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Abstract: The term asbestos refers to a group of serpentine (chrysotile) and amphibole (amosite,
crocidolite, anthophyllite, tremolite and actinolite) minerals with a fibrous habit. Their chemical-
physical properties make them one of the most important inorganic materials for industrial purposes
and technological applications. However, the extraction, use and marketing of these minerals have
been prohibited due to proven harmful effects, mainly involving the respiratory system. In addition
to the known six minerals classified as asbestos, the natural amphiboles and serpentine polymorphs
antigorite and lizardite, despite having the same composition of asbestos, do not have the same
morphology. These minerals develop chemical and geometric (length > 5 µm, width < 3 µm and
length: diameter > 3:1), but not morphological, analogies with asbestos, which is regulated by the
WHO. The debate about their potential hazardous properties is open and ongoing; therefore, their
morphological characterization has a key role in establishing a reliable asbestos hazard scenario.
This review focuses on evaluating the most relevant papers, evidencing the need for a reappraisal.
Different in vitro, in vivo and epidemiological studies report information about cleavage fragments
with critical dimensions similar to asbestos fibres, but very few works target fragments below
5 µm in length. Breathable smaller fibres could have deleterious effects on human health and
cannot be disregarded from the risk assessment process. Furthermore, a few studies suggest that the
carcinogenic nature of short fibres is not excluded. This review highlights that it is worth investigating
the effects of this size range of elongated mineral particles and fibres.

Keywords: asbestos; nonasbestiform; environmental exposure; occupational exposure; particle size

1. Introduction

Asbestos, a substance included among Group I (carcinogenic to humans), is considered
one of the most dangerous types of dust for human health [1]. This generic term refers
to a group of six natural minerals represented by hydrated silicates easily separable into
thin, flexible fibres, resistant to traction and heat. These minerals can develop a crystalline
habit that includes the serpentine asbestiform varieties and some asbestiform varieties
of amphiboles.

Chrysotile white asbestos, Mg3Si2O5(OH)4, is an asbestos of serpentine. Asbestos
belonging to the group of amphiboles are actinolite (Ca2(Mg,Fe2+)

5Si8O22(OH)2), amosite
(brown asbestos, the commercial name of the cummingtonite/grunerite series,
(Mg,Fe2+)7Si8O22(OH)2), anthophyllite ((Mg,Fe)7Si8O22(OH)2), crocidolite (blue asbestos,
the commercial name of riebeckite, Na2(Fe2+,Mg)3Fe3+

2Si8O22(OH)2) and tremolite
(Ca2Mg5Si8O22(OH)2).

Compared to other silicates, asbestos fibres have extremely small diameters in the
micron to nanometre range, thanks to the particular property of separating in a longitudinal
direction that generates very fine and potentially inhalable fibres [2].
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However, amphibole fibres can occur with morphological differences, which confer
variable flexibility and mechanical strength but the identical geometric characteristics
(length > 5 µm, width < 3 µm) of asbestos. In general, they are rigid and parallel sided, with
very variable dimensional distributions of width-to-length ratios. Minerogenetic conditions
are responsible for this variation in crystal habit. Therefore, the fibrous amphibole can have
an identical chemical and atomic structure but a diversity of crystalline form or growth
habit [3]. Of note, also among serpentine polymorphs, are the fibrous antigorite and
lizardite, which sometimes occur very similar in morphology to chrysotile and therefore
are not easily distinguishable, especially if associated.

Natural processes (i.e., erosion) and excavation activities contribute to the formation of
the elongated mineral particles (EMP) of amphibole and serpentine. The fibres of “asbestos-
like” varieties are not yet univocally regulated by health and safety institutions worldwide.
The threshold of health risks cannot be defined because the potential hazard is not fully
investigated.

According to Boulanger et al. [4], short “asbestos” fibres (SAF) are less pathogenic
than long “asbestos” fibres (LAF). On the other hand, a cut-off length of 5 µm is used to
distinguish short from long asbestos fibres. Nevertheless, the limit value of 5 µm in length
is not based on scientific evidence but has been determined by comparing data obtained
from different research groups.

The reason for these inconsistencies is mainly related to different and dated legislation
worldwide. The risk of developing chronic diseases by inhalation of fibres is linked to
different factors, such as particle morphology, size, physical-chemical properties, and
biopersistence correlated with the crystalline habits and can produce severe consequences
to the human respiratory system. Having more constraints on this issue plays an essential
role in the risk assessment process. This could influence the final calculation of the asbestos
concentration for environmentally monitoring fibres. This overview reveals that we are far
from understanding which size dimension is crucial due to contradictory conclusions in
the available literature.

2. Mineralogical vs. Commercial Definitions

The term asbestos has both mineralogical and commercial uses that often cause
misunderstandings. Keywords and debated items among the scientific community are the
terms fibrous and asbestiform. The term fibrous is linked to the geometry of the particles.
According to the definition of “breathable fibre”, the parameters indicated by the World
Health Organization (WHO) [5] are length > 5 µm, width < 3 µm and aspect ratio (length
of the particles divided by the width, aspect ratio) > 3:1. The term asbestiform refers to
a specific property in which the mineral is formed by fibrils and possesses high tensile
strength or flexibility [6].

In detail, nonasbestiform and asbestiform fibres of amphiboles are mainly different in
their morphology but are chemically indistinguishable. Moreover, “Subtle differences in
their crystal structure can lead to profound differences in physical properties” [7].

The morphological distinction between the two habits was defined by the National
Research Council [8], which identifies asbestiform as a structure characterized by crystals
that appear singularly similar to organic fibres, such as cotton or hair, or are made up of
bundles composed of many parallel fibres (fibrils). According to the WHO, the nonas-
bestiform habit is characterized by prismatic crystals, even with an irregular shape, or by
crystals with acicular growth, which have the same geometric ratios as fibres.

Therefore, these morphological differences derive from particular crystalline structure
changes, which entail profound variations in physical properties [9].

Therefore, in nature there are minerals, such as those belonging to the group of
serpentine and amphiboles, which can have a fibrous and asbestiform aspect (Figure 1a,b)
or a fibrous but nonasbestiform aspect (Figure 1c,d).
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Figure 1. Close up photographs of tremolite–actinolite vein (a) and schist (d). SEM microphotographs
of amphiboles (Amp) of the tremolite actinolite series of fibrous and asbestiform habit (b,c) and
fibrous but nonasbestiform habit (e,f). Scale bar in microphotographs; high vacuum: 20 kV; detector:
back-scattered electrons.

The latter structure has a strong impact on the dimensional distribution of dust after
comminution or on the potential carcinogenicity upon inhalation. The scientific community
has recently introduced additional terms to clarify any classification misunderstandings.
The most common are the following:

• Cleavage fragments: proposed by the Occupational Safety and Health Administration
(OSHA) in 1992. It is a term that refers to amphibole (crocidolite, amosite, antho-
phyllite, tremolite, actinolite) or serpentine (antigorite and lizardite) that, from a
morphological point of view, cleave into fragments rather than separate longitudinally
into fibrils like asbestos varieties. Therefore, they have the same chemical composition
of asbestos species, but in geometrical ratios, they fall within the definition of fibre, al-
though they are not asbestiform. Considering the indexing of crystal faces, monoclinic
amphiboles have perfect cleavage along the 110 face, and orthorhombic amphiboles
have perfect cleavage along the 210 face [10].

• Elongate mineral particles (EMP): proposed by the National Institute for Occupational
Safety and Health (NIOSH) [11] to describe all particles sharing specific attributes,
though applicable to a broad class of particle types. In particular, the term refers to
mineral particles with a length ≥ 5 µm and a minimum aspect ratio of 3:1, which
correspond to breathable size [12], avoiding using the term “fibre”, which leads to
misunderstandings in the definition.

Despite the difficulty of distinguishing between asbestiform and nonasbestiform EMP,
the relationship between the size of nonasbestiform EMP and carcinogenic lung disease is
still open to interpretation. This description highlights how confusing indications are and
that the definition lacks standardised operating definitions for fibres [13].

3. Studies on Asbestos/Nonasbestos-Related Diseases and Exposure

The first asbestosis case is dated to 1906, when Dr Montague Murray documented
pulmonary fibrosis in a London worker. In 1927, Cook [14] coined the term “pulmonary
asbestosis”. In 1955, Doll carried out a case-controlled study on textiles, establishing the
correlation between exposure to asbestos fibres and lung cancer [15]. Consequently, an
increasing number of studies were carried out on different populations, particularly on
professionals exposed to asbestos.

The International Agency for Research on Cancer (IARC) declared asbestos a proven
carcinogen for humans, placing it in Group 1 (carcinogenic to humans) [1,16].
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Moreover, the air quality guidelines from the WHO [17] declared that to prevent
carcinogenic risk, it is necessary not to exceed a level of asbestos fibre exposure equal
to 1 ff/air litre over a lifelong daily exposure. However, there are no threshold limits to
date, since any exposure can cause cancer. On the other hand, several studies indicate
that morbid risk from asbestos is related to the duration of exposure and cumulative
dose [1,18,19].

Although there are specific norms that suggest threshold values to ensure health
protection and surveillance, it is noteworthy to highlight that these limits differ not only on
a regulatory basis but also in terms of measurement methods and acceptability levels. The
recommended exposure limit of asbestos differs according to the examined environment
(living environment, working environment). For instance, in working environments, the
reference is the limit value of 100 fibres per litre (ff/l) per day, calculated as a normalized
average concentration over 8 working hours (L.D. 81/2008). For living environments,
reference is the limit value of 20 ff/l if the fibres are counted by optical phase contrast
microscopy (PCOM), while it is 2 ff/l if these are observed by scanning electron microscopy
(SEM, M.D. 06/09/1994). This value agrees with the occupational exposure limit, ruled by
Directive 2003/18/EC and Directive/2009/148/EC, for airborne asbestos in workplaces in
EU countries [20,21].

According to the WHO, the hazard of asbestos derives from its capability to release
breathable fibres. The risk is linked to interconnected factors that control the degree
of penetration into the respiratory tract. In fact, morphology, size, physical-chemical
properties and biopersistence correlated with the crystalline habits of particles can produce
grave consequences to the human respiratory system.

Biopersistence is the main property in the toxicological process, corresponding to
the ability of fibres to remain unaltered after their deposition on the pulmonary epithe-
lium. The inhalation and deposition in alveolar spaces directly correlate both with relative
length/width ratio and shape. In higher length/width, the fibre is easily inhaled and de-
posited into the respiratory system. Moreover, the aspect ratio influences the phagocytosis
process operated by macrophages. In particular, short asbestos fibres (<5 µm) are enclosed
in the phagosomes and cleared without triggering chronic inflammation. In contrast, longer
fibres (>5 µm) cannot be fully engulfed by macrophages and can remain inside the lung for
a longer time [22]. The extreme flexibility favours the permanence in the lung environment
shown by asbestos fibres. Conversely, cleavage fragments of amphiboles have weaker
surfaces that favour breaking by breathing.

Finally, according to the WHO, both chemical composition and surface reactivity
increase alveolar macrophage activation. Moreover, the fibre surface can trigger the imbal-
ance of redox status, causing radical species formation and activating the inflammatory
process [23]. Fibres act on two different contingents: the mechanical breakdown of the
genetic material in the nucleus and the oxidative stress caused by the presence of specific
ions, such as iron, in the fibrous mineral. This triggers redox reactions which lead to the
breakdown of biological macromolecules, such as DNA. These processes can help each
other. On the other hand, the reactive oxygen species (ROS), triggered mainly by the
Fenton reaction, results in genotoxic damage underlying the mutagenic events. Asbestos is
a complete carcinogen carrying out both initiating and promoting actions [24].

Asbestos has been linked to different pulmonary diseases, such as pleural fibrosis
and plaques, asbestosis, benign asbestos pleural effusion, small cell lung carcinoma, non-
small cell lung carcinoma and malignant mesothelioma. Different mechanisms induced by
asbestos (chromosomal alterations, oncogenes activation, loss of tumour suppressor genes,
generation of RNOS and direct mechanical damage to cells from asbestos fibres) may be
pathways involved in the development of the asbestos-related disease [24,25].

Moreover, workers exposed to asbestos or other powders can be exposed to some
other carcinogens, such as diesel engine exhaust, crystalline silica dust, radon gas, nickel
compounds, chromium (VI) compounds, arsenic and inorganic arsenic and compounds
from cigarette smoke. These people have a significantly greater risk of developing lung
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cancer than people who have only been exposed to asbestos. In a meta-analysis conducted
by Ngamwong et al. [26], it was estimated that the odds ratios for lung cancer (95%
confidence interval (CI)) were 1.70 in asbestos-exposed, 5.65 in smoking and 8.70 in asbestos-
exposed and smoking, respectively, when compared with lung cancer patients who were
not exposed to asbestos and nonsmoking. This study demonstrated an additive synergism
for lung cancer with coexposure to asbestos and cigarette smoking.

The effects of the inhalation of nonasbestiform amphiboles are still poorly correlated
with asbestos-related diseases. At the OSHA and Mine Safety and Health Administration
meeting, the NIOSH confirmed that despite the similarity in size, shape and equal composi-
tion between asbestos and nonasbestiform amphiboles, it is necessary to clarify the possible
health effects of the latter. Thus, cautiously, NIOSH concluded that there is no evidence to
exclude cleavage fragments from the current regulations. The Environmental Protection
Agency (EPA) has stated that it would be prudent to assign equivalent relevance for cleav-
age fragments and fibres in cancer risk [27]. However, the USA occupational regulations do
not currently cover asbestiform amphiboles. Therefore, it is crucial to determine whether
amphibole cleavage fragments differ sufficiently from asbestos fibres to pose different
health risk levels by examining fibre dimensions and shape, which influence respirability,
and fibre biopersistence, which influences carcinogenicity [28]. The few studies on cleavage
fragments in the literature denote insufficient knowledge at present.

Potential Health Effects of Elongated Mineral Particles

According to the WHO, the particles of amphiboles and serpentine groups can be
defined as fibrous when having a length > 5 µm, width < 3 µm and length/width > 3:1.
Moreover, in terms of dimension, fibres are considered inhalable when having a diameter
between 10 and 100 µm, while the thoracic fibres have a diameter between 4 and 10 µm
(Figure 2). These typically are stopped in upper and lower airways. Conversely, the
fraction with a diameter < 3 µm (respirable fraction) can reach the alveolar space, triggering
inflammation and the recruitment of inflammatory cells.
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Different studies conducted in vitro and in vivo showed that particles not covered
by the dimensions suggested by the WHO could even trigger pathological effects when
inhaled or ingested. In this respect, from the beginning of the 1970s, several studies
have been conducted considering amphiboles with different geometrical ratios (Table 1).
However, few in vivo and in vitro studies have been conducted on the fibrous varieties of
antigorite and lizardite.

Table 1. Synoptic table showing fibre dimensions that are the most liable to contribute to lung cancer risk.

Mineral Type Study Types
Critical Size of Fibres

References
Length Width Aspect Ratio

Actinolite In vivo <0.2 µm - 3:1 [29]

Not specified Mathematical
model >1.5 µm <0.25 µm 3:1 [30]

Crocidolite In vivo >3 µm - 3:1 [31]
Not specified Observational ≤5 µm ≤0.25 µm 3:1 [32]

Tremolite In vivo >5 µm ≤0.5 µm 3:1 [33]
Not Specified Observational <5 µm <3 µm 3:1 [34]

Tremolite and other In vivo >5 µm - 3:1 [35–39]
EMP Amphiboles In vitro >8 µm <0.25 µm 3:1 [40]

Tremolite and other In vitro >10 µm - 3:1 [6,35,36,41,42]
Tremolite In vivo >10 µm <0.5 µm 3:1 [39]

Not specified In vivo >20 µm <1 µm 3:1 [43]
EMP Cohort studies >40 µm <3 µm 3:1 [44]

Asbestos group Meta-analysis - <0.4 µm 3:1 [45]

Different studies indicate that short respirable particles that can not be considered
fibres because they do not fall within the dimensions suggested by the WHO can trigger
pathological injuries, such as mesothelioma, lung cancer and asbestosis [46–48].

Opinions diverge and are essentially divided into two positions. Some authors assert
that nonasbestiform amphibole fibres are not potentially carcinogenic. In contrast, other
authors suggest the carcinogenic potential of these fibres. Davis et al. [33] studied the
Italian nonasbestiform tremolite effect from Ala di Stura in rats compared to the asbesti-
form variety. Ala di Stura tremolite contains a subgroup of very long and fine asbestiform
fibres and is described as the correspondent nonasbestos variety of tremolite, which would
not be expected to cause tumours. However, the high tumour rate observed in the rats
has suggested that nonasbestiform and asbestiform amphiboles indeed have similar car-
cinogenicity. In particular, two-thirds of the rats exposed to the Ala di Stura tremolite
developed mesothelioma, but very late in life (median survival time was 755 days). In
contrast, the three asbestos samples induced much shorter median survival times, ranging
from 301 days to 428 days.

Suzuki et al. [32] analysed lung and mesothelial specimens from human patients
and observed that amphibole particles shorter than 5 µm and thinner than 0.25 µm were
strongly associated with neoplasms.

Adib et al. [34] examined the lungs of asbestos-exposed workers with asbestosis,
lung cancer or mesothelioma, finding about 50% of particles, including chrysotile, with
length < 5 µm and about 20% of fibres with length > 5 µm, width < 3 µm and aspect
ratio > 3:1.

Donaldson et al. [35,36] explored the effects induced in mice by intraperitoneal ad-
ministration of single doses of amosite samples with fibres longer than 5 µm and amosite
samples with particles shorter than 5 µm (with A/R > 3:1 for both categories). The different
samples were injected in equal amounts. Results showed that a single dose of particles
shorter than 5 µm injected in mice by intraperitoneal did not trigger local inflammation,
but repetitive exposures increased the inflammatory reactions.

Dement et al. [44] showed that exposure to amphiboles with lengths ranging from
<1.5 µm to >40 µm and widths ranging from <0.25 µm to >3.0 µm were highly associated
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with developing lung cancer and asbestosis. Moreover, further studies indicate that short
particles can contribute to pathological injuries, such as mesothelioma, lung cancer and
asbestosis [46–48]. Dodson et al. [49] suggested that particles shorter than 5 µm could
trigger pathologic mechanisms, such as cancer, and suggested including these particles as
a possible risk factor for human health.

Wagner et al. [31] showed that fibre persistence in the lungs of rats exposed to long
fibres (3–6 µm and >6 µm) and short particles (3–5 µm) of crocidolite, increased over
365 days post inhalation for both classes.

On the other hand, different studies reported no evidence when elongated mineral
particles were tested with different models. According to the Stanton hypothesis [40],
fibres longer than 8 µm and thinner than 0.25 µm must be considered more dangerous for
health. Nevertheless, even nonasbestiform fibres with “Stanton size” cannot be removed
by phagocytic cells like macrophages, triggering the typical asbestos-induced pathobiolog-
ical mechanisms, such as the generation of free radicals, cell and DNA damage, chronic
inflammatory reactions and the delivery of chemical carcinogens [50].

The cell culture studies conducted by Donaldson et al. [35,36], Brown et al. [41]
and Hill et al. [42] have generally confirmed that particles shorter than 5 µm have little
pathologic effect, contrary to what might be expected from a general respirable silicate
mineral dust.

Timbrell et al. [51] and Wylie et al. [52] reported low cytotoxicity in culture cells
exposed to nonasbestiform tremolite. The health effects due to asbestos short particle
exposure were examined by Pott et al. [29], who reported that 56% of rats had lung
tumours and pleural mesotheliomas after intraperitoneal injection of asbestos actinolite.
The size distribution showed that 90% of the asbestos particles had a length < 0.2 µm and
10% < 4.2 µm. In contrast, when a similar dose of nonasbestiform actinolite was used, no
tumours were found [29,53,54]. Berman et al. [37] suggested that asbestos fibres longer
than 5 µm contributed to lung tumour development, as opposed to those shorter than 5 µm.
Wylie et al. [55] exposed animals to asbestos and nonasbestos fibres. The asbestos fibres
had diameters thinner than 1 µm, and nearly 90% were thinner than 0.5 µm. In contrast,
about half of the nonasbestos amphibole particles were thinner than 1 µm, only 20% of
which were thinner than 0.5 µm. Results showed that tumours in the exposed animals
were proportional to the log of the dose of fibres thinner than 1 µm.

A similar study [42], in which the authors used the same minerals, reported a signif-
icant release of superoxide anions by macrophages. These results support the view that
fibre length is crucial in determining pathogenicity, since this factor is associated with the
development of inflammation, pulmonary fibrosis and tumour formation. Goodglick and
Kane [38] evaluated the cytotoxicity on macrophages of mice by using crocidolite with
long fibres (L > 5 µm) and short particles (L ≤ 5 µm). Although a comparison based on the
number of fibres showed lower toxicity for the short fibres, cytotoxicity was demonstrated
for both types of samples. However, the authors considered that these differences in effect
were substantially dependent on iron content in the samples, as pretreatment by a chelating
agent inhibited the toxicity. Riganti et al. [56] compared the effects of long asbestos fibres
(L > 5 µm (70%) and <2 µm (25%)) and short amosite particles (L < 5 µm (98%) and <2 µm
(75%)) on human epithelial cells. A higher effect was evidenced from the long asbestos
fibre sample, generating free radicals and inhibiting glucose metabolism on A549 cells.

Davis et al. [39] exposed rats for six months to the injection of samples with elongated
mineral particles and long fibres of amosite. The first group of samples contained about
0.1% of fibres longer than 10 µm and about 2% longer than 5 µm, while the second group
contained more than 11% of fibres longer than 10 µm and 3% longer than 25 µm. The
diameter distributions were very similar: about 50% less than 0.5 µm in width. The
experiments produced mesothelioma in 88% and 95% of rats treated, respectively, with
10 and 25 mg powders of long asbestos fibres. Simultaneously, the short fibres of asbestos
produced 0% and 4% tumours with the same respective doses. Moreover, experiments
conducted with other minerals suggest that fibres exceeding 20 µm and thinner than 1 µm
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are necessary to cause cancer. According to the authors, this probably happens because the
long fibres cannot be phagocytised by macrophages or removed from the lungs [43].

In 1982, Wagner et al. [57] tested three samples of asbestos tremolite in different cell
lines, showing that longer fibres induced enzymatic release of LDH and BGL when treating
the peritoneal macrophages of mice and caused the formation of giant cells in the A549 cell.
Berman et al. [58] showed that tumour generation is related to the concentration of fibres
longer than 40 µm but acknowledged that an aspect ratio of 20:1 or greater should eliminate
most of the asbestos and nonasbestos particles. This information was incorporated into a
new risk model protocol that considers only the concentration of fibres longer than 10 µm
and thinner than 0.4 µm, not differentiating between asbestiform and nonasbestiform fibres.
Long-term inhalation studies were performed in hamsters using the “nose only” method
of exposure to amosite samples with lengths > 5 µm and >20 µm. The numbers of amosite
fibres did not decrease at low (0.8 mg/m3) and medium doses, and no difference in the
retention rate between the two groups of fibres with different lengths was detected at the
highest dose [59].

Although many studies have considered fibre length as a determinant of pathogenicity,
expressing differing opinions, other authors reported the necessity of further studies to
elucidate the importance of the geometric ratio of fibre [60].

Gamble and Gibbs [28], in agreement with Addison et al. [54], summarized the health
effects of nonasbestos amphiboles. The health studies indicate the necessity of correctly
identifying asbestos fibres. The authors argue that relying solely on the aspect ratio of
the particles to classify them as asbestos will lead to significant errors. They addressed
amphibole particles with aspect ratios of at least 3:1, as defined in many analytical proce-
dures. This classification involves an overestimation, including the nonasbestos amphibole
and byssolite samples as asbestos, leading to a considerable risk overvaluation. Mossman
et al. [61], commenting on the size distribution data from Wylie et al. [55], suggested
that cleavage fragments are less bioreactive and cytotoxic than asbestiform fibres. Later,
Mossman et al. [62] recognized that the possible role of fibres < 5 µm cannot be ruled out.

Berman and Crump [45] extended the Stanton hypothesis to create a risk model
based on long fibres thinner than 0.4 µm, showing a relationship between disease and the
concentration of long-thin asbestos fibres. Chatfield et al. [63] proposed a protocol that
defined asbestiform as only those fibres whose widths range from 0.04 µm to 1.5 µm and
whose aspect ratios range from 20 to 1000. Accordingly, elongated particles out of these
ranges are considered nonasbestiform.

Belardi et al. [64] reported no epidemiological evidence in cancer development from
cleavage fragment exposure. In contrast, epidemiological studies [30,65–68] showed that
higher lung cancer rates are attributable to long fibre exposure. Perhaps the authors did
not provide any definitive conclusions for the other size classes. In fact, they observed
that short-thin fibres represented the majority of fibres counted by transmission electron
microscopy. However, they did not determine whether the association of short fibres
with lung cancer is a spurious effect or it evidences that short fibres play a specific role in
carcinogenesis.

4. Regulatory Framework

The evaluation of the asbestos hazard is based on counting criteria used to determine
the number of regulated fibres in bulk materials. The approach to quantification and
analysis is not univocal [69,70]. From this perspective, different procedures were proposed
for refining the classification of particles as asbestos or fibres originated by preferential
cleavage of particles. There are mainly two opposite concepts of classification in the
national and international regulatory frameworks, and therefore variable concern about
the particles [6]:

• The NIOSH and the USA Environmental Protection Agency (EPA) [71] propose a very
cautious approach favouring exposed workers. Therefore, quantification methods of
asbestos (Method 7400 ‘A’ and ‘B’) are much more stringent [72,73]. In fact, to some
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scientific community members, any very thin and long mineral with a high aspect
ratio can be called fibrous ([74] and references within). NIOSH, OSHA, the WHO and
the EPA favour including cleavage fragments within fibre counts, taking into account
length and diameter.

• The American Society for Testing and Materials (ASTM) restricts the counting field
only to those mineral phases whose appearance meets the specific characteristics
(curvature, flaking, presence of fibrils at the apex of the beam) described by NIOSH
and length > 10 µm or width < 1 µm [75].

Counting Criteria and Cleavage Fragments

Worldwide, there is thus a regulatory and scientific gap concerning the classification
criteria of asbestos. A particle’s classification as asbestiform mineral or a cleavage fragment
(nonasbestiform) has a crucial role in assessing a reliable asbestos hazard scenario.

To date, classification systems are generic, subjective and not always applicable to
amphiboles. No clear boundary allows discriminating between the fibrous and asbestiform
amphiboles (i.e., from their crystallization) and those attaining critical dimensions after the
comminution of an acicular crystal. In the first case, the amphibole can have a morphology
similar to the chrysotile (Figure 3a,b). The second case appears as cleavage fragments
(Figure 3c,d), along with the systems of cleavage traces, with dimensions and geometric
ratios that make it classifiable as asbestos.
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Figure 3. SEM images. Representative asbestiform (a,b) and nonasbestiform (c,d) amphiboles of the
tremolite–actinolite series. Magnifications: 2000×; high vacuum: 20 kV; detector: back-scattered
electrons.

Often, asbestiform fibres and cleavage fragments of the same mineral show a sig-
nificant overlap in the aspect ratio, making it clearly difficult to distinguish between
asbestiform fibres and cleavage fragments using aspect ratio alone. Currently, there is no
agreement on making such a distinction [60].
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According to ANSES [76], there is no rationale to distinguish between nonasbestiform
amphiboles and asbestiform amphiboles with reference to their health effects in the current
state of knowledge.

Based on the results reported by in vitro and in vivo tests and epidemiological studies,
some of the same authors have proposed dimensional parameters for the count of fibres
(when originated by preferential cleavage fragments) quantitative analysis phase. The
most accredited counting criteria worldwide are listed below (Table 2).

Table 2. Counting criteria adopted for asbestos identification procedures from different countries or institutions. L = length;
D = diameter; A/R = aspect ratio [Modified from 6].

Country Single Particle Reference

South Africa L > 8 µm; D < 0.25 µm [40]
N. A. A/R ≥ 5:1 [77]
N. A. A/R 20:1–100:1 [71]
N. A. L > 10 µm; D < 0.4 µm; A/R > 25:1 [58]
Libby D < 0.5 µm; A/R 20:1–100:1 [78]

Brazil, Colorado, Labrador D < 1.5 µm; A/R > 20:1 [63]
North Carolina, New York, Virginia A/R > 5:1 [3]

Jamestown, North Carolina, South Africa,
Italy, Libby, Austria, Gouverneur, West

Greenland, Homestake, Shinness
D < 0.5 µm; A/R > 16:1 [79]

N.A. D < 1 µm [75]

Aspect ratio is the main feature used to differentiate asbestiform fibres from nonas-
bestiform particles. Several aspect ratio values have been suggested as cut off for the two
categories ranging from 3:1 to 5:1, to 20:1 or greater. Wylie et al. [55] showed that the aver-
age aspect ratio in asbestos fibres is 8–10 times greater than in nonasbestos particles [6,55].

The Asbestos Hazardous Emergency Response Act method (AHERA method) [77]
suggests the ratio 5:1 as the minimum aspect ratio to consider. The EPA (1993) made a
distinction in term of aspect ratio from asbestos and cleavage fragments of the same phases:
a range from 20:1 to 100:1 or higher for asbestiform fibres and a ratio < 20:1 or lower
for cleavage fragments. Berman and Crump [58] proposed an A/R > 25:1 and classified
asbestos fibres as ≥10 µm and thinner than 0.4 µm. For Harris et al. [78], asbestos has very
high (20:1 to 100:1 or higher) aspect ratios and very thin fibres (width ≤ 0.5 µm). Moreover,
they consider the morphological aspect, such that asbestos has parallel, often curved sides,
smooth surfaces and no discernible crystal faces. Conversely, acicular fibres have generally
moderate (10:1 to 20:1) to high (>20:1) aspect ratios, thin particles (width ≤ 0.5 µm) and
well-developed crystal faces.

Applying the Chatfield [63] procedure for asbestos, A/R must be >20:1 and the width
< 1.5 µm. In Van Orden et al. [3,79] the asbestos samples have an average aspect ratio of
76:1 and a width of about 0.27 µm (90% thinner than 0.5 µm). Conversely, nonasbestos
amphiboles have an average aspect ratio of 16:1 and a width of about 0.97 µm (75% wider
than 0.53 µm). The protocol introduced by Harper et al. [75] is based on microscopic
measurements and includes all EMP showing width below 1 µm [6,63].

5. Conclusions

Our literature review did not reveal strong evidence indicating that cleavage fragments
have the same or greater carcinogenic potential than asbestos. Most of the data collected
by the different authors suggest that the toxic effect of asbestos fibres increases with
length, despite some notable exceptions. However, the extent to which a mineral with
an asbestiform habit affects cell behaviour relative to that of a cleavage fragment of the
same mineral still remains open to investigation. Moreover, the chemical composition of
a particle can influence the pathogenic response of the tissue it comes into contact with.



Minerals 2021, 11, 525 11 of 15

For instance, iron content may exacerbate reactive species and inflammation response
production.

Different experimental studies show that short asbestos fibres are less active than long
asbestos fibres. However, if short asbestos fibres are used in high doses, they can cause
inflammation, interstitial pulmonary fibrosis and pleural reactions. Certainly, the different
methodologies used for sample preparation, analytical techniques, duration of exposure
and postexposure monitoring are discriminating factors.

For health safety purposes, the assessment of asbestos air contamination is carried
out considering only the particles with a specific length–diameter ratio (3:1) and a length
greater than 5 µm. The value 5 µm as the limit of length was arbitrarily chosen in the
1960s due to the resolution of transmitted optical microscopy in quantitative analysis and
because it was fairly consistent with literature data highlighting the role of fibre size in
asbestos toxicity.

Indeed, it is true that most risk assessment models have shown that adverse health
effects are associated with fibres longer than 5 µm or even longer than 10 µm. Only a few
risk assessment models believe that even fibres shorter than 5 µm should be considered
dangerous, suggesting that they may play a role, albeit one that is much less significant
than the effect of longer fibres. No agreement has currently been reached on this distinction.
According to Hwang et al. [80], a lack of consensus on the appropriate exposure metric can
partially explain the different exposure–response relationships obtained in an epidemiolog-
ical study. Finally, the potential genotoxicity of nonasbestiform fibres with equal critical
size to asbestos have been poorly tested.

International health and safety organizations agree on the absence of a "safe" level of
asbestos exposure and agree that it should be minimized. However, reference values are
necessary to ensure the protection and surveillance of workers’ health. Despite the known
carcinogenic nature of asbestos, this topic still remains a controversial issue globally in
the science of disease prevention, as debates on health impact, identification criteria and
regulatory limits are still ongoing.

There is currently insufficient and contradictory evidence to explain the pathogenic
role of cleavage fragments for both amphibole and serpentine.

On the other hand, humans can inhale fibres in diameter ≤ 3 µm, depositing them in
the thoracic and gas exchange regions of the lung. This physiological difference makes the
animal study less specific [81], as, e.g., rodents breathe only nasally, inhaling fibres with a
diameter ≤ 1 µm.

Some authors state that the lack of carcinogenic effects of the fibres of the cleavage
fragment of amphiboles is due to the failure in reaching the critical dimensions indicated by
the WHO for the asbestiform fibre. On the other hand, many studies showed that the size
of asbestiform and nonasbestiform elongated particles is often comparable [6]. Therefore,
the pathogenicity of the short fibres cannot be completely ruled out, especially in high
exposure situations. Further studies are needed to clarify the role of cleavage fragments,
especially in cases of occupational exposure.
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