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Abstract
Object detection is a fundamental ability for robots interacting within an environment. While stunningly effective, state-
of-the-art deep learning methods require huge amounts of labeled images and hours of training which does not favour such
scenarios. This work presents a novel pipeline resulting from integrating (Maiettini et al. in 2017 IEEE-RAS 17th international
conference on humanoid robotics (Humanoids), 2017) and (Maiettini et al. in 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS), 2018), which naturally trains a robot to detect novel objects in few seconds. Moreover,
we report on an extended empirical evaluation of the learning method, justifying that the proposed hybrid architecture is
key in leveraging powerful deep representations while maintaining fast training time of large scale Kernel methods. We
validate our approach on the Pascal VOC benchmark (Everingham et al. in Int J Comput Vis 88(2): 303–338, 2010), and
on a challenging robotic scenario (iCubWorld Transformations (Pasquale et al. in Rob Auton Syst 112:260–281, 2019). We
address real world use-cases and show how to tune the method for different speed/accuracy trades-off. Lastly, we discuss
limitations and directions for future development.

Keywords Computer vision · Robot vision · Object detection · Deep learning · Humanoid robots

1 Introduction

Perception is the first and fundamental task for robots which
are supposed to interact within an environment. While typ-
ically robotic platforms, especially humanoids (Metta et al.
2010), are provided with multiple sensory modalities, latest
results in computer vision, pushed by deep learning advances
(Russakovsky et al. 2015; He et al. 2015, 2017; Redmon and
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Farhadi 2016; Shelhamer et al. 2017), motivate a particular
interest in visual perception systems.

Robots might be asked to accomplish very different tasks
and each of them could require a specific level of cognition
of the environment. In this paper we focus on the problem of
object detection, i.e. the task of localizing the bounding box
around an object and its label. This capability is clearly at the
basis of more sophisticated tasks such as robot navigation,
object grasping and manipulation.

State-of-the-art solutions for this task based on deep learn-
ing perform stunningly well (Redmon and Farhadi 2016;
Dai et al. 2016; He et al. 2017) in computer vision bench-
marks (Everingham et al. 2015; Russakovsky et al. 2015;
Lin et al. 2014). However, their applicability to robotics
comes with difficulties (Sunderhauf et al. 2018). First, the
enormous amount of parameters that typically characterizes
deep learning models makes them generally slow to train
and impressively data hungry.Moreover, training amodel for
object detection comes with a further complication which is
due to the large number of regions per image that may con-
tain the objects of interest. More specifically, these objects
are represented only in very few of such regions while all the
others are treated as negative examples. This leads to a train-
ing set that is large and highly unbalanced. State-of-the-art
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solutions are either based on (i) ad-hoc loss functions (Lin
et al. 2017) or modifications of the standard stochastic gradi-
ent descent iteration (Shrivastava et al. 2016) or on (ii) Hard
Negatives Mining Methods (Girshick et al. 2014), applied to
train the system only on the most difficult negative exam-
ples. Both types of solutions are time consuming, if applied
in canonical ways. In this work we propose a solution which
relies on a fast approximation of the latter state-of-the-art
approach.

While recent research on object detection and segmenta-
tion for robotics mainly focuses on improving robustness in
challenging scenarios, like occlusions in clutter (Zeng et al.
2018; Georgakis et al. 2017; Schwarz et al. 2018; Patten
et al. 2018) we suggest that an online learning pipeline which
can be trained and adapted in few seconds, accounting for
the issues described above, represents a fundamental step
towards any further improvement. With this perspective in
mind, in our previous work (Maiettini et al. 2017) we first
demonstrated that an automatic procedure (Pasquale et al.
2016a, b) to acquire annotated images by interacting with a
robot allows to train detection algorithms (e.g. Faster R-CNN
Ren et al. 2015) with good accuracy. However, in Maiettini
et al. (2017) training was still performed off-line (as in Ren
et al. 2015).

Recently, in Maiettini et al. (2018) we proposed an on-
line learning pipeline that also speeds-up the training. We
exploited generality of features provided by deep CNNs
(Sharif Razavian et al. 2014; Donahue et al. 2014; Jia et al.
2014;Girshick et al. 2014; Pasquale et al. 2019) and designed
our method in two main modules: (i) a per-region feature
extractor, trained once off-line on a certain task, and (ii) a
region classifier which can be trained quickly and on-line on
a different task, the target task. Specifically, for this latter
module we adopt FALKON (Rudi et al. 2017), a recently
proposed kernel-based method for large-scale datasets, and
we leverage on the stochastic sampling of the kernel centers
that it performs. We, then, propose an approximated ver-
sion of the Hard Negative Mining procedure, to efficiently
re-balance the training set.

In this work we present a detailed description of the
pipeline resulting by integrating the two works proposed in
Maiettini et al. (2017, 2018), which allows to naturally train
the robot to detect novel objects. In addition we present an
extended study of the learning method, providing the follow-
ing major contributions:

1. We rigorously benchmark the method on the official
Pascal VOC (Everingham et al. 2010) and achieve state-
of-the-art performance by integrating Resnet101 (He
et al. 2015) as CNN backbone;

2. We test the approach on a challenging robotic dataset,
namely the iCubWorld Transformations (Pasquale
et al. 2019). Within this scenario, we analyze the com-

ponents of the pipeline, providing interesting insights
for each one of them. Specifically, we consider perfor-
mance in terms of accuracy and train time. Our analysis
comprises: (i) the comparison between different fea-
ture extraction modules, investigating various domains
and configurations; (ii) the comparison between various
options for the classifiers, motivating our choice; (iii) the
demonstration of how to tune the main parameters of the
method in order to obtain a speed/accuracy trade-off.

3. In the same scenario we propose some experiments
designed to challenge the pipeline in real world con-
ditions, showing limitations and considering possible
solutions.

The paper is organized as follows: in Sect. 2 we give an
overview of the literature with a deeper insight on how the
main problem in object detection (i.e., the large amount of
background regions in an image) is tackled by state-of-the-
art solutions. Then, in Sect. 3 we describe the proposed on-
line detection pipeline.Weprovide results and considerations
from our extended empirical analysis of the resulting system
in Sects. 4, 5 and 6. Finally in Sects. 7 and 8 we conclude
and draw lines for future work.

2 Related work

In this section we give an overview of the most recent deep
learning based methods for object detection and we analyze
some current research for this field in robotics. While dis-
cussing the state-of-the-art, we illustrate our contribution.

Deep Learning for Object Detection. Approaches to
address the object detection task can be grouped into (i) grid-
based methods like SSD (Single-Shot MultiBox Detector)
(Liu et al. 2015) andYOLO (YouOnly LookOnce) (Redmon
et al. 2016; Redmon and Farhadi 2016) and (ii) region-based
methods [see e.g., Region-CNN (R-CNN) (Girshick et al.
2014) and its optimizations: Fast R-CNN (Girshick 2015),
Faster R-CNN (Ren et al. 2015), Region-FCN (Dai et al.
2016) and Mask R-CNN (He et al. 2017)]. In algorithms
from the first group, for each image, classifiers are applied
over a regular, dense sampling of possible object locations,
scales, and aspect ratios, while in algorithms from the second
group, a previous step of region proposal generation is per-
formed to predict a sparse set of candidate object locations
[see, e.g., Selective Search (Uijlings et al. 2013), EdgeBoxes
(Zitnick and Dollár 2014), DeepMask (Pinheiro et al. 2015,
2016), Region ProposalNetwork (RPN) (Ren et al. 2015)]. In
these region-based approaches, the detection pipeline can be
divided into (i) generation of region candidates, (ii) proposals
encoding into deep features and (iii) classification and refine-
ment. Even though the common trend in recent works is to
integrate the three stages into “monolithic” models, learned
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end-to-end via backpropagation (Dai et al. 2016; He et al.
2017; Ren et al. 2015), another natural approach to address
the task is to consider multi-stage architectures, which allow
to tackle each step of the pipeline separately (Girshick et al.
2014; Girshick 2015).

We propose a detailed empirical evaluation of a pipeline
that exploits the benefits of an RPN for Regions of Interest
prediction (Ren et al. 2015), while relying on a two-stage
training procedure to allow fast model adaptation to new
tasks.

The problem of Negatives Selection. The issue with all
types of approaches is that, in order to predict the locations
of the objects of interest, a huge amount of candidate regions
needs to be visited. Each candidate region is treated as a
positive or negative example, that is used to train classifiers.
Since most candidate regions typically originate from back-
ground areas, the training set associated to object detection
tasks is typically very large and unbalanced. The size of the
training set makes training a computationally intensive task,
while the fact that positive examples are underrepresented
may bias the prediction if not treated properly.

In the literature, different solutions have been proposed to
deal with these issues. In particular, Lin et al. (2017) recently
proposed a novel loss function, called Focal Loss, which
can be adopted to down-weight easy negative examples so
that their contribution to the total loss is rebalanced, in case
their number is large. Such a loss is designed for end-to-
end training of grid-based detectors and has been showed
to improve performance not only for image (2D) inputs, but
also 3D data (Yun et al. 2019)

Solutions for region-based approaches, instead, are based
on the idea of shrinking the set of negative examples by
keeping only the hard ones (i.e., the ones that are difficult
to classify). Early solutions were based on Bootstrapping
(Sung 1996), which is still used in some modern detection
methods, under the name of Hard Negatives Mining (Felzen-
szwalb et al. 2010b; Girshick et al. 2014). This is an iterative
approach that alternates between training the detectionmodel
given a current set of examples, and using that model to
find new hard negatives to add to the bootstrapped training
set. Lately, (Shrivastava et al. 2016) proposed to “embed”
the selection of hard negatives into the Stochastic Gradient
Descent (SGD) method used to train Fast R-CNN (Girshick
2015). This technique, called On-line Hard Example Mining
(OHEM), uses only high-loss region proposals for the SGD
iteration, rather than a heuristically sampled subset.

Finally, works that rely on a “cascade” of detectors (Viola
et al. 2001; Felzenszwalb et al. 2010a) are based on the same
concept of reducing the set of negative regions to be pro-
cessed in an image. These methods, first apply lightweight
classifiers to discard easy background regions, afterwards
they apply increasingly more complex classifiers on regions
that are most likely to contain objects.

These solutions are not designed for on-line learning,
because either they require to iteratively visit all negative
examples in the training set (Girshick et al. 2014), or they
rely on end-to-end backpropagation (Shrivastava et al. 2016).

In this work we analyze a novel approach (Maiettini
et al. 2018) to (i) select hard negatives, by implementing
an approximated speeded-up bootstrapping procedure, and
(ii) account for the imbalance between positive and (hard)
negative regions by relying on a recently proposed scalable
Kernel approach, namely FALKON (Rudi et al. 2017).

Object Detection for Robotics. State-of-the-art research
on object detection for robotics mainly focuses on improving
robustness and precision in particular scenarios like occlu-
sions in clutter (Zeng et al. 2018; Georgakis et al. 2017;
Schwarz et al. 2018; Tobin et al. 2017). This finds one of the
main motivations in the existing challenges, like the Ama-
zon Picking Challenge, 1 where the robots are asked to pick
objects in a cluttered bin.

Another important research field related to Object Detec-
tion in Robotics is regarded as Active Perception (Bajcsy
et al. 2018). In the past years,manyworks havebeenproposed
to improve object detection and recognition performance by
exploiting the robot’s active exploration of the environment
at inference time, in order to refine or gain confidence on the
predictions (Bajcsy et al. 2018; Browatzki et al. 2012).

The aim of this work is, instead, to propose and analyze
a learning pipeline for object detection, targeting a scenario
where a humanoid robot is required to quickly learn novel
objects. To the best of our knowledge this is the first work
focusing on providing a robotic visual system for object
detection trainable in few seconds.

3 On-line object detection pipeline

In the scenario considered for this work, a robot is asked to
learn to detect a set of novel object instances (TARGET-
TASK in the following) during a few seconds of interaction
with a human. To this end, we propose and analyze an
object detection method that can be trained on-line on the
TARGET- TASK, by exploiting some components previ-
ously trained on a different task (FEATURE- TASK in the
following).

In this section we describe the proposed approach. We
give an overview of the pipeline in Sect. 3.1. In Sect. 3.2, we
explain how each component is learned. Finally, in Sect. 3.3
we provide details on the on-line learning method, describ-
ing how the issues of the dataset size and imbalance are
addressed.

1 http://amazonpickingchallenge.org/.
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Fig. 1 Overview of the proposed on-line object detection pipeline.Fea-
ture Extraction module relies on Faster R-CNN architecture to extract
deep features and predict RoIs (Regions of Interest) from each input

image. Detection module performs RoIs classification and refinement,
providing as output the actual detections for the input image. For a
detailed description see Sect. 3

3.1 Overview

The proposed pipeline is composed of two stages (see Fig. 1):
(i) per-region feature extraction (Feature Extraction module)
and (ii) region classification and refinement (Detection mod-
ule).

For the first stage we rely on the architecture of Faster
R-CNN (Ren et al. 2015), which uses the class-agnostic
Region Proposal Network (RPN) to predict a set of candi-
date Regions of Interest (RoIs). Each RoI is then encoded
into a deep feature map by means of the so-called RoI pool-
ing layer (Girshick 2015), which spatially aggregates the
activations of a convolutional feature map within the area
defined by each proposed RoI. Specifically, in this work
we adopt ResNet50 and ResNet101 (He et al. 2015), as
CNN backbones, integrated in Faster R-CNN as explained
in Sect. 3.2.

For the second stage we replace the last two output lay-
ers of Faster R-CNN for class prediction and bounding box
refinement (namely cls and bbox), with our Detection mod-
ule. Specifically, for the classification of the proposed RoIs,
we design a novel method which employs a set of FALKON
binary classifiers; for the bounding box refinement, instead,
we simply rely on the Regularized Least Squares (RLS)
regression approach proposed in Region-CNN (Girshick
et al. 2014).

Note that, in splitting feature extraction and classifica-
tion, we take inspiration from the Region-CNN architecture
originally proposed inGirshick et al. (2014).However, differ-
ently to R-CNN, we fine-tune off-line the weights for feature
extraction and region proposal on one task (the FEATURE-
TASK), while we train the classifiers and the bounding
box regressors on-line on the task at hand (the TARGET-

TASK).More details about this two-stage learning procedure
are provided in Sect. 3.2.

3.2 Learning

Within the scenario previously described, in this work we
propose to learn the two modules of the pipeline separately.
The Feature Extraction module is trained off-line on the
FEATURE- TASK, so that, when the robot is asked to learn
the TARGET- TASK, only the final Detection module must
be trained on-line.

Off-line Stage. The off-line step is performed by training
Faster R-CNN on the FEATURE- TASK, following the 4-
Steps alternating training procedure proposed in Ren et al.
(2015). We refer the reader to Ren et al. (2015) for a detailed
explanation of this architecture and training procedure. As
previously mentioned, we adopt ResNet50 or ResNet101 as
CNN backbone for Faster R-CNN. As suggested in He et al.
(2015), we use layers from conv1 to the last layer of conv4_x
to compute the shared convolutional feature map used by the
RPN, performing RoI pooling before conv5_1. Thereupon,
all layers of conv5_x and up are used to extract per-region
features, so that we extract 1×1×2048 feature vectors from
layer pool5 and use them as input for the classifiers and
bounding boxes regressors. The weights learned during this
off-line stage (specifically the RPN, the convolutional and
fully-connected layers) are then used in the on-line learning
stage to extract region proposals and encode them into deep
features for learning the task at hand (the TARGET- TASK).

On-line Stage. The features provided by the Feature
Extraction module are training examples for FALKON clas-
sifiers and the RLS regressors, for proposals classification
and refinement respectively. For the RLS regressors we used

123



Autonomous Robots (2020) 44:739–757 743

the method of Region-CNN (Girshick et al. 2014), keep-
ing the same learning objective and loss function, while the
novelty of our approach is in the proposals classification.
Specifically, we consider the one-vs-all approach so that a
multi-class problem reduces to a collection of n binary clas-
sifiers (where n is the number of classes). For each class,
we collect the training set by selecting and labeling candi-
date RoIs as either positive examples, i.e., belonging to the
class (we indicate this set as P) or negative ones, i.e., with an
Intersection over Union (IoU) with the ground truth smaller
than 0.3 (we indicate this set as N ). The resulting dataset is
used to train a binary classifier and it is usually large and
strongly unbalanced. E.g., considering a single object detec-
tion task and setting the RPN to produce at most 300 regions
per image, the number of elements in N would be 300 times
larger than the number of elements in P (∼300k negatives
vs ∼1k positives for a dataset of 1k images). In the next sec-
tion, we explain the proposed fast training method, which
accounts for the large size and imbalance of this dataset,
while allowing to learn a model in only a few seconds.

3.3 Fast training of classifiers

Our protocol for training a binary classifier combines the
recently proposed FALKON (Rudi et al. 2017), with an
approximation of the Hard Negatives Mining procedure
adopted in Region-CNN (Girshick et al. 2014) and in Felzen-
szwalb et al. (2010b) (originally proposed in Sung 1996),
which we call Minibootstrap.

Algorithm1Bootstrapping Iteration.Core iteration of pro-
posed Minibootstrap. See “Appendix A” for the complete
procedure.

Input: Ni = {Set of negative examples at the i th iteration}, P = {Set
of all positive examples in the dataset}, Mi−1 = Classifier trained at
previous iteration
Output: Mi = classifier trained at the i th iterations, Nchosen_i = hard
negatives selected after i iterations
1) Select hard negatives from Ni using Mi−1 and add them to the train
set:
N H
i ← SelectHard(Mi−1, Ni )

Di ← P
⋃

Nchosen_i−1
⋃

NH
i

2) Train classifier with the new dataset:
Mi ← TrainClassifier(Di )

3) Prune easy negatives from Di using Mi :
Nchosen_i ← PruneEasy(Mi , Nchosen_i−1

⋃
NH
i )

In this section, we first describe the Minibootstrap pro-
cedure and then give an overview of FALKON, explaining
how the combination of these two ideas allows to achieve
remarkable speedups.

Minibootstrap: Approximated Hard Negatives Mining.
The core idea behind the original Hard Negatives Mining

method (Sung 1996; Felzenszwalb et al. 2010b; Girshick
et al. 2014) is to gradually grow (bootstrap) the set of nega-
tive examples by repeatedly training and testing a classifier
and including in the training set only those samples which
are hard to predict. This idea is implemented with an itera-
tive procedure that visits all images in the training set and,
for each image i , performs the steps showed in Algorithm 1,
where the variable Ni represents the set of all the negative
examples in the i th image. The output of this procedure is a
set of Nchosen_ f inal (hard) negative examples, which, jointly
with the P positives, are used to train the final classifier.

Such an approach is time consuming, as it iterates over all
the images in the training set and processes all regions pro-
posed by the RPN. Therefore, we propose to approximate it
by first considering a random subset of regions proposed by
the RPN from all training images. The selected regions are
then split into a number nB of batches of size BS. Finally, the
hard negatives are selected by iterating over the batches, fol-
lowing the steps in Algorithm 1, where Ni represents the set
of the negatives of the i th batch (the complete Minibootstrap
algorithm is reported in “Appendix A”).

Note that, for the selection of the negatives, the scores
produced by the classifiers, that represent the confidence on
the predictions, are thresholded. Thus, two values need to be
set, one for the selection of the hard negatives and one for the
pruning of the easy ones and they depend on the type of the
classifier chosen. In our evaluation we empirically set them
respectively to −0.7 and −0.9.

As we will show in Sect. 4, the proposed Minibootstrap
is effective as the original Hard Negatives Mining method
and preserves accuracy, while performing the selection over
a subset of the dataset, hence allowingmuch faster train time.

FALKON: Speeding-up Classifier Training while
Rebalancing.As classification algorithm for our approachwe
opted for the recently proposed FALKON (Rudi et al. 2017).
This combines (i) a suitable preconditioning (of the linear
system associated with Kernel methods), with (ii) an itera-
tive solution via conjugate gradient (Saad 2003), and finally
(iii) a Nÿstrom-based sampling (Williams and Seeger 2001;
Smola and Schökopf 2000) for both the preconditioning and
kernel calculation.More specifically, this latter aspect allows
to stochastically sample a subset of M � n training points
as Kernel centers.

FALKON allows to drastically reduce training time of
Kernel-based classifiers, gaining a factor of O(

√
n) with

respect to other Nÿstrom-based approaches and a factor
O(n

√
n) with respect to standard Kernel-based methods.

This notable gain in learning time is fundamental in order
to apply Kernel methods for the considered detection task.
During everyMinibootstrap’s iteration a newmodel is trained
with a dataset of thousands of points and a standard Kernel
based classifier would not allow to accomplish the proce-
dure in the required time. In the experimental section we
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will show that a Kernel based classifier is fundamental to
obtain the best accuracy and that FALKON allows to do it
while maintaining a training time comparable to the ones of
linear classifiers. We refer the reader to Rudi et al. (2017) for
a detailed description of the algorithm. In our pipeline, we
adopt the publicly available FALKON implementation.2

In this work, we propose to modify the stochastic sam-
pling of the M Nÿstrom centers performed when training
FALKON at each iteration of the Minibootstrap, to account
for the positive-negative imbalance of the dataset. In par-
ticular, we take a number of P ′ positives with P ′ =
min

(
P, M

2

)
, while we randomly choose the remaining (M−

P ′) among the Nchosen_i−1
⋃

NH
i negatives obtained at the

i th iteration. This step is fundamental because when P �
(Nchosen_i−1

⋃
NH
i ), randomly sampling the M centers in

P
⋃

Nchosen_i−1
⋃

NH
i might lead, reasonably, to further

reducing the number of positives with respect to the number
of negatives and, in the worst case, discarding all positives
from the sampled Nÿstrom centers.

3.3.1 Hyper-parameters

The main parameters of FALKON are (i) the Kernel param-
eter (where not specified, we use a Gaussian with variance
σ ), (ii) the regularization parameter, λ, and (iii) the number
of Nÿstrom centers, M . The parameters of the Minibootstrap
are (i) the number (nB) and (ii) the size (BS) of the selected
batches.

We cross-validated σ and λ using a standard one-fold
cross-validation strategy, considering as validation set a sub-
set of 20% of the training set. For doing this we define two
different ranges, respectively for σ and λ, and we search
for the best values by considering every possible combina-
tion and performing the Minibootstrap procedure for each
of them. Furthermore, in Sect. 4, we provide experimen-
tal evaluation of the other three parameters characterizing
our approach. Notably, we show how by setting their values,
it is possible to tune the procedure to subsample the train-
ing set more or less extensively, depending on the desired
speed/accuracy trade-off.

4 Results

In this section we first provide details about the setup of the
experiments (Sect. 4.1) and then we present the performance
achieved by the proposed on-line object detection pipeline
on two different benchmarks (Sect. 4.2 and Sect. 4.3).

2 https://github.com/LCSL/FALKON_paper.

4.1 Experimental setup

In our experiments we compare to Faster R-CNN, as base-
line. For a fair comparison, we consider the weights learned
by training Faster R-CNN on the FEATURE- TASK (as in
Sect. 3.2, Off-line Stage) and use them for both (i) the Fea-
ture Extraction module of our pipeline (Fig. 1), and (ii) as
a warm restart for fine-tuning the output layers of Faster R-
CNN on the TARGET- TASK (i.e. we set the learning rate
to 0 for all the layers of the network except the output ones).
We consider ResNet50 and ResNet101 (He et al. 2015) as
different backbones for feature extraction in Faster R-CNN.
We report in “Appendix D” the results of the cross validation
for the number of epochs for the fine-tuning of the base-
lines on the TARGET- TASK. We used those results for our
stopping criterion, that consists in choosing the model at the
epoch achieving the highest mAP on the validation set (we
stopped when no mAP gain was observed).

In the following, we indicate as Fullbootstrap the
procedure of performing as many bootstrapping iterations
(Alg. 1) as the number of training images (namely, the Hard
NegativesMiningmethod of Girshick et al. 2014 and Felzen-
szwalb et al. 2010b). Note that, in this case we consider the
implementation of Girshick et al. (2014) and we re-train the
classifier only when a number of 2000 new negative exam-
ples has been accumulated to the training set. We use instead
Minibootstrap nB × BS to indicate the proposed approxi-
mated bootstrapping procedure, where nB and BS represent
respectively the number and the size of selected batches of
negatives.

We evaluate the method on two very different datasets:
(i) Pascal VOC (Everingham et al. 2010) (Sect. 4.2) and
(ii) iCubWorld Transformations (Pasquale et al. 2019)
(Sect. 4.3) and we report performance, in both cases, in terms
of (i) mAP (mean Average Precision), as defined for Pascal
VOC 2007, and (ii) training time.

All experiments reported in this paper have been per-
formed on a machine equipped with Intel(R) Xeon(R)
E5-2690 v4 CPUs @2.60GHz, and a single NVIDIA(R)
Tesla P100 GPU. Furthermore, we limit the RAM usage of
FALKON to at most 10GB.

4.2 Benchmark on the Pascal VOC

We first evaluate the performance of the proposed method
on the Pascal VOC dataset, a standard benchmark for object
detection.

We consider, for training and validation, the union set of
Pascal VOC 2007 and 2012 trainval sets, gathering ∼16k
images (voc07++12 in the following). We use the avail-
able Pascal VOC 2007 test set, which consists of about ∼5k
images, for testing. We consider Resnet101 as convolutional
backbone for Faster R-CNN.
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Table 1 Benchmark on PASCAL VOC. Models have been trained on
voc07++12 set and tested on PASCAL VOC 2007 test set

mAP (%) Train time

Faster R-CNN (last layers) 73.5 2h 20m

FALKON + Fullbootstrap 75.1 55m

FALKON + Minibootstrap10 × 2000 70.4 1m 40s

Bold values indicate the best value

The aim of this first experiment is to compare our pipeline
with the state-of-the-art on a well-known object detection
benchmark. For this reason, differently from the experiments
on iCubWorld Transformations, here we cannot split
the object categories to be used for the FEATURE- TASK
and the TARGET- TASK, because the TARGET-TASK
addresses the common benchmark of the 20-class catego-
rization task of the official Pascal VOC, which includes all
available categories in the dataset (see, e.g., Ren et al. 2015).
Hence, we use the standard training and test splits (specified
above) both for the FEATURE- TASK and the TARGET-
TASK.

For learning the FEATURE- TASK we set the number of
iterations to 80k when learning the RPN and to 40k when
learning the detection network. As a baseline, we train the
output layers of Faster R-CNN from scratch for 32k iterations
(4 epochs, with batch size 2). In “Appendix D”, we report the
results of the cross validation for the number of epochs of the
fine-tuning of Faster R-CNN’s last layers on the TARGET-
TASK, that we used for our stopping criterion.

We compare: FALKON + Fullbootstrap, which in
this case performs ∼16k bootstrapping iterations, process-
ing a batch of 300 regions for each visited image, against
FALKON + Minibootstrap 10× 2000. In both cases, we
set the number of Nÿstrom centers to 2000 (the influence of
this parameter is investigated in Sect. 5.3.1).

As can be observed from Table 1 we can train a detection
model in less than 2 min with a performance gap of 3.1%
with respect to the mAP provided by training Faster R-CNN
output layers (which requires 2 h and 20 min). Moreover, we
are able to reproduce the state of the art performance (outper-
forming it of 1.6%) in less than a half of the time. Examples
of detections predicted by the FALKON + Minibootstrap
10 × 2000 are reported in “Appendix C”.

4.3 A robotic scenario: iCubWorld

In this section, we evaluate the proposed method in a robotic
scenario, considering the iCubWorld Transformations
dataset3 (iCWT in the following). A description of the dataset
and details regarding how we use it for our experiments are
reported in “Appendix B”.

3 https://robotology.github.io/iCubWorld/.

Table 2 Benchmark on iCWT

mAP (%) Train time

Faster R-CNN (last layers) 73.5 2h 16m

FALKON + Minibootstrap 100 × 1500 73.6 3m

FALKON + Minibootstrap 10 × 2000 71.2 40s

Bold values indicate the best value
We compare Faster R-CNN’s last layers (First row), FALKON + Mini-
bootstrap 100 × 1500 (Second row) and FALKON + Minibootstrap
10 × 2000 (Third row)

Within the scenario described in Sect. 3, we define a
FEATURE- TASK as an identification task among 100
objects comprising all available instances (10 per class) of 10
out of 20 categories in iCWT. We then define a TARGET-
TASK considering 3 objects for each of the remaining 10
categories of iCWT, i.e., an identification task among 30
objects. For each task, we considered, as training set a subset
of the union of the 4 image sequences available in iCWT for
each object, corresponding to the 2D ROT, 3D ROT, BKG
and SCALE viewpoint transformations, using both acquisi-
tion days (see “Appendix B”). Overall, this leads to a training
set of∼55k and∼8k images for respectively theFEATURE-
TASK and the TARGET- TASK.

As test set we used a subset of 150 images from the first
day of acquisition of the MIX sequence for each object,
manually annotated adopting the labelImg tool.4 We refer
to “Appendix B” for further details.

In the Feature Extraction module we used ResNet50 as
convolutional backbone for Faster R-CNN, which we trained
end-to-end on the FEATURE- TASK, by setting the number
of iterations to 165k when learning the RPN and to 110k
when learning the detection network.

We report results for two different configurations of the
Minibootstrap, namely in Table 2, (i) FALKON + Mini-
bootstrap 10×2000 and (ii)FALKON + Minibootstrap
100x1500, that, as we will show in Sect. 5.3, turn out to
represent two of the best speed/accuracy trades-off, giving
priority respectively to train time and to accuracy (note that
in Sect. 5.3 other more extreme trades-off are presented).

From Table 2 it can be observed that we were able to
reproduce in just 3 min of training the same accuracy as the
one obtained by fine-tuning the Faster R-CNN’s last layers
for 48k iterations (12 epochs, with batch size 2) in more
than 2 h. In “Appendix D”, we report the results of the cross
validation for the number of epochs of the fine-tuning of
Faster R-CNN’s last layers on the TARGET- TASK, that we
used for our stopping criterion. Moreover, we show that 40
s were enough to train a 30 objects detection model with a
mAP gap of 2.3% with respect to the baseline. Examples of

4 https://github.com/tzutalin/labelImg.
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detections predicted by the FALKON + Minibootstrap
10 × 2000 are reported in “Appendix C”.

Towards Real World Robotic Applications. We deployed
the proposed algorithm into a prototypical application, which
allows to naturally train in few seconds humanoids as R1
(Parmiggiani et al. 2017) and iCub (Metta et al. 2010) to
detect novel objects. We relied on the YARP (Metta et al.
2006) middleware for integrating different modules. A video
of the resulting application is publicly available. 5

5 Ablation study

In Sect. 4 we showed results of the proposed method on two
benchmarks, demonstrating its effectiveness and gain in train
time. In this section we propose an ablation study, analyzing
in detail the main components of the proposed on-line object
detection pipeline.

First, we present a study of the Feature Extraction mod-
ule (Sect. 5.1). Then, we compare different options for the
classification algorithm, motivating the choice of FALKON
(Sect. 5.2). Finally, we investigate themain hyper-parameters
of the method, providing guidelines on how to tune the train-
ing procedure (Sect. 5.3).

If not specified, we consider (i) the same 100 objects
FEATURE- TASK and 30 objects TARGET- TASK as in
Sect. 4.3, (ii) the Minibootstrap configuration nB = 10
and B = 2000 and (iii) the number of Nÿstrom centers to
M = 2000.

5.1 How to learn the feature extractionmodule?

In our pipeline we train the Feature Extraction module only
once off-line and on a FEATURE- TASK, which is different
from the TARGET- TASK. By doing so we are able to adapt
the feature extractor to the domain of the TARGET- TASK,
while maintaining the twomodules decoupled, thus allowing
to train the detector only on the task at hand, in just few
seconds.

In this section, we analyze the impact of the Feature
Extraction module on the proposed on-line learning pipeline.
In particular, we first show the accuracy loss that originates
when features are tuned on a task that is different from the
TARGET- TASK. We then evaluate performance of differ-
ent FEATURE- TASKs, to show how to recover from this
loss.

How much do we lose splitting? Key for the proposed
pipeline is the decoupling of the Feature Extraction module
and the Detection module. In this experiment we evaluate
the performance loss we obtain when the FEATURE- TASK
differs from the TARGET- TASK. We compare the mAP
obtained by the proposed method with the one obtained

5 https://youtu.be/eT-2v6-xoSs.

Table 3 We compare: FALKON + Minibootstrap 100 × 1500
(First row) and Faster R-CNN fully trained on the TARGET- TASK
(Second row)

mAP (%) Train time

FALKON + Minibootstrap 100 × 1500 73.6 3m

Faster R-CNN (full train) 78.6 4h 30m

Bold values indicate the best value

Table 4 We compare: a Feature Extraction module trained on the set
voc07++12 (First row) and on the 100 objects identification task of
iCWT (Second row) (see Sect. 5.1)

mAP (%) Train time

Pascal VOC features 42.4 64s

iCWT features 71.2 40s

Bold values indicate the best value

by training Faster R-CNN as in Ren et al. (2015), on
the TARGET- TASK (i.e. optimizing convolutional layers,
RPN, feature extractor and output layers). In “Appendix D”,
we report the results of the cross validation for the number of
epochs for learning Faster R-CNN on the TARGET- TASK,
that we used as model selection criterion.

As it can be noticed from Table 3 the lack of feature adap-
tation on the task at hand produces a gap of 5% in mAP.
However the consistent gain in train time (3 min instead of 4
h and 30 min) motivates the choice of the proposed method
for a robotic application with strict time constraints.

Moreover, as showed in following experiments, this gap
can be recovered, partially or completely, either by tuning
the procedure or by considering a larger FEATURE- TASK,
which could better generalize to the novel TARGET- TASK.

Choosing the Domain. The objective of this experiment
is to show, for the scenario proposed in this work, which is
the more convenient domain for learning the weights of the
Feature Extraction module. To this aim, we compare perfor-
mance obtained by training on either Pascal VOC or iCWT.
The first one, being a richer and general purpose dataset for
categorization, should allow to learn features and region pro-
posals that can generalize better to novel tasks. The second
one should allow instead to learn application-specific, but
also possibly, more limited weights.

For Pascal VOC, we consider as FEATURE- TASK, the
categorization task on voc07++12 and we set the number
of iterations to 160k when learning the RPN and to 80k
when learning the detection network. For iCWT, we con-
sider the same feature extractor as in Sect. 4.3 (learned on
the FEATURE- TASK of 100 objects identification). We use
ResNet50 as backbone.

In Table 4 it can be observed that an adaptation of the
feature extractor to the same setting of the TARGET- TASK
(i.e. considering the 100 objects identification task on iCWT)
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Table 5 We compare results considering two different FEATURE-
TASKs from iCWT to train off-line the Feature Extraction module

mAP (%) Train time

iCWT features (10 objects) 59 58s

iCWT features (100 objects) 71.2 40s

Specifically, we compare the train time andmAP obtained by theDetec-
tion module on the same TARGET- TASK, using 10 (First row) or 100
(Second row) objects as FEATURE- TASKs

Table 6 We compare Train Time and mAP of different classifiers
within the Minibootstrap, respectively, FALKON with Gaussian ker-
nel (First row), FALKON with Linear kernel (Second row) and linear
SVMs (Third row)

mAP (%) Train time

FALKON-gauss +Minibootstrap 71.2 40s

FALKON-linear + Minibootstrap 68.7 34s

SVMs-linear +Minibootstrap 65.7 19s

Bold values indicate the best value

provides a significant boost in performance than using amore
general, though richer, one.

Choosing the task. We demonstrated that adapting the
feature extractor to the domain of the TARGET- TASK
remarkably improves performance. With this experiment we
illustrate how, in the chosen domain, it is possible to learn fea-
ture and region proposals, which can better generalize from
the FEATURE- TASK to the TARGET- TASK.

To this end, we evaluate the impact of the number of
classes used to define the FEATURE- TASK. We decrease
the classes from 100 to 10, considering respectively all the
classes in the FEATURE- TASK of Sect. 4.3 in the first case
and selecting 1 instance per category from it in the second
case (see “Appendix B” for details).

From Table 5 it can be noticed that considering a
FEATURE- TASK of a smaller number of classes (second
row) leads to notably lower performance on the TARGET-
TASK, demonstrating that with a bigger FEATURE- TASK,
learned features can better generalize to a new TARGET-
TASK.

5.2 Classificationmodule: is FALKON Key to
performance?

In this section we evaluate different choices for the classifi-
cation algorithm, comparing them to the one finally adopted
for our system, that is, FALKON with Gaussian Kernel.

In Table 6 we compare as classifiers (i) FALKON with
Gaussian Kernel (FALKON-gauss + Minibootstrap), (ii)
FALKON with Linear Kernel (FALKON-linear + Mini-
bootstrap) and (iii) linear SVMs (SVMs-linear + Mini-
bootstrap). For the latter one, we use the Liblinear imple-

mentation.6 Note that, instead, for the proposed pipeline, we
used the available FALKON Matlab 7 implementation, thus
the train times reported have still large room for improve-
ments.

As it can be observed, using FALKON with a Gaussian
Kernel allows to achieve the best mAP, while considering
linear classifiers produces a drop in performance, respec-
tively of 2.5% with FALKON implementation and of 5.5%
with SVMs. For this reason we consider it as the best choice
for the proposed learning pipeline since, even if the corre-
sponding train time is slightly longer, it is still in the order
of magnitude of seconds (thanks to FALKON with Gaussian
Kernel) while having the best mAP. Therefore, it represents
a suitable choice for robotic applications.

Nevertheless, it is worth noticing that linear methods, in
the Minibootstrap, train faster than the one with Gaussian
Kernel. Hence, FALKON with Linear Kernel represents an
interesting speed/accuracy trade-off.

5.3 Analysis of hyper-parameters

In this section, we show the role of the main parameters of
the proposed method. We recall that we cross-validate σ and
λ, namely the variance of the Gaussian Kernel and the regu-
larization parameter, as explained in Sect. 3. In the following,
instead, we study the influence of the parameters specific of
our method, namely the number of Nÿstrom centers (M in
Sect. 3.3) and the number and size of the batches of negatives
in the Minibootstrap procedure (respectively nB and BS in
Sect.3.3).

5.3.1 Nÿstrom centers

In order to evaluate the impact of the number ofNÿstrom cen-
ters M in FALKON training, we report performance when
varying it from 50 to 3000. Note that, as during theMiniboot-
strap, the number of training points may vary, depending on
the negative samples selected at each iteration, the percent-
age of the Nÿstrom centers over the total may vary, however
we noticed that for the chosen tasks the number of the train-
ing points remains bounded in average between 3000 and
10,000.

From the results reported in Fig. 2, it can be observed
that, while, as expected, increasing the number of Nÿstrom
centers leads to longer train times, the mAP saturates early,
for quite small values of M . This allows to preserve accuracy
while training much faster, by setting this parameter. In fact,
the value of M = 750 is sufficient to obtain the best mAP
with 27 seconds of training instead of 44 s.Moreover, a value

6 https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
7 https://www.mathworks.com/.
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Fig. 2 Train Time (Right) and mAP (Left) trends for varying number of Nÿstrom centers when training FALKON within the Minibootstrap (see
Sect. 5.3.1 for details)

Fig. 3 We show mAP and Train
Time trends for nB and BS
variation (see Sect. 3.3) during
Minibootstrap. Color code
represents BS variation while
each point of each plot
represents a different nB taken
from the ordered set:
{5, 10, 50, 100, 500, 1000}

of M = 100 allows to train a 30 objects detection model in
∼20 s, with a gap of only∼1%with respect to the best mAP.

5.3.2 Minibootstrap configuration

The defined Minibootstrap parameters (namely nB and BS)
allow to tune the proposed procedure to subsample more
or less extensively the training set, depending on the desired
computation time. In this sectionwe show the impact of vary-
ing nB from 5 to 1000 and BS from 500 to 5000.

For this study, we fix the TARGET- TASK to the
same 30 objects identification task as in Sect. 4.3, but we
consider a training set of ∼16k images, to show more
extensively the effect of parameter tuning on a bigger
dataset.

Results for this experiment are reported in Fig. 3 (note
that x axis is represented in logarithmic scale). We con-

sider as baseline the performance achieved by training the
output layers of Faster R-CNN, represented by the violet
dot in Fig. 3 (mAP = 72.7 in 4 h and 35 min of train-
ing). Since the TARGET- TASK of this experiment is the
same as the one in Sect. 4.3 (it differs only for the number
of images), we do not repeat the validation for it, training
Faster R-CNN for 12 epochs (see “Appendix D” for further
details).

It canbe inferred agrowing trend in accuracyby increasing
the value of the batch size (color variation), which satu-
rates for BS=5000. Moreover, Fig. 3 also shows that models
trained with larger batches achieve better accuracy with
smaller numbers of iterations and thus in shorter training
time. For instance, accuracy of models trained with a batch
size of 500 (black curve in Fig. 3) increases with lower slope
than accuracy of models trained with larger batches (see e.g.,
BS = 2000 and BS = 4000).
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More interestingly, by considering all plots simultane-
ously, an edge of points can be identified, displayed as
red stars in Fig. 3, which represent the best speed/accuracy
trades-off, going from a mAP of 59.8% achieved in ∼15 s
to a mAP of 74% (surpassing the Faster R-CNN baseline)
in ∼1 h, with suitable middle solutions which allow to train
models equivalent in accuracy to the Faster R-CNN baseline
in few minutes or seconds.

6 Challenging themethod for robotics

In this section, we propose a further evaluation of the perfor-
mance of themethod considering some scenarios specifically
useful for robotic applications where the robot might be
asked to learn continuously novel objects (see Sect. 6.1) or
the number of available images decreases drastically (see
Sect. 6.2).

To this aim, in the following experiments we fix (i) the
same 100 objects identification FEATURE- TASK as in
Sect. 4.3, (ii) the Minibootstrap configuration to nB = 10
and B = 2000 and (iii) the number of Nÿstrom centers to
M = 2000.

6.1 Increasing number of objects for the
TARGET-TASK

In this section, we investigate how accuracy and training
time are affected by increasing the number of classes of the
TARGET- TASK. To this aim, we consider five different
tasks as TARGET- TASK. In particular, while we fix the
number of images for each object to 250, we vary the num-
ber of objects from 1 to 40.We consider the 10 categories left
in iCWT by excluding the ones chosen for the FEATURE-
TASK, and randomly sample, respectively, 1, 2, 3 and 4
instances from each category for the detection task of 10,
20, 30 and 40 objects (see “Appendix B” for further details).
Then, we randomly select four objects instances to evaluate
performance on four different 1-object detection tasks and
report the average results. We compare with training the last
layers of Faster R-CNN for 12 epochs.

Results are reported in Fig. 4 (note that the y axis of the
train time graph is logarithmic).As it can be noticed, themAP
decreases reasonably, by increasing the number of objects
with a trend similar to the one of Faster R-CNN. Moreover,
Fig. 4 shows that our method (green solid line), while natu-
rally increasing training time when incrementing the number
of objects, it is still able to learn a detection model in a time
of the order of magnitude of seconds. On the contrary, by
training the last layers of Faster R-CNN, optimization time
is in the order of magnitude of hours.

6.2 Decreasing the number of images for the
TARGET-TASK

In this experiment, we evaluate the effect on mAP and train-
ing time of considering more or less example images for
the TARGET- TASK. To this end, we consider the same
TARGET- TASK as in Sect. 4.3 (30 objects), and vary the
number of example images for each object from ∼16 (for a
total of ∼500 training images) to ∼800 (for a total of ∼16k
training images).

As can be noticed from Fig. 5, the number of samples for
the same task does not affect notably the trend of accuracy,
which fluctuates around 71% for both the baseline and the
Minibootstrap, howeverwe observe a slight decrease in accu-
racy for the proposed method when increasing the number of
samples from 4k to 16k. This is due to the fact that, while for
Faster R-CNN we keep constant the number of epochs for
the optimization, allowing the network to really train onmore
data, for theMinibootstrap we fix the nB and BS parameters,
leading to a more aggressive subsampling in the cases of big-
ger datasets, thus a poorer representation of the negatives. As
we showed in Fig. 3, this loss can be completely recovered by
considering a different Minibootstrap configuration in order
to perform a less aggressive subsampling of the negatives.
Specifically, by considering FALKON + Minibootstrap
10x4000 and FALKON + Minibootstrap 50x1000 it is
possible to achieve, respectively, mAP of 71.9% in ∼80 s
and 72.9% in ∼3 min.

Moreover, Fig. 5 shows that while the time to fine-tune
last layers of Faster R-CNN increases linearly with the num-
ber of images, as expected, the time necessary to accomplish
Minibootstrap remains bounded in the order of magnitude
of seconds. Note that this is true even considering the two
more accurate configurations FALKON + Minibootstrap
10x4000 and FALKON + Minibootstrap 50x1000,men-
tioned before.

7 Discussion

In this work we presented a pipeline that allows to naturally
train a humanoid robot in only a few seconds to detect novel
objects. The system is the result of the integration of (i) the
automatic data collection procedure proposed in Pasquale
et al. (2016b) and validated for detection in Maiettini et al.
(2017) with (ii) the fast learning algorithm proposed in Mai-
ettini et al. (2018).

Specifically, this work presents a complete and extensive
empirical evaluation of the method, demonstrating the ben-
efits of its adoption in real world robotic applications. In the
scenario considered in our analysis a robot is asked to learn a
Detection module during a few seconds of interaction with a
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Fig. 4 We compare
performance of FALKON +
Minibootstrap 10 × 2000
trained on different
TARGET- TASKs, varying the
number of objects in a range
from 1 to 40. We show mAP
(Top) and Train Time (Bottom).
We compare results with
fine-tuning Faster R-CNN last
layers

human, by relying on a previously trainedFeature Extraction
module.

We first validated the pipeline on two different bench-
marks considering Pascal VOC and iCWT datasets, to prove
the effectiveness of the method in both a general-purpose
computer vision scenario and in a robotic setup. Then, we
performed a detailed evaluation of the main components of
the method. We considered variants for learning the Feature
Extraction module. We motivated our choice of FALKON
as classification method with respect to other methods pro-
posed in the literature. We showed the influence of the three
main hyper-parameters of the proposed method and finally
we challenged the method by considering some typical real
robotic scenarios.

We believe that this learning pipeline can be used for fur-
ther improvements of detection systems in robotics since it

allows to be quickly adapted while preserving state-of-the-
art accuracy. In the following paragraphs, we identify some
possible directions for future research.

Although our experiment show high accuracy, detec-
tion in highly cluttered scene is still a challenging task,
especially when training and testing conditions are differ-
ent. This is mainly true in our scenario, because training
sequences may contain insufficient variability (in terms of
background, illumination or partial occlusions). This is not
a problem in the proposed object detection, but it is how-
ever, a challenge that we will have to address in the future.
Moreover, detection in cluttered scenes is a particularly chal-
lenging task. Possible directions for addressing this problem
and improving the system robustness is to consider some
data augmentation techniques, like the creation of synthetic
datasets (Georgakis et al. 2017) or relying on simulation data
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Fig. 5 We compare
performance of FALKON +
Minibootstrap 10 × 2000
trained on a 30 objects
identification TARGET- TASK
considering different numbers of
samples for each class. We show
mAP (Top) and Train Time
(Bottom). We compare results
with fine-tuning Faster R-CNN
last layers

(Tobin et al. 2017), for both feature and classification learn-
ing.

The human work load required for learning a detection
model is dramatically reduced with the proposed pipeline,
as the manual annotation has been substituted with a more
natural teacher-learner interaction. However, the human
effort can be further reduced by considering techniques
of active learning (Settles 2012), which would require
the human only to reply to direct inquiries of the robot,
e.g., by adapting existing approaches designed for com-
puter vision (Wang et al. 2018). Another possibility is to
completely remove the human contribution in the acqui-
sition pipeline by considering approaches of autonomous
exploration of the objects of interest like in Pinto et al.
(2016).

In Sect. 6.2, we showed that we achieve a noticeable
fast training time by dramatically decreasing the number of
samples used for training the classifier. In this perspective,
One-shot Learning techniques (Fei-Fei et al. 2006; Kaiser
et al. 2017) can be considered to bring the speed/accuracy
trade-off to the extreme.

8 Conclusions

In this paper we propose an extended and detailed empir-
ical evaluation of a visual robotic system which allows to
train a humanoid robot to detect novel objects by naturally
interacting with it for few seconds.
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Natural interaction and fast learning methods are both
fundamental features for humanoid robots that are asked
to adapt quickly to their environment. In this sense we
believe that the system proposed in this work represents
a baseline for further improvements, being a first step
toward the implementation of more adaptive robotic sys-
tems.

A Complete Minibootstrap procedure

This section reports the complete pseudo-code (Alg. 2) for
the Minibootstrap procedure described in Sect. 3.3.

Algorithm 2 Minibootstrap Complete pseudo-code for the
Minibootstrap procedure. See Sect. 5.2 for a detailed expla-
nation of the pipeline.
Input:N = {Set of all negative examples in the dataset}, P = {Set of all
positive examples in the dataset}, BS = size of bootstrap’s batches, nB
= number of bootstrap’s iterations
Output: M f inal = trained classifier model
Stage 1: Subsample dataset and create nB batches of negatives of
size BS

[N1, ..., NnB ] ← CreateRandNegativesBatches(N , BS, nB )
Stage 2: Train classifier using first batch
D1 ← P

⋃
N1;

M1 ← TrainClassifier(D1);
Nchosen_1 ← N1

Stage 3: Select hard negatives
for all i ∈ {2, ..., nB} do

1) Select hard negatives from Ni using Mi−1 and add them to
the train set:
N H
i ← SelectHard(Mi−1, Ni )

Di ← P
⋃

Nchosen_i−1
⋃

NH
i

2) Train classifier with the new dataset:
Mi ← TrainClassifier(Di )

3) Prune easy negatives from Di using Mi :
Nchosen_i ← PruneEasy(Mi , Nchosen_i−1

⋃
NH
i )

end for
Stage 4: Train final model with selected dataset
D f inal ← P

⋃
NchosenNnB

M f inal ← TrainClassifier(D f inal )

B The iCubWorld Transformations Dataset

For validating the proposed pipeline in a robotic scenario, we
considered the iCubWorld Transformations Dataset (iCWT).
This dataset is part of a robotic project, called iCubWorld8

which main goal is to benchmark the development of the
visual recognition capabilities of the iCub Humanoid Robot
(Metta et al. 2010). Datasets from the iCubWorld project
are collections of images recording the visual experience of

8 https://robotology.github.io/iCubWorld/.

iCub while observing objects in its typical environment, a
laboratory or an office. iCWT is the last released dataset and
the largest one of the project. We refer to Pasquale et al.
(2019) for details about the acquisition setup.

B.1 Dataset description

iCWT contains images for 200 objects instances belonging
to 20 different categories (10 instances for each category).
Each object instance is acquired in two separate days, in a
way that isolates, for each day, different viewpoints trans-
formations: planar 2D rotation (2D ROT), generic rotation
(3DROT), translation with changing background (BKG) and
scale (SCALE) and, finally, a sequence that contains all trans-
formations (MIX).

While the dataset has been acquired as benchmark for
object recognition, lately we also provided object detection
annotations in Imagenet-like format. Moreover we manually
annotated a subset of images, that could be used to val-
idate object detection methods trained with automatically
collected data, as we did in Maiettini et al. (2017). Specif-
ically, for this work we released a new and larger set of
manually annotated images.9

For the experiments of this work we consider as train set,
for the objects of the considered task, a subset of the union set
of 2D ROT, 3D ROT, BKG and SCALE, while as test set we
used a subset of 150 images from the first day of acquisition
of the MIX sequence for each object, manually annotated
adopting the labelImg tool.10 We fixed an annotating policy
such that an object must be annotated if at least a 50-25% of
its total shape is visible (i.e. not cut out from the image or
occluded).

For defining the FEATURE- TASK presented in 4.3, we
consider all the 10 instances of the categories: ’cellphone’,
’mouse’, ’perfume’, ’remote’, ’soapdispenser’, ’sunglasses’,
’glass’, ’hairbrush’, ’ovenglove’, ’squeezer’, whilewe define
the TARGET- TASKs presented in Sect. 4.3 and in Sect. 6
by considering the remaining 10 categories by choosing the
instances as following:

– 1 Object Task: obtained by averaging results from
considering ’sodabottle2’, ’mug1’, ’sprayer6’, ’hair-
clip2’

– 10 Objects Task: ’sodabottle2’, ’mug1’, ’pencilcase5’,
’ringbinder4’, ’wallet6’, ’flower7’, ’book6’, ’bodylo-
tion8’, ’hairclip2’, ’sprayer6’

– 20 Objects Task: 10 Objects Task + ’sodabottle3’,
’mug3’, ’pencilcase3’, ’ringbinder5’, ’wallet7’,
’flower5’, ’book4’, ’bodylotion2’, ’hairclip8’, ’sprayer8’

9 https://robotology.github.io/iCubWorld/#icubworld-
transformations-modal/.
10 https://github.com/tzutalin/labelImg.
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– 30 Objects Task: 20 Objects Task + ’sodabottle4’,
’mug4’ , ’pencilcase6’, ’ringbinder6’, ’wallet10’,
’flower2’, ’book9’, ’bodylotion5’, ’hairclip6’, ’sprayer9’

– 40 Objects Task: 30 Objects Task + ’sodabottle5’,
’mug9’, ’pencilcase1’, ’ringbinder7’, ’wallet2’,
’flower9’, ’book1’, ’bodylotion4’, ’hairclip9’, ’sprayer2’

C Examples of detected images

We report in Figs. 6 and 8 examples of detections pre-
dicted by the FALKON + Minibootstrap on random
sampled images from respectively the test set of Pascal VOC
(Everingham et al. 2010) and of iCWT (Pasquale et al.
2019).

D Stopping Criterion for Faster R-CNN
Fine-tuning

In this section we report on the cross validation carried
out to study the convergence of Faster R-CNN and to choose
when to stop the learning for the tasks of this work.

Fig. 7 Weshow thevalidation accuracy trendwith respect to the number
of epochs for the Pascal VOC dataset (blue line) and we highlight (red
star) the number of epochs chosen to train the Faster R-CNN baseline,
reported in Table 1)

In Fig. 7 we report the validation accuracy trend on the
Pascal VOC dataset, when learning the last layers of Faster
R-CNN for increasing number of epochs. To this aim, within
the Pascal VOC, we split the available images considering
the union of the validation sets of Pascal 2007 and 2012 as
validation set and the union of the training sets of Pascal 2007
and 2012 as training set.

Fig. 6 Randomly sampled examples of detections on the PASCAL
VOC 2007 test set, obtained using the proposed learning pipeline. CNN
backbone for Faster R-CNN for feature extraction is Resnet101, train

data is the set of images voc07++12 and the configuration used is
FALKON +Minibootstrap 10× 2000 (1 min and 40 s of Train Time
and 70.4% of mAP)
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Fig. 8 Randomly sampled examples of detections on iCWT, obtained
using the proposed learning pipeline. CNN backbone for Faster R-CNN
for feature extraction is Resnet50, FEATURE- TASK and TARGET-

TASK are respectively the 100 and 30 objects tasks described in
Sect. 4.3 and the configuration used is FALKON + Minibootstrap
10 × 2000 (40 s of Train Time and 71.2% of mAP)

Fig. 9 We show the validation accuracy trend with respect to the num-
ber of epochs for the iCWT dataset (blue line) and we highlight (red
star) the number of epochs chosen to train the Faster R-CNN baselines,
reported in Table 2 and Fig. 3

Similarly, in Fig. 9 we report the validation accuracy trend
with respect to the number of epochs for the iCWT dataset.
In this case, we considered as train set the same ∼8k images
used for the TARGET- TASK in Sect. 4, while we selected
a different set of 4.5k images as validation set, considering
the remaining images in the 2D ROT, 3D ROT, SCALE and
TRANSL transformations.

Fig. 10 We show the validation accuracy trend for different configura-
tions of epochs of the 4-Steps alternating training procedure (Ren et al.
2015) for the iCWT dataset (blue line). Each tick of the horizontal axis
represents a different configuration. The numbers of epochs used for the
RPN and for the Detection Network are reported, respectively after the
labels RPN and DN. We highlight (red star) the configuration chosen
to train the Faster R-CNN baseline, reported in Table 3

Finally, in Fig. 10 we show the validation accuracy trend
of the full train of Faster R-CNN (i.e. the optimization of the
convolutional layers, RPN, feature extractor and output lay-
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ers on the TARGET-TASK). Specifically, in this case, since
we used the 4-Steps alternating training procedure as in Ren
et al. (2015), we report the mAP trend, considering different
numbers of epochs, when learning the RPN and the Detec-
tion Network. Therefore, the two numbers reported for each
tick of the horizontal axis, represent respectively the number
of epochs (i) for learning the RPN during steps 1 and 3 of the
procedure and (ii) for learning the Detection Network during
steps 2 and 4 of the procedure.We consider the same training
and validation splitting as in Fig. 9.

Note that, we used these results for our stopping criterion,
that consists in choosing the model at the epoch achieving
the highest mAP on the validation set (we stopped when no
mAP gain was observed in the three plots). We highlighted
in red in the three plots, the configurations chosen to train
the baselines on the tasks at hand, in Tables 1, 2 and 3 and in
Fig. 3.
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