalization
procedure, and that is why we call it running coupling constant.

On the contrary from the well-controlled UV divergence from the renormal-
ization procedure, IR divergence is known to cancel itself when combining real
emission with virtual diagrams for inclusive observables, i.e., total cross-sections.



4 Introduction

The cancellation is a consequence of the Kinoshita-Lee-Nauenberg (KLN) theo-
rem [1, 2]. However, for exclusive observables with processes characterized by the
presence of two or more widely separated energy scales, the perturbative expansion
would contain large logarithms.

Theorem 2 (Kinoshita-Lee-Nauenberg Theorem1). In a theory with massless
fields, transition rates are free of the infrared divergence (soft and collinear) if
the summation over initial and final degenerate states is carried out.

To improve the accuracy of theoretical predictions, higher-order corrections in
the perturbative expansion must be included. In the past years, next-to-leading or-
der (NLO) computations have become standard tools for phenomenological studies,
and in some cases, higher-order terms have been calculated up to next-to-next-to-
leading order (NNLO) and next-to-next-to-next-to-leading order (N3LO) [3]. How-
ever, in regions characterized by llarge-scale hierarchy, the perturbative expansion
is violated due to large logarithmic enhancements. For a generic observable, the
cross-section contains terms proportional to logarithms as

σ (v) = σ0
(
1 + αs

[
c12 log

2 v + c11 log v
]
+ α2

s

[
c24 log

4 v + · · ·
])

= σ0

(
1 +

∑
n=1

αn
s

2n∑
m=1

cnm logm v

)
.

For the singular contribution with either v is close to zero or large, the large
logarithm enhanced terms will spoil the convergence of the perturbation theory

αs log v ∼ 1.

As a consequence, the perturbative expansion is invalidated, even with a small
coupling constant. This situation can be rescued by performing an all-order resum-
mation, thereby the fixed-order treatment is insufficient for accurate theoretical
prediction. Therefore, these logarithms need to be resummed to all orders. One
can achieve the resummation by restructuring the perturbative series as following:

σ (v) = g0 (αs) exp
−S(αsL),

where the function g0 collects all the constant terms, and the logarithms are located
at the exponent, which can be written as

S (αs, L) = Lg1 (αsL) + g2 (αsL) + αsg3 (αsL) + · · · ,

the first term is leading logarithm (LL) accuracy and the second one contributes
to next-to-leading logarithm (NLL) accuracy. On the other hand, due to the large
QCD background, careful studies of QCD radiation that accompanies both signal
and background processes can help us discriminate between the two. In this con-
text, studies of the internal structure of jets, i.e., jet substructure, have proved a

1More details about KLN theorem, along with a brief review of S-matrix can be found in
App.A.1
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valuable addition to LHC phenomenology. The calculations for jet substructure
usually involve resummation of large logarithms, e.g., the jet mass over its trans-
verse momentum. While the above description of resummation is only valid for
observables that are sensitive to radiation over the entire final-state phase-space,
i.e. global observables, the structure of all-order resummation is known up to
next-to-next-to–next-to-leading logarithm (N3LL), for example: Thrust [4] and
Angularities [5]. However, global observables are only a subset of observables that
are interesting for studying the QCD radiation pattern.

Unfortunately, the procedure described in the previous paragraph can only be
performed accurately for a narrow class of observables, that satisfy two basics
properties:

• infrared and collinear (IRC) safety: IRC safe observable means it can be
calculated as the expansion of the coupling αs at any order, where the IR
singularities cancel themselves between real and virtual corrections.

• globalness: an observable is defined as global, if the radiation is constrained
uniformly over the entire phase space.

The first condition ensures the cancellation of soft and collinear singularities,
as stated by the KLN theorem. For a general observable V = V (p1, · · · , pn), we
say the observable is IRC safe if its value does not change in the presence of an
arbitrary amount of soft or collinear emissions. From a more physical point of view,
the non-perturbative effects like the hadronization process will act as a regulator
for the IRC divergences. Therefore, the requirement of IRC safety also indicates
that our calculation in perturbative QCD is reliable up to non-perturbative power
corrections, which are suppressed by inverse powers of the hard scale.

HL HR

k1

k2

HL HR

k1

k2

Figure 2. Cancellation between the real production and virtual loop contribution for gluon 2

While for the second condition, many interesting observables with boundaries
in phase space do not obey the second condition, and the non-global logarithms
arise from the mis-cancellation of real and virtual emissions of gluons. The lowest
order kinematic configurations are shown in Fig. 2, with two large-angle soft
gluons, whose energies are ordered k1 � k2. Due to the IRC safety, there is a
cancellation between the real emission and virtual loop contribution for gluon 2.
However, suppose we only observe the right hemisphere, then the gluon 2 is treated
as independent emission and spoils the cancellation with the virtual diagram. The
correlated gluon emissions generate a new tower of logarithmic corrections, which
are more subtle to treat within the traditional resummation techniques [6, 7].
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Furthermore, understanding color flow in hard scattering processes plays a par-
ticularly important role in high-energy physics. For instance, it can provide a
powerful handle to distinguish the hadronic decay products of color singlets in
the final state. However, unlike the mass or electric charge, which are relatively
straightforward to measure at the collider experiments, such as LHC. The quantum
number related to the particles’ strong interactions is color charge, determining
the color representation of a jet, however, is highly non-trivial.

Figure 3. QCD color rules for quark–gluon vertices. Black lines denote Feynman-diagram style
vertices, colored lines show QCD color connection lines.

Structure of the thesis
This thesis is devoted to the study of two categories of observable beyond the

range of traditional Perturbative Quantum Chromodynamics (pQCD), i.e. IRC
safety and globalness, with detailed applications about jet soft substructure, in
particular the impact of resummation of both ingredients is discussed in detail
and some phenomenological results are shown.

The outline starts with the factorization and resummation procedures, which
are illustrated as the first part, with color code black, in Fig. 4. The fundamental
idea is to explain how a physical quantity can be calculated, despite it may contain
IR singularities.

In the second part (color blue), we focus our attention on two intriguing prob-
lems of QCD, the resummation of non-global logarithms and IRC unsafe observ-
ables. It is worth mentioning that the IRC unsafe observable does not have a valid
expansion in coupling constant. However, with the help of the all-order resumma-
tion technique, the concept of Sudakov safety would enable perturbation theory
beyond the IRC domain. In terms of non-global logarithms (NGLs), some improve-
ments for higher-order calculation and resummation are proposed with artificial
neural networks, which can dramatically speed up needed theory calculations.

Finally, combine both ingredients, a phenomenological application for probing
color flow with jet substructure, i.e. jet pull, will be shown in Chapter 4. The
theoretical understanding of these observables led us to introduce novel azimuthal
asymmetry distributions that measure the radiation pattern by looking at the
difference between the jet pull vector pointing towards and away from the other
jet of interest. In particular, these asymmetries essentially come from soft radiation
and introduce a new boundary in phase-space which renders the all-order structure
of these observables richer, which will briefly discuss in Sec. 4.5 and Sec. 5.1.

Before discussing all these aspects in detail, in Chapter 1 some features of IR
singularities in perturbative QCD are presented, together with a general overview
about factorization and conditions that the calculable observables should satisfy
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Figure 4. Outline of the thesis: The color denotes the different sections of the thesis. The ovals
describe the needed theoretical tools, and the dashed arrowhead lines correspond to the path
related to future projects

for the first-principle calculation of pQCD and notations that we are going to use
in the rest of the text.
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I n the previous chapter, we made some general remarks about the formal
development of divergences in QFT, as well as some general prescriptions to

obtain finite results. In this chapter, we are going to systematically review IR
singularities in pQCD and derive many of their properties. Most of the material
presented in this chapter does not follow any particular review or book on pQCD,
but is organized in a way that is suitable for this thesis, as we intend to introduce
useful terminology and fix some notations. For more details, there are many
excellent reviews of pQCD, e.g. [8–14].
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10 Understanding Infrared Singularities

1.1 Perturbative Quantum Chromodynamics
As mentioned earlier, calculations in QCD are offen performed through pertur-

bative expansion in strong coupling. However, in regions characterized by large-
scale hierarchy, the perturbative expansion is invalidated even for small coupling.
This situation can be rescued by performing an all-order resummation, thereby
the fixed-order treatment is insufficient for accurate theoretical prediction.

The structure of IR singularities plays a key role in the all-order structure of
perturbation theory. Besides deepening the understanding of perturbative QFT at
high orders, it also has many practical applications. For example, IRC safety is the
guiding principle for devising new and better jet observables. Jets are collimated
sprays of hadrons, which are dominant features of high-energy physics. They
originate from accelerated quarks and gluons, thus can provide important clues
about the high-energy behavior of parton degrees of freedom. Therefore, they
constitute an ideal testing ground to study the fundamental properties of QCD.

In this introduction, we will start with an overview of the basic concepts of
pQCD and the key idea about how to factorize the perturbatively-calculable hard
scattering functions that describe the hard scattering of point-like partons.

1.1.1 Asymptotic freedom and coupling constant
Here we start from the main feature of QCD, that makes the perturbative

treatment possible: asymptotic freedom [15]. We say a theory is asymptotically
free if the coupling constant decreases as the energy scale increases.

Furthermore, if the short and long-distance effects are incoherent, we would
neglect masses in the calculation within the short-distance region, as masses exhibit
the same asymptotic behavior as the running coupling

m
(
µ2
)
= m

(
µ2
0

)
exp

{
−
∫ µ

µ0

dλ

λ
[1 + γm (g (λ))]

}
,

lim
µ2→∞

m (µ2)

µ2
= 0, (1.1.1)

where γm (g) is a perturbative quantity, similar to βm (g) which vanishes as µ
increases. The Callan–Symanzik equation, i.e. renormalization-group equation,
for massless theory reads:

µ
d

dµ
αs (µ) = β (αs (µ)) , (1.1.2)

where the β function is

β (αs) = −2αs

(
β0
αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ ...

)
. (1.1.3)
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With the resummation terminology, we can resum the coupling constant at
finite orders of accuracy at N iLL related to βi. And the coefficient βi is known up
to 5-loop [16], i.e. i = 4. Further details about the explicit result up to N3LL will
be given in App. B.2. For the leading term

β0 =
11

3
CA −

4

3
TFnf . (1.1.4)

It is positive, as long as there are no more than 16 flavors of quark, thus the
sign of β function is negative. Therefore QCD is asymptotically free theory, as αs

decrease while µ increase.

1.1.2 Parton picture of hard scattering
As mentioned earlier, it is well known that the components of hadrons are quarks

and gluons, which are generically called partons, as they are part of the hadron.
Originally, the parton model was proposed by Richard Feynman in 1969 [17].
Even though QCD has taken over from the old parton model, the field theory
extension of the parton model allows us to derive calculable partonic cross-section
by separating the long-distance from short-distance effects. Moreover, the parton
picture predicted the jet-like structure of the final states of hard interactions.
Nowadays the parton model is understood as the lowest order of perturbative
QCD calculations.

The fundamental hypothesis of the parton model for deep inelastic scattering
(DIS), i.e. the scattering of a lepton on a nucleon(or other hadrons) shown in Fig.
1.1 may be written as

σ (p, q) =
∑
f

∫ 1

0

dzσ̂B (zp, q) ff/N (z) , (1.1.5)

where inelastic means the energy of the collision is such that the nucleon, such
as the proton, breaks up into pieces. Given that each parton carries momentum
fraction zi of the proton momentum p, i.e. pi = zip, the function ff/N describe
the probability of finding a parton of flavor f in the target hadron N , and it
is called parton distribution function (PDF), while σ̂B is the Born-level, elastic
parton-lepton cross-section.

Note that the basic assumption in the parton model is the absence of interfer-
ence, either between different flavors or different momentum fractions. Thus it
can describe processes separate from the hard scattering. More on this incoher-
ence will be discussed in the next subsection. It is worth mentioning that PDFs
are universal objects, which means any proton scattering process can be computed
using the same PDFs with an independent perturbative calculation for different
parton scattering.
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p1
p,1

p2

q

x

f(x,Q2)

Figure 1.1. Deep inelastic scattering in the parton model.

1.1.3 Assumptions of perturbative QCD
To understand the generalization of parton model to perturbative QCD, it is

useful to pinpoint the two main assumptions:

• The pQCD series is asymptotic

• Incoherence of short and long-distance dynamics

Perturbation theory provides a very powerful tool to predict observable quan-
tities from the quantum field theory. It is based on the assumption that every
observable can be defined by a power series in the coupling constant of the theory:

f (αs) ∼
∞∑
n=0

fnα
n
s . (1.1.6)

If the coupling is small, the first few terms in the series are sufficient to describe
the observable. However, in QCD one finds an n! growth of each order at the
coefficients fn [18]. For a small coupling, i.e. αs → 0, the series can at best be
asymptotic to f (αs). A series

∑
fnα

n
s is called asymptotic to f (αs) for αs → 0

if, for a given N, the first N terms of the series may as close as desired to f (αs),
i.e. the remainder obeys

|f (αs)−
N∑

n=0

fnα
n
s | ≤ CN+1|αs|N+1, (1.1.7)

where CN+1|αs|N+1 is called as the truncation error. In order to find the N that
optimally truncates the asymptotic expansion, we need to find the N that mini-
mizes the truncation error. If CN follows the same pattern as the coefficients fN
in QCD:

CN ∼ N !aNN b. (1.1.8)
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One finds that the error decreases as a function of the order N until N∗ by using
Stirling’s formula for n!

CN |αs|N = N !aN |αs|N ∼ exp {N (logN − 1− logX)} , (1.1.9)

where X = 1
a|αs| , the last term has a saddle at large N as N∗ = X. Thus we can get

the best approximation to f (αs) with the maximal resolution of CN∗ |αs|N∗ . This
also suggests two different functions may have the same asymptotic expansion as

g (αs) = f (αs) + Ce−
1

a|αs| . (1.1.10)

This ambiguity present in an asymptotic series is called the non-perturbative
ambiguity, which will be discussed in the corresponding subsection later. However,
if the coupling is small enough, the difference between g (αs) and f (αs) may be
numerically small and give a well-approximated result, up to power corrections.
We will briefly introduce the power corrections in the next subsection and attempt
to (re)sum the asymptotic series in Sec. 1.6. (see also Ref. [19] for a pedagogical
review.)

The second assumption indicates these properties that hold at each order in
the asymptotic series up to power corrections also hold in the full theory, which
enables us to separate the perturbative calculable part from the non-perturbative
one described by PDF. The factorization theorem can be proved at the level of rigor
in theoretical physics [20, 21], such as operator product expansion in Euclidean
quantum field theory for inclusive electron-positron annihilation to hadrons.

To be specific, consider inclusive electron-hadron scattering. In the center-of-
mass frame, colliding hadrons are Lorentz contracted, and its internal interactions
are time dilated. At sufficiently high energies, the hadrons are in virtual states
characterized by a definite number of partons that are well separated. Thus the
partons do not interact, and each of them carries a fraction z of the hadron’s
momentum. Therefore, the hard scattering process becomes incoherent, as inter-
actions among partons within a hadron cannot interfere with this hard scattering
because they take place at time-dilated scales. For process e +H → X with one
hadron in the initial state can then schematically be factorized at leading power
in the hard scale

σeH =
∑
a

fa/H (µ, z)⊗ σ̂B (µ, z) . (1.1.11)

As introduced earlier, the function fx/X (z) is called as PDF which describe
the distribution of parton x with momentum fraction z in hadron X, and these
distribution functions are convolved with the partonic cross-section σ̂ab, which is
denoted by the symbol ⊗.

(f1 ⊗ . . .⊗ fk) (x) =
1∫

0

dx1 . . .

1∫
0

dxkδ(x− x1x2 . . . xk)f1(x1) . . . fk(xk). (1.1.12)
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Hence, the long-distance effect of the distribution functions is separated from
the short distance by the factorization scale µ, in such a way that the physical
cross-section is independent of this scale. The partonic cross-section σ̂ab, after the
factorization, is calculable if it is IR safe. To be specific, we say a physical quantity
τ , e.g., cross-section, is IR safe if τ behave in the large µ limit as

lim
µ→∞

τ

(
Q

µ
, αs (µ) ,

m (µ)

µ

)
= τ̂

(
Q

µ
, αs (µ)

)
+O

(
mn

µn

)
, n > 0. (1.1.13)

This means the IR safe quantities are free of power correction, which we will
identify as the non-perturbative effect.

1.1.4 Non-perturbative effects and power corrections
In the first half of Sec. 1.1.3, we have reviewed the properties of he asymptotic

series. In the second half, we noted that Eq.(1.1.11) is valid up to power corrections
in the hard scaleQ� ΛQCD. In addition, due to the properties of non-perturbative
ambiguity, Eq.(1.1.10), we have

e−
1

a|αs| ∼
(
ΛQCD

Q

) β0
2πa

, (1.1.14)

with the running coupling at LL accuracy, αs (Q) ∼ β−10 log−1Q/ΛQCD. And the
non-perturbative effects manifest themselves as corrections to the perturbative
theory, that is suppressed by the power of 1/Q. Therefore, Eq.(1.1.11) can be
rewritten as

σAB (µ, z) =
∑
a,b

fa/A (µ, z)⊗ fb/B (µ, z)⊗ σ̂ab (µ, z)
[
1 +O

(
Λ2

QCD

Q2

)]
. (1.1.15)

Moreover, If we ignore the µ dependence, Eq.(1.1.15) can be understood as the
lowest order of perturbation theory and gives scaling of the cross-section in 1/Q2,
reflecting the point-like nature of the constituents. Which is the original parton
model of Bjorken and Feynman [17, 22]. In general, Eq.(1.1.15) is valid to any
order in perturbation theory, and logarithmic violations of scaling appear through
the fx/X and Q/µ dependence. We will discuss more details in Sec. 1.3.

To sum up, these assumptions, described above, statement that the power cor-
rections in the regulated theory should power suppressed in the transition to the
full theory.

1.2 Identification of Infrared Divergences
The hard scattering cross-section in hadron collisions can be factorized into the

product of non-perturbative contributions, i.e., parton distribution functions that
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describe the initial motions of partons, and perturbative hard scattering functions
that describe the hard scattering of point-like partons.

The next task is to identify perturbatively-calculable quantities, i.e. IR safe σ̂ab,
after the UV divergences removed by the renormalization procedure. Therefore,
much of the discussion in this section will center on identifying and separating the
IR safe quantities. More about the properties of IR safety will be discussed at Sec.
1.5.

q

p2

p1

k

q

p2

p1

k

Figure 1.2. One-loop vertex corrections

The IR divergences arise from particle momenta becoming either soft or collinear.
In order to illustrate the source of these IR divergences, we start by considering
the simple one-loop vertex corrections, i.e. massless three-point function at one
loop with two on-shell external legs, shown in Fig.1.2. This requires the evaluation
of Feynman integral for the internal propagators. For simplicity, we first consider
the vertex in a scalar theory

I = −ig3µ3ε

∫
ddk

1

(k2 + iε)
(
(p1 + k)2 + iε

) (
(p2 − k)2 + iε

) . (1.2.1)

We employed dimensional regularization in order to regulate IR singularities
when the denominator becomes zero. It is easy to identify the soft singularity
with k → 0, other possible singularity come from either (p1 + k)2 or (p2 − k)2
going to zero, which corresponds to the gluon collinear to one of the external legs,
hence called as the collinear singularity.

The dimensional regulator ε is defined by d = 4 − 2ε, where d is the number
of dimensions. It is important to remember that the integrals with dimensional
regularization are defined for arbitrary ε, but only when we choose ε < 0, then it
can be evaluated as a standard integral. Using the Feynman parametrization and
n-dimensional integration, the results can be written in terms of Gamma and beta
function, details can be found in App. A.3

I = (−igµε)
1

q2
g2

(4π)2

(
4πµ2

−q2

)ε

Γ (1 + ε)
B (−ε, 1− ε)

−ε
. (1.2.2)

Evaluating the divergent integrals with the dimensional regulation will give rise
to ε pole. The above integral is UV-finite, so all the poles in ε are entirely infrared.
Each of these two types of IR singularities will result in a single ε−1 pole, and if
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the gluon is both soft and collinear the double pole, i.e. ε−2, arise. For the detailed
calculation, we will elaborate on the latter part of this section.

The physical picture of soft and collinear divergences can be described from
parton branching, in Fig.1.3 the example of gluon-gluon branching is shown. For
the initial state parton branching, i.e. left side of Fig.1.3, the four-momentum
squared of massless parton b is

p2b = −2EaEccosθ ≤ 0, (1.2.3)

which 1/p2b diverges both as Ec → 0 (soft singularity) and θ → 0 (collinear singu-
larity).

Other types of parton branching will be discussed at Sec. 1.3. As a last comment
for the parton branching, we can also describe the IRC safe quantities1 as insen-
sitive to soft or collinear branching. According to KLN theorem, IR divergences
in the perturbative theory should cancel between real and virtual contributions.
Therefore, such quantities are determined by the short-distance physics and long-
distance effects give power corrections, which are power suppressed by the large
momentum scale.

M0

a

→
p

b

c

θ
M0

a

→
p

b

c

θ

Figure 1.3. Branching of incoming and outgoing gluons

1.2.1 Analytic properties: Landau equations
To see where the soft and collinear singularities may come from, we start from

the Feynman integral for the scalar triangle which gives the following expression
after Feynman parametrization, introduced in App. A.3

I ∼
∫ 1

0

dα1dα2dα3δ

(
1−

3∑
i=1

αi

)∫
ddk

(2π)d
D−3, (1.2.4)

where the D stand for the new denominator

D = α1k
2 + α2 (p1 − k)2 + α3 (p2 + k)2 + iε. (1.2.5)

Recall Cauchy’s theorem, the singularities arise in Eq.(1.2.4) if isolated poles
cannot be avoided by contour deformation. The Landau equations summarize the

1Since we have identified IR divergences contain soft and collinear singularities. From now
on, we will call the property of calculable partonic scattering as IRC safety.
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conditions for the existence of pinch surfaces, which are surfaces in (k, α) space
where D vanishes [23, 24]. Since D is quadratic in momenta, this is equivalent to
the condition

∂

∂kµ
D (αi, k

µ, pa) = 0. (1.2.6)

In summarizing these conditions, we arrive at the Landau equations which state
that a pinch surface exists only if the following conditions hold for each point
(kµ, αi) on the surface:

either l2i = m2
i , or αi = 0, (1.2.7)

and
∑

i in loop s

αiliεis = 0. (1.2.8)

For the three-point vertex function of the scalar theory in Fig.1.2, the Landau
equation is simply

α1k
µ − α2 (p1 − k)µ + α3 (p2 + k)µ = 0. (1.2.9)

The solutions to this equation are

kµ = 0, α2 = α3 = 0, (1.2.10)
k2 = p2 · k = 0, α2 = 0, (1.2.11)
k2 = p1 · k = 0, α3 = 0. (1.2.12)

In the first solution, the loop momentum k is soft, while in the other two
solutions it is collinear to either of the two quark legs.

1.2.2 QCD corrections to the electromagnetic vertex
Using this simple but informative example of One-loop vertex correction in

scalar theory, we have introduced the soft and collinear divergences. For the QCD
loop correction to the electromagnetic vertex, shown on the right side of Fig.1.2.
Based on the Feynman rule, the quark-antiquark production vertex can be written
in terms of form factor

Γµ (p1, p2, ε) = −ieū (p1) γµv (p2) (1 + ρ (p1, p2, ε)) . (1.2.13)

For the full calculation, the one-loop QCD vertex correction with dimensional
regularization can be read from Feynman rules as

Γµ (p1, p2, ε) = −ieg2CFµ
2ε

∫
ddk

(2π)d
ū (p1) γ

α (�p1 +��k) γµ (��k − �p2) γαv (p2)

(k2 + iε)
(
(p1 + k)2 + iε

) (
(p2 − k)2 + iε

) ,
(1.2.14)

where we have applied the color rule tata = CF I. (see App. B.1)
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The Landau equation for the QCD corrections is the same as the scalar theory
case, shown in Eq.(1.2.9), where the graphical representation of the solutions are
shown in Fig.1.4a.

In the soft region, i.e. small k, we can neglect kµ in the numerator and k2 in
denominators. This approach is known as eikonal approximation closely related
to the Wilson line, which represents a path ordered exponential of gauge fields.
Details will be introduced along with factorization in the soft limit later in this
section.

ρeik (p1, p2, ε)→ −g2CF

∫
ddk

(2π)d
(p1 · p2) ū (p1) γµv (p2)

(k2 + iε) (p1 · k + iε) (−p2 · k + iε)
. (1.2.15)

Returning to the full expression, Eq.(1.2.4), as mentioned earlier, it is useful to
apply Feynman parametrization, with n = 3 in Eq.(A.3.2). Thus the expression
becomes

Γµ (p1, p2, ε) = −ieg2CFµ
2ε

∫
ddk

(2π)d

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγδ (1− α− β − γ)

× ū (p1) γ
α (�p1 +��k) γµ (��k − �p2) γαv (p2)

[k2 + 2αk · p1 − 2αk · p2 + iε]3
. (1.2.16)

Then we can perform the shift k = k′+αp1−βp2, so that the expression becomes

Γµ (p1, p2, ε) = −2ieg2CFµ
2ε

∫
ddk

(2π)d

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ
δ (1− α− β − γ)Nµ

[k′2 + αβq2 + iε]3
,

(1.2.17)
where the numerator is

Nµ = ū (p1) γ
a
(
��k′ + (1− β)��p1 − α��p2

)
γµ
(
��k′ + (1− α)��p2 − β��p1

)
γav (p2) .

(1.2.18)

The calculation for the numerator can be simplified with the properties of γ
matrix and the equations of motion (see for details in App. D.1). Finally, the
one-loop form factor is given by

ρ (p1, p2, ε) = −
αs

2π
CF

(
4πµ2

q2

)ε
Γ (1 + ε) Γ2 (1− ε)

Γ (1− 2ε)

(
1

ε2
+

3

2ε
+ 4 +O (ε)

)
.

(1.2.19)

Hence, the soft and collinear singularities are regulated. The double pole is
the same as the result, Eq.(1.2.2) in the scalar theory and these double poles are
universal in dimensionally regulated massless integrals.

1.2.3 Cancellation of infrared divergences in e+e− → hadrons
We now discuss more properties of scattering amplitudes in the soft and collinear

limits and define the perturbatively calculable quantities. Thus, we consider a
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simple example to illustrate the cancellation of infrared divergences, as stated by
the KLN theorem. We will come back to a more general definition of IRC safety
in Sec. 1.5. As an example, we consider the inclusive production of hadrons in
e+e− collisions, where the general expression for the cross-section can be written
as

σhad = σ
(0)
qq̄ +

αs

2π

(
σ
(1)
qq̄ + σ

(0)
qq̄g

)
+O

(
α2
s

)
, (1.2.20)

where the leading order (LO) contribution for the hadronic cross-section in e+e−

annihilation, can be calculated from the first term of Eq.(1.2.9)

σ
(0)
qq̄ ≡ σ0 =

4πα

3s
Nc

∑
e2q, (1.2.21)

with the fine structure constant α = e2

4π
, the quark electric charge eq, the number

of colors NC and the squared centre-of mass energy s = q2.

q

p2

p1

k

(a) virtual corrections

q

p2

p1

k

(b) real corrections

Figure 1.4. Feynman diagrams for the O(αs) corrections in e+e− → hadrons

The NLO real and virtual corrections can be calculated from the Feynman
diagrams, Fig.1.42, where we have already calculated the virtual correction in the
last subsection, more details about the real corrections can be found in App. ??.
Thus we obtained the result

σ
(1)
qq̄ = σ0

CF

Γ (1− ε)

(
4πµ2

s

)ε(
− 2

ε2
− 3

ε
− 8 +O (ε)

)
, (1.2.22)

σ
(0)
qq̄g = σ0

CF

Γ (1− ε)

(
4πµ2

s

)ε(
2

ε2
+

3

ε
+

19

2
+O (ε)

)
. (1.2.23)

2Note that the quark self-energy diagram, i.e., the last two diagrams of 1.4a, will vanish due
to the LSZ formula guarantees that zeros and infinities cancel with each other, details for the
quark self-energy diagram with dimensional regularization can be found in App. B.4
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Adding real and virtual contributions, those poles cancel with each other and
the result is finite as ε→ 0, and the NLO contribution is

σ
(1)
qq̄ + σ

(0)
qq̄g = σ0

CF

Γ (1− ε)

(
4πµ2

s

)ε(
3

2
+O (ε)

)
. (1.2.24)

For the real emission diagram, Fig.1.4b, the calculation is performed in App.
??. Thus combine both real and virtual contributions, the total hadronic cross
section for e+e− → hadrons can be obtained as

σhad = σ0

(
1 +

αs

π
+O

(
α2
s

))
. (1.2.25)

1.2.4 Strategy of regions
The strategy of regions [25] is a technique that allows one to carry out asymp-

totic expansions of loop integrals in dimensional regularization around various
limits. Let’s start with the asymptotic expansion of integrals, consider a one-loop
self-energy integral with two different particle masses evaluated in d = 2, with
large-scale hierarchy m2 �M2.

Iasym =

∫ ∞
0

dk
k

(k2 +m2) (k2 +M2)
=

logM
m

M2 −m2
. (1.2.26)

Since we already know the full solution, we can discuss the expansion of the
integrals around the limit ofm→ 0. The basic idea for the asymptotic expansion of
integrals can be illustrated by the evaluation of the exponential integral, i.e. Euler’s
integral. For our purpose, clearly, the naive expansion of the integrand leads to
trouble, since the series expansion is not valid for the entire range. Therefore, in
order to apply this method, we should split the integration into two regions by
introducing a cutoff scale Λ. Then one can obtain the expected result by evaluating
both integrals with the asymptotic expansion, details can be found in App. D.1.

Iasym =

∫ Λ

0

dk
k

(K2 +m2) (K2 +M2)
+

∫ ∞
Λ

dk
k

(K2 +m2) (K2 +M2)
. (1.2.27)

Before further discussion for this method, we need to introduce some basic nota-
tions. Start with the light-cone basis vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1).
In this frame, the 4-momentum can be expressed as

pµ = (n · p) n̄
µ

2
+ (n̄ · p) n

µ

2
+ pµ⊥ ≡ (p+, p−, p⊥) , (1.2.28)

where we have defined the plus and minus components as p+ ≡ n ·p and p− ≡ n̄ ·p.
We now introduce the “scaling” variable λ,

λ2 ∼ p21
(p1 − p2)2

∼ p22
(p1 − p2)2

. (1.2.29)
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For an example, we can study the integral for the eikonal approximation in
d = 4:

Ieik ∼
∫

dk+dk−d2k⊥
(k+k− − k2⊥ + iε) (k+ + iε) (−k− + iε)

. (1.2.30)

With this form, it is easy to identify the regions which lead to IR divergence.
In the first case, all components of kµ vanish at the same time, which is called as
the soft region. And in the other two cases, kµ is finite and parallel to either p1 or
p2, which is the collinear region. The components in these regions are at the order
of
√
q2 times powers of scaling variable λ, thus one finds that only the following

regions give non-vanishing contributions:

• Hard Region: where k scales as (1, 1, 1)
√
q2

• Soft Region: where k scales as kµ ∼ (λ2, λ2, λ2)
√
q2

• Collinear to p1 Region: where k scales as kµ ∼ (λ2, 1, λ)
√
q2

• Collinear to p2 Region: where k scales as kµ ∼ (1, λ2, λ)
√
q2

This method is widely used in Soft-Collinear Effective Theory (SCET), details
about SCET are beyond the scope of this thesis. Here we only want to point out
the power of strategy of regions, as an example, one can also apply the strategy of
regions to calculate the QCD corrections to the electromagnetic vertex, the results
are collected in App. D.1. (see also in [26] for an overview.)

1.2.5 Factorization in the soft limit
We are now ready to study the factorization properties of real and virtual ampli-

tudes in the soft limit. As we have briefly introduced in Eq.(1.2.15), the radiation
of soft gluon can be described by the eikonal approximation. More generally, all
the soft radiation can be captured by the Wilson line. A pedagogical introduction
to Wilson lines can be found in [26].

p p− k
k

M0

Figure 1.5. Gluon emission from an external fermion line.

Now, we consider the real correction diagram, Fig.1.4b, and we can generalize
it to Fig.1.5, where the M0 represent for a general LO process. According to the
QCD Feynman rule, we have

M1 (p, k) = u (p) (−igγµta) εµ (k)
i (�p−��k)

(p− k)2 + iε
M0

k→0→ tag
pµ

p · k
εµ (k)u (p)M0, (1.2.31)
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where in the second line, we have applied the soft limit, and pµ/p · k is called
eikonal factor. We have used the standard notation of Dirac spinor u (p) and the
gluon polarization vector εµ (q).

p

k1

p− k1

k2

p− k1 − k2
M0

p

k1

p− k1

k2

p− k1 − k2
M0

Figure 1.6. Double emission of a gluon from a fermion line

Furthermore, we can define the Feynman rule for the effective coupling of the
gluon vertex, i.e. eikonal vertex, based on the result shown on Eq.(1.2.31)

k
p

p− k

= gta
pµ

p · k
. (1.2.32)

The above discussion can be also extended to the emission of two gluons 3, and
the corresponding diagrams that contribute to this process are shown in Fig.1.6.
Then the expression for the amplitude reads

Mµ1µ2

2 (p, k1, k2) = u (p)M0
g2ta1t

a
2 (�p−��k1 −��k2)

(p− k1 − k2)2 + iε

[
γµ1 (�p−��k1) γ

µ2

(p− k1)2 + iε
+
γµ2 (�p−��k2) γ

µ1

(p− k2)2 + iε

]
→ u (p)M0

2∏
i=1

gtai
pµi

p · ki
. (1.2.33)

The emissions of two soft gluons from a fermion line just becomes the product
of two eikonal vertices as shown in Eq.(1.2.32). This can be further extended to
multiple soft gluon emission

Mµ1···µn
n (p, k1, · · · kn) =M0u (p)

n∏
i=1

gtai
pµi

p · ki
. (1.2.34)

Coming back to the real correction for e+e− annihilation to hadrons, we find
the full amplitude is

M1 (p, k)→ Jµ (k) εµ (k)M0 (p) , (1.2.35)
3The correlated gluon emission doesn’t contribute since it is O(k2), which should be considered

at NLL accuracy
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where we have introduced the eikonal current, by summing the two terms of the
effective coupling shown in Fig.1.4b

Jµ (k) =
2∑

n=1

gtan
pµn
pn · k

, (1.2.36)

the tan is the color operators, which satisfy color conservation∑
n

tan = 0, (1.2.37)

and the square of an operator tan gives the Casimir of the SU(NC) representation

ta2n =

{
CF for quark

CA for gluon
(1.2.38)

Note that the eikonal approximation is insensitive to the spin of the emitting
particles [27]. From a physical point of view, this indicates that the soft radiation
cannot resolve the details of the short distance interactions. Thus, we can obtain
the factorization properties of the soft gluon emission

|M1|2 = |M0|2Jµ(k)Jν(k)(−gµν)

= |M0|2g2
2CF (p1 · p2)
(k · p1)(k · p2)

. (1.2.39)

Now we can return to the QCD vertex correction, Eq.(1.2.15). The integral can
be evaluated in d = 4 centre-of-mass system

pµ1 = E1 (1, 0, 0, 1) , p
µ
1 = E1 (1, 0, 0, 1) and k

µ =
(
k0, ~k⊥, kz

)
, (1.2.40)

where ~k⊥ is the transverse loop momentum, and we define the norm k⊥ ≡ |~k⊥|.
Therefore, the integral becomes

Ieik (p1, p2, ε) = −g2CF

∫
d3k

(2π)4
2dk0 [ū (p1) γµv (p2)]

(k0 − kz + iε) (−k0 − kz + iε) (k20 − k2z − k2⊥ + iε)

= g2CF [ū (p1) γµv (p2)]

∫
d3k

(2π)3

[
− (p1 · p2)

2|~k| (p1 · k) (p2 · k)
− 1

k2⊥ (kz − iε)

]
.

(1.2.41)

In the second line of the above equation, we have closed the contour integral
with 4 poles. As expected, the first term will cancel the real gluon emission,
Eq.(1.2.39), while the second integral is a pure phase, called Coulomb phase∫

dkzd
2k⊥

(2π)3
1

k2⊥ (kz − iε)
= −

∫
dkz

kz + iε

k2z + ε2

∫
dk⊥

(2π)2
1

k⊥
=
−i
4π

∫
dk⊥
k⊥

. (1.2.42)
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1.3 DGLAP Evolution Equation
Now that we have examined the factorization properties in the soft limit, we

should investigate collinear singularities, which are associated with collinear emis-
sion processes and appear in the limit of zero mass. From the example of e+e−
annihilation to hadrons, we saw that soft and collinear singularities cancel in the
expression for the total cross-section. However, for the process where quarks or
gluons appear in the initial state, i.e. hadron collision, the corrections to the
process will have collinear singularities that do not cancel.

In this section, we will demonstrate the properties of collinear gluon emission.
These singular terms will lead to a set of differential equations that govern the
momentum dependence of the parton distributions. In the end, we will also briefly
discuss the physical interpretation of the aforementioned initial state collinear
singularities.

X

Y

k

p

q

X

Y
q
→

p

k

Figure 1.7. General form of diagrams with collinear singularities in QED

1.3.1 Splitting Functions
The basic phenomena associated with collinear singularities in QCD are essen-

tially present in the physics of collinear photon emission in Quantum Electrody-
namics (QED). Therefore it is most straightforward to begin by studying the QED
case. In this subsection, we will present how a collinear photon emission leads to
an analog of a ”parton” distribution function.

In QED, diagrams for singularities associated with collinear emission are shown
the Fig.1.7, where the collinear singularity appears when the denominator of the
intermediate propagator vanishes, i.e. it becomes on-shell. Thus, in both cases, it
is natural to consider the diagrams as the transition of a real electron to an almost-
real intermediate-state particle and a real photon/electron. In order to derive the
matrix element for electron splitting, we first set the kinematics configuration as

pµ = (p, 0, 0, p),

qµ = (zp, p⊥, 0, zp−
p2⊥
2zp

),

kµ = ((1− z)p,−p⊥, 0, (1− z)p+
p2⊥
2zp

), (1.3.1)
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where z is the energy fraction of the photon Eq = zp, with the condition p2 = q2 =
k2 = 0 up to the terms of order p2⊥.

For the matrix element with either left- or right-handed photon polarization,
one finds the result as

iMR

(
e−L → e−LγR

)
= −ie

√
2(1− z)
z

p⊥, (1.3.2)

iML

(
e−L → e−LγL

)
= −ie

√
2(1− z)
z(1− z)

p⊥. (1.3.3)

The squared matrix element averaged over the initial helicities is

1

2

∑
pol

|M |2 = 1

2
[|ML|2 + |MR|2]

=
e2p2⊥

z(1− z)
[
(1− z)2 + 1

z
]. (1.3.4)

We have introduced all the pieces needed for the calculation, if we consider the
process with a virtual photon, where MγX represent the matrix element for the
scattering of a photon from particle X. Then the cross-section reads as

σ
(
e−X → e−Y

)
=

1

F

∫
dΠk

∫
dΠY [

1

2

∑
|M |2]( 1

q2
)2|MγX |2

=

∫ 1

0

dz

∫
dp2⊥
p2⊥

α

4π
[
(1− z)2 + 1

z
] · σ(γX → Y ). (1.3.5)

Comparing the above formula to the parton model expression, we can define
the transverse momentum integral as a distribution function

fγ(z) ≡
α

4π
log

s

m2
[
(1− z)2 + 1

z
], (1.3.6)

where the log s
m2 represents the collinear singularity, and Eq.(1.3.5) is called the

Weizsäcker-Williams equivalent photon approximation [28, 29].

The first diagram in Fig.1.7, i.e. electron transition to real photon and virtual
electron, can be treated in the same way, and we find the electron distribution

fe(z) ≡ δ (1− x) + α

2π
log

s

m2

[
1 + x2

(1− x)+
+

3

2
δ (1− x)

]
, (1.3.7)

where the plus distribution 1/ (1− x)+ is defined in App. C.3. The above discus-
sion has only considered single-photon emission. For higher-order corrections to
the photon or electron distribution functions, we must treat the emission of mul-
tiple collinear photons. For the process of real photon emission with additional
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photon emission, which photon 1 and photon 2 are radiated with transverse mo-
mentum p1⊥ and p2⊥, with p1⊥ � p2⊥. Thus, to order of α2, the double photon
emission gives the contribution

(
α

2π
)2
∫ s

m2

dp21⊥
p21⊥

∫ p21⊥

m2

dp22⊥
p22⊥

=
1

2
(
α

2π
)2log2

s

m2
. (1.3.8)

We can further extend the above analysis to arbitrarily many collinear photons,
with integration over the photon phase space corresponding to the ordering.

p1⊥ � p2⊥ � · · · � pn⊥, (1.3.9)

which will give the contribution proportional to

1

n!
(
α

2π
)nlogn

s

m2
. (1.3.10)

If photon transverse momenta are ordered in any other way, the above contribu-
tion would at least one less power of the logarithm at the same order in α. Thus,
the electron momenta are said to be strongly ordered, if the condition of Eq.(1.3.9)
holds. This conclusion has an interesting physical interpretation, for the case of
the virtual intermediate electron, as intermediate electrons are increasingly virtual
towards the hard collision. It is natural to interpret them as components of the
physical electron.

In this picture, the electron can be resolved at a finer scale into a more virtual
electron and a number of photons. Therefore, it is useful to describe the splitting
to be a continuous evolution as a function of the constituent transverse momentum,
and the function is determined by the integro-differential equation

d

dlogQ
fγ (x,Q) =

∫ 1

x

dz

z

[
α

π

1 + (1− z)2

z

]
fe

(x
z
,Q
)
, (1.3.11)

d

dlogQ
fe (x,Q) =

∫ 1

x

dz

z

[
α

π

(
1 + z2

(1− z)+
+

3

2
δ (1− z)

)]
fe

(x
z
,Q
)
. (1.3.12)

The resulting distribution functions can be used to compute the electron hard
scattering, and Eq.(1.3.5) should be replaced by

σ
(
e−X → e−Y + nγ

)
=

∫ 1

0

dxfγ (x,Q)σ (γX → Y ) . (1.3.13)

So far we have introduced the evolution equations for fγ(x,Q) and fe(x,Q),
these equations account for the radiation of photons from electrons to all-order.
However, there is one more process at the same α order: photon splitting to
electron-positron pair. This process must be included, because the process shown
in Fig.1.8, has the same logarithmic enhancement.
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γ

→
p

e−

e+
q

k

Figure 1.8. Vertex for photon splitting into electron-positron pair

We will skip the calculation for the photon splitting and the positron distri-
bution function fē(x,Q), more information can be found in Chapter 17 of [30].
Including the effects of photon splitting, we find the complete evolution equations
for electron, positron, and photon distributions in QED

d

dlogQ
fγ (x,Q) =

α

π

∫ 1

x

dz

z

{
Pγ←e (z)

[
fe

(x
z
,Q
)
+ fē (x,Q)

]
+ Pγ←γ (z) fγ (x,Q)

}
,

(1.3.14)
d

dlogQ
fe (x,Q) =

α

π

∫ 1

x

dz

z

{
Pe←e (z) fe

(x
z
,Q
)
+ Pe←γ (z) fγ

(x
z
,Q
)}

, (1.3.15)

d

dlogQ
fē (x,Q) =

α

π

∫ 1

x

dz

z

{
Pe←e (z) fē

(x
z
,Q
)
+ Pe←γ (z) fγ

(x
z
,Q
)}

, (1.3.16)

where the splitting functions Pi←j (z) are giving by

Pe←e (z) =
1 + z2

(1− z)+
+

3

2
δ (1− z) , (1.3.17)

Pγ←e (z) =
1 + (1− z)2

z
, (1.3.18)

Pe←γ (z) = z2 + (1− z)2 , (1.3.19)

Pγ←γ (z) = −
2

3
δ (2− z) . (1.3.20)

1.3.2 Parton Evolution: DGLAP Equations
For the collinear singularities in QCD associated with collinear gluon and quark

emission, similar to the above discussions we can calculate the αs order corrections
to the LO parton cross-section with massless quarks and gluons. Where in QED,
we found it natural to include the large logarithm enhancement from the collinear
singularity in the parton distributions rather than in the hard-scattering cross-
sections, where the singular terms arise in the parton distributions as a function of
the logarithm of the momentum scale. When the electron wavefunction is resolved
in high energy, as hard scattering momentum transfer Q probes the electron at a
distance of order Q−1, it appears as a constituent electron.

To derive the evolution equations for the parton distribution functions in QCD,
we can use the same logic as stated above, where the kinematics of collinear gluon



28 Understanding Infrared Singularities

emission is exactly the same as in QED. Thus we can find the evolution equations
of the same form as in QED, modified only by the replacement of coupling constant
αs, the insertion of color factor, and including the non-Abelian vertex.

Figure 1.9. Vertices contribute to parton evolution in QCD.

Collinear emission processes in QCD are shown in Fig.1.9, where the first two
terms have the same Lorentz structure as those shown in Fig.1.7. Therefore, we
find that the first three splitting functions in QCD can be taken from Eq.(1.3.17)-
(1.3.19) multiply with the color factors

Pq←q (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ (1− z)

]
, (1.3.21)

Pg←q (z) = CF

[
1 + (1− z)2

z

]
, (1.3.22)

Pq←g (z) = Nf

[
z2 + (1− z)2

]
, (1.3.23)

Pg←g (z) = 2CA

[
1− z
z

+
z

(1− z)+
+ z (1− z)

]
+ β0δ (1− z) . (1.3.24)

Therefore, we can modify the QED evolution equations into the evolution equa-
tions for parton distributions in QCD, by inserting the color factor and including
the new non-Abelian case. These are known as the Dokshitzer-Gribov-Lipatov-
Altarelli - Parisi (DGLAP) evolution equations [31–34]:

µ
∂

∂µ

(
fqi (x, µ)
fg (x, µ)

)
=

∫ 1

x

dz

z

(
Pqi←qj

(
x
z
, µ
)

Pqi←g

(
x
z
, µ
)

Pg←qj

(
x
z
, µ
)

Pg←g

(
x
z
, µ
) )( fqj (z, µ)

fg (z, µ)

)
,

(1.3.25)
where the parton distribution function depends on the UV renormalization scale µ,
and the running coupling was absorbed in the splitting function, whose expansion
in power of coupling αs read as

Pi←j

(
x, µ2

f

)
=
αs

(
µ2
f

)
π

[
P (0) (x) + αs

(
µ2
f

)
P (1) (x) +O

(
α2
s

)]
, (1.3.26)

Recently, the state-of-art calculations in QCD splitting functions have achieved
N3LO (4-loop) accuracy, i.e. P (3) (x).

1.3.3 Collinear factorization and Mellin transform
For the production of a system of large mass M , for example, the Drell-Yan

process from the scattering of two hadrons, which consists of lepton pair production
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together with the hadronic final state. Recall Eq.(1.1.11) that can factorize the
cross-section as

dσ

dM2
=
∑
a,b

∫
dxadxbfa (xa, µf ) fb (xb, µf )σab→M

(
M2/µf , ŝ, αs (µf )

)
=
∑
a,b

σ0

∫
dxa
xa

dxb
xb
fa (xa, µf ) fb (xb, µf )

× Cab→M (z, αs (µf )) . (1.3.27)

In the above equation, we have factored out the LO, i.e. Born-level, partonic
cross-section σ0, defined as

dσ

dM2
= σ0

(
M2, αs

(
M2
))
δ

(
1− M2

ŝ

)
, (1.3.28)

where M2 is the invariant mass of the lepton pair, and ŝ = x1x2s is the centre-of-
mass energy of the parton-parton scattering. The dimensionless hard-scattering
functions Cab→M , in Eq.(1.3.27) depend on

z =
M2

ŝ
=

τ

x1x2
. (1.3.29)

The generic partonic coefficient function C (z, αs (µf )) is enhanced because of
the soft gluon emissions, i.e. z → 1, similar to the discussion for multiple photon
splittings, consider the case of a quark parton line which emits n gluons, shown in
Fig.1.10. When a gluon is emitted, it carries an energy fraction of the quark, and
the energy of the quark gradually decreases to the fraction z = z1z2 · · · zn.

1− z1 1− z2 1− z3 1− zn−1 1− zn

Figure 1.10. Emission of n gluons from a quark line, strongly ordered

When integrating over the emitted gluon phase spaces, as we have done for
the emission of multiple photons in Eq.(1.3.8), these enhancements convert into a
series of terms

αn
s

logk (1− z)
1− z

, 0 ≤ k ≤ 2n− 1. (1.3.30)

Before proceeding to the next step, it is useful to introduce a mathematical tool,
as we notice the convolution of Eq.(1.3.27) can be diagonalized with the Mellin
transform

M [f ⊗ g] = M [f ]×M [g] . (1.3.31)



30 Understanding Infrared Singularities

The Mellin transform is closely related to the Laplace transform by the change
of variable, i.e., Laplace transforms w.r.t −logx. General properties of transfor-
mations and inversions can be found in App. C

M [f ] ≡ f̃ (N) =

∫ ∞
0

d (−logx) e−N(−logx)f (x)

=

∫ 1

0

dzzN−1f (z) . (1.3.32)

Thus, instead of convolution, Eq.(1.3.27) can be expressed as a product in
conjugated space, i.e. Mellin momentum space.

M

[
dσ

dM2

]
= σ0

∑
a,b

f̃a/A (N,µf ) f̃b/B (N,µf )

×Cab→M

(
N,M2/µ2

f , αs (µf )
)
. (1.3.33)

So far, we have reviewed the collinear factorization by introducing the factor-
ization scale µf , where the momentum scale separates the definition of collinear
and hard momenta. The essential property of the hard-scattering function is a re-
factorization of soft gluon’s singular behavior for z → 1, which makes re-organize
the large logarithms from the IR divergences, i.e. resummation techniques, possi-
ble.

1.4 Application: NLO Drell-Yan Process
In this section, we will combine the techniques introduced in this chapter to

a detailed calculation of the NLO Drell-Yan process, and the renormalization of
PDF will be discussed with the O(αs) corrections.

q

p2

p1

k

Figure 1.11. Real corrections for the Drell-Yan process

For the NLO QCD correction for the Drell-Yan Process, the real and virtual
corrections arise from the real gluon emission and the vertex correction in the initial
state. In this section, we will focus on the qq̄ → ll̄g channel, where the virtual
correction is already discussed in Sec. 1.2, and the real correction is illustrated in
Fig.1.11.

We now calculate the cross-section for the emission of a real gluon and the same
notation as in subsection 1.2.3 is chosen. In addition, we can split the matrix
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element into a leptonic and a hadronic part by∫
dΠ3

1

4

∑
|M |2 = Lµν

∫
dΠ3H

µν . (1.4.1)

Where the 3-body phase space can also be split into two 2-body phase spaces
with the recursion relation shown in Fig.1.12 which yields

dΠ3 =
dM2

2π
dΠH

2 dΠ
L
2 . (1.4.2)

p1

p2

k

p1

p2

k

Figure 1.12. Recursion relation for 3-body phase space

The leptonic phase space dΠL
2 is the same as in the LO calculation. The details

of the phase space integral are given in App. A.2, from Eq.(A.2.1) it fellows that

dΠH
2 =

1

8π

(4π)ε

Γ (1− ε)
(s−M2)

1−2ε

s1−ε

∫ 1

0

dy [y (1− y)]−ε . (1.4.3)

With the Mandelstam variables, the partonic cross-section for real gluon emis-
sion can be written as

αs

π

dσR

dM2
= 4σ0αsCF

∫
dΠH

2

[(
2sQ2

tu
+ 1− ε

)(
u

t
+
t

u

)
− 2ε

]
. (1.4.4)

Finally, by using the properties of the Γ function and integrating out the
hadronic phase space, we obtain the result

dσR

dM2
= σ0CFH(ε)[

2

ε2
δ(1− z)− 2

ε

1 + z2

(1− z)+
+ 4[1 + z2](

log(1− z)
1− z

)+ − 2logz
1 + z2

(1− z)
],

(1.4.5)
dσV

dM2
= σ0CFH(ε)δ(1− z)[− 2

ε2
− 3

ε
− 8 +O(ε)]. (1.4.6)

Adding the real and virtual corrections cancels the double pole, and the leftover
ε−1 pole. Therefore, while in Sec. 1.2.3, the final state radiation has the total
cancellation of IR divergences, a residual collinear divergence remains when we deal
with the hadron collision with initial state radiation. This is because the difference
between these two cases is related to the Born cross-section. For the initial state
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case, shown in the left side of Fig. 1.3, the Born cross-section appears as σ0(zp),
but the final state radiation Born cross-section is σ0(p). And as we pointed out
for the one-loop virtual corrections, both cases share the same kinematics of the
Born level, hence proportional to σ0(p).

Therefore, in the initial state a residual divergence σ0(zp)− σ0(p) remains, and
this is totally due to collinear behavior as in the soft limit, we will recover the
cancellation. In order to cancel this extra divergence, we need to absorb this
collinear divergence in PDF, this procedure is called PDF renormalization. The
unrenormalized, i.e. bare partonic cross-section to order O(αs) is found to be

dσNLO

dM2
=

dσR

dM2
+
dσV

dM2

= σ0H (ε)

(
−2

ε
Pqq (z) +R (z)

)
, (1.4.7)

recall the splitting function from Sec. 1.3

Pqq(z) = CF [
1 + z2

(1− z)+
+

3

2
δ(1− z)], (1.4.8)

and the finite part is

R(z) = CF [−8δ(1− z) + 4[1 + z2](
log(1− z)

1− z
)+ − 2logz

1 + z2

(1− z)
]. (1.4.9)

More details about the PDF renormalization can be found in App. B.5. and
the renormalized cross section reads as

dσ̄(1)(z)

dM2
=
dσ(1)(z)

dM2
−
∫
dz1Γ

(1)(z1)
dσ(0)(z1)

dM2
−
∫
dz2Γ

(1)(z2)
dσ(0)(z2)

dM2

=
dσ(1)(z)

dQ2
− 2Γ(1)(z)σ0(s), (1.4.10)

where z = Q2/s and the Born cross section is

dσ(0)(ŝ)

dM2
= σ0(ŝ)δ(1−

M2

ŝ
). (1.4.11)

In order to cancel the ε−1 pole multiplying Pqq in Eq.(1.4.7), The transition
function is defined as

Γ(1)(z) = −1

ε
H(ε)Pqq(z). (1.4.12)

Therefore, the final finite partonic cross-section is
dσ̄(1)(z)

dM2
= σ0R(z). (1.4.13)

As a final comment of this section, the definition of Eq.(1.4.12) is not unique.
Since Γ(z) is not directly observable any kind of renormalization scheme can be
adopted, which means that finite part can be moved into Γ(z). The convention
used here is called the Minimal Subtraction (MS) renormalization scheme.
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1.5 Infrared and Collinear Safety
Dentifying quantities in QCD that are dominated by short-distance behavior

lead us to the concept of IRC safety, which has long been a guiding principle for
determining if an observable is calculable in perturbative QCD [9, 35]. IRC safe
observables are insensitive to arbitrarily soft emissions and collinear splittings.
This ensures that the singularities cancel between real and virtual emissions at
each fixed-order in perturbative QCD.

To put the concept of perturbative calculability in general context, the basic
ideas can be summarized below: For a general observable v, collecting real and
virtual contributions together, we can compute the NLO distribution with an
appropriate observable-function Ui({ki}) [36], the expression in the soft limit can
be written as

σ (v) =
1

2s

∫
dΠ2|M0|2U2 (p1, p2)

+
1

2s

∫
dΠ2|M0|2

∫
d3k

(2π)3 2|k|
2g2CF

(p1 · p2)
(p1 · k) (p2 · k)

× [U3 (p1, p2, k)− U2 (p1, p2)] . (1.5.1)

From the second line of the above equation, we can derive the following im-
portant properties: Firstly, the complete cancellation of infrared and collinear
singularity requires the IRC safe observable as

lim
pi→0

Un (p1, · · · , pi, · · · pn) = Un−1 (p1, · · · , pi−1, pi+1, · · · pn) , (1.5.2)

Un (p1, · · · , pi, pj, · · · pn) = Un−1 (p1, · · · , pi + pj, · · · pn) . (1.5.3)

We note here that there exists a wealth of observables that are of great phe-
nomenological interest despite them being IRC unsafe, more about unsafe ob-
servables will be introduced in Sec. 4.2.1. As a consequence, arbitrary collinear
emissions change the value of the momentum fraction that enters the hard scatter-
ing resulting in uncancelled collinear singularities. However, these can sometimes
be calculable in perturbative QCD using all-orders resummation, such observables
are known as ”Sudakov safe” [37] since the perturbative Sudakov factor effectively
regulates the singular region of phase space.

Note that for inclusive observables, i.e Um (p1, · · · , pm) = 1, the cancellation is
complete. Therefore the total cross-section remains unchanged by the emission of
soft particles, as we have discussed in Sec. 1.2. Note that for inclusive observ-
ables, i.e Um (p1, · · · , pm) = 1, the cancellation is complete. Therefore the total
cross-section remains unchanged due to the emission of soft particles, as we have
discussed in Sec. 1.2. On the other hand, the exclusive distributions, although
the singularities cancel, would depend on several scales of energy. Thus mani-
fests itself with the appearance of large logarithmic enhancements to any order in
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perturbation theory. In these regions, the reliable theoretical predictions must be
resummed to all orders, details about all-order resummation will be discussed in
Chapter 2.

1.6 Resummation of divergent series
One of the key assumptions of perturbative QCD, as mentioned above, is that

the pQCD series is asymptotic. Despite being divergent in the mathematical sense,
the physical quantity of the perturbation theory can be computed as a power series
in terms of the small coupling. In this section, we want to give a brief overview of
resummation techniques for divergent power series.

1.6.1 Large-order behaviour of perturbation theory
In QFT, the coefficients of the power series often exhibit factorial growth. A

common technique, if the large order asymptotic of the series coefficients are
known, is Borel resummation [38], For a general function f (g) =

∑
k fkg

k with
the coefficient fk ∼ (−α)k k!, the Borel sum is defined by

B (g) =
∞∑
n=0

Bng
n, with Bn =

fn
n!
. (1.6.1)

Recall the perturbation series in QCD, Eq.(1.1.6), fn ∝ ann! for large n. There-
fore, the expansion coefficients Bn behave like

Bn ∝ an, (1.6.2)

so that the Borel sum converges for |g| < 1/a, with the expansion

∞∑
n=0

Bng
n =

γ

1− ag
[1 +O (g)] , (1.6.3)

where γ is constant. The factorials can be restored using an integral representation
of the Γ function:

k! = Γ (k + 1) =

∫ ∞
0

dte−ttk. (1.6.4)

If an asymptotic series is Borel summable, then the inverse transform

f̃ (t) =

∫ ∞
0

dge−gB (gt) , (1.6.5)

uniquely determines the function f̃ (t) = f(t) to which the series is asymptotic, and
f̃ (t) is a Laplace transform. Thus the theory of Borel summability is essentially
the theory of Laplace transforms.
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1.6.2 Padé approximation
However, in practice, the large order asymptotic of the coefficients might not

be known analytically. One of the most widely used methods to approximate a
function f(t), whose first few expansion coefficients are known, is Padé approx-
imation. It tries to approximate f(t) by two polynomials, PM(t) and QN(t) of
degree M and N . The Padé approximant Z[M/N ](t) of order [M/N ] is defined by
the condition:

PM (t)−QN (t)Z[M/N ] (t) = O
(
tM+N+1

)
. (1.6.6)

Typically, the symmetric [N/N ] Padé approximant features the fastest approx-
imation for increasing N although this depends on the function, for an example,
f (z) = 1

1+z
, is shown in Fig.1.13. Therefore, instead of explicitly computing the

Borel sum B(g), we simply approximate it using Padé approximation

f (t) =

∫ ∞
0

dge−gB[m/n] (gt) . (1.6.7)

This combination of Padé approximation and Borel resummation is called as
Borel-Padé approximation.

0.0 0.2 0.4 0.6 0.8 1.0
f(z) = = 1 z + z2 + O(z3)

0.5

0.6

0.7

0.8

0.9

1.0

function
power series
Padé approximant

Figure 1.13. Plot of truncated power series expansion and its Padé approximants [1/1]

1.6.3 Borel-Leroy transform
Instead of a Borel transform with a leading cut at 1/a, we may also define a

generalized Borel transform, where the leading cut becomes a leading pole, called
as Borel-Leroy transform [39], which is defined from the power expansion

B (g) =
γ

(1− ag)β+1
= γ

∞∑
n

Γ (β + n+ 1)

Γ (β + 1)Γ (n+ 1)
angn

∝
∞∑
n

annβgn, for large n. (1.6.8)
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Thus, we can divide each coefficient fn by Γ (n+ β + 1) rather than by n!. The
inverse Borel-Leroy transformation is

f (t) =

∫ ∞
0

dggβe−gBβ (gt) , (1.6.9)

and in order to recover f(t), we reinsert the growth factor

Γ (n+ β + 1) =

∫ ∞
0

dte−ttn+β. (1.6.10)
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T he main topic of this thesis is resummation, and in particular, we focus on
first-principle precision calculation for two important types of observables for

which resummation techniques are needed, in order to obtain accurate theoret-
ical predictions, namely IRC-unsafe and non-global observables. Before further
extension to these aforementioned two types of observables, in this chapter, the
basic ideas underlying resummation techniques and analytic calculations for the
global part are discussed. After introducing some technology and terminology us-
ing threshold resummation as an example, the findings will be extended to two
examples: small jet mass and transverse momentum, which are related to some
novel methods that we will derive in the remainder of this thesis.
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2.1 Perturbation theory to all orders
On Sec. 1.3.3, we have presented the collinear factorization formula for Drell-

Yan processes, i.e pp→ γ/Z → l+l−, with large invariant mass, in this context, the
factorization theorem states that it is possible to write the hadronic cross-section
as a convolution between a partonic hard scattering coefficient function and parton
distributions, with corrections that are power-suppressed by the hard scale Q.

Here, we focus on the region of phase space where the center-of-mass energy ŝ
is close to the invariant mass, i.e. ŝ ∼ M2. In this region, additional radiation is
forced to be soft, leading to large logarithm enhancements. These logarithms are
usually referred to as threshold logarithms. In this section, we will further expand
the perturbative formalism developed at Sec. 1.3.3 to all perturbative orders.

2.1.1 Prologue: different approaches in resummation
To obtain reliable predictions, computations of radiative corrections are neces-

sary. According to KLN theorem, we need to be rather ”inclusive” in our evaluation
to cancel all the IR divergences. The evaluation of the perturbative QCD series is
in many cases very cumbersome since we have to deal with an enormous amount of
diagrams. As we have briefly introduced earlier, the large logarithm in the partonic
cross-section needs to be resummed to all-order, for many interesting observables,
one can find the following structure

1

σ

dσ

dO
∼ O(1)︸︷︷︸

LO

+O(αS)︸ ︷︷ ︸
NLO

+O(α2
S)︸ ︷︷ ︸

NNLO

+...

∼ exp(Lg1 (αSL)︸ ︷︷ ︸
LL

+ g2 (αSL)︸ ︷︷ ︸
NLL

+αSg3 (αSL)︸ ︷︷ ︸
NNLL

+...),

where we have reorganized the order by order result to logarithmic expansion after
the resummation procedure.

Usually, the logarithmic contributions arise from the ratios of different scales.
In the previous chapter, we have already observed their behavior, by introducing
the renormalization and factorization scales.

The resummation procedure follows from re-factorization, that is, we distinguish
between collinear (including soft/collinear radiation) and soft configurations in
the hard scattering function. There are different approaches to derive the re-
factorization, mainly including:

• Traditional approach

• Effective Theory approach

• Monte Carlo parton shower approach
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In this thesis we will mainly concentrate on the traditional approach, details
about EFT and Monte-Carlo (MC) approach are beyond the scope of this thesis.
However, the starting point for constructing the aforementioned two approaches
will be briefly discussed in Sec. 2.5.

2.1.2 A first example: threshold resummation
Recall that the cross-section of Drell-Yan process can be written in factorized

form, Eq.(1.3.27) and the conjugated Mellin space, Eq.(1.3.33). The essential
property of the hard-scattering functions Cab(z), that makes resummation possible
is the re-factorization of the singular behavior at z → 1

Cab→M

(
z,M2, µ

)
= H

(
M2, µ

)
S

(
1− z, M

2

µ2
, αs (µ)

)
, (2.1.1)

as discussed in Sec. 1.3.3, the singular behavior comes from the power of log(1−z),
therefore the quantity S is called soft function, and it can be described either in
traditional approach from eikonal approximation or Wilson lines in soft-collinear
effective theory (SCET)

For the traditional approach, recall the scattering amplitude in the soft limit
which we have derived in Eq.(1.2.34). Thus it is straightforward to prove the
factorization at the matrix element level as

Mn (p, z1, · · · zn) =
1

n!

n∏
i=1

M1 (p, zi) , (2.1.2)

where the M1 is the single gluon emission matrix element, and the phase space
integral is proportional to

dz1 · · · dznδ (z − z1 · · · zn) . (2.1.3)

In order to factorize the Dirac delta function, one can apply the Mellin transform∫ 1

0

dxxN−1δ (z − z1 · · · zn) = zN−11 · · · zN−1n , (2.1.4)

and the tower of logarithms in Eq.(1.3.30) converts into the tower in Mellin space

αn
s log

k 1

N
, 0 ≤ k ≤ 2n. (2.1.5)

In the soft limit, the corresponding n-gluon contribution to the hard-scattering
function at order αn

s reads

C
(n)
ab (N) ' 1

n!

[
C

(1)
ab (N)

]n
. (2.1.6)
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The leading logarithmic (LL) approximation is obtained by considering the LLs
only, i.e. k = 2n. This implies that we could sum over all possible amounts of
emissions as

Cres
ab (N,µf ) =

∑
n

αn
s (µf )C

(n)
ab (N)

= exp
[
αsC

(1)
ab (N)

]
. (2.1.7)

2.1.3 Lund diagram
Lund diagram [40] is a graphic tool that represents the emission kinematics

in the soft and collinear limit, and each point indicates a given emission with a
fraction z of the transverse momentum of the parton and emission angle θ.

log 1
θ2

log 1
z soft

collinear

log 1
v

log 1
v

v = zθ2

Figure 2.1. Lund diagram: emissions of soft/collinear gluons are uniformly distributed

Firstly, let’s rewrite the probability in soft and collinear limit

P (z, θ) dzdcosθ =
αsCi

π

dz

z

dθ2

θ2
, (2.1.8)

where Ci is the color factor that depends on the original parton for the emission
(Ci = CF for a quark, and Ci = CA for a gluon).

Therefore, the emissions of soft and collinear gluons are uniformly distributed
in the plane, shown in Fig. 2.1. Moving vertically in the plane we approach the
soft limit and horizontally the collinear limit. For a more detailed example, let’s
consider the ratio of the invariant mass of the quark-gluon system to its total
energy:

v =
m2

E2
=
∑
i

ziθ
2
i , (2.1.9)

Now we can calculate the cumulative probability distribution P (x < v), which
measures the value of this observable less than the value v. In order to simplify this
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task, it is worth to point out the emissions in real space (z, θ2) are exponentially
far apart, as they are uniformly distributed in the Lund diagram. Hence there
should exist a single dominant emission, corresponds to a line in Fig. 2.1 and
no emissions below this line. Therefore, we could find the probability by directly
calculating the area of the forbidden triangle, i.e. 1

2
log2 1

v
. Then, the probabilities

of no emissions read as

P (x < v) =

(
1− αsCi

2π

log2v

N

)N

= exp

[
−αsCi

2π
log2v

]
, (2.1.10)

where all terms that would contribute to constant or single logarithm have been
ignored, this is called as double leading logarithmic approximation (DLLA)

This exponential function is called the Sudakov form factor [41], and this form
factor is related to the sum over all degenerate states for soft/collinear emissions,
which tamed all the large logarithm divergence. More details about the Sudakov
form factor will be discussed at Sec. 2.2

As the last commit in this section, one can find the probability distribution by
differentiating the above result

p (v) =
d

dv
P (x < v) = −αsCi

π

logv

v
exp

[
−αsCi

2π
log2v

]
. (2.1.11)

2.2 Transverse momentum distributions
In this section, we present the basic ideas for resummation techniques with a

focus on the transverse momentum distributions for the Drell-Yan process, which
are amongst the most-studied variables in high energy physics. The definition of
transverse momentum q⊥ is given by

~q⊥ =
n∑

i=0

~k⊥,i, (2.2.1)

where the sum is over the particles that recoil against the lepton pair. In the
small-q⊥ limit, we obtain the LO, i.e. Z boson plus one parton, behavior as

1

σ0

dσ

dq2⊥
=
αs

2π

(
A

q2⊥
log

M2

q2⊥
+
B

q2⊥
+ C

(
q2⊥
))

+O
(
α2
s

)
, (2.2.2)

where this distribution exhibits a double logarithmic divergence when q⊥ → 0.
The small value of q⊥ =

√
|~q⊥|2 comes from two mechanisms: either emission of

gluons with small transverse momentum or kinematical cancellation between the
transverse momenta of emitted gluons. The former gives the DLLA contribution.

Following similar steps to those discussed earlier in this Chapter, the series can
be resummed at LL accuracy, where all sub-leading contributions are ignored

1

σ0

dσ

dq2⊥
=
∞∑
n=1

(αs

2π

)n
Anlog

2n−1M
2

q2⊥
=

d

dq2⊥
e
−αsCF

2π
log2 M2

q2⊥ , (2.2.3)
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which exhibits the Sudakov form factor that suppresses the logarithm enhance-
ments from the emission of soft gluons. Thus, the distribution is well-behaved and
vanishes in the limit of q⊥ → 0.

2.2.1 Impact parameter space
Up to now, we have treated multiple soft gluon emissions as independent, un-

correlated processes, which have been simplified since the definition of transverse
momentum sum over all individual emissions, i.e., Eq.(2.2.1). This constraint can
be cast as a Dirac delta function, which can be expressed through integral represen-
tation as a Fourier transforms in impact parameter space. The impact parameter
b is conjugated to the transverse momentum q⊥

δ(2)

(
~q⊥ −

n∑
i=0

~k⊥,i

)
=

1

2π

∫
d2b⊥exp

[
i~b⊥ ·

(
~q⊥ −

n∑
i=0

~k⊥,i

)]
. (2.2.4)

For the convenience of discussion, we define the individual emission factors as

ν (k⊥,i) ≡
αsCF

π

1

k⊥,i
log

M2

k2⊥,i
, (2.2.5)

which the expression in the impact parameter space yields

ν (bi) =
1

2π

∫
d2k⊥,ie

−i~b·~k⊥,iν (k⊥,i) . (2.2.6)

Therefore, the contribution of n gluons which has an overall transverse momen-
tum of q⊥ of the lepton pair thus reads

1

σ0

dσ

dq⊥
=
∞∑
n=0

1

2πn!

∫
d2bei

~b·~q⊥νn (b)

=
1

2π

∫
bdbJ0 (bq⊥) exp [ν (b)] , (2.2.7)

in the second line we have summed over all gluon emissions and the Bessel function
J0 arise from the angular integral.

2.2.2 Aside: Sudakov form factor and its interpretation
So far, we have derived the Sudakov form factor, which encodes the resummation

of multiple gluon emissions. To see how this works, let’s consider gluon emission
off a quark where the gluon is collinear with the quark. Then the matrix element
is approximated by the splitting function, and the corresponding emission radiator
with DLLA becomes

R (k⊥) =
αsCF

π

1

k⊥
log

Q2

k2⊥
⇒ Rq→qg (k⊥, z) =

αsCF

π

1

k⊥
Pqq (z) , (2.2.8)
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with
Pqq (z) = CF

1 + z2

1− z
. (2.2.9)

Therefore, the integration over k⊥ must also be supplemented with one over z.
And because the splitting function is divergent at the limit z → 1, which must be
regularized, this is usually achieved through the “+”-function. For a more physical
way to ensure finite integrals, to describe the jet production, the emitted gluons
must be resolved, i.e. k⊥ > Q0. Thus, due to the momentum conservation, the
residual momentum fraction z must be smaller than 1 by a small value of ε = k2⊥

Q2 ,
and the Sudakov form factor can be rewritten as

S (Q,Q0) = exp

[
−
∫ Q2

Q2
0

dk2⊥
k2⊥

(
αs (k

2
⊥)

2π

∫ 1−ε

0

dzPqq (z)

)]
, (2.2.10)

the z-integral can be approximated by∫ 1−ε

0

dzPqq (z) ≈ CF

[∫ 1−ε

0

dz
2

1− z
−
∫ 1

0

dz (1 + z)

]
= 2CF

[
log

Q2

k2⊥
− 3

4

]
≡ Γq

(
Q2, k2⊥

)
, (2.2.11)

where the integrated splitting function Γ is introduced, and clearly, they are iden-
tical to the coefficients A and B from Eq.(2.2.3).

Now we can write the Sudakov form factor in a more general form

S (Q,Q0) = exp

[
−
∫ Q2

Q2
0

dk2⊥
k2⊥

αs (k
2
⊥)

π
Γ
(
Q2, k2⊥

)]
, (2.2.12)

where the integrated splitting kernels are given by the usual coefficients

Γ
(
Q2, q2

)
= A(1)log

Q2

q2
+B(1). (2.2.13)

We will further interpret the Sudakov form factor in Sec. 2.5.1, and describe it
as the probability for a given particle not to radiate a secondary particle between
two scales Q and Q0.

2.2.3 NLL resummation formula
In order to achieve higher accuracy, the sub-leading terms must be included.

Therefore, we would like to extend the resummation formalism for the transverse
momentum spectrum beyond LL accuracy. Considering n emissions in the collinear
limit, we have

1

σ̃0

dσ̃

dq2⊥
=
∞∑
n=0

1

n!

n∏
i=1

∫
zNi dzi

dk⊥i
k⊥i

dφi

2π

αs (k⊥i)

2π
2Pqq (zi) δ

(2)

(
~q⊥ −

n∑
i=0

~k⊥,i

)
,

(2.2.14)
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where σ̃0 is the Mellin transform of the hadronic Born cross-section

σ̃0 = σ0
∑
q

fq/A (N,µ) fq̄/B (N,µ) . (2.2.15)

We note that the δ function for the momentum conservation spoils the factor-
ization properties. In order to solve this problem, we can make use of the Fourier
representation of the delta-function shown in Eq.(2.2.4), which will give us the
desired factorized form. Now we can perform the sum in Eq.(2.2.14), and obtain
the exponential form:

1

σ̃0

dσ̃

dq2⊥
=

1

4π2

∫
d2bei

~b·~q⊥exp

[∫
dz
dkT
kT

dφ

2π

αs (kT )

π
Pqq (z)

(
zNei

~b·~kT − 1
)]

≡ 1

4π2

∫
d2bei

~b·~q⊥e−R(b,N), (2.2.16)

where the (−1) term has been included in order to account for virtual corrections,
We can further integrate over the angle between ~b and ~q⊥, obtaining a Bessel
function

1

σ̃0

dσ̃

dq2⊥
=

1

2π

∫ ∞
0

dbbJ0 (bq⊥) e
−R(b,N), (2.2.17)

and evaluate the radiator of the resummed exponent to NLL accuracy, we find the
following result

RN (b,N) =

∫ M2

1/b̄2

dk2⊥
k2⊥

αs (k
2
⊥)

π

[(
A(1) +

αs (k
2
⊥)

π
A(2)

)
log

M2

k2⊥
+B(1) + 2γqq (N)

]
,

(2.2.18)
where b̄ = b e

γE

2
and the lower bound of the integration from the approximation

1− J0 (ρ′b) ≈ Θ
(
ρ′ − 1/b̄

)
follow from Ref. [42], details about this approximation

are collected in the App. C.2. We have also introduced the coefficients

A(1) = CF , A
(2) =

CF

2

[
CA

(
67

18
− π2

6

)
− 5

9
nf

]
, (2.2.19)

B(1) = −3

2
CF , (2.2.20)

and γqq is the LO splitting function after the Mellin transform. We note that
the N-dependent part can be absorbed into the PDFs using DGLAP evolution
equation, leading to PDFs evaluated at the sacle µ = 1/b̄.

To achieve the NLL accuracy, the integration over k⊥ at Eq.(2.2.18) must be
performed with the two-loop running coupling, more details are collected in App.
B.2. Then the resummed exponent can be expressed as the sum of two contribu-
tions:

R (b) = Lf (1) (λ) + f (2) (λ) , (2.2.21)
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with

f (1) (λ) =
A(1)

πβ0λ
[−λ− log (1− λ)] , (2.2.22)

f (2) (λ) = −B
(1)

πβ0
log (1− λ)− A(1)β1

πβ0

[
λ+ log (1− λ)

1− λ
+

1

2
log2 (1− λ)

]
+
A(2) [λ+ (1− λ) log (1− λ)]

π2β2
0 (1− λ)

, (2.2.23)

where λ = αs (M) β0L, L = log
(
b̄2M2

)
.

As the last step to obtain the resummed expression, the integral over the impact
parameter b in Eq.(2.2.17) must be performed. This integration is problematic
both at small- and large- b, because the resummed exponent diverges in both
limits.

For the small-b corresponds to large qT which is beyond the control of our
resummation formula, and different prescriptions that preserve the logarithmic
accuracy can be found in the literature. For example, in Ref. [43] the modification
of the logarithms is suggested: log

(
b̄2M2

)
→ log

(
1 + b̄2M2

)
. Alternatively, one

could also freeze the radiator below some small values, i.e. b̄minM < 1 [44, 45]

The large-b divergence, i.e αsβ0L = 1 is due to the Landau pole in the running
coupling, which is associated to non-perturbative (NP) behavior. In this case,
one could introduce an upper limit to the b integration [44,45], another approach
includes deforming the contour integration to avoid the Landau singularity [43].

2.2.4 aT distribution
In this section, we will concentrate on the resummation of aT distribution.

Recall the production of Z bosons via the Drell-Yan, which subsequently decay to
a lepton pair. The aT is component of the lepton pair (or Z boson) qT transverse
to the thrust axis [46, 47]

n̂ =
~pt1 − ~pt2
|~pt1 − ~pt2|

, (2.2.24)

where ~pt1 and ~pt2 are the transverse momenta of the two leptons. For multiple
emissions from the incoming partons, with the conservation of transverse momen-
tum, i.e. ~pt1+~pt2 = −

∑
i
~kti. Thus, one can rewrite the axis defined in Eq.(2.2.24)

as

n̂ ≈ ~pt1
|~pt1|

, (2.2.25)

where we have neglected the multi-emission dependence, as we are projecting the
vector sum of the kti along the axis, therefore the higher-order corrections of O (kti)
would only contribute at the level of bilinear or quadratic in small kti
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Now we can parametrize the kinematics in the plane transverse to the beam as

~pt1 = pt (1, 0) , (2.2.26)
~kti = kti (cosφ, sinφ) , (2.2.27)

where φi is the angle of ith emission with respect to the direction of lepton 1 in
the plane. Therefore, with all the information discussed above, one can find that
the transverse component of the Z boson pT is

aT = |
∑
i

ktisinφi|, (2.2.28)

where φi denotes the angle seperation between the ith emission and the axis. In
the small qT region, the azimuthal angle ∆φ between final state leptons is in the
back–to–back region, i.e. ∆φ ≈ π. Hence, the uncertainty for aT variable is
approximately the uncertainty of qT multiplied by the Sine of a small angle.

We start by considering the integrated cross-section, which is related to the
number of events below a fixed value of aT

Σ (aT ) =

∫ aT

0

d2σ

da′TdM
2
da′T = Σ(0) + αsΣ

(1) +O
(
α2
s

)
. (2.2.29)

At the LO, one finds the result similar to q⊥ as

Σ(1) (aT ) =CF

∫ 2π

0

dφ

2π

(
log2

M |sinφ|
aT

− 3

2
log

M |sinφ|
aT

)
=CF

(
log2

M

2aT
− 3

2
log

M

2aT
+
π2

12

)
. (2.2.30)

Moreover, one could also derive the NLL resummation formula in Mellin mo-
ments space, which enables us to write for the collinear (and optionally soft) gluon
emissions

Σ̃ (N, aT ) = Σ̃(0) (N)WN (aT ) . (2.2.31)

Then, the effects of multiple collinear emissions at NLL accuracy can be ex-
pressed as

W real
N (aT ) =

∞∑
n=0

1

n!

n∏
i=1

∫
dzi

dk2⊥i
k2⊥i

dφi

2π

× zNi 2CF
αs (k

2
⊥i)

2π

(
1 + z2i
1− z2i

)
Θ

(
aT − |

∑
i

k⊥isinφi|

)
, (2.2.32)

where 1 − zi denotes the momentum fraction carried away by the emission of ith
collinear gluon.
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In order to further simplify the above equation, we need to factorize the phase
space constraint by using the Fourier representation of the Heaviside step function.

Θ

(
aT − |

∑
i

v (ki) |

)
=

1

π

∫ ∞
−∞

db

b
sin (baT )

∏
i

eibv(ki). (2.2.33)

With both the multiple emission probability and phase space factorizations, one
could find the formula similar to Eq.(2.2.17) in q⊥ distribution, where the presence
of Sine function is the consequence of addressing the one-dimensional sum.

W real
N (aT ) =

1

π

∫ ∞
−∞

db

b
sin (baT ) e

Rreal

(b) , (2.2.34)

with the resummed exponent for real gluon emission contribution as

Rreal (b) =

∫
dz
dk2⊥
k2⊥

dφ

2π
zN2CF

αs (k
2
⊥)

2π
eibv(k)

(
1 + z2

1− z2

)
Θ

(
1− z − k⊥

M

)
.

(2.2.35)

As for the explicit formula for the resummation of the aT distribution, we also
need to include all-order virtual corrections that straightforwardly exponentiate,
which yields

WN (aT ) =
1

π

∫ ∞
−∞

db

b
sin (baT ) e

−R(b), (2.2.36)

where the resummed exponent is

−R (b) = Rreal (b) +Rvirtual (b)

=

∫
dz
dk2⊥
k2⊥

dφ

2π
2CF

αs (k
2
⊥)

2π

(
1 + z2

1− z2

)
×
(
zNeibv(k) − 1

)
Θ

(
1− z − k⊥

M

)
. (2.2.37)

All of the above arguments are very similar to the discussion for q⊥ in Sec.
2.2.3. The difference aT and q⊥ arises purely due to the restricting multiple real
emission at the step function, where the phase space constraint for the q⊥ involves
a two-dimensional vector sum Θ

(
q⊥ − |

∑
i
~k⊥i|

)
, while in the present case we have

a one-dimensional sum. Therefore, the resummation formula for the aT variable
involves the Sine function, as opposed to the Bessel function J1 in the resummation
for q⊥. And the resummed exponent R(b) is the same for aT and q⊥.
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2.3 Calculations for jets: the jet mass distribu-
tion

Let us now apply the traditional approach to jet-shape observable, in this sec-
tion, we present the calculation of jet invariant mass:

m2 =

(∑
i∈jet

ki

)2

, (2.3.1)

where the invariant mass is defined by sum over all partons within the jet cluster.

In our discussion, we focus on QCD jets, i.e. jets which are initiated by a hard
parton and subsequently evolve, shown in Fig. 2.2. Our perturbative calculation
will be performed at parton level, and mostly focus on the quark-originated jet,
but the extension to gluon jet should be pretty straightforward.

2.3.1 The concept of jets
Jets are collimated sprays of hadrons, which are dominant features of interac-

tions in high-energy physics. They originate from accelerated quarks and gluons,
thus can provide important clues about the high-energy behavior of quarks and
gluons. Therefore, it is an ideal testing ground to study the fundamental properties
of QCD.

A jet is measured at the detector with fixed radius R. This region is identified
by the transverse momentum p⊥ of collimated particles from individual parton
scattering, where the angular size θ is approximately the ratio between the jet
mass m and p⊥.

θ ∼ m

p⊥
. (2.3.2)

The above description of the jet is captured in the cone region at Fig. 2.2. As
we have already briefly discussed the distribution of jet mass in Sec. 2.1.3, which
only depends on the dimensionless quantities m/p⊥ and the jet radius dependence
will appear at higher orders, with the basic picture of the jet as a collection of the
final state, collimated emissions.

However, at the hadron collider, this simple picture is not complete. As protons
are composite particles, where multiple parton interactions (MPI) can occur in each
proton collision. Furthermore, because the LHC doesn’t collide individual pairs
of protons, multiple proton-proton interactions can collide in each bunch crossing,
which is referred to as pile-up. Both MPI and pileup will contribute additional
non-perturbative contributions.

There’s another kind of radiation outside of the cone that can affect the jet,
as the emissions can land in the jet that arise from re-radiation from outside the
jet. The contribution from these re-emissions is called non-global logarithms, or
NGLs, which introduce a correlation between physics in and out of the jet.
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R

p p

∼ m/p⊥

Hard scattering

NGL

Figure 2.2. Illustration of jets in Hadron-Hadron Collisions

.

2.3.2 Jet algorithms
Jets can be defined by an algorithm. From a perturbative QCD viewpoint, jets

are the product of successive parton branchings. Therefore, these algorithms are
trying to invert the branching process by successively recombining two particles
into one.

Nowadays, the most popular recombination algorithm is the family of general-
ized kt algorithm [48], with the metric is defined by

dij = min
(
p2pti , p

2p
tj

)
∆R2

ij, diB = p2pti R
2, (2.3.3)

where p is a free parameter and ∆R2
ij is the geometric distance in the azimuth-

rapidity plane. For instance, p = 1 corresponds to the kt algorithm [49,50], which
clustering the soft particles first. For p = 0 we have the Cambridge-Aachen (C/A)
algorithm [51, 52], with a purely geometrical distance. Finally, with the choice of
p = −1 we obtain the anti-kt algorithm [53], which will cluster hard particles first.

In the context of LHC physics, jets are almost always reconstructed with the
anti-kt algorithm, where the hard jet will grow by successively aggregating soft
particles around it until it has reached the geometrical distance R away from the
jet axis. Therefore, the hard jets will be insensitive to soft radiation and have a
circular shape in the azimuth-rapidity plane.

2.3.3 Leading logarithmic approximation
Similar to the discussion in Sec. 2.2.4, we perform the calculation for the

cumulative distribution, which is defined as the normalized cross-section

Σ
(
m2
)
=

1

σ0

∫ m2

0

dM2 dσ

dM2
= 1 + αsΣ

(1) +O
(
α2
s

)
. (2.3.4)
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As a first step, we calculate Eq.(2.3.4) to O(αs) in soft limit. Recall the eikonal
factor for the quark-antiquark dipole, introduced in Eq.(1.2.39)

W12 =
αs

2π
(2CF )

p1 · p2
(p1 · k) (p2 · k)

, (2.3.5)

where p1, p2 and k are the momenta of the quark, antiquark and soft gluon,
respectively. For the calculation, we choose the kinematic as

p1 =
Q

2
(1, 0, 0, 1)

p2 =
Q

2
(1, 0, 0,−1)

k = ω (1, sin θ cosφ, sin θ sinφ, cos θ) . (2.3.6)

Therefore, the phase space integral with the above configuration reads as∫
dΠ2 ≡

∫ ∞
0

ωdω

∫ 1

−1
dcosθ

∫ 2π

0

dφ

2π
. (2.3.7)

At the one-loop level, the cumulative distribution is then obtained by adding
real and virtual corrections, which uses all the information above we find

αsΣ
(1)
(
m2
)
=

∫
dΠ2W12

[
ΘinΘ

(
Qw

2
(1− cosθ)−m2

)
+Θout − 1

]
= −2αsCF

π

∫ 1−2m2

Q2

cosR

dcosθ

(1− cosθ) (1 + cosθ)
log

Q2 (1− cosθ)
2m2

. (2.3.8)

We can further integrate over θ, and because the transverse momentum pt of
a boosted jet is much larger than its mass m, therefore we have ρ � 1. For LL
accuracy we obtain the result

αsΣ
(1)
(
m2
)
= −αsCF

2π
log2

1

ρ
+O

(
R2
)
, (2.3.9)

where we have expanded the result for small jet radius R and we introduced the
dimensionless variable ρ

ρ =
4m2

Q2R2
. (2.3.10)

Furthermore, the above result only contains LL and we also want to include
higher accuracy contribution, i.e. collinear behavior. This can be done by com-
pute the modified leading logarithmic [54], by include the residue of the splitting
function Pqq(z) = CF

(
2
z
− 3

2

)
with z = 2w

Q
, and we obtain the result

αsΣ
(1) (ρ) = −αsCF

π

(
1

2
log2

1

ρ
+Bqlog

1

ρ

)
, (2.3.11)
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with hard-collinear emission coefficient

Bq =

∫ 1

0

dz

(
Pqq (z)

2CF

− 1

z

)
= −3

4
. (2.3.12)

The collinear behavior is related to the boosted-objects, which are typically
collimated along the jet axis. Moreover, from the computational viewpoint, it is
usually easier to perform the factorization in the collinear limit, as already briefly
discussed in Sec. 2.2.2, while we also need to take into account the wide-angle
soft emission for sub-leading color correlations. Therefore, from now on, we will
perform all the calculations in collinear limit first, then extend to the wide-angle
soft emission.

As a last comment before going to all-orders, the above discussion can also
apply to gluon jet, in which we would have the same expression with different
color factor CF → CA and coefficient Bq → Bg

Bg =

∫
dz

(
Pgg (z)

2CA

− 1

z

)
= −11

12
+

1

6

Nf

CA

. (2.3.13)

2.3.4 To all-orders
To obtain accurate theoretical predictions in the regime ρ � 1, we extend the

results obtained in the previous section to all-orders. For the jet mass with n
gluons in the final state:

m2 = 2
∑
i<j

ki · kj =
∑
i

EJωiθ
2
i , (2.3.14)

where EJ =
∑

iwi =
Q
2

is the jet energy. Again we consider all possible gluon
emissions, similar to the discussion in Sec. 2.2 and the cumulative distribution
reads

Σ (ρ) =
∞∑
n=0

1

n!

n∏
i=1

∫
dθ2i
θ2i

∫
dziPqq (zi)

αs

(
ziθi

Q
2

)
2π

ΘinΘ

(
n∑

i=1

zi
θ2i
R2
− ρ

)

+
∞∑
n=0

1

n!

n∏
i=1

∫
dθ2i
θ2i

∫
dziPqq (zi)

αs

(
ziθi

Q
2

)
2π

[Θout − 1] , (2.3.15)

where the Θ function constrains in the first line spoils the factorization, which can
be avoided by the integral representation, i.e. compute the Mellin moments of the
cumulative distribution. We note that the argument of the splitting function is
energy fraction zi, which is true if the fractional energy is computed with respect to
the parent parton. On the other hand, the energy fraction is calculated regarding
the jet energy, EJ = Q

2
. In the collinear limit, these two fractions are related by

rescaling factor xi, which takes into account the energy carried away by previous
emissions

xi =
i−1∏
j=1

(1− zj) , (2.3.16)
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However, the rescaling only gives rise to next-to-next-to-leading logarithm (NNLL)
accuracy, hence can therefore be dropped in Eq.(2.3.15). Furthermore, we have
used the jet clustering condition in a factorized form, i.e. Θin = Θ(θi < R). For
a jet clustered with only two particles, this condition is exact for all members of
the generalized kt algorithm. But with the presence of an arbitrary number of
particles, the factorized form might not exist. However, as we introduced in Sec.
2.3.2, the widely used anti-kt algorithm behaves as a perfect cone in the soft limit,
which leads to factorized expression.

At LL accuracy, we only count the maximally logarithm enhanced term, one
can further assume that the emissions are strongly ordering, i.e. ziθ2i themselves
are strongly ordered. Therefore, a single emission strongly dominates

Θ

(
n∑

i=1

ρi < ρ

)
≈ Θ(ρi,max < ρ) =

n∏
i=1

Θ(ziρi < ρ) , (2.3.17)

where we have defined ρi = zi
θ2i
R2 . With the above assumption, we finally have the

expression after summing over all emissions

ΣLL (ρ) =
∞∑
n=0

1

n!

n∏
i=1

∫
dρi
ρi

∫
dziPqq (zi)

αs

(√
ziρiEJR

)
2π

Θ(θ < R)Θ (ρi > ρ)

= exp

[
−
∫ 1

ρ

dρ′

ρ′

∫
dzPqq (z)

αs

(√
zρ′EJR

)
2π

Θ(θ < R)Θ (ρ′ > ρ)

]
≡ e−R(ρ). (2.3.18)

log 1
θ2

log 1
z soft

collinear

log 1
v

log 1
v

v = zθ2

Figure 2.3. Lund diagram for the jet mass distribution

In order to achieve the resummed expressions, we need to evaluate the integrals
of the resummed exponent in Eq.(2.3.18) with two-loop running coupling, one-loop
splitting function Pqq (z) and the soft wide-angle contribution at two-loop, which
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corresponds to the two-loop cusp anomalous dimension K = CA

(
67
18
− π2

6

)
− 5

9
nf .

This correction can be absorbed into the running coupling, which is called as
Catani-Marchesini-Webber (CMW) scheme [55]

αCMW
s (µ)

2π
=
αs (µ)

2π
+K

(
αs (µ)

2π

)2

. (2.3.19)

Similar to the qT resummation formula at NLL accuracy, we can write the
resummed exponent as

R (ρ) = Lf1 (λ) + f2 (λ) , (2.3.20)
where

f1 (λ) =
CF

πβ0λ

[
(1− λ) log (1− λ)− 2

(
1− λ

2

)
log

(
1− λ

2

)]
, (2.3.21)

f2 (λ) = −
CFBq

πβ0
log

(
1− λ

2

)
− CFK

4π2β2
0

[
log (1− λ)− 2

(
1− λ

2

)
log

(
1− λ

2

)]
+
CFβ1
2πβ3

0

[
log (1− λ)− 2log

(
1− λ

2

)
+

1

2
log2 (1− λ)− log2

(
1− λ

2

)]
.

(2.3.22)

For the complete NLL resummation formula, we need to consider two additional
contributions: multiple emissions and non-global logarithms [6]. For the multiple
emission correction, we can no longer apply the strong-ordering approximation
to Eq.(2.3.15). Therefore, similar to the discussion in the previous section, the
resummed calculation must be done in the conjugate, i.e. Mellin, space in order
to factorize the observable. In the end, we obtain the correction as

M =
e−γER′(ρ)

Γ (1 +R′ (ρ))
, (2.3.23)

where R′ (ρ) is the derivative of R (ρ) w.r.t log 1
ρ

The all-order structure of NGLs is much richer but can be in general resummed
into a factor of S(ρ), We will discuss it in some detail in the next section and
chapter 3. Putting all things together the NLL result reads

ΣNLL (ρ) =Me−RS. (2.3.24)

2.3.5 Beyond leading logarithms
As a simple double-check for the all-order results we have obtained in the pre-

vious section. We can explicitly calculate the LL contribution at two-loop order,
which is similar to the calculation we have done to derive the multi-soft gluon
emission effective vertex. Thus the squared matrix element for two soft gluon
emissions can be written as the sum of two terms

W = C2
FW

(ind) + CFCAW
(corr), (2.3.25)
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where independent emissions have been discussed in Sec. 1.2.5 and the correlated
emission contribute to NLO is shown in Fig. 2.4.

W (ind) =
2p1 · p2

(k1 · p1) (k1 · p2)
2p1 · p2

(k2 · p1) (k2 · p2)
, (2.3.26)

W (corr) =
2p1 · p2

(k1 · p1) (k1 · p2)

[
p1 · k1

(k2 · p1) (k1 · k2)
+

p2 · k1
(k2 · p2) (k1 · k2)

− p1 · p2
(k2 · p1) (k2 · p2)

]
.

(2.3.27)

p

k2

k1

p− k1
M0

Figure 2.4. Correlated emission of two soft gluons

And since we only want to check the most singular term, i.e. α2
sL

4 contribu-
tion to the cumulative distribution, which should originate from the independent
emission of gluons in both soft and collinear limits. Therefore, we have to take
into account both virtual gluons emissions, i.e. double real (RR), double virtual
(VV) and real-virtual (RV) emission. For the independent emission contribution,
the result for RR and VV is

W (ind) =
256

Q4

1

z23z
2
4

1

θ23θ
2
4

(2.3.28)

For the RV similar result holds, with a relative minus sign, and we need to count
RV term twice since the real emission could be either k3 (RV) or k4 (VR). With
all the above information, we are now ready to calculate the jet mass distribution
at NLO as

dσ̃

dρ
≡ 1

σ0

dσ

dρ
= αs

dσ̃(1)

dρ
+ α2

s

dσ̃(2)

dρ
+O

(
α3
s

)
. (2.3.29)

The phase space integration region can be divided into four regions according
to whether the real gluons k3 and k4 are inside or outside the jet of interest, where
the condition for a given gluon to end up inside or outside the jet depends on the
jet definition. However, for both k3 and k4 are outside the jet vanishes since it will
result as a massless jet.

The sum of the RR, RV, and VR contributions can be written as

α2
s

dσ̃(2)

dρ
=

∫
dΠW

[
δ
(
ρ− z3θ23 − z4θ24

)
− δ

(
ρ− z3θ23

)
− δ

(
ρ− z4θ24

)]
. (2.3.30)

for simplicity purposes, here we rescaled the angular variables as θi → θi/R, so
that θi < 1. We note that the emissions in LL approximation are also strongly
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ordered in zθ2, i.e. z3θ23 > z4θ
2
4, or z4θ24 > z3θ

2
3, which means only the largest one

will contribute to δ (ρ− z3θ23 − z4θ24). Since we are only interested in the LL term,
we can consider the approximation of strongly ordered emission of gluons

δ
(
ρ− z3θ23 − z4θ24

)
→ δ

(
ρ− z3θ23

)
Θ
(
ρ > z4θ

2
4

)
+ 3↔ 4. (2.3.31)

Using the explicit forms of square matrix element W and the phase space dΠ
in the collinear limit, we obtain

α2
s

dσ̃(2)

dρ
= −

(
αsCF

π

)2 ∫
dz3
z3

dθ23
θ23

dz4
z4

dθ24
θ24

dφ

2π

×Θ(z3 > z4)
[
δ
(
ρ− z3θ23

)
Θ
(
ρ > z4θ

2
4

)
+ 3↔ 4

]
, (2.3.32)

and finally we can obtain the result

α2
s

dσ̃(2)

dρ
= −1

2

(
αsCF

π

)2
1

ρ
log3

(
1

ρ

)
, (2.3.33)

which is precisely the same as the double logarithm from the expansion of the
resummed exponent.

For sub-leading contributions, since we have used the soft-gluon approximation,
therefore the contribution from hard-collinear splittings is missing, which would
give 3

2

(
αsCF

π

)2 1
ρ
log2 1

ρ
Bq. Moreover, for the NLL soft contribution, the approxi-

mation in Eq.(2.3.31) is no longer valid. Thus the correction can be obtained by
calculating the difference between the left- and right- side of Eq.(2.3.31)

1

2

(
αsCF

π

)2 ∫
dz3
z3

dθ23
θ23

dz4
z4

dθ24
θ24

[
δ
(
ρ− z3θ23 − z4θ24

)
− δ

(
ρ− z3θ23

)
Θ
(
z4θ

2
4 > ρ

)
−3←→ 4]

=

(
αsCF

π

)2 ∫ ρ

0

dρ3
ρ3

dρ4
ρ4
log

1

ρ3
log

1

ρ4
[δ (ρ− ρ3 − ρ4)− δ (ρ− ρ3)] Θ (ρ3 > ρ4)

=

(
αsCF

π

)2
π2

6

1

ρ
log

1

ρ
+O(NNLL terms). (2.3.34)

2.4 Global and non-global logarithms
In the last section, we have discussed the all-order calculation that aims to

resum large logarithms of the ratio of the jet mass to the hard scale of the process
up to NLL accuracy. And we have verified the LL behavior of the resummed
result by performing a two-loop calculation in the soft and collinear limit, which
we only considered the independent emission contribution to the eikonal current,
i.e. Eq.(2.3.25).
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The observables that we have considered so far have the property of exponen-
tiation, which implies the following all-order structure:

Σ (v) =

(
1 +

∑
n

Cnᾱ
n
s

)
eLg1(αsL)+g2(αsL) +D (v) , (2.4.1)

where L = log1/v and ᾱs = αs/2π and D (v) is called as remainder function that
goes to zero for v → 0. And Cn are not logarithmically enhanced terms, which
will contribute to higher accuracy by cross-talk with the LL terms arising from
the Sudakov form factors.

Moreover, a common property for the observables that we have discussed so far
is that they are sensitive to emissions uniformly over the entire phase space, which
is called global observable. At NLL accuracy [6], the all-order structure of the jet
mass distribution will be:

Σ(v) = (1 + αsC
(q)
1 )S(αsL)e

−Rq(αsCF ,L) + αsC
(g)
1 e−Rg(αsCA,L)

+D (ρ) , (2.4.2)

where Rq and Rg are the resummed exponents for quark and gluon jets, and the
constant term C1 can be expressed as

αsC1 = lim
v=0

[ΣNLO (v)− ΣNLL.αs (v)] = lim
v=0

[∫ v

0

dσ

dv
dv − ΣNLL.αs (v)

]
= lim

v=0

[
σNLO −

∫ vmax

v

dσ

dv
dv − ΣNLL.αs (v)

]
= σNLO + lim

v=0

[∫ v

vmax

dσ

dv
dv − ΣNLL.αs (v)

]
, (2.4.3)

the numerical estimate for the constant term C1 will included later.

The new non-global effect is embodied by the function S, where its fixed-order
expansion reads

S (αsL) = 1 +
∑
n=2

Sn (αsL) . (2.4.4)

As a first step, let’s focus our discussion on the fixed-order calculation which
illustrates how the leading non-global logarithms arise. And since we are dealing
with observable, that is only sensitive to a restricted region of phase-space. We
could use the configuration that a gluon emitted outside the region, i.e. outside
the jet, and then re-emits a softer gluon inside the jet. Thus, we need to consider
the correlated emission to the matrix element of two soft gluons, where the harder
gluon k3 is outside the jet, while the softer gluon k4 is recombined with the jet.

S2 = −4CFCA

(αs

2π

)2 ∫ dω3

ω3

∫
dω4

ω4

Θ(ω3 > ω4)

∫
dcosθ3

∫
dcosθ4Ω (θ3, θ4)

×Θ(cosθ3 < cosR)Θ (cosθ3 > cosR)Θ
(
ω4Q (1− cosθ4) > m2

)
, (2.4.5)
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where the angular function Ω (θ3, θ4) is

Ω (θ3, θ4) =
2

(cosθ4 − cosθ3) (1− cosθ3) (1 + cosθ4)
. (2.4.6)

The integrals over the energies are straightforward. For the leading NGLs, we
only keep the term propositional to log2 1

ρ

S2 ' −2CFCA

(αs

2π

)2
log2

1

ρ

∫ 1

0

dcosθ3

∫ 1

0

dcosθ4Ω (θ3, θ4)

= −CFCA

(αs

2π

)2 π2

3
log2

1

ρ
. (2.4.7)

More details about NGLs and its resummation will be discussed in chapter 3.

2.5 General resummation formalism
In this section, we present the basic ideas that are used to construct the EFT and

MC approach in resummation. We start with the coherent branching for multiple
emissions in QED, intending to get a better interpretation of the Sudakov form
factor, then we will extend this method to QCD. The second goal of this section is
to discuss the RGE approach, where we will derive the solution of the RG evolution
equation, and the factorization formula and scale separation will be discussed. In
the end, a general automated NLL resummation tool will be briefly introduced.

2.5.1 Coherent branching
In this section, we want to extend our discussion for the Sudakov form factor

in Sec. 2.2.2 to a more general case with the coherent branching, based on gen-
erating functionals [8, 36], the coherent branching is the basic building block for
constructing Monte Carlo parton shower algorithms.

Start with the Abelian case and recall the factorization properties of soft emis-
sion in Sec. 1.2.5, we can also obtain the expression for the factorization at the
cross-section level [36]

dσm+1 ({ki} , q) = dσm ({ki})× dW1 (q) , (2.5.1)

where dW1 is the single emission probability, for a single photon emission, it can
be written as

dW1 (q) =
α

π

∑
i

e2i
dω

ω

dθ2iq
θ2iq

Θ(θmax − θiq) , (2.5.2)

and we can approximate single emission probability by considering a sum over
radiation emitted by independent sources, where the interference, which cancels
the radiation at large angles, is approximated by the angular ordering.
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Now we want to generalize the single soft photon case to multiple emissions
from the same fermionic line. Since we only consider soft photons, which do not
carry electric charge, which means both the charge and the momentum of the
emitting particle are unchanged. Therefore, the multiple emission probability can
be written as

dWn '
1

n!

n∏
i=1

dW1 (qi) . (2.5.3)

To all orders, the multiple emissions can be be described by introducing a
generating functional:

Φreal [u (q)] = 1 +
∞∑
n=1

∫
dWn (q1, · · · , qn)u (q1) · · ·u (qn) , (2.5.4)

where we have introduced the measurement function u(qi) acts as phase-space
constraint, similar to the observable function introduced in the first chapter. And
one can easily recover the emission probability by successive differentiation

dWn =
δΦ

δu (q1) · · · δu (qn)
|u=0 . (2.5.5)

Moreover, we could also rewrite the Eq.(2.5.4) by using Eq.(2.5.3)

Φreal [u (q)] = 1 +
∞∑
n=1

[∫
dW1 (qi)u (qi)

]n
= exp

[∫
dW1 (q)u (q)

]
, (2.5.6)

in the second line, we find that the results are simply given by exponentiating the
lowest order contribution, which was derived in 1960s in Ref. [56]. For the full
results, we also need to include the virtual contribution. According to the IRC
safety, the total soft emission has a vanishing effect, which is equivalent to

Φ [u (q)] |u=1 = 1, (2.5.7)

this is often referred to as the unitarity condition, which will correctly normalize
Φ. Therefore, the full result can be written as

Φ [u (q)] =
Φreal [u (q)]

Φreal [u (q) = 1]

= exp

[∫
dW1 (q) [u (q)− 1]Θ (Q− ω)Θ (ωθ −Q0)

]
, (2.5.8)

where in the last line, we have also introduced two constraints. The first one gives
an upper limit in the energy for the soft approximation, which is of the order of
the hard scale Q. And the second condition introduces an arbitrary lower cut-off
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Q0 for the photon transverse momentum. Moreover, by requiring no real radiation
is emitted, i.e. u (q) = 0, we could obtain the Sudakov form factor

Φ [u = 0] ≡ S (Q,Q0) = exp

[
−
∫
dW1 (q)Θ (Q− ω)Θ (ωθ −Q0)

]
, (2.5.9)

which describes the probability that no emission takes place as we have briefly
introduced at Sec. 2.2.2. Furthermore, for the vanishing lower cut-off Q0, the
Sudakov form factor vanished as well. This means there must be some arbitrarily
soft radiation in any scattering process, as the probability of no radiation is zero.

For multiple emissions from different fermions, we have to include the effect of
interference, which can be approximated by the constraint on the angular ordering.
Then, the generating functional can be written as

Φ{k1,··· ,kn} [u (q)] =
∏
i

Φki [Q, θmax;u (q)] , (2.5.10)

where for each fermion external line, we have

Φki

[
Eki , θ

2
max;u (q)

]
= exp

[
α

π

∫ Q

0

dω

ω

∫ θ2max

0

dθ2

θ2
(u (q)− 1)Θ (ωθ −Q0)

]
.

(2.5.11)

The above discussion can also be extended to the QCD case, but as consequence
of the non-Abelian structure, the factorization is more complicated due to the
presence of color matrices and non-Abelian interactions. Applying the eikonal
approximation, the m + 1 parton matrix element in the soft limit can be written
as

|Mm+1|2 → −g2s
∑
i,j

(ki · kj)
(ki · q) (q · kj)

〈Mm|ti · tj|Mm〉 , (2.5.12)

where ti is an abstract color operator, which satisfies color conservation∑
i

ti|Mm ({k})〉 = 0, (2.5.13)

and the square of the operator ti gives the Casimir of the SU (Nc) representation

t2i =

{
CF for i is quark
CA for i is gluon

, (2.5.14)

as a comment, we note that in the large Nc limit, i.e., the MC parton showers, the
off-diagonal entries of the color product ti · tj will vanish.

Moreover, the soft gluon radiation can also come from the hard gluons, which
will carry away color charge. Therefore, the radiation pattern of the soft gluon is
more intricate and subtle than in QED. Details about the results and discussions
about the QCD case can be found in Ref. [36].



60 Analytic Resummation Techniques

2.5.2 Renormalization group approach
In this section, we will discuss the NLL resummation formula using the renor-

malization group (RG) evolution approach, which is widely used in effective theo-
ries such as SCET, which typically describes resummation by introducing non-local
correlation operators, i.e. Wilson lines, and exploits their renormalization group
evolution [57, 58].

The renormalization group evolution for a general function F (µ), i.e., hard, soft
and jet function, is

µ
d

dµ
F = γFF =

(
CFΓcusp (αs) log

Q2

µ2
+ γ

)
F, (2.5.15)

where γF is the anomalous dimension. This equation follows from demanding that
the final physical result isindependent of µ. In real space, the cross-section can be
expressed as a convolution of jet and soft functions that depend on the observable
v (and other things that are independent of v), and so in the Fourier transformed
conjugate b space, the cross-section is a simple product of jet and soft functions.

The solution of the RG equation in Eq.(2.5.15) sums the logarithmic terms to
all orders, where the result reads as

F (µ) = exp

{∫ µ

µF

[
CFΓcusp (αs) log

Q2

µ′2
+ γ

]
dlogµ′

}
F (µF ) , (2.5.16)

where the logarithm appears in an exponential, and the exponential function acts
as an evolution matrix U (µF , µ), which runs down the scale from µF to µ.

In order to use this solution in practice, we re-write the integration over the
coupling by using the relation

d

dlogµ
αs (µ) = β (αs (µ)) . (2.5.17)

Similarly, we can also re-write the logarithm in the exponent with the relation

log
ν

µ
=

∫ αs(ν)

αs(µ)

dα

β (α)
. (2.5.18)

Therefore, the evolution matrix can be written in the form

U (µF , µ) = exp [2CFS (µF , µ)− Aγ (µF , µ)]

(
Q2

µ2
F

)−CFAΓcusp (µF ,µ)

, (2.5.19)

where we have introduced the quantities S and Aγi by

S (ν, µ) = −
∫ αs(µ)

αs(ν)

dα
Γcusp (α)

β (α)

∫ αs(µ)

αs(ν)

dα′

β (α′)
, (2.5.20)

Aγi (ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γi (α)

β (α)
. (2.5.21)
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Recall the change integration of variable in Eq.(2.5.17), therefore it is easy to
identify that Aγi are responsible for the resummation of the single logarithms and
the function S for the resummation of the double logarithms by observing that

µ
d

dµ
S (ν, µ) = −Γcusp (αs (µ))

∫ αs(µ)

αs(ν)

dα′

β (α′)
, (2.5.22)

µ
d

dµ
Aγi (ν, µ) = −γi (αs (µ)) . (2.5.23)

The explicit expressions for these functions can be obtained by inserting the
perturbative expansion of the beta function and the anomalous dimension

β = −2αs

[
αs

4π
+ β1

(αs

4π

)2
+O

(
α3
s

)]
, (2.5.24)

Γcusp = Γ0

(αs

4π

)
+ Γ1

(αs

4π

)2
+O(α3

s), (2.5.25)

γ = γ(0)
(αs

4π

)
+ γ(1)

(αs

4π

)2
+O(α3

s). (2.5.26)

By inserting these expansions into the integrands of Eq.(2.5.20), one obtains
the result at NLL accuracy in ~b space

Aγ (ν, µ) =
γ(0)

2β0
logr +O (αs) , (2.5.27)

AΓcusp (ν, µ) =
Γ0

2β0
logr +O (αs) , (2.5.28)

S (ν, µ) =
Γ0

4β0

[
4π

αs (ν)

(
r − 1

r
− logr

)
+

(
Γ1

Γ0

− β1
β0

)
log (1− r + logr)

+
β1
2β0

log2r

]
+O (αs) , (2.5.29)

here, r is the ratio
r =

αs(µ)

αs(µF )
. (2.5.30)

Therefore, the general solution of this renormalization group equation is

F (µ) = F (µF )exp

[
CF

ΓF

2β2
0

{
4π

αs(µF )

(
log r +

1

r
− 1

)
+

(
Γ1

Γ0

− β1
β0

)
(r − 1− log r)− β1

2β0
log2 r

}
− γ(0)

2β0
log r

]
, (2.5.31)

where the first two coefficients of the cusp anomalous dimension Γ and the β-
function are

Γ0 = 4 , (2.5.32)

Γ1 = 4CA

(
67

9
− π2

3

)
− 80

9
TRnf ,
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and

β0 =
11

3
CA −

4

3
TRnf , (2.5.33)

β1 =
34

3
C2

A − 4TRnf

(
CF +

5

3
CA

)
.

To achieve the resummation, one solves the renormalisation-group (RG) evolu-
tion equation for each term of the factorization formula for hard, collinear, and soft
function, that satisfies the RG invariance as the final result must be independent
of the ’t Hooft scale µ, which is an artifact from the dimensional regularization.
The procedure is summarized in Fig. 2.5

d

dlogµ
[H (µh, µ) J (µj, µ)S (µs, µ)] = 0. (2.5.34)

Therefore, one can also find the result

0 =
1

H (µh, µ)

dH (µh, µ)

dlogµ
+

1

J (µj, µ)

dJ (µj, µ)

dlogµ
+

1

S (µs, µ)

dS (µs, µ)

dlogµ
, (2.5.35)

where each term in the above equation has nothing but the anomalous dimensions
of the different functions, therefore the RG invariance also implies that the sum
of the anomalous dimensions vanishes.

s

j

h H( h, )

J( j, )

S( s, )

Figure 2.5. Scale separation and of the calculational procedure in renormalization group improved
perturbation theory
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U p to now in this thesis, the all-order resummation has only been performed
for the global part, which accounts for radiation over the entire final state

phase-space. This category excludes all observables with hard phase-space cuts.
The presence of hard boundaries introduces a new, more intricate, class of large
logarithms, which are usually referred to as non-global logarithms (NGLs). In
recent years, NGLs have been studied using different methods and approximations,
including work on the structure of higher logarithms at fixed order, studies of
sub-leading logarithms as well as beyond large Nc limit. In this chapter, we are
mainly interested in the hemisphere mass distribution, and more details related
to the resummation of the leading NGLs through the evolution equation will be
deepened.

63
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3.1 Structure of non-global logarithms
Non-global logarithms were first characterized and understood by Dasgupta

and Salam exploiting the MC simulation for leading NGLs at large Nc limit in
Ref. [6]. Unlike global logarithms, non-global logarithms arise from the relevant
scales within the jet as well as the scale outside the jet. Indeed, while the out-of-
jet region is not directly measured, emissions that originate from the outside can
still affect the in-jet region of phase space. Thus, in order to achieve an accurate
description of a given logarithmic accuracy, the non-global logarithms must be
resummed.

The resummation for NGLs at NLL accuracy was achieved by evolution of
dipoles in the large Nc limit, numerically solved with a Monte Carlo approach. As
an alternative to the MC approach, an evolution equation was derived by Banfi,
Marchesini and Smye (BMS) [59]. In recent years, NGLs have been studied using
different methods and approximations, for example: leading NGLs up to 5 loops
by solving BMS equation were computed in [60], an approximate resummation
with n soft subjets was developed [61] and the implementation in a parton-shower
framework was done in [62].

There are two facts that make the resummation of the leading non-global log-
arithm possible. Firstly, these logarithms can only come from the phase space
where the gluons are strongly ordered in energy [6]. Second, the strong-energy-
ordering approximation leads to simplified cross-sections, particularly at large Nc

limit, more details about large Nc can be find in A.4.

In this chapter, we are mainly interested in the hemisphere mass cross section,
for example, the doubly differential distribution d2σ

dmLdmR
in e+e− collision [63],

where in the limit mL � mR or vice versa, the NGLs with the form L = |logmL

mR
|

will give large contributions. The joint differential distribution of the two hemi-
sphere masses can be factorized in the limit that both masses are small [63–65]

d2σ

dmLdmR

= H (Q,µ)

∫
dkLdkRJ

(
m2

L − kLQ,µ
)
J
(
m2

R − kRQ,µ
)
S (kL, kR, µ) ,

(3.1.1)
where the µ dependence of all these functions is known up to 3 loops and has been
resummed to the N3LL accuracy for global logarithms. Moreover, the soft function
has multiple scale dependence, thus one cannot resum all the large logarithms so
simply. In practice, we can write the soft function as

S (kL, kR, µ) = Sµ

(
log

kL
µ

)
Sµ

(
log

kR
µ

)
Sf

(
log

kL
kR

)
. (3.1.2)

For Sµ (L) with the µ dependence, its logarithms can be resummed by using the
RGE approach, which we have introduced in Sec. 2.5.2, while the resummation of
Sf (L) is more subtle. The non-global logarithms are those contained in Sf (L),
as we have briefly discussed in Sec. 2.4, there are no double logarithms in Sf (L),
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instead it has single logarithms of the form (αsL)
n and sub-leading logarithms,

αm
s L

n with m > n.

3.1.1 Strong energy ordering
In this section, we start with the strong energy ordering (SEO) approximation

and the simplifications within the large Nc limit, then we will derive the fixed-
order formula up to 3-loop level for the hemisphere mass distribution using strong-
energy-ordering [60]. However, the process has become quite involved already in
3 loops.

To begin with, let’s consider the squared matrix element for the emission of m
gluons off quark line in the aµ and bµ directions in the limit of the energy of the
gluons being strongly ordered, at large Nc, i.e. CF → Nc/2, it can be written
as [66]

∣∣M1···m
ab

∣∣2 = Nm
c g

2m
∑

perms of 1···m

(pa · pb)
(pa · p1) (p1 · p2) · · · (pm · pb)

. (3.1.3)

In order to simplify the formula, it is useful to pull out the energies from the
dot products by

(ab) ≡ a · b
ωaωb

= 1− cosθab, (3.1.4)

where θij is the angle between the directions ~pi and ~pj. We then introduced the
the radiator function as

W 1···m
ab =

(ab)

(a1) (12) · · · (mb)
, (3.1.5)

and
P 1···m
ab =

∑
perms of 1···m

W 1···m
ab . (3.1.6)

Then Eq.(3.1.3) can be re-written as

∣∣M1···m
ab

∣∣2 = Nm
C g

2m 1

ω2
1 · · ·ω2

m

P1···m
ab . (3.1.7)

With the above simplification, the differential cross-section for real emission is

1

σ0
dσR

m =
∑
m

1

m!
ᾱs

m∏
i=1

dωi

ωi

dΩi

4π
P1···m

ab , (3.1.8)

where we have defined
ᾱs ≡ Nc

αs

π
. (3.1.9)
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It is easy to check that Eq.(3.1.3) with just one gluon emission is nothing but
the eikonal vertex summed over polarizations, as we have discussed in Sec. 1.2.5.

∣∣M1
ab

∣∣2 = 2CFg
2 (pa · pb)
(pa · p1) (p1 · pb)

' Ncg
2 1

ω2
1

P1
ab, (3.1.10)

where we have used the large Nc limit as CF = (N2
C − 1) / (2NC) ' NC/2. For

two gluons with ω1 � ω2, the quark (Wilson) line emitting gluon 1 first with the
rate proportional to P1

ab, then the second gluon views gluon 1 as a source, since
gluon 2 is much softer. Thus this new line is equivalent to a fundamental Wilson
line, which forms a dipole with both antiquark and quark. These two dipoles are
then proportional to P2

a1 and P2
1b respectively.

P12
ab = P1

ab

(
P2

a1 + P2
1b

)
. (3.1.11)

For more emissions, one could continue this recursion process. This SEO dipole
picture is also well-known as the foundation of Monte-Carlo event generators [67].
Similarly, one could also obtain a useful set of identities for the radiator function

W 1···m
ab = W 1···(r−1)

ar W r
abW

(r+1)···m
rb , (3.1.12)

where the above relation can be checked with two and three emission as

W 12
ab = W 1

abW
2
1b = W 1

a2W
2
ab, (3.1.13)

W 123
ab = W 1

abW
23
ab = W 1

a2W
2
abW

3
2b = W 12

a3W
3
ab. (3.1.14)

Now we also need to consider virtual contributions. Due to the IRC safety
of inclusive cross-section, the large logarithm that arises from real emission must
be exactly cancelled by virtual corrections. Thus, we should be able to represent
virtual contributions as integrals over momenta of exactly the same form as the
real emissions. For one-loop level

dσV = −dσR ∝ −Ncg
2 1

ω2
1

P1
ab, (3.1.15)

which is equivalent to say

WR = P 1
ab, WV = −WR, (3.1.16)

and for an observable that is less inclusive, like the hemisphere mass, there would
have an incomplete cancellation between the real and virtual corrections, thus
leaving the large logarithm enhancement.

In order to obtain a more general formula, let us use the notation of WRV ···R to
indicate the hardest first gluon is real, the second hardest is virtual, and so on to
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the softest gluon that is real. Thus, combine both virtual and real parts, one can
obtain the results as

1

σ0
dσm = ᾱs

dω1

ω1

dΩ1

4π
(WR +WV )

+
ᾱ2
s

2!

dω1

ω1

dΩ1

4π

dω2

ω2

dΩ2

4π
(WRR +WRV +WV R +WV V )

+O
(
ᾱ3
s

)
. (3.1.17)

To better understand the structure of the above formula, we check it at the
two-loop level, where the gluons can be either real or virtual. If both are real, we
can obtain the expression

WRR = P 12
ab =

{
P 1
ab (P

2
a1 + P 2

ab)

P 2
ab (P

1
a1 + P 1

2b)
, (3.1.18)

which holds for either ω1 � ω2 or ω2 � ω1. If the harder gluon is real and the
softer gluon is virtual, then the real emission establishes the (a1) and (1b) dipoles,
which both contribute a virtual contribution, thus we have

WRV = −P 1
ab

(
P 2
a1 + P 2

1b

)
, (3.1.19)

On the other hand, if the harder gluon is virtual, then we get the −P 1
ab from the

first emission, while the original (ab) dipole produces the real emission. Therefore,
we have

WRV = −P 1
abP

2
ab. (3.1.20)

Finally, if both gluons are virtual, then the (ab) dipole produces both of them,
then we have

WV V = P 1
abP

2
ab. (3.1.21)

Thus, we have two independent integrands, that we will deal with in the next
section

P 12
ab = WRR = −WRV , (3.1.22)

P 1
abP

2
ab = WV V = −WV R. (3.1.23)

For the 3-loop level, we can construct the integrands in the same way, and one
could find 4 independent integrands, detailed discussions can be found in Ref. [60].

I1 = P 123
ab = WRRR = −WRRV , (3.1.24)

I2 = P 12
ab

(
P 3
a1 + P 3

b1

)
= WRV V = −WRV R, (3.1.25)

I3 = P 1
abP

23
ab = −WV RR = WV RV , (3.1.26)

I4 = P 1
abP

2
abP

3
ab = WV V R = −WV V V . (3.1.27)

It is straightforward to check that in the above result, the sum of all contributions
gives zero, as expected since there will be a complete cancellation in the inclusive
cross-section.
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Figure 3.1. Feynman diagrams for the O(αs) corrections

3.1.2 Non-global hemisphere mass integral
In the previous section, we have defined the real and virtual contributions to the

matrix elements in the SEO approximation. In order to obtain the distribution, we
need to perform the integration for these matrix elements against a measurement
function, which is only sensitive to real emissions, since virtual gluons are never
measured [60]. In this section, we will perform the fixed-order calculations up to 3
loops. For higher loops, we find it simpler to extract the result via BMS equation,
which will be explained in the next section.

In this section, we will calculate the right-hemisphere mass defined as ρ = MR

Q
,

we then have the cumulative cross-section as the integral of the matrix-element
squared times a measurement function

S (ρ) =

∫
dΦm|M1···m

ab |2u ({pi}) , (3.1.28)

where the measurement function for the hemisphere mass cumulative is

u ({pi}) = Θ

(
ρQ−

∑
i

2 (pi · n) θR (pi)

)
. (3.1.29)

In the frame where the jets are back to back along nµ = (1, ~n) and n̄µ = (1,−~n),
the right hemisphere projector is defined by θR (p) ≡ θ (~p · ~n). Since only the
hardest gluon contributes, we can treat the emissions independently and re-write
the measurement function as

u ({pi}) =
∏
i

u (pi) , (3.1.30)

where
u (p1) = Θ (ρQ− 2p1 · n) θR (p1) + θL (p1) , (3.1.31)
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and θL (p) = θ (−~p · ~n) = 1 − θR (p) is the left hemisphere projector. This will
greatly simplifies the calculation, and it is enough to capture the leading NGLs. For
higher accuracy, the measurement function needs to be factorized into a product
of terms in Laplace space, similar to the NLL calculation for the global part.

For one gluon emission, we can write the cross-section as

S(1) (ρ) =
αs

π

∫
WRu (p1) +

αs

π

∫
WV , (3.1.32)

in order to write the equation in a more efficient way, we have dropped the phase
space term, and rewrite the measurement function, Eq.(3.1.30) as

u (p1) ≡ 1Rθ1<ρ + 1L, (3.1.33)

here, 1R means the gluon 1 goes to the right hemisphere and θ1<ρ means the
contribution of gluon 1 is less than ρ. Therefore, using Eq.(3.1.16), we find the
result

S(1) (ρ) = ᾱs

∫
P 1
ab (1Rθ1<ρ + 1L − 1) = −ᾱs

∫
P 1
ab1Rθ1<ρ, (3.1.34)

which is the leading logarithm from the global part. For the two emissions case,
we find

S(2) (ρ) = ᾱ2
s

∫
1>2

WRR (1Rθ1<ρ + 1L) (2Rθ2<ρ + 2L) + ᾱ2
s

∫
1>2

WRV (1Rθ1<ρ + 1L)

+ ᾱ2
s

∫
1>2

WV R (2Rθ2<ρ + 2L) + ᾱ2
s

∫
1>2

WV V . (3.1.35)

In the above equation, we have assumed that gluon 1 is harder, thus θρ<1θρ<2 =
θρ<2, we can then insert the two emission matrix element, Eq. (3.1.18)-(3.1.21),
which gives the result

S(2) (ρ) = ᾱ2
s

∫
1>2

1R2Rθρ<1θρ<2P
1
abP

2
ab − ᾱ2

s

∫
1>2

1L2Rθρ<2

(
P 12
ab − P 1

abP
2
ab

)
,

(3.1.36)
the first term comes from the global part as both gluons are going right, this can
also be double-checked by the calculation

ᾱ2
s

∫
1R2Rθρ<1θρ<2P

1
abP

2
ab =

1

2

[
S(1) (ρ)

]2
, (3.1.37)

which is the second-order expansion of exp
[
S(1) (ρ)

]
, as we expected. The factor

1/2 comes from the symmetry factor, since there are two energy ordering for the
independent emission.
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The second term of Eq.(3.1.36) gives the leading non-global logarithm as

S
(2)
NG = −ᾱ2

s

∫
1>2

1L2Rθρ<2

(
P 12
ab −W 1

abW
2
ab

)
= −ᾱ2

s

∫ Q

0

dω2

ω2

∫
R

dΩ2

4π

∫ Q

ω2

dω1

ω1

∫
L

dΩ1

4π
Θ

(
ω2 −

ρQ

2 (n2)

)
×
[

(nn̄)

(n1) (12) (2n̄)
+

(nn̄)

(n2) (21) (1n̄)
− (nn̄)

(n1) (1n̄)

(nn̄)

(n2) (2n̄)

]
' −ᾱ2

s

π2

24
log2ρ, (3.1.38)

which is exactly the same result as Eq.(2.4.7) at large Nc limit. The above cal-
culation can be simplified by replacing Θ

(
ω2 − ρQ

2(n2)

)
→ Θ(ω2 − ρ), because the

leading non-global logarithm comes from out-of-jet soft emission, therefore the
differences only contribute to sub-leading terms.

At order α3
s, using the same method outlined above, one finds the expression

S(3) (ρ) = ᾱ3
s

∫
1>2>3

1R2R3Rθρ<3 (−I4) + ᾱ3
s

∫
1>2>3

1R2L3Rθρ<3 (I3 − I4)

+ ᾱ3
s

∫
1>2>3

1L2R3Rθρ<3 (I2 − I4)

+ ᾱ3
s

∫
1>2>3

1L2L3Rθρ<3 (−I1 + I2 + I3 − I4) . (3.1.39)

In order to find the 3-loop NGLs, we have to subtract the global logarithms
from Eq.(3.1.39), the result and discussion can be found in Ref. [60]. However, the
calculation for 3 loops and beyond is simpler by using the BMS equation, which
we will introduce in the next section.

3.2 Evolution equation: Banfi-Marchesini-Smye
In [59], Banfi, Marchesini and Smye (BMS) have proposed an evolution equation

to resum the leading NGLs based on energy ordering, which is the basis of Monte
Carlo simulation as we have briefly introduced in Sec. 2.5.1, where in order to
derive the evolution equation each branching involves color singlet dipoles in the
large Nc limit. For hemisphere jet mass, the BMS equation can be written as

∂LGab (L) =

∫
dΩj

4π
W j

ab [θL (j)Gaj (L)Gjb (L)−Gab (L)] , (3.2.1)

the derivation is identical to the the out-of-jet energy given in [59], here W j
ab is the

dipole radiator factor

W j
ab =

(ab)

(aj) (jb)
, (3.2.2)
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where we have defined (ab) ≡ a·b
ωaωb

= 1 − cosθab and θL (j) restricts the integral
to the left-hemisphere. Recall that in our configuration nµ points to the right-
hemisphere and n̄µ to the left, so

cosθn = −1, cosθn̄ = 1. (3.2.3)

The solution of the BMS equation are a set of functions Gab(L) indexed by
light-like directions aµ and bµ, which are equivalent to the solid angles Ωa and Ωb

on the sphere. Moreover, these functions are evaluated at

L ≡ Nc
αs

π
log

1

ρ
, (3.2.4)

which give all the single (both global and non-global) logarithms of the color dipole
in aµ and bµ directions. In particular, the hemisphere mass are given by Gnn̄ (L).
Furthermore, the Gab (L) function can be factorized into two pieces

Gab (L) = gab (L) exp

[
−L

∫
R

dΩj

4π
W j

ab

]
, (3.2.5)

where the second term is the Sudakov form factor that accounts for global loga-
rithms. The first term is the pure NGLs result which satisfies

∂Lgab (L) =

∫
L

dΩj

4π
W j

ab [Uabj (L) gaj (L) gjb (L)− gab (L)] , (3.2.6)

with
Uabj (L) = exp

[
L

∫
R

dΩ1

4π

(
W 1

ab −W 1
aj −W 1

jb

)]
. (3.2.7)

3.2.1 Perturbative expansion of the BMS equation
Now let us check the perturbative expansion of the BMS equation, and compare

the integrands at 2 and 3 loops that have been derived in Sec. 3.1.2. Firstly, we
write the perturbative expansion of the solution as

gab (L) =
∞∑
n=0

g
(n)
ab , (3.2.8)

with g
(n)
ab proportional to Ln. We could perform the same expansion for Uabj, and

set the first term for both of them as g(0)ab = 1 and U (0)
abj = 1, due to all NGLs start

at O (α2
s)

At order L, the expansion of function Uabj can be written as

U
(1)
abj = L

∫
R

dΩ2

4π

(
W 2

ab −W 2
aj −W 2

jb

)
, (3.2.9)
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therefore one find the expansion of BMS equation at 2-loop level as

∂Lg
(2)
ab (L) = L

∫
L

dΩ1

4π
W 1

ab

[∫
R

dΩ2

4π

(
W 2

ab −W 2
aj −W 2

jb

)]
. (3.2.10)

Solving the above equation is pretty straightforward, since the integral has no
L dependence, and one finds the result as

g
(2)
ab (L) = −1

2
L2

∫
1L2R

(
P 12
ab −W 1

abW
2
ab

)
, (3.2.11)

where
∫
1L2R =

∫
L

dΩ1

4π

∫
R

dΩ2

4π
, and the above result agrees with Eq.(3.1.38). For

the perturbative expansion at 3-loop level, we need insert U (2)
abj and g

(2)
ab back into

the BMS equation, which gives

∂Lg
(3)
ab (L) =

1

2
L2

∫
1L2R3RW

1
ab

(
W 2

a1 +W 2
1b −W 2

ab

) (
W 3

a1 +W 3
1b −W 3

ab

)
− 1

2
L2

∫
1L2R3RW

1
ab

[(
P 23
a1 −W 2

a1W
3
a1

)
+
(
P 23
1b −W 2

1bW
3
1b

)
−
(
P 23
ab −W 2

abW
3
ab

)]
, (3.2.12)

which one can easily check if the above equation agrees with Eq.(3.1.39)

3.2.2 Calculation of Uabj

Before iterating to solve the BMS equation, it is useful to perform the calculation
of Uabj in Eq.(3.2.7). Moreover, the explicit expression of Uabj would also help us
unravel the symmetry of the BMS equation.

Note that in Eq.(3.2.6), the emission j is always in the left hemisphere, hence we
could fix the direction in the right hemisphere to the hemisphere axis n. Thus, we
only need Uanj and Uabj with both ab and j going left. Recall the dipole radiator
from Eq.(3.2.2), which depends on the round bracket inner product

(ab) = 1− cosθab = 1− cosθacosθb − cos (φa − φb) sinθasinθb, (3.2.13)

It is helpful to define the square bracket as one of the vectors that reflects the
opposite hemisphere from the round bracket:

[ab] = (āb) = 1 + cosθacosθb − cos (φa − φb) sinθasinθb. (3.2.14)

For both a and b are left, there are no collinear singularities in the angular
integral and we can easily integrate the dipole radiator as∫

R

dΩ1

4π
W 1

ab =
1

2
log

[ab]

2cosθacosθb
. (3.2.15)
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Then insert all three integrals into Eq.(3.2.7), one could find the result

Uabj (L) = 2L/2cosLθj

{
[ab]

[aj] [jb]

}L/2

. (3.2.16)

Therefore, the BMS equation becomes

∂Lgab (L) =
1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(ab)

(aj) . (jb)

×

[
2L/2cosLθj

{
[ab]

[aj] [jb]

}L/2

gaj (L) gjb (L)− gab (L)

]
. (3.2.17)

When one of the directions is in the right hemisphere, the dipole radiator in-
tegral in Eq.(3.2.15) has a collinear divergence, but the Uanj is still finite and the
result is

Uanj (L) = 2L/2cosLθj

{
(an)

[aj] (jn)

}L/2

, (3.2.18)

Therefore, one can re-write the BMS equation as

∂Lgan (L) =
1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(an)

(aj) (jn)

×

[
2L/2cosLθj

{
(an)

[aj] (jn)

}L/2

gaj (L) gjn (L)− gan (L)

]
. (3.2.19)

3.2.3 Symmetries of the BMS equation
Before solving the BMS equation, let’s first check the degrees of freedom of

gab (L) for different a and b, where the directions of a and b can be arbitrary angles
(θa, φa) and (θb, φb) on the sphere. We note that gab (L) can only depend on the
azimuthal separation ∆φ = φa−φb, since there is an obvious cylindrical symmetry
with respect to the hemisphere axis.

Unfortunately, the BMS equation is a non-linear integro-differential equation,
which is too complicated to be solved analytically. However, it has been observed
that the structure of BMS equation is formally similar to the Balitsky– Kovchegov
(BK) equation, which describes the gluon saturation in high energy scattering
[68, 69], and it is invariant under conformal transformation that forms the group
SL(2,C) [70]. Therefore, it is natural to look for a similar symmetry in BMS
equation.

In order to unveil the symmetry of the BMS equation, it is useful to consider
the change of variables by stereographic projection [71, 72]

z =
sinθ

1 + cosθ
eiφ. (3.2.20)
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The projection is shown in Fig. 3.2, with the stereographic transformation, the
angle space (θ, φ) is mapped to the complex plane.

Now, we can re-write the BMS equation in terms of z. Firstly, the angle from
the hemisphere axis is

cosθ =
1− |z|2

1 + |z|2
, (3.2.21)

and angular integral measures can be re-written as

dΩ = dcosθdφ =
4dzdz̄

(1 + |z|2)2
, (3.2.22)

moreover, the round and square brackets, i.e. Eq.(3.2.13) and (3.2.14) become

(ij) = 2
|zi − zj|2

(1 + |zi|2) (1 + |zj|2)
, (3.2.23)

[ij] = (ij) + 2

(
1− |zi|2

1 + |zi|2

)(
1− |zj|2

1 + |zj|2

)
, (3.2.24)

thus, the measure times the radiator becomes

dΩjW
j
ab = 2dzdz̄

|za − zb|2

|za − zj|2|zj − zb|2
. (3.2.25)

Figure 3.2. Stereographic projection of the jet directions, the angles (θ, φ) are measured respect
to the cone axis.

Furthermore, as the angle and square brackets come from Lorentzian inner
products, thus we could make use of the hyperbolic distance on the disk as

〈ij〉 = |zi − zj|2

(1 + |zi|2) (1 + |zj|2)
=

(ij)

2cosθicosθj
. (3.2.26)
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Therefore, the brackets become

(ij) = 2cosθicosθj 〈ij〉 , [ij] = 2cosθicosθj (1 + 〈ij〉) . (3.2.27)

With all the information above, pluging all of them into the BMS equation for
the left-hemisphere, i.e. Eq.(3.2.17), we have

∂Lgab (L) =
dzdz̄

2π

|za − zb|2

|za − zj|2|zj − zb|2

×

{[
1 + 〈ab〉

(1 + 〈aj〉) (1 + 〈jb〉)

]L/2
gaj (L) gjb (L)− gab (L)

}
. (3.2.28)

In this form, we can easily verify its symmetry, which is similar to BK equation.
First, we note that the holomorphic half of the radiator times the measure

dzj
(za − zb)

(za − zj) (zj − zb)
, (3.2.29)

is invariant under (i) z → z+λ, (λ ∈ C); (ii) z → λz, (λ 6= 0) and (iii) z → −1/z,
which forms the group SL(2,C)

z → z′ =
αz + β

γz + δ
, αδ − βγ = 1. (3.2.30)

The restriction of the integration region breaks this symmetry down to the
subgroup SL(2,R). Unlike in the context of the BK equation, where the symmetry
is less useful because it is broken by the initial condition, the initial condition of
the BMS holds the symmetry trivially as gab (L = 0) = 1 for all a and b. Since
both the equation and the initial condition are invariant under the transformation,
the solution gab (L) must also have this symmetry. Therefore, the solution of BMS
equation only depends on the distance between a and b on the disk after the
projection as

gab (L) = g (〈ab〉 , L) = g

(
1− cosθab
2cosθicosθj

, L

)
, (3.2.31)

this will simplify our calculation, as this reduces the three degrees of freedom of
gab (L) to one, i.e., g (θa, θb,∆φ, L)→ g (〈ab〉 , L).

3.3 Perturbative calculation of NGLs
With all the discussion and simplification in the last section, now we are ready

to perform the calculation for the order-by-order result of NGLs via the pertur-
bative expansion of BMS equation. Moreover, it is more convenient to perform
the integrals over angles, since BMS equation is invariant under the stereographic
projection. Thus, we can rewrite the 1-loop Sudakov factor in the exponent of
Eq.(3.2.7) as

rij =
1

2
log (1 + 〈ij〉) = 1

2
log

[ij]

2cosθicosθj
. (3.3.1)
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Then the BMS equation becomes

∂Lgab (L) =
1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(ab)

(aj) (jb)

[
eL

(
rab−raj−rjb

)
gaj (L) gjb (L)− gab (L)

]
.

(3.3.2)
Therefore, to obtain the formula to calculate the m-loop NGLs, one could expand
the above equation recursively, here we only list the expression up to 4-loop:

∂Lg
(2)
ab (L) =

1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(ab)

(aj) (jb)
L (rab − raj − rjb) , (3.3.3)

∂Lg
(3)
ab (L) =

1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(ab)

(aj) (jb)

[
L2

2
(rab − raj − rjb)2

+ g
(2)
aj (L) + g

(2)
jb (L)− g(2)ab (L)

]
(3.3.4)

∂Lg
(4)
ab (L) =

1

4π

∫ 1

0

dcosθj

∫ 2π

0

dφj
(ab)

(aj) (jb)

[
L3

3!
(rab − raj − rjb)3

+ L (rab − raj − rjb)
(
g
(2)
aj + g

(2)
jb

)
+ g

(3)
aj (L) + g

(3)
jb (L)− g(3)ab (L)

]
,

(3.3.5)

which are straightforward to solve, once the azimuthal angle integral and the
polar angle integral are calculated, and the lower order NGLs are known. Detailed
discussion for the calculation of azimuthal angle integrals and polar angle integrals
can be found in Ref. [60].

Here, we collect the analytical results up to 3-loop, in order to check the numer-
ical solutions that will be discussed later in this chapter. For opposite hemisphere
NGLs, we have

1

L2
g(2)an (L) = −π

2

24
, (3.3.6)

1

L3
g(3)an (L) =

ζ (3)

12
. (3.3.7)

The results for both a and b in the left hemisphere are given by
1

L2
g
(2)
ab (L) = −1

4
G (−1,−1;x) + 1

4
G (−1, 0;x) , (3.3.8)

1

L3
g
(3)
ab (L) =

π2

36
G (−1;x)− 1

4
G (−1,−1− 1;x) +

1

4
G (−1,−10;x)

+
1

12
G (−1, 0,−1;x)− 1

12
G (−1, 0, 0;x) , (3.3.9)

where we have defined x = 〈ab〉, and the function G is Goncharov polylogarithm
(GPL), details about GPLs can be find in App. C.3.

Using the analytic results up to and including 4 loops, we could calculate the
hemisphere NGLs to 5-loop. The result is

gnn̄ (L) = 1− π
2

24
L2+

ζ (3)

12
L3+

π4

34560
L4+

(
17ζ (5)

480
− π2ζ (3)

360

)
L5+ · · · , (3.3.10)
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where we recall that L = αs

π
Nclog

mL

mR
. And plots of gnn̄ (L) up to 5-loop and the

ratio to Dasgupta-Salam fit are shown in Fig. 3.3, where Dasgupta-Salam fit was
proposed in Ref. [6], which was obtained by fit to their Monte Carlo result:

g
(DS)
nn̄ = exp

[
−π

2

24
L21 + 0.18L2

0.33L1.33

]
. (3.3.11)
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Figure 3.3. Comparisons of the fixed-order result up to 5-loop with the Dasgupta-Salam fit for
the leading logarithmic resummation of the NGLs. The radius of convergence are shown in the
right side

3.3.1 Partial resummed result
Following the reference [59, 60], we rewrite the BMS equation in the form

∂gab (L) =

∫
L

dΩj

4π
W j

abgab (L) [Uabj (L)− 1]+

∫
L

dΩj

4π
W j

abUabj [gaj (L) gjb (L)− gab (L)] ,

(3.3.12)
where the second term only contributes to NGLs start at 3-loop, and this term
contains all sources of non-linear contributions. Thus, if we ignore it, the BMS
equation reduces to a linear evolution equation, which is straightforward to solve.
For the opposite-hemisphere case, i.e. a = n and b = n̄, we have

∂Lg
(2R)
nn̄ (L) = g

(2R)
nn̄ (L)

∫
L

dΩj

4π
Wnn̄ [Unn̄j (L)− 1]

= −1

2
(γEL+ logΓ (1 + L)) , (3.3.13)

in the second line, we have integrated with the property of the di-gamma function,
the solution to this differential equation is

g
(2R)
nn̄ (L) = exp−

1
2
(γEL+logΓ(1+L)) = 1− π2

24
L2 +

ζ (3)

6
L3 + · · · , (3.3.14)

the above result includes odd powers of its expansion, unlike the naive exponenti-
ation of the 2-loop result, i.e. gab (L) = exp

(
−π2

24
L2
)

, but the partially resummed
result is not particularly useful, since the 3-loop expansion is not correct as we
explained before. Nevertheless, it does give us a few hints:
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• This solution is similar to the solution of RGE for global logarithms [64],
which is usually solved in Laplace space.

• The expansion of the partial resummed result contains half of the 3-loop
leading NGL, unlike the naive expansion of the 2-loop result, which only
includes odd powers of L in its expansion.

• The non-linear source term for BMS equation is separated, which can be
linearized similar to the way that one recovers the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation from BK equation.

0 1 2 3 4 5
L

0.0

0.2

0.4

0.6

0.8

1.0

g a
b(

L)

Dasgupta-Salam Fit
Naive exp 2-loop
partial resummed (Analytic)

Figure 3.4. Comparison between the Dasgupta-Salam fit(black), naive exponentiation of the
2-loop result (dashed, green) and the partial resummed result (blue)

3.3.2 Dressed gluon approximation
Another alternative method to resum NGLs is the so-called dressed gluon ap-

proximation, which reorganize the degrees of freedom that contribute to NGLs
into an expansion in identified soft jets, referred to as dressed gluons [61,73]. The
dressed gluon can be defined by an all-orders factorization theorem, and then re-
summed by renormalization group evolution, details can be found in Ref. [61].
In this section, we will focus on relating the dress gluon approximation with the
various expansions proposed in the literature.

Thus instead of counting in the order of coupling, we can also perform the ex-
pansion in the number of resolved soft subjets as proposed by the dressed gluon
approximation. Moreover, it is interesting to relate the dressed gluon approxima-
tion to the BMS equation, which we expand the non-global function gab by the
soft object as

gab (L) = 1 + g̃
(1)
ab (L) + g̃

(2)
ab (L) + · · · . (3.3.15)

Insert this expansion back to the BMS equation, we find the expansion for
function g̃

(1)
ab (L) as

∂Lg̃
(1)
ab (L) =

∫
L

dΩj

4π
W j

ab [Uabj − 1] , (3.3.16)
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Figure 3.5. Comparison of the one- and two-dressed gluon approximation to the 3- and 4-loop
fixed order results and Dasgupta-Salam fit

which is very similar to the 2-loop resummation formula, Eq.(3.3.13), but not itself
exponentiated. The above equation is equivalent to the one-dressed gluon result.
We can continue to perform the same method for the higher order dressed gluon
expansion. The differential equation for g̃(2)ab (L) is

∂Lg̃
(2)
ab (L) =

∫
L

dΩj

4π
W j

ab

{
Uabj (L)

[
g
(1)
aj (L) + g

(1)
jb (L)

]
− g(1)ab (L)

}
. (3.3.17)

Therefore, one could build up the full solution of BMS equation by continuing
to include higher orders in this expansion. The numerical results for one- and
two-dressed gluon are shown in Fig. 3.5, the better numerical results via neural
network (NN) will be included in the next section, and then compare with the
results from other approaches in the literature.

3.4 Solving differential equations with neural net-
works

In recent years, artificial intelligence (AI) and machine learning (ML) are devel-
oped rapidly, both within and outside academia. These modern techniques have
also provided powerful tools for the study of high-energy physics. For example, the
classification for discriminating the signal from the background processes based on
event selection cuts [74], or the classification of complex objects such as jets, ac-
cording to the radiation pattern imprints in the detector [75]. Other applications
with neural networks include regress between data points [76] or identify outliers
or anomalies [77].

In this section, we present a different way to use these powerful artificial neural
network algorithms, namely find solutions to differential equations as an optimiza-
tion task, which was proposed in Ref. [78]. This method can dramatically speed
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up needed theory calculations. First, we will introduce this method with some
ordinary differential equation examples. We then apply it to the calculation for
the perturbative expansion of the BMS equation.

3.4.1 A brief introduction to neural networks
The artificial neural network is an algorithm designed to perform an optimiza-

tion process that requires a loss function to calculate the model error. Thus,
one could, in general, solve mathematical equations with the form F (~x) = 0 via
the neural network, by defining and minimizing the loss function [79]. On the
other hand, differential equations play an important role in all areas of theoreti-
cal physics. However, in practice they may not be directly solvable, i.e., do not
have analytic solutions. Instead, solutions can be approximated using numerical
methods. Standard numerical methods for solving differential equations include
the Runge-Kutta method, linear multistep methods, finite-element methods [80].

As stated by the universal approximation theorem [81, 82]: an artificial neural
network with a single hidden layer can approximate any arbitrarily complex func-
tion with enough neurons, which indicates the neural network could perform well
in solving complicated mathematical expressions.

Now, we consider the feed-forward NN with n inputs, m outputs, and a single
hidden layer with k units. Thus the output of this network can be written as

Nm(~x, {w,~b}) =
∑
k,n

wf
mkg

(
wh

mnxn + bhk
)
+ bfm, (3.4.1)

where g is the activation function, and h and f denote the hidden and final layer,
respectively. We use the single neural network with m outputs to solve m coupled
differential equation systems.

Then, the m coupled jth order differential equations can be expressed as
Fm

(
~x, φm (~x) ,∇φm (~x) , · · · , φj

m (~x)
)
= 0, (3.4.2)

with this form, we could easily convert the problem of solving equations to an
optimization procedure, where the approximate solution φ̂m (~x) should minimize
the square of the left-hand side of Eq.(3.4.2). Therefore, we could identify the
solution as the network output, e.g. φ̂m (~x) ≡ Nm(~x, {w,~b}).

Moreover, we include the boundary conditions as extra terms in the loss func-
tion. Thus, the domain can be discretized into a finite number of training points
~xi, and the approximate solutions φ̂m (~x) could be obtained by finding the set of
weights and biases {w,~b}, which the loss function is minimized. For imax training
examples, the loss function can be written as

L({w,~b}) = 1

imax

∑
i,m

Fm

(
~xi, φ̂m

(
~xi
)
, · · · ,∇jφ̂m

(
~xi
))2

+
∑
BC

(
∇jφ̂m (~xb)−K (~xb)

)2
, (3.4.3)
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where the second term represents the squares of the boundary conditions at the
boundary ~xb. Thus the task is then to minimize the loss function L({w,~b}) in the
neural network.

3.4.2 Ordinary differential equation examples
To show how well this novel approach can solve ordinary differential equation

(ODE), first, we apply it to the first and second-order ODE, which the analytic
solutions are known. The equations are

dφ

dx
+

(
x+

1 + 3x2

1 + x+ x3

)
φ− x3 − 2x− x2 1 + 3x2

1 + x+ x3
= 0, (3.4.4)

with the boundary condition φ (0) = 1 in the domain x ∈ [0, 2], and

d2φ

dx2
+

1

5

dφ

dx
+ φ+

1

5
e−

x
5 cosx = 0, (3.4.5)

with boundary conditions φ (0) = 0 and d
dx
φ (0) = 0 in the domain x ∈ [0, 2].

For the neural network architecture, we chose a single hidden layer of 10 units
with sigmoid activation functions. Then, we just need to pass the differential
equations and boundary conditions to the loss function, as described in Eq.(3.4.3),
and proceed with the optimization procedure. In Fig. 3.6, the results of the
neural network output are shown, compared to the analytic solutions of Eq.(3.4.5)
and Eq.(3.4.5), where the numerical difference between the numerical and analytic
solutions are shown in the bottom panel.

Instead of solving the second-order ODE example directly. We reduce the
second-order equation to two first order ODE simply by define ψ = dφ

dx
, and re-

write the loss function and optimize it with two neural network output, we get
the same result as have shown in Fig. 3.6. In general, we could extend to solving
coupled non-linear differential equations with no analytic solution, which is exactly
the same task that we need to perform, in order to resum the leading NGLs via
BMS equation, more details will be discussed at the end of this chapter.

3.4.3 Structure of BFKL equation
As we have pointed out in Sec. 3.3.1, one could extend the partial resummed

equation with the corrections from the non-linear terms, where the linearization
of the non-linear source term should have the same structure of BFKL equation.
In this section, we will discuss the BFKL kernel’s contribution to the BMS equa-
tion. The structure of BFKL like equation will also be introduced, following the
discussion in Ref. [83].

To begin with, let us recall the second term of Eq.(3.3.12), which contains all
the non-linear behaviour of BMS equation. We can linearize the BMS equation
by rewrite gij = 1 − xij and drop the non-linear terms, which should contain
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Figure 3.6. The solutions to the first and second-order of Eq.(3.4.5) and Eq.(3.4.5), and the
bottom panel shows the numerical difference between the analytic solution and NN prediction

more information than the partially resummed approach. Thus, we can define the
second term after linearization as

B (xab; J) =

∫
J

dΩj

4π
Wab (j) (xaj + xjb − xab) , (3.4.6)

when J = S2, i.e. integrate over the whole celestial sphere, then it is conformally
related to the position space form of the kernel of the BFKL equation. In the
bracket, the first two terms originate from emission out of aj and jb dipoles from
the branching of the parent ab dipole, and the last term comes from the virtual
corrections.

In Ref. [83], an evolution equation for heavy quark-antiquark pair multiplicity
was discussed for resumming soft logarithms

∂τI (ρab, τ) =

∫
dΩj

2π

ρab
ρajρjb

[I (ρaj, τ) + I (ρjb, τ)− I (ρab, τ)] , (3.4.7)

with ρab = 1
2
(1− cosθij), which have similar structure as Eq.(3.4.6). For simplicity,

we replace ρab → ρ, ρaj → ρ1 and ρjb → ρ2. The dipole radiator factor can be
written as

ρ

ρ1ρ2
=

1

ρ1
+

1

ρ2
+
ρ− ρ1 − ρ2

ρ1ρ2
, (3.4.8)

where the last term regulates the kernel for both ρ1 → 0 and ρ2 → 0, and the
evolution equation becomes

∂τI (ρ, τ) =

∫
dΩj

2π

{
2

ρ2

[
ρ

ρ1
I (ρ1, τ)− I (ρ, τ)

]
− ρ− ρ1 − ρ2

2ρ1ρ2
I (ρ1, τ)

}
. (3.4.9)

With the help of∫
dΩj

2π

2

ρ2
=

∫ 1

0

dρ1
|ρ1 − ρ|

,

∫
dΩj

2π

ρ− ρ1 − ρ2
ρ1ρ2

= −
∫ 1

0

dρ1
ρ1
, (3.4.10)
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one could write the evolution equation as

∂τI (ρ, τ) =

∫ 1

0

dρ1
|ρ1 − ρ|

[
ρ

ρ1
I (ρ1, τ)− I (ρ, τ)

]
+

∫ 1

0

dρ1
ρ1
I (ρ, τ) , (3.4.11)

and if one neglects the lower bound in the second integral, the equation is formally
the same as the BFKL equation. This form is also desired for our purpose for
exploiting the solution of BMS equation with the invariant distance 〈ab〉. We
leave this study for future work.

3.4.4 Numerical results for NGLs
With all the discussions above, now we are ready to solve the BMS equation

with the artificial neural network. The only thing left is the integration part of
BMS equation, where the analytical solution doesn’t exist, thus we need to solve
it numerically. The numerical integration could, in general, be performed by the
Autograd function in Pytorch. However, for simplicity, here we only solve it with
the finite difference method (FDM).

To start with, let us solve the fixed-order expansion with the FDM, where the
fixed order expansion up to 4-loop can be written as

∂g
(2)
ab (L) =

∫
L

dΩj

4π
W j

abU
(1)
abj (L), (3.4.12)

∂g
(3)
ab (L) =

∫
L

dΩj

4π
W j

abU
(2)
abj (L)

+

∫
L

dΩj

4π
W j

ab

[
g
(2)
aj (L) + g

(2)
jb (L)− g(2)ab (L)

]
, (3.4.13)

∂g
(4)
ab (L) =

∫
L

dΩj

4π
W j

abU
(3)
abj (L) +

∫
L

dΩj

4π
W j

abU
(1)
abj (L) g

(2)
ab (L)

+

∫
L

dΩj

4π
W j

abU
(1)
abj (L)

[
g
(2)
aj (L) + g

(2)
jb (L)− g(2)ab (L)

]
+

∫
L

dΩj

4π
W j

ab

[
g
(3)
aj (L) + g

(3)
jb (L)− g(3)ab (L)

]
, (3.4.14)

where in each order, the first term comes from the expansion of the partial re-
summed formula, and the second term is linearized from Eq.(3.3.12). In practice,
when solving the above equations numerically, one registers the values of the so-
lution for all discretized points in the plane (~xa, ~xb) at each step of iteration.
However, as noted in Sec. 3.2.3, the solution of BMS equation, i.e. gab(L), only
depends on the invariant distance 〈ab〉. Thus, this symmetry reduces the four
degrees of freedom (Ωa,Ωb) to one, which means the simple solution of gn̄b tells
the value of g for an arbitrary direction of a and b. Therefore, we only need to
discretize the angle into nθ and nφ bins and solve the equation by summing the
integrand with step size ∆L = L/nL.

For fixed-order expansion beyond 4-loop, non-linear behavior will start to con-
tribute. The full numerical solution is still under development, but with the help of



84 Resummation of Non-Global Logarithms to All Orders

0 1 2 3 4 5
L

10

8

6

4

2

0

g a
b(

L)

2-loop-R (Analytic)
2-loop-R (Num)
2-loop-L, b = 3  (Analytic)
2-loop-L, b = 3  (Num)

0 1 2 3 4 5
L

0

2

4

6

8

10

12

g a
b(

L)

3-loop-R (Analytic)
3-loop-R (Num)

Figure 3.7. Numerical solutions to the 2- and 3-loop expansion of BMS equation, and compare
with the analytical solutions in Eq. (3.3.6)-(3.3.9)

the analytical solution in Ref. [60], we could get the numerical result with arbitrary
a and b up to 7-loop level, where the iteration formula can be written as

∂g
(i+1)
ab (L) =

∫
L

dΩj

4π
W j

abU
(i)
abj (L) +

k<i∑
k=1

∫
L

dΩj

4π
W j

abU
(k)
abj (L) g

(i−k)
ab (L)

+
k<i∑
k=1

∫
L

dΩj

4π
W j

abU
(k−1)
abj (L)

[
g
(i−k+1)
aj (L)+

+ g
(i−k+1)
jb (L)− g(i−k+1)

ab (L) +
l<i−k−1∑

l=1

g
(i−k−l)
aj g

(l+1)
jb

]
. (3.4.15)

It is also interesting to improve the partial resummed result with the corrections
from the non-linear term in Eq. (3.3.12), which is similar to the matching of
resummation to fixed-order result. There are different matching schemes proposed
in the literature, two of the widely used schemes are R-matching and the log(R)-
matching [84,85], where the log(R)-matching scheme is believed to be theoretically
the most stable [85], results for the log(R)-matching are shown in Fig. 3.8, where
the radius of convergence is improved with higher loop matching.
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tion of the 2-loop result and the dressed gluon approach, with the ratio to the MC fit shown in
the right side



3.4 Solving differential equations with neural networks 85

Now we could come back to the neural network approach, since we have just
double-checked the numerical calculation for the integration part with the FDM.
Thus we only need to insert the numerical solution of the integration back to
Pytorch. Here, we apply it to the dressed-gluon calculation, the results are shown
in Fig. 3.9, which the accuracy has improved compared to Fig. 3.5. We could
also apply this method to the fixed-order calculation with the iteration of the
differential equation, similar to the one we derived in Eq.(3.4.15).
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Figure 3.9. Neural network approach for one- and two-dressed gluon calculation, with the ratio
to the MC fit shown in the right side

3.4.5 Plan for next steps
As a first step to finish this project, we would like to solve the fixed-order

expansion of BMS equation up to 8-loops and comparing results with exiting lit-
erature [73]. Since our method is essentially a combination of linearized BMS
equation and the analytic results up to 4-loop order, thus we want to determine
the impact of the non-linear term in BMS equation by exploring the difference with
the fixed-order expansion of the linearized BMS equation. Then, we could perform
the full numerical calculation for the fixed-order expansion of BMS equation.

Furthermore, we could also apply the neural network method to perform the
numerical resummation of the leading NGLs, i.e. solve the full BMS equation
numerically, and again this could be achieved by fully discretize the BMS equation,
which transforms the task of solving a non-linear integro-differential equation, to
n coupled differential equations.

The plan for the future study include exploring the relation between BMS and
BK equation (include the corresponding linearized version) and describing the
evolution of next-to-leading NGLs at finite Nc. More details will be explained in
Sec. 5.2.
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U nderstanding color flow in hard scattering processes plays an important role
in high-energy physics. For instance, it can provide a powerful handle to

distinguish the hadronic decay products of color singlets in the final state. This
is particularly important in the H → bb̄ case. A powerful observable that was
designed to probe color flow is jet pull, which was originally proposed in Ref. [86].
In this chapter, we present predictions from first-principle QCD for the jet pull
and its derivative quantities.

4.1 Seeing in color: jet superstructure
Determining the color representation of a jet is highly non-trivial because the

color quantum numbers that are carried by quarks and gluons are not directly
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observable in experiments. The color representation must be inferred through its
effect on kinematic distributions. A powerful observable that is sensitive to the
color representation is called jet pull, which was originally proposed in Ref. [86].

In this chapter, we present the theoretical predictions of jet pull for measure
QCD radiation pattern in the signal events, i.e. color-singlet decaying in two jets.
The pull angle observable is particularly sensitive to color flow. However, unlike
the most theoretically studied observables in high energy physics, the pull angle
lacks the property of IRC safety, and so its distribution cannot be calculated in
fixed-order perturbation theory.

4.1.1 color flow
As we have derived the Feynman rule for QCD in App. B.1, the underlying

theory of QCD appears to be very similar to that of QED, The QED interac-
tion is mediated by a massless photon corresponding to the single generator of
the U(1) local gauge symmetry, while QCD is mediated by eight massless gluons
corresponding to the adjoint representation of SU(3) local gauge symmetry. The
single charge of QED is replaced by three color charges, r g and b. Moreover, only
particles that have non-zero color charge couple to gluons. In general, we could
extend the symmetry of QCD to SU(Nc).

In this section, we introduce the color flow by the Feynman rule for color flow
based on color decomposition, which is widely used for the calculation of multi-
parton amplitudes. Amplitudes involving multiple quarks and gluons are difficult
to calculate even at the tree level. One technique that has been developed to
calculate these amplitudes efficiently is the systematic organization of the SU(N)
color algebra. To be specific, let us consider the amplitude of n gluons with colors
a1, · · · , an. At tree level, the amplitude can be decomposed as [87]

M (ng) =
∑

perm(2,··· ,n)

Tr (λa1 · · ·λan)A (1, · · · , n) , (4.1.1)

where λa is the fundamental representation of SU(N), and the sum is over the
(n−1)! permutations of (2, · · · , n), and A is called the partial amplitude, depending
on the four momenta and the polarization vectors of the n gluons.

Here, we treat the SU(N) gluon field as N×N matrix (Aµ)
i
j with i, j = 1, · · · , n,

instead of one-index field Aa
µ with a = 1, · · ·N2 − 1. The n-gluon amplitude can

be decomposed as [88]

M (ng) =
∑

perm(2,··· ,n)

δi1j2 · · · δ
in
j1
A (1, · · · , n) , (4.1.2)

where the upper indices transform under the fundamental representation, and the
lower indices under the anti-fundamental representation. Moreover, the SU(N)
symmetry implies that color is conserved at the interaction vertices, similar to the
electric charge is conserved at the QED vertex. Thus, the interaction vertex can be
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Figure 4.1. Color-flow Feynman rules for quark-gluon vertex

represented by the color-flow Feynman rule, for example, the quark-gluon vertex
color-flow Feynman is shown in Fig. 4.1.

Now for a more physical picture, let us consider the main decay mode of an
on-shell Higgs at the LHC, i.e. Higgs decay to bottom quarks (H → bb̄). Since
the Higgs boson is a color singlet, the color factor in the matrix element at leading
order has the form of δiqjq . The color string or dipole is shown in the left side of
Fig. 4.2. This signature suffers from the huge QCD background g → bb̄, and there
are two possible color connections, in both cases the outgoing quark connects the
beam, as shown on the right side of Fig. 4.2. The color string picture treats
gluons as bifundamentals, which is correct in the large Nc limit, and the sub-
leading color corrections should contribute to 1/N2

c 10% effect. The sub-leading
color correlations will briefly be introduced in the next chapter.

Figure 4.2. Possible color connections for signal (pp̄ → H → bb̄) and for background (pp̄ →
g → bb̄)

4.1.2 Jet pull and its projections
Since the color flow is physical, it may be possible to extract the color connec-

tions from the jet substructure, and this would help temper the background for
the color singlet process. Therefore, mapping the jet substructure for the color
connections of the events can help us discriminate short-distance physics.
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To extract the color connections, we must use information from the distribution
of the observable hadrons. We can test this idea using a parton shower simulation
[89–92]. The radiation pattern for events with bb̄ in the final state, where quarks are
color-connected to each other (signal) versus the final state quark color-connected
to the beam (background) are shown in Fig. 4.3. More details about the simulation
can be found in Ref. [86].

The parton shower simulation indicates that the radiation on each end of a
color dipole is being pulled towards the other end of the dipole. Thus one could
construct a jet shape for dijet events, shown in Fig. 4.4.

Figure 4.3. The radiation pattern from the parton shower simulation, for the b and b̄ color-
connected to each other (left) and the b and b̄ color-connected to the beam (right), plot taken
from [Gallicchio, Schwartz, 1001.5027]

Pull is a two-dimensional vector that points in the direction of dominant energy
flow about a jet of interest that is particularly useful for determining if two jets form
a color-singlet dipole, i.e. whether they originate from the decay of resonance that
carries no color, such as an electro-weak boson. In a color-singlet dipole, emissions
lie between the ends of the dipole; therefore the pull vector would point along the
line that connects the momentum vectors of the jets.

The original expression of the pull vector ~t from [86] was defined in the plane
of rapidity y and azimuthal angle φ. The expression for the pull vector is

~t =
∑
i∈J

p⊥i|~ri|2

p⊥J
r̂i , (4.1.3)

where pi is the transverse momentum of the ith particle in the jet J of interest.
The vector ~ri is the relative rapidity and azimuthal angle of the particle from the
jet axis:

~ri = (yi − yJ , φi − φJ) . (4.1.4)

As a weighted sum of particle locations, the pull vector points from the jet axis in
the direction of dominant energy flow. In this form, the pull vector is expressed in
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Figure 4.4. Pull vector of jet a and its projections in the rapidity (y) and azimuth (φ) plan,
which are defined with respect the jet b.

coordinates natural at a hadron collider and has been used for the measurements
at D∅ and ATLAS, and for searches at CMS [93–97].

Moreover, we find it useful to introduce two unit vectors

n̂‖ =
1√

∆y2 +∆φ2
(∆y,∆φ) = (cos β, sin β),

n̂⊥ =
1√

∆y2 +∆φ2
(−∆φ,∆y) = (− sin β, cos β), (4.1.5)

where ∆y = yb − ya and ∆φ = φb − φa, as depicted in Fig. 4.4. The angle β has
been introduced for future convenience. We now introduce two projections of the
pull vector in the two directions identified by the unit vectors above:

t‖ = |~t · n̂‖| and t⊥ = |~t · n̂⊥|. (4.1.6)

We will come back to the role of the absolute value in the expressions above in
Section 4.4. Furthermore, we note that the magnitude of the pull vector can be
expressed as

t = |~t| =

∣∣∣∣∣ 1pta ∑
i∈J

pti|~ri|2r̂i

∣∣∣∣∣ =√t2‖ + t2⊥, (4.1.7)

while the pull angle can be written as

θp = cos−1
~t · n̂‖
t

. (4.1.8)

It is easy to check that the pull magnitude t and the two projections t‖ and t⊥
are IRC safe observables. However, this property is lost when considering the
pull angle, essentially because θp does not vanish in the presence of a single soft
emission because the ratio t‖/t is undetermined.
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4.2 Curiosities: Sudakov safety
To date, IRC safety has been a key guiding principle for constructing observ-

ables, for which the virtual and real diagrams consistently combine according to
the KLN theorem, thus yielding finite physical cross-sections order-by-order in
perturbation theory. However, there are interesting observables in collider physics
that are not IRC safe, which means they can not be defined at any fixed order in
αs, yet have a finite cross-section when the all-orders effects are included.

In this section, we present an explicit method to calculate the cross-section for
IRC unsafe observables with the help of all-order resummation, then apply this
method to the ratio of two angularities with different angular exponents, as an
example.

4.2.1 IRC-unsafe observables
To begin with, consider an IRC unsafe observable u and its safe companion ob-

servable s, where the safe companion is chosen so that it regulates all singularities
of u. This means, despite the probability of measuring u,

p (u) =
1

σ

dσ

du
, (4.2.1)

is ill-defined at any order of the perturbative expansion, the conditional probability
of measuring u given s, p (u|s) is finite at all orders for s 6= 0. Moreover, because
s is IRC safe, p(s) is well-defined in any fixed-order and further can be calculated
in resummed perturbation theory. This allows us to define the joint probability
distribution

p (s, u) = p (s) p (u|s) , (4.2.2)
which is also finite at all perturbative orders. We then define

p (u) =

∫
dsp (s) p (u|s) , (4.2.3)

and if p(s) regulates all singularities of p (u|s), which ensure the above integral is
finite, then we say u is Sudakov safe [37]. The perturbative Sudakov form factor
exponentially suppresses the singular region of phase space.

4.2.2 Application: ratio of angularities
The first example of Sudakov safe observable discussed in the literature is the

ratio of angularities [98], where the jet angularities are defined as

eα =
1

EJ

∑
i∈J

Eiθ
α
i . (4.2.4)

Augulartities are IRC safe for α > 0, and the angle θi is measured with respect
to an appropriately chosen jet axis. Moreover, the angularities represent a broad
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class of IRC safe observables that are linear in the energy of each particle and
weighted by positive powers of angles between them, these include thrust and jet
mass.

Now, we consider the ratio observable formed by two different angularities mea-
sured on the same jet:

rα,β =
eα
eβ
, (4.2.5)

and we choose the angular exponents α > β, therefore rα,β ∈ [0, 1]. Moreover, the
ratio of two IRC safe observables are not generically IRC safe, as both eα and eβ
go to zero in the region where radiation is soft or/and collinear with respect to the
jet axis, but the ratio rα,β can be arbitrary.

While the ratio rα,β is not IRC safe, it is Sudakov safe. Therefore we could apply
the joint probability method. For simplicity, in this section, we only compute the
LL resummed cross-section of the ratio rα,β by marginalizing the resummed double
differential distribution of angularities:

dσ

drα,β
=

∫
deαdeβ

d2σ

deαdeβ
δ

(
rα,β −

eα
eβ

)
, (4.2.6)

the Sudakov form factor in the double differential distribution provides exponential
suppression of the singular region of phase space. We could also generalize this to
a class of ratio observables r = a/b, therefore we can rewrite the above equation
as

p (r) =

∫
dadb p (a, b) δ

(
r − a

b

)
, (4.2.7)

where a and b are IRC safe but r is not, as r is ill defined for b = 0 at every
perturbative order. Integrating over a, one could find the result

p (r) =

∫
db p (b) p (r|b) , (4.2.8)

where we have used the definition of conditional probability, and r is Sudakov safe
because of the all-orders Sudakov form factor from the safe companion p(b).

In order to emphasize some features of the IRC unsafe observable, we perform
the LL resummation in the strongly-ordered limit. In this limit, there are multiple
emissions, but the value of the observable is determined by the leading emissions.
Moreover, because the double differential cross-section is IRC safe, one can easily
determine the LL distribution from the Lund diagram, as we have introduced in
Sec. 2.1.3

∆(eα, eβ) = e
−αs

π
CF

(
1
β
log2eβ+

1
α−β

log2 eα
eβ

)
, (4.2.9)

where the Sudakov form factor at LL is directly obtained by calculating the for-
bidden region in the phase space. Thus, we get resummed double differential cross
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section by differentiating with respect to eα and eβ

d2σLL

deαdeβ
=

∂

∂eα

∂

∂eβ
∆(eα, eβ)

=

(
2αs

π

CF

α− β
1

eαeβ
+

4α2
s

π2

C2
F

β (α− β)2
1

eαeβ
log

eβ
eα
log

eβα
eαβ

)
∆(eα, eβ) .

(4.2.10)

We also note that the Sudakov factor suppresses the singular region of the phase
space at eα → 0, eβ → 0. Finally, we can obtain the differential cross section for
the ratio observable rα,β by inserting the above result back to Eq. (4.2.6), and for
clarity, we have dropped the subscripts as rα,β → r

dσLL

dr
=

√
αsCFβ

α− β
1

r

(
1− 2

αs

π

CF

α− β
log2 r

)(
erf
[ √

αsCFβ√
π(α− β)

log r

]
+ 1

)
e−

αs
π

CF
α−β

log2 r

− 2
αs

π

CF

α− β
log r

r
e
−αs

π
CF

α
(α−β)2

log2 r
, (4.2.11)

in the above equation, we have used the error function defined as:

erf (x) = 2√
π

∫ x

0

dte−t
2

. (4.2.12)

Moreover, expanding the above LL resummed result, we find

dσLL

dr
=
√
αsCF

√
β

α− β
1

r
+O (αs) , (4.2.13)

which starts at O
(√

αs

)
, as the ratio observables do not have a valid fixed-order

expansion. Generically, this conclusion could extend to IRC unsafe observables,
and more examples will be discussed later in this chapter.

4.2.3 Safe companion of the pull angle

We now come back to the jet pull ~t, which is a two-dimensional vector defined
by the magnitude t and angle φp. The angle measured with respect to the line
connecting the momentum vectors of the two jets, φp is the pull angle observable.
The pull vector magnitude t is itself IRC safe, and so can be calculated to any fixed-
order. While the pull angle φp is not IRC safe, the problematic region of phase
space is localized to t = 0, where the complete cross-section vanishes anyway.
This motivates the calculation of the distribution of the pull angle p(φp) by the
marginalization of a joint probability distribution of t and φp:

p(φp) =

∫
dt p(t, φp) , (4.2.14)
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This only exists if the joint distribution is integrable, which is not true when
calculated at fixed-order. Following our previous discussion, we can make progress
by re-expressing the joint distribution in terms of a conditional probability:

p(φp) =

∫
dt p(t, φp) =

∫
dt p(t) p(φp|t) , (4.2.15)

where p(φp|t) is the distribution of φp conditioned on the value of t. p(φp|t) is
finite for t 6= 0, so can be calculated to any fixed-order, while p(t) is finite at any
fixed-order calculation and can be resummed to all-orders. Thus, to render the
integral finite with the Sudakov form factor, we resum t and calculate the joint
probability to fixed-order (fo):

p(φp) '
∫
dt presum(t) pfo(φp|t) . (4.2.16)

While this relationship is no longer an exact equality, it nevertheless exists, it is
formally accurate to a fixed-order with t� 1, and as we discussed earlier, the pull
magnitude t is called as the safe companion of the pull angle φp.

Now, we can calculate these two distributions, presum(t) to all orders, and the
other one pfo(φp|t) at fixed-order. Firstly, let us start with the conditional distri-
bution defined by

pfo(φp|t) =
pfo(t, φp)

pfo(t)
, (4.2.17)

where everything is calculated to the same order in αs. Further, the fixed-order
distribution of the pull magnitude is just a marginalization of the joint distribution

pfo(t) =

∫ 2π

0

dφp pfo(t, φp) , (4.2.18)

so we just need to calculate the joint distribution. We will calculate pfo(t, φp)
to leading-order in αs, in the soft and collinear limits; that is, to leading order
for t � 1. The soft and collinear limits can be separated from one another with
dimensional regularization and therefore can be calculated separately, more details
about the calculation will be given in the next section.

4.3 Theory predictions for the pull angle
In this section, we present the analytic predictions from first-principles QCD

for the pull vector. We focus on the calculation of the pull vector for color-singlet
dipoles, as this is the case that has been studied experimentally in detail. Fur-
thermore, the most useful feature of pull vector is the pull angle, which is the
azimuthal angle about one of the jets in a pair with respect to the line connecting
the jets. Both D∅ and ATLAS experiments have measured the pull angle in the
boosted, hadronic decays of W bosons from top quark decay [99–101].
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For the calculations in this section, we use a modified version of the pull vector,
which is identical to Eq.(4.1.3) for central jets in the collinear limit. The definition
we use is

~tmodified =
∑
i∈J

Ei sin
2 θi

EJ

(cosφi, sinφi) . (4.3.1)

Here, Ei is the energy of particle i, θi is its angle from the jet axis, and φi is the
azimuthal angle about the jet axis. The angle φi is measured with respect to a
fiducial jet direction. This form is much more amenable to analytic calculations,
and because the jet radii that we consider are typically relatively small (R ' 0.4),
the collinear limit is a good approximation anyway. To correct for the difference
between the original definition which is used in the experiment and this modified
definition, we could match our resummed calculations to fixed-order results which
would account for the difference. In what follows, we will refer to this version of
the pull vector as ~t, for brevity.

4.3.1 Fixed-order calculation
In this section, we calculate the pull vector distribution for emissions off of a

color-connected dipole in the soft limit. This involves the calculation of the soft
emission matrix element:

Sn1n2(t, φp) = −T1 ·T2 g
2µ2ε

∫
[ddk]+

2n1 · n2

k+(k · n2)
Θ

(
tan2 R

2
− k+

k−

)
(4.3.2)

× δ
(
t− k+k−

EJk0

)
δ (φp − φ) .

The light-like vectors n1 and n2 specify the direction of the ends of the dipole and
n1 ·n2 = 1−cos θ12. We have centered a jet with radius R about the n1 axis. Here,
[ddk]+ is the phase space for an on-shell, positive energy particle in d = 4 − 2ε
dimensions with momentum k:∫

[ddk]+ =
1

24−2επ5/2−εΓ(1/2− ε)

∫ ∞
0

dk+

(k+)ε

∫ ∞
0

dk−

(k−)ε

∫ π

0

dφ sin−2ε φ , (4.3.3)

here, k+ and k− are momentum components measured with respect to the n1 axis,
with k+ = k0(1− cos θ1k) and k− = k0(1+ cos θ1k), where θ1k is the angle between
axis 1 and momentum k. k0 is the energy of the particle. Finally, the angle φ is
the azimuthal angle of the particle about the n1 axis; that is, it is the pull angle,
with φ = 0 set by the line between axes n1 and n2.

To evaluate the soft function, we can expand the dot product k · n2 in terms of
n1:

k · n2 =
n1 · n2

2
k− +

n̄1 · n2

2
k+ − (n1 · n2)

1/2(n̄1 · n2)
1/2(k+k−)1/2 cosφ

=
1− cos θ12

2
k− +

1 + cos θ12
2

k+ − sin θ12(k
+k−)1/2 cosφ . (4.3.4)
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Then, all but one phase space integral can be done with the δ-functions. With an
appropriate change of variables, the integral that remains can be written as

Sn1n2(t, φp) = −T1 ·T2
g2

41−2επ5/2−εΓ(1/2− ε)
1

t1+2ε

(
µ2 tan2 R

2

E2
J sin

2 φp

)ε ∫ 1

0

du u−1+ε

×
(
1 + u tan2 R

2

)−2ε(
1 + u

n̄1 · n2

n1 · n2

tan2 R

2
− 2u1/2

(
n̄1 · n2

n1 · n2

)1/2

tan
R

2
cosφp

)−1
.

(4.3.5)

Note that
n̄1 · n2

n1 · n2

= cot2
θ12
2
. (4.3.6)

This integral can be performed in a series in ε using the +-function expansion

u−1+ε =
1

ε
δ(u) +

(
1

u

)
+

+ ε

(
log u

u

)
+

+ · · · (4.3.7)

Expanding to 1/ε order (which is necessary for NLL resummation), we have

Sn1n2(t, φp) = −T1 ·T2
g2

41−2επ5/2−εΓ(1/2− ε)
1

t1+2ε

(
µ2 tan2 R

2

E2
J sin

2 φp

)ε

(4.3.8)

×

[
1

ε
+

∫ 1

0

du

(
1

u

)
+

(
1 + u cot2

θ12
2

tan2 R

2
− 2u1/2 cot

θ12
2

tan
R

2
cosφp

)−1]
.

Ater integrate over u, one can find the result as

Sn1n2(t, φp) = −T1 ·T2
g2

41−2επ5/2−εΓ(1/2− ε)
1

t1+2ε

(
µ2 tan2 R

2

E2
J sin

2 φp

)ε [
1

ε
(4.3.9)

+2 cotφp tan−1

tan R
2

tan
θ12
2

sinφp

1− tan R
2

tan
θ12
2

cosφp

− log

(
1 +

tan2 R
2

tan2 θ12
2

− 2
tan R

2

tan θ12
2

cosφp

) .

This can be expanded to find anomalous dimensions as the coefficients of the 1/ε
terms. Here, we will just show the leading result for t > 0 that is non-singular in
ε. This corresponds to the lowest-order term in the fixed-order expansion in the
soft limit. We find

d2σsoft

dt dφp

= −αs

π2
T1 ·T2

[
2

t
log

µ tan R
2

tEJ sinφp

(4.3.10)

+
1

t

2 cotφp tan−1

tan R
2

tan
θ12
2

sinφp

1− tan R
2

tan
θ12
2

cosφp

− log

(
1 +

tan2 R
2

tan2 θ12
2

− 2
tan R

2

tan θ12
2

cosφp

)
 .
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In this expansion, we do the MS subtraction and set the Euler-Mascheroni constant
γE to 0. Integrating over φ, we find the soft contribution to the differential cross-
section of the magnitude of pull, t:

dσsoft

dt
= −αs

π
T1 ·T2

[
2

t
log

2µ tan R
2

tEJ

− log

(
1−

tan2 R
2

tan2 θ12
2

)]
. (4.3.11)

The collinear contribution to the joint distribution can be calculated similarly.
In this case, the collinear splitting function for a quark in dimensional regulariza-
tion is:

Jq(t, φp) =
αsCF

2π

(4π)ε

π1/2Γ(1/2− ε)

(
µ2

E2
J

)ε ∫ 1

0

dz

∫ ∞
0

dθ2
∫ π

0

dφ sin−2ε φ (4.3.12)

× (θ2)−1−εz−2ε(1− z)−2ε
(
1 + (1− z)2

z
− εz

)
δ(t− z(1− z)|1− 2z|θ2)δ(φp − φ)

=
αsCF

2π

(4π)ε

π1/2Γ(1/2− ε)
1

t1+ε

(
µ2

E2
J sin

2 φp

)ε

×
∫ 1

0

dz z−1−ε(1− z)−ε|1− 2z|ε
(
1 + (1− z)2 − εz2

)
.

The remaining integral can be done by expand in ε using the +-function expan-
sion. We find∫ 1

0

dz z−1−ε(1− z)−ε|1− 2z|ε
(
1 + (1− z)2 − εz2

)
= −2

ε
− 3

2
. (4.3.13)

Keeping only those terms that are independent of ε, we find

Jq(t, φp) '
αs

2π2
CF

[
2

t
log

4tE2
J sin

2 φp

µ2
− 3

2

1

t

]
. (4.3.14)

To avoid double-counting in the soft and collinear limit when combined with
the soft emission, we need to subtract from this its limit when z → 0. In this case,
we have

J (0)
q (t, φp) =

αsCF

π

(4π)ε

π1/2Γ(1/2− ε)

(
µ2

E2
J

)ε ∫ ∞
0

dz

∫ ∞
0

dθ2
∫ π

0

dφ sin−2ε φ

× (θ2)−1−εz−1−εδ(t− zθ2)δ(φp − φ) (4.3.15)
= 0 ,

as the integral over z is scaleless.

The cross section in the hard collinear limit is then the difference of these
contributions:

d2σcoll

dt dφp

=
αs

2π2
CF

[
2

t
log

4tE2
J sin

2 φp

µ2
− 3

2

1

t

]
. (4.3.16)
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By integrating over φp, we find the collinear contribution to the cross section of
the magnitude of pull, t:

dσcoll

dt
=
αs

π

CF

t

[
log

tE2
J

µ2
− 3

4

]
. (4.3.17)

Combining these soft and collinear results produces a lowest-order distribution
that is the independent of renormalization scale µ, we find

d2σsoft

dt dφp

+
d2σcoll

dt dφp

=
αs

π2

CF

t

[
log

4 tan2 R
2

t
− 3

4
(4.3.18)

+2 cotφp tan−1

tan R
2

tan
θ12
2

sinφp

1− tan R
2

tan
θ12
2

cosφp

− log

(
1 +

tan2 R
2

tan2 θ12
2

− 2
tan R

2

tan θ12
2

cosφp

) .

To determine the distribution of the magnitude of pull, we can integrate over
φ ∈ [0, π]. The integral of the explicit logarithm is 0, while the integral over the
arctangent term can be done with contours. One finds

dσ

dt
=
αs

π

CF

t

log 1

t
− 3

4
− log

1− tan2 R
2

tan2
θ12
2

4 tan2 R
2


 . (4.3.19)

4.3.2 Resummed results
Now, we calculate the resummed distribution of the pull magnitude. Because

experimental analyses typically consider a W boson decaying into subjets with a
small radius, we decide to perform the all-order calculation in the collinear limit,
although determining the full-R dependence is a straightforward extension. We
note that in this limit our definition of pull and the original one coincide.

The pull vector ~t is an additive observable in that the contribution to the pull
vector from additional soft emissions simply adds. The pull vector is recoil-free in
the sense that soft emissions do not affect the direction of the jet axis to leading
power in the pull magnitude t � 1. With these observations, to next-to-leading
logarithmic accuracy (NLL) in the collinear limit, the double differential cross-
section for the pull vector can be directly calculated from an infinite sum of jets
with any number of emissions of energy fraction {zi} and emission angles {θi}:

1

σ

d2σ

d~t
= exp

[
−
∫ R2

0

dθ2

θ2

∫ 1

0

dz

∫ 2π

0

dφ

2π

αs

2π
Pqg←q(z)

]

×

[
∞∑
n=0

1

n!

n∏
i=1

∫ R2

0

dθ2i
θ2i

∫ 1

0

dzi

∫ 2π

0

dφi

2π

αs

2π
Pqg←q(zi)

× δ

(
tx −

n∑
i=1

ziθ
2
i cosφi

)
δ

(
ty −

n∑
i=1

ziθ
2
i sinφi

) ]
, (4.3.20)
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where the momentum conservation of collinear emissions has been suppressed, and
this expression ignores non-global logarithms and powers of the jet radius R.

The structure of the resummed results is akin to the well-known transverse-
momentum resummation, as we have introduced in Sec. 2.2. Therefore, instead
of repeating the material that we have already discussed before, we will use this
section to illustrate how to perform the all-order resummation with the RGE
approach.

Now, recall the RGE approach introduced in Sec 2.5.2, to NLL accuracy in
conjugate b space, we have derived the general solution of the renormalization
group equation in Eq.(2.5.31). The overall coefficient of the exponent differs for
the soft and jet functions:

ΓS = −Γ0 , (4.3.21)
ΓJ = 2Γ0 .

The coefficient of the non-cusp anomalous dimension, γ0, is defined from the ex-
pansion in αs

γ =
∞∑
n=0

γ(n)
(αs

4π

)n+1

, (4.3.22)

which we need to extract from the fixed order calculation. From App. D.3, the
coefficients of the non-cusp anomalous dimension for the jet and soft functions are

γ
(0)
S = 4CF

[
− log

(
1−

tan2 R
2

tan2 θ12
2

)
− 2γE + 2i(π − φb)

]
, (4.3.23)

γ
(0)
J = 4CF

[
3

2
+ 2γE − 2i(π − φb)

]
,

and the canonical scales of the jet and soft functions in ~b space are

µS =
EJ

b tan R
2

, (4.3.24)

µJ =

√
2

b
EJ . (4.3.25)

Note that when the components of ~t are small (|~t| � 1), then either the momen-
tum of the particles in the jet are very specific, or emissions are soft or collinear.
If ~t is small but the momentum of particles in the jet are not soft or collinear,
then this configuration is non-singular and can be determined by matching to the
fixed order result. Therefore, with ~t small, the dominant contributions are from
soft or collinear emissions. Soft and collinear emissions that contribute to the pull
have different virtuality and pull is additive, so we can write the cross-section for
measuring the pull vector in the factorized form:

dσ

d~t
= H(Q2)

∫
d2tsd

2tc J(~tc)S(~ts) δ
(2)(~t− ~tc − ~ts) , (4.3.26)
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where H(Q2) is a hard function, J(~tc) is the jet function that describes collinear
emissions, and S(~ts) is a soft function that describes coherent emissions from
dipoles in the event. Moreover, we can simplify the convolution by Fourier trans-
formation. Then, the cross-section for ~t becomes

dσ

d~t
=

1

4π2
H(Q2)

∫
d2tsd

2tcd
2b J(~tc)S(~ts) e

i~b·(~t−~tc−~ts) (4.3.27)

=
1

4π2
H(Q2)

∫
d2b J(~b)S(~b) ei

~b·~t .

The J(~b) is the Fourier transform of the jet function J(~t) (and similarly for the
soft function), which can be obtained by insert the non-cusp anomalous dimension
to the general solution of RGE, i.e. Eq.(2.5.31).
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Figure 4.5. Double check the resummed calculation by compare the expansion of the resummed
result and EVENT2 at both LO and NLO

So, in order to prove the equivalence between the traditional approach and RGE
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approach, we define the resummed exponent in conjugate space from

J(~b)S(~b) ≡ e
−R

(
~b
)
. (4.3.28)

Then we can compute the resummed exponent from both approaches, and we find
exactly the same result at NLL accuracy as

−R
(
~b
)
= Lf1 (λ) + f2c (λ) + f2s (λ) , (4.3.29)

with

f1(λ) = −
Ci

2πβ0λ
[(1− 2λ) log (1− 2λ)− 2 (1− λ) log (1− λ)] (4.3.30)

f2c(λ) = −
CiBi

πβ0
log (1− λ)− CiΓ1

4π2β2
0

[2 log (1− λ)− log (1− 2λ)] (4.3.31)

− Ciβ1
2πβ3

0

[
log (1− 2λ)− 2 log (1− λ) + 1

2
log2 (1− 2λ)− log2 (1− λ)

]

f2s(λ) = −
CF

2πβ0
log (1− 2λ) log

1− tan2 R
2

tan2 θ12
2

2tan2R
2

, (4.3.32)

where the collinear section is identical to the one of the jet mass radiator calculated
in the small R limit. To determine the distribution for the magnitude of the
pull vector presum(t), we simply integrate over the pull angle φp and the b-space
azimuthal angle to find:

presum(t) =
1

σ

dσ

dt
= t

∫ ∞
0

db bJ0(bt)e
−R(b) . (4.3.33)

This expression can be explicitly expanded and evaluated to NLL with the two-
loop running coupling, but we leave it implicit here.

The above resummed calculation can be double checked by subtract the expan-
sion of resummed result from EVENT2, which is a Monte Carlo code for next-to-
leading order corrections to two and three jet event observables in e+e−, results are
shown in Fig. 4.5, which according to the C2

F channel the difference is ∼ α2
slogt,

which is beyond NLL accuracy, and the difference at CFCA channel comes from
the contribution of NGLs, this can be easily checked by adding the fixed-order
result to CFCA channel. Details about the fixed-order calculation for NGLs will
be performed in the next section.

4.3.3 Pull angle distribution
There are two more things we include in our theoretical prediction of the pull

angle. First, in the calculation of the fixed-order conditional distribution pfo(t, φp),
there is explicit dependence on the angle between the two ends of the color singlet
dipole, θ12. Our expression for pfo(t, φp), then, needs to be convolved against the
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distribution of this angle. For isotropic color-singlet decay, this distribution can be
determined by boosting the rest frame decay to the lab frame. In the rest frame,
if the four-vectors of the decay products are

p1 =
(m
2
, 0, 0,

m

2

)
, p1 =

(m
2
, 0, 0,−m

2

)
, (4.3.34)

then, in the boosted frame the energies of the decay products are

E1 →
γm

2
(1 + β cos θ) , E2 →

γm

2
(1− β cos θ) . (4.3.35)

Note that the energy of the decaying particle in the boosted frame, E = γm, and
therefore the velocity of the boost is

β =

√
1− m2

E2
. (4.3.36)

The angle θ is the boost angle. The angle between the decay products can be
found by demanding that they reproduce the heavy particle’s invariant mass:

m2 = 2E1E2(1− cos θ12) =⇒ cos θ12 = 1− 2m2

E2

1

1− β2 cos θ
. (4.3.37)

The distribution of the angle between the decay products is then

p(cos θ12) =
1√

γ4 − γ2
1√

1− 2
γ2 − cos θ12

1

(1− cos θ12)3/2

×Θ

(
1− 2

γ2
− cos θ12

)
, (4.3.38)

where γ is the boost factor. For comparison with data, we need to integrate over all
possible subjet angles accepted by the experimental cuts. From ATLAS’s analysis,
most of the top quarks will be produced at or near rest, and so the W boson’s
boost factor is approximately

γ =
m2

t +m2
W

2mtmW

' 1.3 . (4.3.39)

ATLAS also requires that the jets on which the pull angle is calculated to have a
minimum transverse momentum of p⊥,min = 25 GeV, so assuming a purely trans-
verse decay, the maximum angle between the jets is

cos θ12 & 1− m2
W

2p⊥,min(γmW − p⊥,min)
' −0.62 . (4.3.40)

We use these parameters to form our complete theory prediction.

The last component of our theoretical prediction is the inclusion of non-perturbative
corrections from hadronization. Due to the additivity of the pull vector, hadroniza-
tion corrections can be included to leading power by convolution of the perturbative
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distribution with a model shape function [102–106]. This shape function encodes
the kinematic distribution of non-perturbative emissions on which the pull vector
is measured and is peaked around energies comparable to the QCD scale, ΛQCD.
Thus, we parametrize the non-perturbative distribution of the pull vector as:

pnp(t, φp) ∝ tanh

(
1

aφp(2π − φp)

)
δ

(
t− Ω

EJ

)
, (4.3.41)

where the constant of proportionality is defined by normalization. Here, Ω '
ΛQCD, and the functional dependence of the pull angle φp has a free parameter
a for which a → 0 yields a flat distribution in φp and a → ∞ is a δ-function at
φp = 0. This form of non-perturbative distribution is motivated by noting that in
the center-of-mass frame of the color-singlet decay, at the lowest order emissions
are uniform in azimuth about the decay axis. When boosted to the lab frame,
this naturally clusters emissions at small values of φp. We find that varying the
parameter a ∈

[
0, 1

4

]
is sufficient in order to estimate the dependence on the precise

shape of non-perturbative corrections.

With all of these pieces in place, we can finally complete the theoretical predic-
tion of the pull angle distribution. Step-by-step, the perturbative joint distribution
ppert(t, φp) of the pull magnitude and angle is

ppert(t, φp)

=

∫ −0.18
−0.62

d cos θ12 presum(t) pfo(φp|t) p(cos θ12) , (4.3.42)

where the integration bounds follow from the earlier discussion of the boost of
the W boson in the lab frame. Non-perturbative corrections can be included by
convolution carefully vectorially summing the components of the pull vector:

p(t, φp) (4.3.43)

=

∫ ∞
0

dt′
∫ 2π

0

dφ′
∫ ∞
0

dt′′
∫ 2π

0

dφ′′pperp(t
′, φ′) pnp(t

′′, φ′′)

× δ
(
φp − cos−1

t′ cosφ′ + t′′ cosφ′′

t

)
× δ

(
t−
√
t′2 + t′′2 + 2t′t′′ cos(φ′ − φ′′)

)
.

Finally, integrating over the pull magnitude yields the pull angle distribution:

p(φp) =

∫ ∞
0

dt p(t, φp) . (4.3.44)

Our theoretical prediction is plotted in Fig. 4.6. On the left-hand side, we
show the pull distribution as computed in perturbative QCD and with hadroniza-
tion corrections as described above. At small φp, the lower edge of the band
corresponds to a = 0, while the upper one to a = 1

4
. For comparison, we also show
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Figure 4.6. In the left plot we show the distribution of the pull angle in various approximations.
Monte Carlo simulations from Pythia are shown at parton level (black +) and hadron level
(blue ×). Our theory prediction is also shown at parton level (purple line) and with varying
hadronization corrections (light-red band). In the right plot we compare our hadron-level result
(red �) to the ATLAS data (black •), as well as to the Monte Carlo simulation (blue ×).

simulated data both at parton level and hadron level. To produce the simulated
events, we follow the experimental analysis of [100], where the pull angle is mea-
sured on all particles from the two jets from hadronic W decay in semi-leptonic
tt̄ events. Therefore we generate semi-leptonic pp → tt̄ events at the 8 TeV LHC
with MadGraph v2.6.4 [107] and then showered in Pythia v8.240 [89]. FastJet
v3.3.2 [48] was used to impose phase space restrictions from the ATLAS analysis,
find jets, and calculate the pull angle.

Finally, on the right-hand side of Fig. 4.6, we compare theory and Monte Carlo
predictions at hadron-level to data collected by the ATLAS experiment of [100],
which are available from HEPData [108]. As the central value of our hadron-level
theoretical prediction, we consider the midpoint of the 0 < a < 1

4
band. We

note that both theoretical calculation and simulation predict a distribution of the
pull angle that is slightly more peaked at small values than data, which was also
observed in ATLAS’s analysis.

4.4 Safe projections of jet pull
Despite the fact that we managed to obtain a first-principle description for pull

angle, the calculation still suffered from large theoretical uncertainties due to pull
angle being Sudakov safe instead of IRC safe, where the theoretical understanding
of Sudakov safe observables is still in its infancy, it is not clear how theoretical
accuracy can be achieved beyond the first order. Furthermore, while IRC safety
ensures the presence of a kinematical region where non-perturbative effects are
genuine power corrections, no such guarantee exists for Sudakov-safe observables
and consequently, non-perturbative physics can contribute to the observable as an
order-one effect.
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In this section we overcome these difficulties by defining suitable projections
of jet pull, which are similar to the projections of transverse momentum as the
structure of the resummed results of pull is akin to the transverse-momentum re-
summation. These safe projections share many of the desirable features of the pull
angle, but at the same time are IRC safe, which enables us to perform perturbative
calculations at a well-defined, and in principle improvable, accuracy.

Moreover, we concentrate on measuring pull on one of the two jets originating
from the hadronic, i.e. bb̄, decay of a Higgs boson, while taking the other jet as refer-
ence. More specifically, we focus on the inclusive production of the Higgs together
with a Z boson, which pull can provide a valuable handle in distinguishing the
above production of a Higgs boson from the dominant QCD background (specifi-
cally g → bb̄), as suggested in the original article. Furthermore, this measurement
can be also be performed in the boosted regime, where the decay products are
reconstructed into a single two-pronged jet. In this case, jet pull can be measured
on one of the subjets.

4.4.1 Analog from aT distribution
Our first aim in what follows is to obtain all-order predictions for the above safe

observables at NLL accuracy. In the previous section, we have already performed
a resummed calculation for the pull magnitude t, which then played the role of
the IRC safe companion observable in the Sudakov safe calculation for pull angle.
However, in that calculation, we have resorted to the collinear limit. Here, we want
to relax this approximation and also consider contributions from soft emissions at
wide-angle, expressed as a power series in the jet radius R.

Before performing the resummed calculation for the safe projection, we also
want to explore the relation between the difference between the aT and qT distri-
bution at leading order in O (αs). As we are expecting the same relation between
the safe projection t‖ and pull magnitude t, so that we could use this relation to
double-check our calculation. Moreover, because pull and its projections are jet
shape, which the initial state radiation only contributes to the soft wide-angle start
at the NLL accuracy. Thus for the comparison for aT and qT , we also only consider
the final state radiation. The LO result for aT is already collected in Eq.(2.2.29),
while the leading order result for qT can be obtained simply from the expansion of
the modified LL result as

Σ(1) (qT ) = αsCF

(
log2

M

qT
− 3

2
log

M

qT

)
. (4.4.1)

We note that the logarithms found for aT are the same as those for the qT
variable with the replacement 2aT → qT . In other words, as far as the logarithmic
dependence is concerned, we obtain the same result for the cross-section of aT
and qT/2. The only other effect is a constant term generated from the azimuthal
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angle-dependent term |sinφ|. Thus the relation is

Σ(1) (aT )− Σ(1)
(qT
2

)
= −CF

αs

2π

π2

3
. (4.4.2)

The calculation for t‖ and t is straightforward, therefore instead of repeating the
above steps, we only include the comparison for the leading order result of pull
magnitude t, safe projection t‖ and, jet mass ρ from EVENT2, shown in Fig. 4.7.
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Figure 4.7. Comparison between the leading order result of pull magnitude, safe projection and
the jet mass from EVENT2

4.4.2 Global logarithms at NLL accuracy
Similar to the NLL resummation formalism for pull vector derived in the pre-

vious section, the all-order expression can be easily arrived at by noting that the
pull vector is additive and recoil-free at leading power, essentially because of the
quadratic dependence on |~ri| of Eq. (4.1.3). Despite the fact that we have in mind
to measure jet pull on the hadronic decay products of a Higgs boson, we note
that in the collinear limit the resummed cross-section is universal and does not
depend on the event surrounding the jet we are measuring. Thus, the resummed
expression for the pull magnitude can be directly calculated from an infinite sum
of emissions of energy fraction zi and (small) emission angles θi � R

1

σ

dσ

dt
= exp

[
−
∫ R2

0

dθ2

θ2

∫ 1

0

dz

∫ 2π

0

dφ

2π

αs(zθpta)

2π
Pgq(z)

]

×

 ∞∑
n=0

1

n!

n∏
i=1

∫ R2

0

dθ2i
θ2i

∫ 1

0

dzi

∫ 2π

0

dφi

2π

αs(ziθipta)

2π
Pgq(zi)

× δ

t−
√√√√( n∑

i=1

ziθ2i cosφi

)2

+

(
n∑

i=1

ziθ2i sinφi

)2

 , (4.4.3)
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where R is the radius of the jet we are measuring. For definiteness, we are going
to define jets using the anti-kt algorithm [53]. The function Pgq = CF

1+(1−z)2
z

represents the collinear splitting probability of a quark into a quark and a gluon
and appears in the resummation formula because at NLL the parton originating a
jet in H → bb̄ decay is always a quark. A more refined calculation, namely NLL′,
would also account for the relative O(αs) probability of measuring pull on a gluon-
initiated jet and would therefore also feature the splitting probabilities Pgg and Pqg.
As already noted in Ref. [109], the structure of the resummed results is akin to the
well-known transverse-momentum resummation, e.g. [110, 111], and consequently,
the sum over the emissions can be performed explicitly in the conjugate space of
Fourier-Hankel moments:

1

σ

dσ

dt
=

∫ ∞
0

db (bt)J0(bt)e
−2CFRc(b), (4.4.4)

where J0(x) is the Bessel function andRc(b) is the collinear radiator, which, at this
accuracy, depends exclusively on the magnitude of the Fourier conjugate vector
b = |~b|:

Rc(b) =

∫ R2

0

dθ2

θ2

∫ 1

0

dz
αs(zθpta)

2π

Pgq(z)

2CF

Θ
(
zθ2 − b̄−1

)
, (4.4.5)

with b̄ = b e
γE

2
. Explicit expressions for the NLL radiator will be reported in

Section 4.4.4.

The projections of the pull vector we are interested in can be found by following
the same steps. We have

1

σ

dσ

dt⊥
= exp

[
−
∫ R2

0

dθ2

θ2

∫ 1

0

dz

∫ 2π

0

dφ

2π

αs(zθpta)

2π
Pgq(z)

]

×

[
∞∑
n=0

1

n!

n∏
i=1

∫ R2

0

dθ2i
θ2i

∫ 1

0

dzi

∫ 2π

0

dφi

2π

αs(ziθipta)

2π
Pgq(zi)

× δ

(
t⊥ −

∣∣∣∣∣
n∑

i=0

(
−ziθ2i cosφi sin β + ziθ

2
i sinφi cos β

)∣∣∣∣∣
)]

,

(4.4.6)

where the δ function comes from the definition of the observable t⊥ in Eq. (4.1.6).
Note that in this case, such constraint involves a one-dimensional sum, while the
analogous term in the pull magnitude distribution, Eq. (4.4.3), involved a vector
sum. This situation presents strong similarities with the resummation of equiv-
alent variables in the context of transverse-momentum resummation, such as aT
and φ∗ [44, 47]. Thus, as in that case, the all-order sum can be performed in a
conjugated Fourier space. We obtain

1

σ

dσ

dt⊥
=

2

π

∫ ∞
0

db cos(bt⊥)e
−2CFRc(b), (4.4.7)
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where the radiator in b space is the same as the one obtained for the pull magnitude.
Finally, we find that, at this accuracy, the t‖ and t⊥ distributions share an identical
collinear structure:

1

σ

dσ

dt‖
=

2

π

∫ ∞
0

db cos(bt‖)e
−2CFRc(b). (4.4.8)

In order to achieve the full NLL accuracy, the soft emissions at wide-angle must
be included, from general considerations we expect them to be suppressed in the
small jet radius limit. However, unlike collinear radiation discussed above, the
explicit form of soft contributions depends on the underlying hard processes we
are considering. Physically, this comes about because soft gluons can attach to any
hard parton, resulting in a potentially complicated pattern of color correlations. In
our current study, the situation is not too complicated because we are focusing on
measuring pull on jets originating from a color-singlet, while the color structure
is much richer when considering jets originating from higher-dimensional color
representations [112]. In particular, the hard process we are considering at Born
level is

qq̄ → H(→ bb̄) Z(→ l+l−). (4.4.9)

The soft contribution to the NLL radiator can be written as the sum over dipoles
that can emit a soft gluon. In our case we only have two dipoles: the one formed
by the initial-state partons and the one made up by the two bottom quarks, which
we consider massless, therefore we have

Rs = −2T1 ·T2R12 − 2Ta ·TbR̃ab, (4.4.10)

where 1, 2 refers to the initial state and a, b to the final state. Ti are the color
insertion operators, and the tilde on the second contribution indicates that we
have subtracted the collinear contribution already included in Rc. Because we
are considering final-state jets produced by the decay of a singlet state, the color
algebra is trivial:

T1 +T2 = 0⇒ T1 ·T2 = −
1

2

(
T2

1 +T2
2

)
= −CF ,

Ta +Tb = 0⇒ Ta ·Tb = −
1

2

(
T2

a +T2
b

)
= −CF

(4.4.11)

The detailed calculation for the soft contribution to the NLL radiator, i.e. R12

and R̃ab will be performed at App. D.4. And the explicit expressions for the full
NLL radiator will be reported in Sec. 4.4.4.

4.4.3 Non-global logarithms
As we discussed earlier, the jet pull is a non-global observable, therefore for the

full NLL accuracy predictions, non-global logarithms must be included. We focus
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on the final-state dipole ab and we consider the double differential distribution
in the pull magnitude and pull angle at O(α2

s). In order to calculate the leading
non-global logarithmic contribution to the pull vector, it is suffice to consider
correlated soft gluon emission from the dipole in which the two soft gluons have
parametrically separated energies kh � ks, in the phase-space region where the
harder gluon lies outside the measured jet, while the second one is inside. The
matrix element for this non-global contribution can then be expressed as

d2σNG

dt dφp

=
α2
sCFCA

16π4

∫ 1

0

dk⊥h
k⊥h

∫ ∞
−∞

dyh

∫ π

−π
dφh

∫ 1

0

dk⊥s
k⊥s

∫ ∞
−∞

dys

∫ π

−π
dφs

× 2pa · pb
(pa · kh)(pb · kh)

(pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

×Θ
(
R2 − (ys − ya)2 − (φs − φa)

2
)
Θ
(
(yh − ya)2 + (φh − φa)

2 −R2
)

× Θ(k⊥h cosh yh − k⊥s cosh ys) δ
(
t− k⊥s

(
(ys − ya)2 + (φs − φa)

2
))

× δ

(
θp − cos−1

(ys − ya) cos β + (φs − φa) sin β√
(ys − ya)2 + (φs − φa)2

)
. (4.4.12)

Note that in the expression, the dependence on the perp magnitudes has been
pulled out of all the matrix elements and made explicit. The integral over k⊥s and
k⊥h can be easily performed. Furthermore, for compactness, we can shift the y
and φ coordinates to be measured with respect to the location of jet a, i.e. without
loss of generality we can set ya = φa = 0 in Eq. (4.4.12).

From this point, we will start approximating the integrals that remain. First, we
only work to find the leading NGLs for t� 1. Then, we consider the phase-space
constraints that remain and we notice that, in the small jet radius limit, we have
the following scaling yh ∼ ys ∼ R� 1. Therefore, in the explicit logarithm of the
integrals, we can simply remove the hyperbolic cosine factors, as their contribution
will be purely beyond leading NGL. Correspondingly, because R� 1, we can push
the bounds of integration on φs, φh safely to infinity. The integrals then become

d2σNG

dt dφp

=
α2
sCFCA

16π4

1

t

∫ ∞
−∞

dyh

∫ ∞
−∞

dφh

∫ ∞
−∞

dys

∫ ∞
−∞

dφs
2pa · pb

(pa · kh)(pb · kh)

× (pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

log
y2s + φ2

s

t

× Θ
(
y2s + φ2

s − t
)
Θ
(
R2 − y2s − φ2

s

)
Θ
(
y2h + φ2

h −R2
)

× δ

(
θp − cos−1

ys cos β + φs sin β√
y2s + φ2

s

)
. (4.4.13)

Similar to the one-gluon dipoles previously discussed, the integrals are more easily
performed in polar coordinates, see Eq. (D.4.2):

yi = ri cos γi ,

φi = ri sin γi . (4.4.14)
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Then, the integrals become

d2σNG

dt dφp

=
α2
sCFCA

16π4

1

t

∫ ∞
0

drh rh

∫ 2π

0

dγh

∫ ∞
0

drs rs

∫ 2π

0

dγs
2pa · pb

(pa · kh)(pb · kh)

× (pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

× log
r2s
t
Θ
(
r2s − t

)
Θ(R− rs) Θ (rh −R) δ (θp − γs + β) . (4.4.15)

Now, we need to express the soft matrix element in these coordinates. Additionally,
we work in the small jet radius limit, R � 1, and note that the dominant contri-
bution to the NGLs comes from the region of phase space in which rs . rh ∼ R.
We will thus expand the matrix element to first order in the R� 1 limit with this
identified scaling. We find

d2σNG

dt dφp

=
(αs

2π

)2
CFCA

π

3

log R2

t

t

(
1 +

24(1− log 2)

π2
R (4.4.16)

×sin∆φ sin(θp + β) + sinh∆y cos(θp + β)

cosh∆y − cos∆φ
+O(R2)

)
.

The first term in this expansion is the familiar expression for the narrow jet mass
NGL matrix element. Note that this differs by a factor of 2π from the familiar
expression for the jet mass NGLs; this factor is recovered when θp is integrated
over. Furthermore, if we integrate over the full range for θp, then the contribution
which is linear in R vanishes, leading to

dσNG

dt
=
(αs

2π

)2
CFCA

2π2

3

log R2

t

t
+O(R2) . (4.4.17)

It is easy to verify that at NLL accuracy the same expression as Eq. (4.4.17) holds
for the projections t‖ and t⊥.

4.4.4 Resummed results
We are now in a position to collect all the results derived so far and obtain

an NLL resummed prediction for the safe projections of the pull vector we are
considering. In this section, we investigate the structure of NGLs that affect the
different projections of the pull vector. The all-order differential distribution can
be written as:

1

σ

dσ

dv
=

∫ ∞
0

dbFv(bv)e
−CFR(b)SNG(b), (4.4.18)

with

Fv(x) =

{
xJ0(x), if v = t,
2
π
cos(x), if v = t‖, t⊥.

(4.4.19)
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The resummed exponent R can be written in terms of leading (second line) and
next-to-leading (third to sixth lines) contributions:

R = 2Rc + 2R̃ab + 2R12

=
(1− 2λ) log (1− 2λ)− 2 (1− λ) log (1− λ)

2παsβ2
0

+
Bq

πβ0
log (1− λ) + K

4π2β2
0

[2 log (1− λ)− log (1− 2λ)]

+
β1

2πβ3
0

[
log (1− 2λ)− 2 log (1− λ) + 1

2
log2 (1− 2λ)− log2 (1− λ)

]
+

1

πβ0
log

ptaR

µR

[log(1− 2λ)− 2 log(1− λ)]

− R2

8πβ0

[
4 +

cosh∆y + cos∆φ

cosh∆y − cos∆φ

]
log(1− 2λ) +O(R4), (4.4.20)

with λ = αsβ0 log(b̄R
2)1 and αs = αs(µR), where µR is the renormalization scale,

which we can vary around the hard scale pta in order to assess missing higher-order
corrections. In the above results the β function coefficients β0 and β1 are defined
as

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (4.4.21)

and

Bq =
3

4
, K = CA

(
67

18
− π2

6

)
− 5

9
nf . (4.4.22)

Finally, as already mentioned, in the small-R limit, the non-global contribution
can be taken equal to the hemisphere case. The resummation of NGLs can be
performed in the large-Nc limit exploiting a dipole cascade picture. We make use
of the following parametrization [6]:

SNG = exp

[
−CFCA

π2

3

1 + (aτ)2

1 + (bτ)c
τ 2
]
, (4.4.23)

with τ = − 1
4πβ0

log(1− 2λ), with a = 0.85CA, b = 0.86CA, and c = 1.33.

Finally, we note that the above results are valid for jets defined with the anti-kt
algorithm, which acts as a perfect cone in the soft limit [53]. Had we use a different
clustering measure, such as Cambridge/Aachen [51,52] or the kt-algorithm [49,50],
nontrivial clustering logarithms would have modified both the global and non-
global contributions to the resummed exponent [113–115].

1Strictly speaking, jet radius dependence in the argument of the logarithms only appears in
this order in the soft-collinear contributions. However, we find that including it in the whole
radiator leads to better numerical stability. The difference between these choices is beyond NLL
accuracy.
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4.4.5 Towards phenomenology
As discussed above, for all the theoretical ingredients that go into an NLL

calculation for the jet pull projections. We now turn our attention towards some
preliminary phenomenological studies. After discussing a simple model of non-
perturbative corrections due to the hadronization process, we move to compare
our resummed results to the one obtained by a general-purpose Monte Carlo event
generator. While doing so, we also discuss the numerical impact of the various
contributions that we have computed thus far.

Because the pull vector is both an additive observable and recoil-free, correc-
tions due to non-perturbative physics and hadronization can be modelled by a
shape function [102–106]. This shape function is then convolved with the pertur-
bative distribution to produce a non-perturbative distribution. The shape function
depends on a dimensionful relative transverse-momentum scale ε, and it has most
of its support around ε = ΛQCD, the QCD scale. The shape function for the pull
vector also has non-trivial azimuthal angle dependence, because non-perturbative
emissions will be emitted in a preferential direction according to the dipole con-
figuration.

In this section, we will construct a shape function for the pull vector, assuming
that it exclusively has support at ε = ΛQCD. Further, we will assume that the
dominant non-perturbative emission lies exactly at the boundary of the jet on
which we measure the pull vector, and its azimuthal distribution about the jet
axis is uniform. We will see that a non-uniform distribution of the pull vector is
generated by a preferential emission of higher-energy non-perturbative emissions
at small values of the pull angle.

To construct the shape function with these restrictions, we first note that the
scale ε for emission from a dipole with ends defined by the light-like directions pa
and pb is

ε = ΛQCD =
√

(k · pa)(k · pb) , (4.4.24)

where k is the four-momentum of the non-perturbative emission. The pull vec-
tor depends on the momentum transverse to the beam axis, kt, and its value is
constrained by the non-perturbative scale. Expressing the momentum k as

k = kt(cosh y, cosφ, sinφ, sinh y) , (4.4.25)

we can express kt as

kt =
ΛQCD

(cosh(y − ya)− cos(φ− φa))
1/2 (cosh(y − yb)− cos(φ− φb))

1/2
. (4.4.26)

Now, we expand this expression to second order in the jet radius R, fixing the
angle between the non-perturbative emission and the jet axis na to be R:

R2 = (y − ya)2 + (φ− φa)
2 . (4.4.27)
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We find

kt =
2ΛQCD

R

√
ptaptb

mH

(4.4.28)

+ 2ΛQCD
(ptaptb)

3/2

m3
H

[cos(ϕ+ β) sinh∆y + sin(ϕ+ β) sin∆φ] +O(R) .

The relative rapidity ∆y, azimuth ∆φ, and angle β were defined in the beginning
of this section. The azimuthal angle ϕ defines the angle about the jet axis pa with
respect to pb. Finally, we have introduced the transverse momentum of the ends
of the dipole pta and ptb and note that they are constrained by the Higgs mass:

m2
H = 2ptaptb(cosh∆y − cos∆φ) . (4.4.29)

With this construction, the shape function for the non-perturbative kt and
azimuthal angle ϕ is

F (kt, ϕ) =
1

2π
δ

(
kt −

2ΛQCD

R

√
ptaptb

mH

(4.4.30)

−2ΛQCD
(ptaptb)

3/2

m3
H

[cos(ϕ+ β) sinh∆y + sin(ϕ+ β) sin∆φ]

)
.

Given the perturbative pull vector distribution 1
σ
d2σpert

d~t2
, we now want to find

the non-perturbative pull vector distribution 1
σ
d2σnp

d~t2
through convolution with the

shape function. The contribution to pull from the non-perturbative emissions that
we identified in the rest frame of the Higgs boson will be

~tnp(kt, ϕ) =
ktR

2

pta
(cosϕ, sinϕ) . (4.4.31)

It then follows that the non-perturbative distribution of the pull vector is

d2σnp

d~t 2
=

∫ ∞
0

dkt

∫ 2π

0

dϕF (kt, ϕ)
d2σpert

d~t 2

(
~t− ~tnp(kt, ϕ)

)
=

∫ 2π

0

dϕ

2π

d2σpert

d~t 2

(
~t− ~tnp(kt, ϕ)

)
, (4.4.32)

where we leave the dependence on the non-perturbative transverse momentum kt
implicit.

To understand the behavior of the leading non-perturbative corrections, we ex-
pand the above expression in powers of ΛQCD. Furthermore, we note that because
of the particular choice of the reference frame we have used in this section, ϕ = 0
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corresponds to the line joining the two jet centers. Thus, we obtain

d2σnp

dt‖dt⊥
=
d2σpert

dt‖dt⊥
−
∫ 2π

0

dϕ

2π
~tnp(kt, ϕ) · ∇

(
d2σpert

dt‖dt⊥

)
+O

(
Λ2

QCD

m2
H

)
(4.4.33)

=

[
1−

ΛQCDR
2
√
ptap3tb

m3
H

√
∆y2 +∆φ2

(
(∆y sinh∆y +∆φ sin∆φ)

∂

∂t‖

+ (∆y sin∆φ−∆φ sinh∆y)
∂

∂t⊥

)]d2σpert

dt‖dt⊥
.

Because of the derivative dependence in this non-perturbative correction, its effect
can be included to the lowest order in both ΛQCD and αs with a shift of the
appropriate argument of the perturbative cross-section. For the cross-sections of
t‖ and t⊥ individually, we have

dσnp

dt‖
=
dσpert

dt‖

(
t‖ −

ΛQCDR
2
√
ptap3tb

m3
H

√
∆y2 +∆φ2

(∆y sinh∆y +∆φ sin∆φ)

)
+O(Λ2

QCD, αs) ,

(4.4.34)

dσnp

dt⊥
=
dσpert

dt⊥

(
t⊥ −

ΛQCDR
2
√
ptap3tb

m3
H

√
∆y2 +∆φ2

(∆y sin∆φ−∆φ sinh∆y)

)
+O(Λ2

QCD, αs) .

(4.4.35)

The leading non-perturbative correction to the magnitude of the pull vector t can
be found by exploiting its relationship to t‖ and t⊥:

t =
√
t2‖ + t2⊥ . (4.4.36)

Then, we have that the pull magnitude distribution becomes

dσnp

dt
=
dσpert

dt

(
t−

ΛQCDR
2
√
ptap3tb

m3
H

√
sinh2∆y + sin2∆φ

)
+O(Λ2

QCD, αs) .

(4.4.37)

We are now ready to perform some phenomenological studies of our results.
We start by assessing the numerical impact of the different contributions that are
included in our resummed results, namely collinear emissions, final-stare radiation
(FSR), i.e. the O(R2) contribution arising from the final-state dipole, initial-state
radiation (ISR), and non-global logarithms. The results are shown in Fig. 4.8, on
the left for the pull magnitude distribution and on the right for the t‖ distribution
(at NLL this is the same as t⊥). The plots are for a representative phase-space
point: ∆y = 1, ∆φ = π

6
and pta = ptb = mH√

2(cosh∆y−cos∆φ)
' 110 GeV, which

corresponds to a symmetric decay of the Higgs boson. We note that the collinear
approximation describes the two distributions well, down to the values of the ob-
servables ∼ 10−3. Below that, in the Sudakov region, the impact of soft-emissions
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Figure 4.8. Impact of the different contributions to all-order next-to-leading logarithmic resum-
mation of the pull magnitude (left) and the safe projection t‖ (right). Soft gluon contributions at
wide-angle are included as an expansion in the jet radius R through O(R2), while the non-global
logarithmic contribution is accounted for at O(R0). At this accuracy, the distribution of the
orthogonal projection t⊥ is identical to t‖.

at large angle becomes sizeable. However, we note that finite R corrections, which
characterize FSR and ISR are not very large, due to the smallness of the jet radius
parameter R = 0.4, employed in this study. Perhaps surprising is the relatively
large contribution due to non-global logarithms. This last contribution is shown
with an uncertainty band that aims to probe the impact ofO(R2) corrections to the
non-global contribution, which is not included here. The band is constructed by
rescaling the O(R0) coefficient by the factor (1+aR2) and by varying −1 ≤ a ≤ 1.
We note that this uncertainty is not large, due to the relatively small value of the
jet radius employed here.

By comparing the two distributions, t, and t‖, we note that the former exhibits
a Sudakov peak, while the latter appears to develop a plateau for t‖ < 10−4.
This behavior is completely analogous to what is found when looking at QT and
aT/φ∗ distributions [44]. Small values of t or t‖ can be obtained by soft/collinear
emissions or by kinematical cancellations and the behavior of t‖ signals the fact that
kinematical cancellation is the dominant mechanism and prevents the formation
of the Sudakov peak, as opposed to what happens with t. This behavior can be
explained by performing a simple calculation at the double logarithmic accuracy:

dσ

dt‖
=

1

π

∫ ∞
0

dbcos
(
bt‖
)
e−

αsCF
2π

log2b =
1

π

∫ ∞
0

dbe−
αsCF

2π
log2b

[
1 +O

(
t2‖
)]

=

√
2

αsCF

e
π

2αsCF +O
(
t2‖
)

(4.4.38)

which indicates the differential cross section goes to a constant at small t‖.

Next, in Fig. 4.9 we show our final NLL predictions for t (left) and t‖ (right),
with an estimate of the perturbative uncertainty, which we obtain by varying the
renormalization scale in the range pt

2
≤ µR ≤ 2pt. Furthermore, we also show

the NLL calculation supplemented by our estimate of non-perturbative contri-
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butions due to the hadronization process, i.e. Eqs. (4.4.34) and (4.4.37), using
ΛQCD = 1 GeV. We note that because of the R2 coefficient, the size of non-
perturbative corrections is rather small. We expect our simple implementation of
non-perturbative corrections to fail in the peak (plateau) region, where one should
retain more information about the shape function. Therefore, we only plot our
NLL curves with non-perturbative corrections down to t ∼ 2 · 10−3 and t‖ ∼ 10−3,
respectively.
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Figure 4.9. Plots of the NLL predictions for t (left) and t‖ (right), together with an estimate of
the theoretical uncertainties, obtained by varying the renormalisation scale. The plots also show
how the curve is modified once the shift due to non-perturbative corrections is applied.

In Fig. 4.10, we compare our results to those obtained with a general-purpose
Monte Carlo event generator. We generate a single event pp → HZ at

√
s =

13 TeV, with the Higgs decaying in bb̄ and Z leptonically, using MadGraph v2.6.6 [107]
and we then shower this event many times in Pythia v8.240 [89]. FastJet v3.3.2 [48]
is used to find jets and calculate the pull variables. The Monte Carlo results for
t and t‖ are then compared to our NLL predictions, supplemented by the non-
perturbative corrections. We find decent agreement between the Monte Carlo and
our NLL prediction for t and t‖, supplemented by non-perturbative corrections.
We note that the NLL and Monte Carlo predictions depart at the tail of the dis-
tributions. This effect is more noticeable for the pull magnitude and it signals the
fact that the resummation alone is not enough to describe the distribution at large
t and matching to fixed-order is needed.

Finally, we expect additional non-perturbative contributions from the Underly-
ing Event due to multiple parton-parton interactions and pileup, due to multiple
proton-proton interactions per bunch crossing. We have not included these effects
in our studies, but we anticipate that their scaling with the jet radius will be
the same as FSR, which we did calculate in this paper, albeit with a different,
non-perturbative, coefficient.
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Figure 4.10. Comparison of the distributions computed at NLL and supplemented with non-
perturbative corrections, to a numerical simulation obtain with the event generator Pythia v8.240.
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Figure 4.11. Monte-Carlo simulations of the ~t · n̂‖ and ~t · n̂⊥ distributions, left and right
respectively, measured on H → bb̄ events generated with Pythia v8.240. The plots show results
at both parton and hadron level.

4.5 Azimuthal asymmetry

The projections of the pull vector we have discussed in the previous section ex-
hibit nice theoretical properties. In particular, the IRC safety ensures perturbative
calculability, while non-perturbative contributions can be treated as (power) cor-
rections. Moreover, the definitions of the projections resulted in observables that
share many similarities in their all-order behavior with variables that are among
the most-studied in particle physics, such as the transverse momentum of a vector
boson and its projections. However, the presence of an absolute value in Eq.(4.1.6)
leads to a loss of information. For instance, an emission in the rapidity-azimuth
region between the two jets and an emission outside could potentially contribute
to the same value of t⊥ or t‖.
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4.5.1 Definition of the asymmetries
In Fig. 4.11 we perform a Monte-Carlo study of these distributions for the color

singlet decay H → bb̄, using again the event generator Pythia v8.240, with the
same kinematical settings of the previous section. For each distribution, we show
both parton-level and hadron-level results. We would expect the ~t · n̂⊥ to be
roughly symmetric about zero, while the distribution of ~t · n̂‖ should be skewed in
the direction of the color-connected leg of the dipole, here the positive direction.
The plots show that this is indeed the case. In order to emphasize these features
even more, we can build the

A‖ =
t‖
σ

dσ

dt‖

∣∣∣
~t·n̂‖>0

−
t‖
σ

dσ

dt‖

∣∣∣
~t·n̂‖<0

, (4.5.1)

A⊥ =
t⊥
σ

dσ

dt⊥

∣∣∣
~t·n̂⊥>0

− t⊥
σ

dσ

dt⊥

∣∣∣
~t·n̂⊥<0

(4.5.2)

We expect A‖ to be more marked than A⊥ and this is indeed what is found in the
simulations, as shown in Fig. 4.12.

We note that the above asymmetries are still IRC safe and therefore can be
calculated in perturbation theory. Indeed, we could argue that A‖ is essentially the
IRC safe version of the pull angle distribution. The definitions of the asymmetries
in Eq. (4.5.1) make explicit references to the sign of the scalar product which is used
to project the pull vector. This constraint essentially introduces a new boundary
in phase-space which renders the all-order structure of these observables richer.
While we expect that this resummation can still be achieved, in this work we limit
ourselves to analytically evaluate the asymmetries at fixed-order. The lowest-
order contribution to the asymmetries originates from wide-angle soft emissions.
In particular, we find that the contribution denoted by A in Eq. (D.4.9) does not
vanish when we integrated separately over the ~t · n̂i > 0 and ~t · n̂i < 0 regions. We
find

A‖ =
αsCF

π

[
4R

π

cos β sinh∆y + sin β sin∆φ

cos∆φ− cosh∆y
+O

(
R3
)]

+O
(
α2
s

)
, (4.5.3)

A⊥ =
αsCF

π

[
4R

π

cos β sin∆φ− sin β sinh∆y

cos∆φ− cosh∆y
+O

(
R3
)]

+O
(
α2
s

)
. (4.5.4)

Interestingly, the asymmetries are sensitive to odd powers of the jet radius, in the
small-R expansion. This comes about because of the restrictions on the angular
integrations imposed by the ~t · n̂i > 0 and ~t · n̂i < 0 constraints. We also point
out that these asymmetries essentially depend on soft radiation, while collinear
contributions cancel out. Soft radiation exhibit strong sensitivity to the pattern
of color correlations and therefore these observables can provide a valuable testing
ground for Monte Carlo parton showers that attempt to go beyond the large-Nc

limit, e.g. [116, 117].
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Figure 4.12. Monte-Carlo simulations of the A‖ and A⊥ distributions, left and right respectively,
measured on H → bb̄ events generated with Pythia v8.240. The plots show results at both parton
and hadron level.



5 Conclusion and Outlook

In this thesis, we have presented detailed studies for two important types of
observables that go beyond the traditional borders of pQCD, i.e. non-global and
IRC unsafe observables. In particular, in this thesis, we focused on developing
all-order resummation techniques in perturbative QCD, which extend to regions
where the fixed-order calculation is not sufficient.

With the aim to explain the lack of tools within the traditional techniques,
we start with an overview of the first-principle calculations. First of all, we have
presented a general discussion for the infrared singularities in QCD, in order to
understand the singularities in perturbative QCD and derive the factorization
properties.

In Chapter 2, we discussed different approaches to resummation, where the
enhanced logarithms are accounted for to all orders, either using the RGE evolution
of each kinematically enhanced subprocess that enters the factorization theorem,
or directly identifying factorization and exponentiation properties of QCD matrix
elements. In this thesis, we have mostly followed the second approach, and as an
example, the resummation formalism for threshold and transverse momentum was
derived at NLL accuracy. We then moved to the discussion about the calculation
of jet properties, i.e. jet substructure, for which non-global logarithms arise due
to radiation in the limited phase-space region. Non-global observables are more
subtle to treat to all orders because they receive contributions from correlated soft
emission.

In Chapter 3, we have explored the structure of non-global logarithms, with an
emphasis on the hemisphere jet mass distribution in e+e− collisions. The leading
NGLs can be computed using the strong energy-ordering approximation, for which
the matrix elements are simplified. Moreover, this approximation also led to the
BMS equation that resums the leading contributions in the large Nc limit. While
the BMS equation cannot be solved analytically, we have explored an iterative
approach to the full solution. Moreover, we have built a differential equation
solver with both the traditional numerical method and the novel approach with
artificial neural networks. This NN approach can dramatically speed up needed
theory calculations.
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During most of my doctorate, I have devoted myself to probing the color flow
with jet substructure, where a powerful observable that is able to probe color flow
is jet pull. I have focused on the calculation of the pull vector for color-singlet
dipoles, i.e. the signal process. The most useful feature of the pull vector for
studying color dipoles is the pull angle, which has been measured by both D∅ and
ATLAS experiments. However, unlike the most theoretically studied observables
for jet physics, the pull angle lacks the property of IRC safety, thus cannot be
calculated in fixed-order perturbation theory. In Chapter 4, we have presented the
analytical predictions for pull angle with the help of Sudakov safety. In this con-
text, distribution is rendered finite by including all-orders resummation. We have
also introduced infra-red and collinear safety projections of jet pull and performed
their resummation.

The theoretical understanding of these observables led us to introduce novel
azimuthal asymmetry distributions that measure the radiation pattern by looking
at the difference between the jet pull vector pointing towards and away from
the other jet of interest. In particular, the asymmetry distribution A‖ can be
considered the IRC version of the pull angle distribution. As expected, these
asymmetries essentially depend on soft radiation. Due to their sensitivity to wide-
angle soft radiation, these asymmetries could play an important role in assessing
sub-leading color correlations.

The definition of asymmetries essentially introduces a new boundary in phase-
space which renders the all-order structure of these observables richer. As we
mentioned above, the pull asymmetry is sensitive to wide-angle soft radiation,
where the leading non-trivial contribution starts from NLL accuracy, thus the
NGLs need to be resummed to provide accurate predictions.

Regarding the future research projects, although we could, in general, perform
the iterative approach to resum the NGLs, an interesting challenge is the inclusion
of finite Nc effects, which is highly nontrivial even at the leading logarithmic level.
Therefore, a novel approach for the resummation with full color is important,
applying this method to study the effect of color correlations in observables like
the pull asymmetry would be the first step in this work. Below, we outline our
plans for future work, which could be split into two separate paths.

5.1 Soft Radiation Beyond Leading color
The asymmetric behavior we have observed is related to the nontrivial depen-

dence of the radiation pattern as a function of the azimuth. Since collinear radi-
ation gives symmetric contributions, this effect is driven by soft radiation. Thus,
we could define the asymmetry cross-section as

d2σasym

d~t
≡ d2σ

d~t
−
〈
d2σ

d~t

〉
av.

=
d2σ

d~t
− 1

2π

dσ

tdt
(5.1.1)
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where we have subtracted the azimuthal angle averaged terms, and this distribu-
tion should be equivalent as a two-dimensional version ofA‖ andA⊥, as introduced
in Sec. 4.5.1, the density plot for the fixed-order calculation is shown in Fig. 5.1.

Currently, the global part of pull asymmetry has been resummed up to NLL ac-
curacy, for higher logarithm accuracy the two-loop soft function is needed, similar
to the calculation of hemisphere soft function [63], we leave this study for future
work. Moreover, because of the new boundary, the NGLs must be resumed. This
could be performed by re-derive and solve the BMS equation for the asymmetry.
However, the BMS equation only includes leading color accuracy. For the evo-
lution equation with the sub-leading color effects, the full solution is still under
development.

Therefore, we would like to develop a novel approach for the resummation with
sub-leading color, unlike the leading color approximation, which one can view
each event as a collection of independent color dipoles. However, including the
sub-leading color corrections is highly nontrivial, since one needs to keep track of
the rapidly growing number of color configurations from higher-dimensional color
representations. A better understanding of color flow in higher-dimensional color
representation could also help the experimental measurement of Higgs and probe
new physics.

For the next project, the ultimate goal is to perform the resummation of non-
global observables with the full color and implement it into a numerical code that
can be used for phenomenology, which the Sherpa resummation plugin [118] offers
a natural framework. In particular, we would like to apply this method to study
pull asymmetry. Furthermore, to obtain a reliable description in the whole range,
matching the resumed result with the fixed-order result is needed, this could be
obtained from a program like SoftSERVE [119] or Comix [120] included in Sherpa.
The matched prediction (NNLL+NLO) can be compared to state-of-the-art Monte
Carlo event generators such as Sherpa, which achieves high-theoretical accuracy
exploiting multi-jet merging at NLO.

As a first step, we want to check if the pull asymmetry is sensitive to soft
radiation, this can be done by a Monte-Carlo study of the asymmetry distributions
for e+e− → three jets events at parton level, where the pull is measured on pairs of
jets. Moreover, It will be interesting to investigate the sub-leading color effect with
the recently introduced numerical resummation at sub-leading color in Ref. [121].

Furthermore, the jet pull is additive and recoil-free at leading power, because
of the quadratic dependence on Eq. (4.1.3). Therefore, It would be interesting
to study observables with a generalized |~ri|α dependence, and employing different
recombination schemes in the jet algorithm, such as winner-take-all [122], in order
to maintain the recoil-free property. And in soft-collinear limit, the generalized
pull magnitude is equivalent to angularities, defined in Eq. (4.2.4).
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Figure 5.1. Joint distribution of ~t · n̂‖ and ~t · n̂⊥ and the joint asymmetry distribution, left and
right respectively

5.2 Solver of RG-evolution framework
Besides the parton shower approach, we are also interested to continue devel-

oping the neural network method to include the finite Nc effects to non-global ob-
servables. On the other hand, the general resummation process can be described
as introducing non-local correlation operators and exploits their RG evolution.
In particular, the factorization theorem, i.e., the convolution of the soft and jet
functions, can be simplified into a product form in Laplace space as

σ = H · J · J̄ · S . (5.2.1)

Computations based on this structure have been used to resum large logarithm
enhancements for many observables. More generally, the logarithms of global, in-
frared, and collinear safe observables can be resummed by solving the RG-evolution
equation

∂

∂logµ
F = γF , (5.2.2)

where F represents part of the factorized cross-section in Lapalce space. Thus
we would like to extend our neural network method to a general solver for the
RG-evolution framework, and then apply it to develop a general method for re-
summation. For example, we could extract the anomalous dimensions with the
Integration by Parts (IBP) based differential equations [123].

Moreover, the neural network method could apply to a handful of integro-
differential evolution equations. For example, the integro-differential equation of
DGLAP type can be written as

u
d

du
G (x, u) =

α (u)

2π

∫ 1

x

dy

y
G (y, u)P

(
x

y

)
, (5.2.3)
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where the function P (x) is the splitting function. The standard method is to take
Mellin N-moment to both side

u
d

du

∫ 1

0

dxxN−1G (x, u) =
α (u)

2π
γ (N,α (u))M [G (y, u) , y] (N) , (5.2.4)

where the anomalous dimension γ (N,α (u)) is defined by
∫ 1

0
dxxN−1P (x), and

M [G (x, u) , x] (N) is the Mellin moment of G (x, u), and the full solution can be
obtained by the inverse Mellin transformation. On the other hand, with the help
of neural network, we could solve it directly by convert it to n coupled first-order
differential equations.

Given the formal similarity between BMS and BK equation, therefore, besides
applying the tricks that we have learned from BK equation and its lineariza-
tion (BFKL equation) to solve the BMS equation, exploring the BMS-BK du-
ality is also interesting. Moreover, the BK equation has a finite Nc generalization,
which is called as Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner
(JIMWLK) equation [124,125], this could give us some hints for derive the evolu-
tion equation for NGLs at finite Nc [126].

Furthermore, in Ref. [127, 128] the relation between BFKL and DGLAP equa-
tion were explored. Moreover, in N = 4 supersymmetric Yang-Mills theory, due
to the vanishing β function, the structure of the BFKL and DGLAP equations is
simplified, and the anomalous dimensions of DGLAP splitting functions at small
x limit can be obtained from the BFKL equation [129]. Therefore, applying our
neural network method to exploring new approach for duality relations between
sets of QCD evolution equations is also interesting.

As a first example, we can apply our method to a toy model of unintegrated
gluon distribution in the small x limit with fixed-coupling constant, which we leave
only leading term in the splitting function as

Pgg (z, α) = 2z, (5.2.5)

in this case, the anomalous dimension is γ (N,α) = 2
N+1

, and we can obtain the
analytical result as a Bessel function by inverse Mellin transformation as [130,131]

G (x, u) = xI0

(√
α

π
logulog

1

x

)
. (5.2.6)

Recently the BK equation, have been calculated beyond leading order with
collinear improvement [132]. thus, it is possible to extend the method, which we
have developed so far, to apply to BMS/BK equation with full NLO accuracy.





A Basics of QFT

We collect here some well known results in QFT that are used throughout the
thesis

A.1 S-matrix and LSZ reduction formula
In quantum theory, the scattering matrix (S-matrix) describe the scattering

process which can be viewed as a transition from an initial state |i〉 to a final
state |f〉. More formally, we could define the S-matrix as a scattering operator S
connecting the particle states in Hilbert space as 〈i|S |f〉. Moreover the probability
of scattering is given by |〈i|S |f〉|2. Furthermore, the trivial part, i.e. process with
no scattering occurs, can be separated by rewriting the S-matrix as

S = 1+ iT (A.1.1)

LSZ theorem
To obtain the S-matrix elements, i.e. scattering amplitudes, one must calcu-

late the corresponding vertex function and multiply it by the field renormalization
constants Z1/2

i for each external line i, this process is called as Lehmann- Symanzik-
Zimmermann (LSZ) reduction formula, details of its derivation can be found in
Ref. [13]. It connects the S-matrix to the time-ordered correlation functions, i.e.,
vacuum expectation values of time-ordered products of field operators, of the in-
teracting quantum theory. For scalar particle, the LSZ reduction can be written
as

〈f |i〉 = in+n′
∫
d4x1e

ik1x1
(
−∂21 +m2

)
· · · d4x1′eik1′x1′

(
−∂21′ +m2

)
· · ·

× 〈0|Tφ (x1) · · ·φ (x1′) · · · |0〉 . (A.1.2)

Ward identities in QED
The scattering amplitude M for a process that includes an external photon with

four-momentum kµ as
M = εµMµ (A.1.3)
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Then the Ward identity reads: kµMµ = 0. In order to derive this identity, we
begin by recalling the LSZ formula for the massive vectorial particle in the initial
or final state

〈f |i〉 = iεµ
∫
d4x1e

−ik·x (−∂2) · · · 〈0|TAµ (x) · · · |0〉 , (A.1.4)

and the classical equation of motion for Aµ in spinor electrodynamics is

− Z3∂
2Aµ = Z1jµ, (A.1.5)

where jµ is the electromagnetic current, therefore we have

〈f |i〉 = iεµZ−13 Z1

∫
d4x1e

−ik·x · · · [〈0|Tjµ (x) · · · |0〉+ contact terms] , (A.1.6)

where the contact terms arise due to the classical equation of motion hold inside
quantum correlation functions only up to contact terms, which doesn’t generate
singularities in the k2s. So they do not contribute to the S-matrix.

Now let us try replacing εµ with kµ, where we can write the factor of ikµ as
−∂µ acting on the e−ikx, and then we can integrate by parts to get −∂µ acting
on the correlation function. Then, we have ∂µ 〈0|Tjµ (x) · · · |0〉 on the right-hand
side. Thus, we have the result

∂µ 〈0|Tjµ (x) · · · |0〉 = contact terms, (A.1.7)

where in the above equation, we have used the Noether current as the exact sym-
metry obeys ∂µjµ = 0. This is the Ward (or Ward–Yakahashi) identity. And
again, the contact terms do not have the right singularities to contribute to 〈f |i〉.
Therefore, 〈f |i〉 vanishes if we replace an external photon’s polarization vector εµ
with its four-momentum kµ

A.2 Recursion relation for the phase space
The two-body phase space integral is the basis of computing the higher body

phase space formula. We start by calculating it in the rest frame for the two-body
system, as P = p1 + p2 = (

√
s, 0, 0, 0). Thus, we have

dΦ2 =
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(P − p1 − p2) (A.2.1)

=
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(3)(p1 − p2)δ(
√
s− E1 − E2)

=
p2dpdcosθdφ

(2π)32
√
m2

1 + p2
1

2
√
m2

2 + p2
(2π)δ(

√
s−

√
m2

1 + p2 −
√
m2

2 + p2).

We can solve the delta function as

δ(
√
s−

√
m2

1 + p2 −
√
m2

2 + p2) =
δ(p−

√
sβ̄/2)

p/E1 + p/E2

, (A.2.2)
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with

β̄ =

√
1− 2 (m1 +m2)

2

s
+

(m1 −m2)
2

s
. (A.2.3)

Therefore, we can write the phase space integral as

dΦ2 =
dcosθdφ

(2π)3
p2

2E12E2

2π

p/E1 + p/E2

|
p=
√
sβ̄/2,Ei=

√
m2

i+p2

=
dcosθdφ

(2π)2
p

4(E1 + E2)
|
p=
√
sβ̄/2,Ei=

√
m2

i+p2

=
β̄

8π

dcosθ

2

dφ

2π
, (A.2.4)

It is worth point out that, for the special case, when two masses are equal m1 =
m2 = m. Then we have

β̄ =

√
1− m2

E2
, (A.2.5)

which is nothing but β = v/c.

Three-Body Phase Space
It is useful to decompose multi-body phase space integral into a product of

two-body phase space integrals. As an example, we could decompose a three-body
phase space into a product of two two-body phase space integrals, we exploit the
following identity

1 =
ds23
2π

2πδ(s23 − k223) ·
d4k23
(2π)4

(2π)4δ(4)(k23 − k2 − k3)

=
ds23
2π

d3k23
(2π)3

(2π)4δ(4)(k23 − k2 − k3), (A.2.6)

where s23 is the mass square of the particle whose four-momentum is kµ23. Then
we have

dΦ3 =
3∏

i=1

d3ki
(2π)32Ei

(2π)4δ(4)(q − k1 − k2 − k3) (A.2.7)

=
3∏

i=1

d3ki
(2π)32Ei

(2π)4δ(4)(q − k1 − k2 − k3) ·
ds23
2π

d3k23
(2π)3

(2π)4δ(4)(k23 − k2 − k3)

=
ds23
2π

dΦ2(k1, k23)dΦ2(k2, k3),

where the 2-body phase space is

dΦ2(k2, k3) =
β̄23(

m2
2

s23
,
m2

3

s23
)

8π

dcosθ23
2

dφ23

2π
, (A.2.8)

dΦ2(k1, k23) =
β̄1(

m2
1

s
, s23

s
)

8π

dcosθ1
2

dφ1

2π
. (A.2.9)
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Recursion Relation for the Phase Space
The above result can be extended to n-body kinematics, the result read as

dΦn(P ; p1, ..., pn) =
dm2

n−1.n

2π
dΦn−1(P ; p1, ..., pn−1,n)dΦ2(pn−1,n; pn−1, pn).

(A.2.10)

A.3 Techniques for loop calculations
In this appendix we collect a few tools that is useful for evaluating multi-loop

calculations.

Feynman Parametrization
Feynman Parametrization is a technique to rewrite the denominators so that

one could evaluate the integral more easily. The idea is to introduce auxiliary
parameters to make the denominator simpler, for example:

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
. (A.3.1)

This can also generalized to N denominators as

1

A1 · · ·An

= (n− 1)!

∫ 1

0

dx1 · · ·
∫ 1

0

dxn
δ (1−

∑n
i xi)

[
∑n

i xiAi]
n , (A.3.2)

Useful Integrals
Here, we also collect some useful Integrals over loop momenta that performed

in d dimensions:∫
ddk

(2π)d
(−k2)r

[−k2 + C − iε]m
=
i(4π)ε

16π2
[C − iε]2+r−m−εΓ(r + d/2)

Γ(d/2)

Γ(m− r − 2 + ε)

Γ(m)
.

(A.3.3)

Loop Integral ∫
ddk

(2π)d
1

[k2 −∆]3
= −iΓ(1 + ε)

2(4π)d/2
∆−1−ε,∫

ddk

(2π)d
k2

[k2 −∆]3
= i

d

4

Γ(1 + ε)

ε

∆−1−ε

(4π)d/2
. (A.3.4)

A.4 The large N limit
For classes of gauge theories, whose gauge group can be written as N × N

square matrices, for example, the SU(N) or SO(N) group. In QCD, the large
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N approximation is widely used, i.e. approximating QCD with N → ∞. In
this approximation, one can view each event as a collection of independent color
dipoles.

In this section, we review the basic idea of the large N limit by deriving the
double-line counting rule for largeN QCD [133]. We start by considering extending
QCD to N colors and Nf flavors. Thus the quark fields are represented by the
N-dimensional vectors, and the gauge fields are represented by N × N traceless
matrices ta, Aµ = taAa

µ, with index in the adjoint representation of SU(N), and
the covariant derivative is

Dµ = ∂µ + i
g√
N
Aµ. (A.4.1)

The gauge coupling constant is replaced by g → g√
N

, which is necessary to keep
the theory non-trivial at the large N limit.

One way to understand the scaling of the coupling constant is from the β func-
tion

µ
d

dµ
αs (µ) = −β0

α2
s

2π
+O

(
α3
s

)
, (A.4.2)

with
β0 =

11

3
N − 2

3
Nf . (A.4.3)

Thus, replacing g by g/
√
N gives

µ
d

dµ
αs (µ) = −

(
11

3
− 2

3

Nf

N

)
α2
s

2π
+O

(
α3
s

)
, (A.4.4)

now the β function has a well-defined limit as N →∞.

For the N counting rules for QCD, one needs to count the powers of N in the
Feynman diagram. The quark propagator is〈

ψa (x) ψ̄b (x)
〉
= δabS (x− y), (A.4.5)

which is represented diagrammatically by a single line, and the color at the begin-
ning and the end of the line s the same, due to δab. The gluon propagator can be
written as 〈

Aa
µb (x)A

c
µb (y)

〉
= Dµν (x− y)

(
1

2
δadδ

c
b −

1

2N
δab δ

c
d

)
, (A.4.6)

where Aa
µb (x) = AA

µ

(
TA
)a
b

, with a and b are indices in the N and N̄ representa-
tions. The gluon propagator can then be represented using ’t Hooft’s double line
notation, shown in Fig. A.1
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Figure A.1. ’t Hooft’s double line notation diagrams, figure taken from [A. Manohar, hep-
ph/9802419]



B Basics of QCD

B.1 Lagrangian and Feynman rules of QCD
In this section, we summarize the Feynman rules for vertices and propagators

in QCD. To begin with, one needs to gauge fix the gauge part of the Lagrangian
in order to derive the Feynman rules, for example, the gluon propagator can be
extracted using the Faddeev-Popov procedure. For any non-abelian gauge theory,
a problem arises which has to be done precisely for the gauge invariance, and it
becomes convenient to introduce Faddeev-Popov ghosts explicitly, and possibly to
encode the gauge symmetry in a BRST formulation.

With all the ingredients mentioned above, the full Lagrangian becomes:

L = LQCD + Lgauge−fixing + Lghost, (B.1.1)

for simplicity we choose the Lorenz gauge, then the gauge fixing and Faddeev-
Popov-ghost terms are defined as

Lgauge−fixing = −
1

2λ

(
ta∂

µAa
µ

)2
, (B.1.2)

Lghost = η̄a∂µ
(
δab∂µ − gsfabcAc

µ

)
ηb, (B.1.3)

where λ is a arbitary gauge parameter, η is a complex scalar field in the adjoint
representation of SUNc group and the parentheses in Eq.(B.1.3) can be viewed as
a covariant derivative. The gluon propagator in the Lorenz gauge is given by

∆ab
µν (p) =

iδab

p2

(
−gµν + (1− λ) pµpν

p2

)
, (B.1.4)

for λ = 1, the expression of Eq.(B.1.4) is simplified, this gauge is called Feynman
Gauge. Now, we are ready to present the QCD Feynman rules, and for simplicity,
we write them in Feynman Gauge. Feynman Rules are summarized below:
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Quark propagator:

p =
i

�p−m+ iε
(B.1.5)

Gluon propagator:

p
µ, a ν, b =

−igµνδab

p2 + iε
(B.1.6)

Ghost propagator:

p
a b =

iδab

p2 + iε
(B.1.7)

Quark-gluon vertex:

ρ = −i gs ta γρ (B.1.8)

Ghost-gluon vertex:

ρ, c, k

µ, a, p1

ν, b, p2

= gs f
abc kρ (B.1.9)

3-gluon vertex:

µ, a, p1

ν, b, p2

ρ, c, k = − gs fabc [gµν(p1 − p2)ρ (B.1.10)
+ gνρ(p2 − k)µ + gρµ(k − p1)ν ]
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4-gluon vertex:

µ, b

ν, a

σ, d

ρ, c

= − ig2s [f eadf ebc(gµνgσρ − gµρgνσ)+

+ f eacf ebd(gµνgσρ − gµσgνρ)+
+ f eabf ecd(gµσgνρ − gµρgνσ)]

(B.1.11)

B.2 Running coupling

Coefficients of Beta function

The coefficients of the beta function, Eq.(1.1.3) up to four-loop in MS scheme
are given by [134–136]

β0 =
11

3
CA −

4

3
TFnf , (B.2.1)

β1 =
34

3
C2

A −
(
20

3
CA + 4CF

)
TFnf , (B.2.2)

β2 =
2857

54
C3

A + 2

(
C2

F −
205

18
CFCA −

1415

54
C2

A

)
TFnf + 4

(
11

9
CF +

79

54
CA

)
T 2
Fn

2
f ,

(B.2.3)
β3 = 4826.16 (NC = 3, nf = 5) . (B.2.4)

Accuracy up to N3LL accuracy
Now let us proceed to evaluate Eq.(1.1.2) explicitly at finite orders of accuracy

up to N3LL accuracy

log
µ

µF

= −2π

β0

∫ αs(µ)

αs(µF )

dα

α2

1

1 + α
4π

β1

β0
+
(

α
4π

)2 β2

β0
+
(

α
4π

)3 β3

β0

(B.2.5)

= −2π

β0

∫ αs(µ)

αs(µF )

dα

α2

[
1− α

4π

β1
β0

+
( α
4π

)2(β2
1

β2
0

− β2
β0

)
−
( α
4π

)3(β3
1

β3
0

− 2β1β2
β2
0

+
β3
β0

)]
,

where we will use color codes to track terms of LL, NLL NNLL and N3LL accuracy.
The running coupling must itself have a perturbative expansion in αs(µF ), at LL,
we have

1

αs (µ)
− 1

αs (µF )
=

X − 1

αs (µF )
=
β0
2π
log

µ

µF

. (B.2.6)
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Thus, at higher accuracy up to N3LL we have the expansion

αs (µR)

αs (µ)
= X +

αs (µR)

4π
X1 +

(
αs (µR)

4π

)2

X2 +

(
αs (µR)

4π

)3

X3 + · · · (B.2.7)

which plugged back into Eq.(B.2.5), we could obtain the coefficients of the running
coupling:

X1 =
β1
β0
logX, (B.2.8)

X2 =
β2
β0

(
1− 1

X

)
+
β2
1

β2
0

(
logX

X
+

1

X
− 1

)
, (B.2.9)

X3 =
1

X2

[
β3
2β0

(
X2 − 1

)
+
β1β2
β2
0

(
X + logX −X2

)
=

β3
1

2β3
0

((
(1−X)2 − log2X

))]
. (B.2.10)

B.3 NLO real corrections for the cross-section
e+e− →

In this section, we collect the materials for calculating the next-to-leading order
(NLO) real correction for the electromagnetic vertex, shown in Fig. 1.4b. The
matrix element of the real contribution is proportional to∑

Spin

|M3|2 ∼
s12
s23

+
s23
s13

+
2s12s123
s13s23

, (B.3.1)

where sij = (pi + pj)
2 sijk = (pi + pj + pk)

2, we have labeled the index of the final
state quark and anti-quark as 1 and 2, whereas the gluon was labeled as 3. And
the sum in the fo front indicates the sum over the spin of final state particle and
the average over the initial once. Therefore, amplitude is singular in the limits of
s13 → 0 and s23 → 0.

We can further simplify the above equation by wewriting it in terms of energy
fractions, i.e., xi = 2ki · Q/Q2, where Q is the center-of-mass energy, defined by
Q = k1 + k2 + k3. Thus the matrix element becomes

∑
Spin

|M3|2 ∼
x21 + x22

(1− x1) (1− x2)
=

1 + (1− x3)2

x3

(
1

1− x1
+

1

1− x2

)
− 2, (B.3.2)

where the term contain the soft singularity and correspond to the splitting kernel
pg←q (x) =

1+(1−x)2
x

, which describes the probability of collinear splitting as intro-
duced in Sec. 1.3. Therefore the first two term of Eq. B.3.2 indicate two possible
collinear behavior.
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Now, we could evaluate the phase-space integral with the dimensional regular-
ization, and the singularities appear in terms of the ε pole as

σ
(1)
qq̄ = σ0

CF

Γ (1− ε)

(
4πµ2

s

)ε(
− 2

ε2
− 3

ε
− 8 +O (ε)

)
(B.3.3)

B.4 Quark self-energy diagram
In this section, we calculate the quark self-energy diagram −iΣ (q), shown in

the last two diagrams in Fig. 1.4a. For massless quarks, it is given in the Feynman
gauge as

− iΣ (q) = −2CFµ
2εg2s (1− ε)

∫
ddg

(2π)d
�g + �q

(g2 + 2q · g)
, (B.4.1)

where q is the external, on-shell momentum. The above integral can be re-written
using the results shown in App. A.3:∫

ddg

(2π)d
�g + �q

(g2 + 2q · g)
=

∫
ddg

(2π)d

∫ 1

0

dα �g + �q

[α (g2 + 2q · g) + (1− α) g2]2

=

∫ 1

0

dα (1− α) �q
∫

ddk

(2π)d
1

k4

=
i�q

2

Ωd

(2π)d

∫ ∞
0

dk̃E k̃
d−5
E . (B.4.2)

Here, we have re-written the denominator by using the Feynman parameter, and
the integration variable was changed to k = g + αq. Moreover, the term that
proportional to ��k was discarded since it is antisymmetric thus must vanish upon
integration. And finally, the k-integral was rotated to Euclidean space.

The above result reveals that is has an infrared divergence due to the contribu-
tions as k̃E → 0 as d ≤ 4, and an ultraviolet divergence due to the contributions
as k̃E →∞ for d ≥ 4. Therefore, this integral vanish as∫ ∞

0

dk̃E k̃
d−5
E =

∫ Λ

0

dk̃E k̃
d−5
E +

∫ ∞
Λ

dk̃E k̃
d−5
E =

Λ−2ε

−2ε
− Λ−2ε

′

−2ε′
, (B.4.3)

where we have split the integral with an arbitrary energy scale Λ. Therefore, the
infrared and ultraviolet divergence cancel with each other, thus the self-energy
diagrams don’t contribute, as guaranteed by the LSZ reduction theorem.

B.5 PDF renormalization
In this section, we summarize the basic process for the PDF renormalization.

To begin with, we define the bare partonic cross-section dσ

dσij(s) =

∫
dz1dz2Γik(z1)dσ̄kl(z1z2s)Γlj(z2). (B.5.1)



138 Basics of QCD

Where dσ̄ is the renormalized(finite) partonic cross section and Γik is the transi-
tion functions. Next, for calculation of the the renormalized hadronic cross section.
Define the renormalized(finite) PDF f̄ :

f̄(η) =

∫ 1

0

∫ 1

0

dxdzf(x)Γ(z)δ(η − xz)

=

∫ 1

η

dz

z
f(
η

z
)Γ(z) ≡ f(η)⊗ Γ(η). (B.5.2)

Now for the infrared safe hadronic cross section

dσH
AB(s) =

∫
dη1dη2f̄kA(η1)dσ̄kl(η1η2s)f̄lB(η2), (B.5.3)

where η1, η2 ∈ [0, 1] is defined by η1 = x1z1 and η2 = x2z2. Then connection of
renormalized and non-renormalized hadronic cross section is:

dσH
AB(s) =

∫
dx1dx2dz1dz2fiA(x1)Γik(z1)dσ̄kl(z1z2s)Γjl(z2)fjB(x2)

=

∫
dx1dx2fiA(x1)dσij(s)fjB(x2), (B.5.4)

which is the hadronic cross-section defined by the hard scattering cross-section
with the PDF, and only contains unrenormalized things.



C Transforms and Special
Functions

In this appendix, we collect useful results for Laplace/Mellin transformations
and special functions that have used throughout the thesis

C.1 Laplace and Mellin transforms

Laplace transforms
The Laplace transform of a function f(t) is defined by

f̃ (s) =

∫ ∞
0

dte−stf (t) . (C.1.1)

Then the inverse is defined as:

f (t) =
1

2πi

∫ c+i∞

c−i∞
dsestf̃ (s) , (C.1.2)

which can be proofed as

1

2πi

∫ c+i∞

c−i∞
dsestf̃ (s) =

∫ ′∞

0

dt′f (t′)
1

2πi

∫ c+i∞

c−i∞
dses(t−t

′) (C.1.3)

=

{
g (t) t ≥ 0

0 g < 0
.

Mellin transform
The Mellin transform is a special case of Laplace transform, when the function

f(x) is defined in the range 0 < x < 1, we can take the Laplace transform by
setting x = e−t. Thus we have

f̃ (N) ≡M [f ] =

∫ 1

0

dxxN−1f (x) , (C.1.4)
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which is called Mellin transform, and according to Eq.(C.1.2), the inverse transform
can be written as

f (x) =
1

2πi

∫ N0+i∞

N0−i∞
dNx−N f̃ (N) . (C.1.5)

C.2 Fourier transform
The n-dimensional Fourier transform is defined as

f̃
(
~b
)
≡ F [f ] =

1

(2π)n/2

∫
dnxe−i

~b·~xf (~x) , (C.2.1)

and the inverse Fourier transform is given by

f (~x) =
1

(2π)n/2

∫
dnxei

~b·~xf̃
(
~b
)
. (C.2.2)

For the transformation that focus on the radius, i.e.

f (x1, · · · , xn) = f (r) , (C.2.3)

then the Fourier transform can be simplified as

f̃ (b) =
1

(2π)n/2

∫
dnxe−i

~b·~xf (r) = b1−n/2
∫ ∞
0

drrn/2f (r) Jn/2−1 (br) , (C.2.4)

where the function J is the Bessel function. For the case with n = 2, it is called
the Hankel transform:

f (b) =

∫ ∞
0

drrJ0 (br) f (r) . (C.2.5)

C.3 Special functions

Euler Gamma function
The Euler Gamma function is defined as

Γ (z) =

∫ ∞
0

dte−ttz−1, (C.3.1)

which it is easy to verify that Γ (z) satisfy the recursion relation

Γ (z + 1) = zΓ (z) , (C.3.2)

by integrating by parts:

Γ (z + 1) = −e−ttz|∞0 + z

∫ ∞
0

dte−ttz−1

= zΓ (z) . (C.3.3)
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For z = n is integer, the above equation is factorial, thus we have

Γ (n+ 1) = n!. (C.3.4)

Moreover, for Gamma function computed in all half-integers can be obtained using
subsequently the recursion relation of Eq.(C.3.2), for example:

Γ

(
1

2

)
=
√
π. (C.3.5)

Poly-gamma functions
The logarithmic derivative of the Gamma function is usually called Di-gamma

function:
ψ (z) =

d

dz
logΓ (z) . (C.3.6)

And we can obtain the recursion relation by using Eq.(C.3.2)

ψ (z + 1) = ψ (z) +
1

z
, (C.3.7)

for positive integer n, we can obtain

ψ (n+ 1) = ψ (1) + 1 +
1

2
+ · · ·+ 1

n
, (C.3.8)

where the first term −psi (1) is called as the Euler-Mascheroni constant

γE = −ψ (1) = 0.577216 · · · (C.3.9)

For higher-order derivatives, i.e. the Poly-gamma functions, are defined as

ψn (z) =
dn+1

dzn+1
logΓ (z) , (C.3.10)

thus, the Di-gamma function is the lowest order Poly-gamma ψ0. Similarly, we
can obtain the recursion relation

ψn (z + 1) = ψn (z) + (−1)n n! 1

zn+1
. (C.3.11)

Goncharov polylogarithm
In this section, we summarize the definition and properties of Goncharov poly-

logarithm (GPL) that we have used in Sec. 3.3, more details about GPLs can be
found in Ref. [137]. Firstly, recall the definition of the classical polylogarithms:

Lin (x) =
∞∑
k=1

xk

kn
, |z| < 1, (C.3.12)
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and it can also be defined iteratively as

Lin (x) =

∫ x

0

dt

t
Lin−1 (t) , (C.3.13)

with Li1(x) = − log(1−x). These polylogarithms can be written in terms of GPLs
as

Lin

(x
a

)
= −G(0, · · · , 0︸ ︷︷ ︸

n-1

, a;x), (C.3.14)

where the GPLs are defined by

G (b1, · · · bn;x) =
∫ x

0

dt

t− b1
(b2, · · · bn;x) , (C.3.15)

with G (;x) = 1, where b1, · · · bn, x ∈ C.

Here, we also summarize two equalities for index {a, · · · , a} and {0, · · · , 0}:

G(0, · · · , 0︸ ︷︷ ︸
n

;x) =
1

n!
lognx, (C.3.16)

G(a, · · · , a︸ ︷︷ ︸
n

;x) =
1

n!
logn

(
1− x

a

)
. (C.3.17)

Plus distribution
Here, we discuss some properties of the plus distribution function [f (x)]+ de-

fined by ∫ 1

0

[f (x)]+ g (x) dx ≡
∫ 1

0

f (x) [g (x)− g (1)] dx, (C.3.18)

where the function f typically is non-integrable at the point x = 1. For x < 1,
they can be thought as itself. i.e.

[f (x)]+ = f (x) for x < 1. (C.3.19)

Moreover, the plus distribution function defined in Eq.(C.3.18) regularizes func-
tions diverge at x→ 1. Thus the integral with the test function g(x) is finite. In
particular, we could use it to regularize the pole at x = 1 as

lim
ε→0

1

(1− x)1+2ε = −
1

2ε
δ (1− x) + 1

(1− x)+
+O(ε). (C.3.20)

One can easily prove the following identities

[f (x)]+ g (x) = [f (x)]+ g (1) + f (x) (g (x)− g (1)) , (C.3.21)

[f (x) g (x)]+ = [f (x)]+ g (x)−
(∫ 1

0

[f (y)]+ g (y) dy

)
δ (1− x) . (C.3.22)
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D.1 One-Loop Feynman Integrals
In this appendix, we summarize some detailed calculations for the strategy of

regions discussed in Sec. 1.2.4. To begin with, again we consider the simplest
example, namely one-loop vertex corrections in QCD, as discussed in Sec. 1.1.4,
which the vertex correction requires the evaluation of the following Feynman inte-
gral

I = iµ4−d
∫
ddk

1

(k2 + iε)
[
(k + l)2 + iε

] [
(k + p)2 + iε

] , (D.1.1)

where d = 4− 2ε is the dimensional regulator. In the following, we will show the
contribution of each of the non-vanishing regions as discussed in Sec. 1.2.4. To
begin with, we evaluate when the integration momentum is considered hard, thus
one can rewrite and expand the propagator denominators as

(k + l)2 = k2︸︷︷︸
O(1)

+2(k+ · l−︸ ︷︷ ︸
O(λ2)

+ k− · l+︸ ︷︷ ︸
O(1)

+ k⊥ · l⊥︸ ︷︷ ︸
O(λ)

) + l2︸︷︷︸
O
(
λ2

)
= k2 + 2k− · l+ +O (λ) , (D.1.2)

and similarly
(k + p)2 = k2 + 2k+ · p− +O (λ) . (D.1.3)

Thus the contribution of the hard region to the integral I is given by

Ih = iπ−d/2µ4−d
∫
ddk

1

(k2 + iε) (k2 + 2k− · l+ + iε) (k2 + 2k+ · p− + iε)
. (D.1.4)

Using the same results, we can obtain the integrals for the soft and collinear
region as

Ic = iπ−d/2µ4−d
∫
ddk

1

(k2 + iε) (k2 + 2k− · l+ + iε)
(
(k + p)2 + iε

) , (D.1.5)

Is = iπ−d/2µ4−d
∫
ddk

1

(k2 + iε) (2k− · l+ + l2 + iε) (2k+ · p− + p2 + iε)
. (D.1.6)

More about the discussion and result for each component of the integration can
be find in [26].
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D.2 Multiple soft emission in QED
We can generalize the emission of a single gluon to multiple emissions from the

same quark line

dWn '
1

n!

n∏
i=1

dW1 (qi) , (D.2.1)

where the 1/n! is the symmetry factor for identical emissions.

The emission of multiple soft photons to all orders can be described by intro-
ducing a generating functional:

Φreal [u (q)] ≡ 1 +
∞∑
n=1

∫
dWn (q1, · · · , qn)u (q1)× · · · × u (qn) , (D.2.2)

where we introduced the weight function u for each emission, which acts as phase-
space constraint, which we have introduced in Sec. 1.5. Insert Eq.(2.5.2) to
Eq.(D.2.1), we obtain the corrections due to real emission

Φreal [u (q)] = 1 +
∞∑
n=1

1

n!
[dW1 (q)u (q)]

= exp

[∫
dW1u (q)

]
. (D.2.3)

To find the total correction, we also need to consider the virtual contribution.
On Sec. 1.5, we have found that the total soft emission has a vanishing effect.
Thus, we can exploit this result by imposing:

Φ [u (q)] |u=1 = 1. (D.2.4)

This is referred to as the unitarity condition, which allows us to correctly normalize
Φ by

Φ [u (q)] =
Φreal [u (q)]

Φreal [u (q) = 1]
(D.2.5)

= exp {dW1 [u (q)− 1]Θ (Q− w)Θ (wθ −Q0)} .

D.3 Extracting the non-cusp anomalous dimen-
sion for pull calculation

From Eq. (4.3.9), we can determine the anomalous dimension of the soft function
from the expansion in ε. In the MS scheme, the expansion of the angular coefficient
is

g2

41−2επ5/2−εΓ(1/2− ε)
=

4παs

41−2επ5/2−εΓ(1/2− ε)
=
αs

π2

(
1− ε2π

2

4
+ · · ·

)
.

(D.3.1)
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The +-function expansion of the pull magnitude is

t−1−2ε = − 1

2ε
δ(t) +

(
1

t

)
+

− 2ε

(
log t

t

)
+

+ · · · . (D.3.2)

Then, the expansion of Eq. 4.3.9 is:

Sn1n2(t, φp) =
1

π
δ(t) +

αsCF

π2

[
− 1

2ε2
δ(t) +

1

2ε
δ(t)f(φp) +

1

ε

(
1

t

)
+

(D.3.3)

− 1

2ε
δ(t) log

µ2 tan2 R
2

E2
J sin

2 φp

− 1

4
δ(t) log2

µ2 tan2 R
2

E2
J sin

2 φp

− 1

2
δ(t)f(φp) log

µ2 tan2 R
2

E2
J sin

2 φp

+

(
1

t

)
+

log
µ2 tan2 R

2

E2
J sin

2 φp

+

(
1

t

)
+

f(φp)− 2

(
log t

t

)
+

+ δ(t)
π2

8

]
.

Here, f(φp) is shorthand for the long expression with logarithms and arctangents
for φp.

From this expression, we would like to rewrite in from (t, φp) to (tx, ty). This
will enable us to directly transform into b-space in which the cross section can
simply be expressed by a product, rather than convolution, of functions. After
resummation, we can transform back to real space and integrate over t to determine
the distribution of φp. Because of the δ-function structure of this function, it’s first
easiest to Fourier transform directly. Note that

Sn1n2(b, φb) =

∫ ∞
0

dt

∫ π

0

dφp Sn1n2(t, φp)e
−itb cos(φp−φb) , (D.3.4)

where b is the magnitude in b-space and φb is its azimuthal angle.

Now, from the expansion of the soft function, much of these integrals can be
done explicitly. We will only worry about the terms that correspond to 1/ε poles,
as those determine the anomalous dimensions at NLL accuracy, and are all that
is needed for NLL resummation. First, if the t dependence is a δ-function, for an
arbitrary function g(φp) of the pull angle, we find∫ ∞

0

dt

∫ π

0

dφp δ(t)g(φp)e
−itb cos(φp−φb) =

∫ π

0

dφp g(φp) . (D.3.5)

Then, we need to integrate over the azimuthal angle φp. Doing the integral over
the logarithm term, we have∫ π

0

dφp log
µ2 tan2 R

2

E2
J sin

2 φp

= π log
4µ2 tan2 R

2

E2
J

. (D.3.6)

Integrating over the f(φp) term, we find∫ π

0

dφp f(φp) = −π log

(
1−

tan2 R
2

tan2 θ12
2

)
. (D.3.7)
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When the t-dependence is in the +-function, we have∫ ∞
0

dt

∫ π

0

dφp

(
1

t

)
+

e−itb cos(φp−φb) (D.3.8)

= −
∫ π

0

dφp

[
log cos(φp − φb) + log b+ γE + i

π

2

]
.

Then, integrating over φp, we find∫ ∞
0

dt

∫ π

0

dφp

(
1

t

)
+

e−itb cos(φp−φb) = −π
(
γE + i(π − φb) + log

b

2

)
. (D.3.9)

Combining these results, it follows that the b-space anomalous dimension of the
soft function is:

γS =
αsCF

π

[
log

E2
J

µ2b2 tan2 R
2

− log

(
1−

tan2 R
2

tan2 θ12
2

)
− 2γE − 2i(π − φb)

]
.

(D.3.10)

We can do the same thing for the jet function. Expanding Eq. 4.3.12

Jq(t, φp) =
αsCF

2π

(4π)ε

π1/2Γ(1/2− ε)
1

t1+ε

(
µ2

E2
J sin

2 φp

)ε(
−2

ε
− 3

2

)
(D.3.11)

=
αsCF

π2

(
1

ε2
δ(t) +

1

ε
δ(t) log

µ2

4E2
J sin

2 φp

+
1

ε

3

4
δ(t)− 1

ε

(
1

t

)
+

)
.

The anomalous dimension of the jet function is therefore

γJ = 2
αsCF

π

[
log

bµ2

2E2
J

+
3

4
+ γE + i(π − φb)

]
. (D.3.12)

The sum of the anomalous dimensions of the jet and soft functions are:

γJ + γS =
αsCF

π

[
log

µ2

4E2
J tan

2 R
2

+
3

2
− log

(
1−

tan2 R
2

tan2 θ12
2

)]
. (D.3.13)

This is independent of the value of ~b, as it must be. The remaining logarithms are
canceled by the anomalous dimension of the hard function and the out-of-jet soft
function.

D.4 Soft emissions at wide angle
We start by considering the contribution from the initial-state dipole. Indicating

with p1 and p2 the momenta of the incoming quarks and with k the momentum of
the soft gluon, we have

R12 =

∫
dktktdy

dφ

2π

αs(kt)

2π

p1 · p2
p1 · k p2 · k

ΘjetΘpull, (D.4.1)
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where Θjet enforces the gluon to be recombined with one of the final-state partons
(say parton a) to form the jet we are interested in, and Θpull enforces the gluon
contribution to the observable of choice to be above a certain value.

The above integrals can be easily evaluated by introducing polar coordinates in
the rapidity-azimuth plane:

y − ya = r cosα,

φ− φa = r sinα. (D.4.2)

With this choice of variables, the observables become

t = |~t| = zr2,

t‖ = |~t · n̂‖| = zr2| cos(α− β)|,
t⊥ = |~t · n̂⊥| = zr2| sin(α− β)|, (D.4.3)

with z = kt
pta

. The angle β was introduced in Eq. (4.1.5). Note that α − β is just
the pull angle.

Thus, for the pull magnitude, we obtain

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0

drr

∫ 2π

0

dα

2π
Θ(zr2 > t) = R2

∫ 1

t

dz

z

αs(zpta)

2π
+ . . .

(D.4.4)

where the dots indicate subleading contributions. To NLL, the same expression
also holds for t‖ and t⊥:

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0

drr

∫ 2π

0

dα

2π
Θ(zr2| cos(α− β)| > t‖)

= R2

∫ 1

t‖

dz

z

αs(zpta)

2π
+ . . . (D.4.5)

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0

drr

∫ 2π

0

dα

2π
Θ(zr2| sin(α− β)| > t⊥)

= R2

∫ 1

t⊥

dz

z

αs(zpta)

2π
+ . . . (D.4.6)

where again the dots indicate subleading contributions.

Thus far we have calculated the soft wide-angle contribution directly in momen-
tum space. This is in principle sufficient at NLL accuracy that we are working on.
Nevertheless, in order to smoothly combine the soft contribution to the collinear
one previously computed, we find it convenient to perform the whole resummation
in moment (b) space. Therefore to NLL we can write the soft contribution from
the initial-state dipole as

R12 = R2

∫ 1

1/b̄

dz

z

αs(zpta)

2π
. (D.4.7)
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Next, we consider soft-wide angle emissions off the final-state ab dipole. As
in the previous case, we find it convenient to express the phase-space integrals in
polar coordinates. We have

Rab =

∫
dktktdy

dφ

2π

αs(κab)

2π

pa · pb
pa · k pb · k

ΘjetΘpull

=

∫ 1

0

dz

z

∫ R

0

dr

∫ 2π

0

dα

2π

αs(κab)

2π

[
2

r
+A(α, β) + B(α, β)r + . . .

]
Θpull,

(D.4.8)

where the argument of the running coupling κ2ab =
2 pa·k pb·k

pa·pb
is the transverse mo-

mentum of the gluon with respect to the dipole, in the dipole rest frame. We
calculate this contribution as a power expansion in the jet radius R, which corre-
sponds to expanding the integrand in powers of r. The first contribution within
the square brackets is the soft and collinear piece, which we have already accounted
for in Rc. Therefore, we consider

R̃ab =

∫ 1

0

dz

z

∫ R

0

dr

∫ 2π

0

dα

2π

αs(κab)

2π
[A(α, β) + B(α, β)r + . . . ] Θpull. (D.4.9)

The first term above, namely A gives no contribution when we integrate over all
possible angles. It would give rise to an O(R) correction if we impose further
angular restrictions. We will come back to this observation in Section 4.5. The B
term gives rise to a contribution which is identical in all cases. Therefore, at NLL
we have

R̃ab =
R2

4

cosh∆y + cos∆φ

cosh∆y − cos∆φ

∫ 1

1/b̄

dz

z

αs(zpta)

2π
+O(R4). (D.4.10)
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