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Science has greatly contributed to the advancement of technology and to the innovation of production
processes and their applications. Cleaning products have become indispensable in today’s world, as per-
sonal and environmental hygiene is important to all societies worldwide. Such products are used in the
home, in most work environments and in the industrial sectors. Most of the detergents on the market are
synthesised from petrochemical products. However, the interest in reducing the use of products harmful
to human health and the environment has led to the search for detergents formulated with natural,
biodegradable surfactant components of biological (plant or microbiological) origin or chemically synthe-
sised from natural raw materials usually referred to as green surfactants. This review addresses the dif-
ferent types, properties, and uses of surfactants, with a focus on green surfactants, and describes the
current scenario as well as the projections for the future market economy related to the production of
the different types of green surfactants marketed in the world.
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1. Introduction

The development of industrialisation in most economic markets
has received considerable support from the advances achieved
through the uninterrupted encouragement of science, with innova-
tive research projects and the proper use of technology over time
[1,2]. Investigations and explorations of natural resources, such
as fossil fuels, and the use of hydrocarbons, such as crude oil, have
had a positive impact on today’s economy and society through the
parallel advancement of science. However, pollutants produced by
these exploration activities and their harmful by-products, such as
heavy metals and inorganic substances or recalcitrant organic
compounds that end up in ecosystems, soils, rivers, and oceans,
are harmful to terrestrial and marine flora and fauna [3,4].

Petroleum is in demand in various industrial sectors and is part
of the world energy matrix due to its high energy value and its
importance for the chemical industry. The discovery of petroleum
has led to huge changes in the economic development of interna-
tional markets and the consequent improvement in technologies
in the modern world of the past century [5,6,7,8,9]. The detergent
industry deserves particular attention, as the raw materials of
these products are often derived from petroleum. Cleaning prod-
ucts have become indispensable, as hygiene has become important
to mankind worldwide and is used in homes, different work envi-
ronments and most industrial sectors.

The detergent market includes products for different applica-
tions such as cleaning products for homes, personal hygiene and
industrial cleaning of heavy oils. MarketsandMarketsTM data pre-
dicted that the global cleaning products industry will achieve a
growth rate of $ 46.8 billion in 2019, with estimates of $ 58.3 bil-
lion by 2024 and an annual growth rate of 4.5% [10]. This perspec-
tive is based on factors such as the growing awareness of
populations around the world on the issues of health, hygiene,
and cleanliness [11,12]. The detergent industry has also shown a
growing interest in developing environmentally friendly products,
which each year account for a larger share of the market, particu-
larly through the growth of biotech industries. This need for sus-
tainability is causing a shift in the detergent industry that is
potentially moving away from synthetic surfactants to replace
them with more sustainable alternatives. One way to achieve this
has been the potential utilization of green surfactants [5,8,9].

This paper offers a description of biotechnological advances
involving natural surfactants of microbial or plant origin and the
use of biodegradable synthetic surfactants, as well as a market
analysis of the biosurfactant industry and the expected changes
in the detergent market in the near future.

2. Detergents and soaps

Records of soaps and cleaning agents date back to ancient civil-
isations, with products made by Sumerians, Egyptians, Babyloni-
ans, Jews, and many other people. The first soaps and detergents,
which were made with clay, animal fat, plants that contained sapo-
nin, and essential oils, were used for hygienic and medicinal pur-
poses. Over time, products have been prepared for different uses,
with the addition of specific materials suitable for each application,
such as detergents for cleaning metal surfaces, degreasers, soap
powder, dish detergent and soap for personal hygiene. All these
products were born according to customer needs and have been
adapted to the context of each era [13,14,15].

Detergents began to be industrially produced during the Second
World War due to the scarcity of oils and fats for the manufacture
of soaps, and in the United States the consumption of detergents
surpassed that of soaps by 1953. Another example of product adap-
tation occurred in the mid Twentieth Century, when women were
finding jobs in the labour market and needed less time-consuming
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practices and more efficient products to do household chores.
Therefore, the focus of detergents has changed, with greater
emphasis on practicality, efficiency, and shorter application time.
As a result, detergents became a commercial success of chemistry
in the Twentieth Century and, together with soaps, they currently
account for 85% of the world’s consumption of cleaning materials.
Detergents clean in the same way as soaps (through fat solubilisa-
tion), but they can have both negative and positive charges [16].

Detergents are synthetic products derived from petroleum that
are produced by chemical means and leave residues that can pol-
lute rivers and other environments. Over the years, there has been
an increase in the use of biodegradable detergents, which do not
have these shortcomings and are made up of linear chain (un-
branched) organic compounds that allow organisms to degrade
them effectively. Therefore, the need to develop clean products
and technologies has led to the use of different techniques to opti-
mise production systems as well as the creation of tools aimed at
sustainability. However, this implementation continues to be a
challenge for the consumer goods industry [17].

Detergents and soaps reach numerous markets for use in homes
as well as commercial businesses and large companies. Different
versions of detergents are used for household cleaning, the food
industry and heavy cleaning in industrial settings [18].

3. Surfactants

Surfactants are tensioactive agents responsible for the cleaning
property of detergents and can be of a synthetic or natural origin
[8,19,20]. Surfactants are amphipathic compounds with hydrophi-
lic and hydrophobic portions that preferably partition at the inter-
face between liquid phases with different degrees of polarity, such
as oil/water or air/water interfaces [19], as illustrated in Fig. 1. This
characteristic reduces the surface tension of liquids through speci-
fic, preferential interactions at surfaces and interfaces due to the
presence of hydrophilic and hydrophobic portions in the same
molecule [21,22]. The non-polar portion of a surfactant is often a
hydrocarbon chain, whereas the polar portion (hydrophilic head
group) may be ionic (cationic or anionic), non-ionic, or amphoteric
[9]. The dynamics of the surfactant market are determined at a fun-
damental level by the cost, variety, and availability of hydrophobes
as well as the cost and complexity of attaching or creating hydro-
philic head groups [16].

The efficiency of a surfactant is determined by its ability to
reduce surface tension, which is the mechanical energy required
to create a unit new area of a liquid surface. Surfactants increase
the aqueous solubility of hydrophobic molecules, reducing the sur-
face/interfacial tension of air/water and oil/water surfaces/inter-
faces. Good surfactants can reduce the surface tension of water
from 72 mN/m to 35 mN/m and the interfacial tension (tension
between polar and non-polar liquids) of water and n-hexadecane
from 40 mN/m to 1 mN/m [23,24].

Surface tension decreases with the increase in surfactant con-
centration in the aqueous medium up to the formation of micelles,
which are aggregated structures with the hydrophilic portion posi-
tioned towards outside of the molecule and the hydrophobic por-
tion positioned towards the inside. The critical micelle
concentration (CMC) is the concentration that corresponds to the
point at which the surfactant achieves the lowest stable surface
tension, i.e., the minimum concentration of surfactant necessary
for the maximum reduction in the surface tension. Micelles are
usually formed when the CMC is reached [25].

3.1. Synthetic surfactants

Most surfactants of synthetic origin can be obtained from five
simple reactions, which are described in more detail below. Among



Fig. 1. Surfactant molecule at interface (A). When adsorbed, the surfactant is oriented at the oil/water interface so that its hydrophobic portion is directed towards the oil,
while the hydrophilic portion is directed towards the water (B).

Fig. 2. Reaction between dodecyl benzene and sulfur trioxide to form anionic
surfactant dodecylbenzenesulfonic acid (A). Reaction between dodecanol and sulfur
trioxide forming the surfactant hydrogen dodecyl sulfate (B). Generic ethoxylation
reaction between ethylene oxide and alcohol function (C). Generic esterification
reaction between a carboxylic acid and alcohol, forming ester and water (D).
Reaction of a secondary amine with halide, forming tertiary amine (E).
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these processes, basically two types of reactions are responsible for
more than half of the industrial production of surfactants, as most
of the surfactants produced are either anionic (negatively charged)
or non-ionic (neutral) [26]. The preference for these types of sur-
factants is due to their low toxicity and higher biodegradability
compared to cationic and amphoteric surfactants [27].

The two major classes of inputs used in the production of sur-
factants are petrochemical and renewable sources [3,28]. The
development of petrochemical processing, especially petroleum
cracking, resulting in unsaturated, short-chain hydrocarbons,
enabled the acquisition of hydrophobic structures of surfactant
molecules through polymerization of these alkenes, such as ethy-
lene or propylene, giving rise to surfactants with C9 to C18 carbon
chains. Although ethylene has been employed as a carbon chain
building block, its increased applicability in the industrial surfac-
tant production has resulted from the production of an intermedi-
ate or precursor known as ethylene oxide, which is a key
component of ethoxylation [29].

Surfactants of a natural origin are normally obtained from veg-
etable oils or animal fat, which appear in the form of triglycerides
[16]. Prior to petrochemical processing, much of the surfactant
industry was essentially directed to the saponification of oils and
fats, yielding soluble salts of fatty acids, which can be subjected
to the same reactions as their non-renewable counterparts. Such
reactions allow modifying the chemical and physical properties
of compounds to meet the needs of industrial segments working
with product formulation and development [16,29].

3.1.1. Main reactions for producing synthetic surfactants
The most common sulfonation reaction employed in the surfac-

tant industry occurs between an alkylbenzene and sulfur trioxide,
forming alkylbenzene sulfonates, as illustrated in Fig. 2A. The main
feature of this type of compounds is a direct bond between carbon
and sulfur. Due to their acidic characteristics, these types of surfac-
tants are normally neutralised as sodium salts as the final product.
Although it appears similar, the sulfation reaction has crucial dif-
ferences that lead to a less stable product, an ester of a mineral acid
(generally sulfuric acid), which is susceptible to hydrolysis if not
neutralized. The formation of these compounds occurs through a
reaction between aliphatic or aromatic alcohols and sulfur trioxide
through the carbon–oxygen bond (Fig. 2B). Although most reac-
tions occur with the use of sulfuric acid or its anhydrous form (sul-
fur trioxide), it is possible to obtain similar compounds using
phosphoric acid [16].

Ethoxylation is one of the most important reactions in indus-
tries that produce synthetic surfactants, given the possibility of
creating numerous tensioactive molecules with different hydro-
philic–lipophilic balances. This reaction consists in the creation
of ether groups whose chain terminations normally have alcohol
functions responsible for the hydrophilic portion of the molecule.
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The creation of these chains occurs by reaction between ethylene
oxide and an alcohol (Fig. 2C), which is generally a fatty alcohol
in the case of surfactants [30]. The surfactants produced in this
way, known as ethoxylated fatty alcohols, are very numerous, since
the length of their chain (described by the subscript ‘‘n” in Fig. 2C)
can vary from one to 10 carbon atoms. Ethoxylation reactions are
generally combined with other reactions described in the produc-
tion of synthetic surfactants [16].

Esterification is one of the simplest reactions employed in the
production of surfactants, whose practicality also lies in the wide
availability of reagents involved, such as fatty acids found in oils
and fats and a compound with alcoholic functions like glycerol or
one of the many types of sugars. In general, the esterification pro-
cess consists of the reaction between an acid (generally carboxylic
acid) and an alcohol, as illustrated in Fig. 2D. Monoglycerides are
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examples of surfactants produced by this type of reaction, which
are widely used in the food industry as emulsifying agents. Many
of these surfactants are classified as non-ionic and have low toxic-
ity and high biodegradability, especially if derived from renewable
sources. Therefore, the cosmetic and food industries often employ
them in commercial formulations [31].

Alkylation, which consists of the transfer of an alkyl group from
one structure of the molecule to another, can be performed in dif-
ferent ways. This reaction is mainly employed in the petroleum
industry to increase the size of the carbon chains of the molecules,
as mentioned above. However, some of these processes end up
producing branched types of carbon chains, which later proved
extremely harmful to the environment [16]; therefore, new types
of alkylation have been developed to create linear chains that could
be more easily degraded. The creation of longer carbon chains is
only one of the possible applications of alkylation in the production
of surfactants. Other classes of surfactants that benefit from this
type of reaction are cationic and amphoteric surfactants, as an
amine can react with a haloalkane to form a substituted alky-
lamine and the respective halogen acid (Fig. 2E) [32].

Although the hydrophilic head groups of surfactants usually fall
into one of the four categories described above, there are a number
of exotic hydrophobic ‘‘tail” groups, both synthetic and natural,
which confer unique surface-active properties to all classes of sur-
factants, such as achieving extraordinarily low air/water and inter-
facial tensions and improving consumer and industrial product
performance at surprisingly low usage levels [33]. Similarly, natu-
rally derived surfactants extracted from fermentation broths or
prepared by partial hydrolysis of natural extracts, the so-called
biosurfactants, have unique structural features that cause them
to deposit on chemically similar surfaces and modify the surface
energy even at very low concentrations [19,20]. According to Zoller
[16], the emergence of biotechnology in the 21st century will drive
the development of new surfactants and improve the commercial
feasibility of known surfactants from such processes, as we will
discuss in the following sections.

3.2. Green surfactants (biosurfactants)

Advances in sustainable technologies have driven the search for
natural, biodegradable compounds to remediate sites contami-
nated with hydrocarbons [5,34]. Environmental legislation and
governmental restrictions related to the use of toxic detergents
in products have also contributed to the development and use of
biosurfactants as possible alternatives to synthetic surfactants
[35]. Due to their compatibility with the environment and low tox-
icity as well as numerous other advantages, the replacement of
chemical surfactants with these natural compounds has been stud-
ied [36]. Indeed, biosurfactants or ‘‘green surfactants” are consid-
ered the next generation of industrial surfactants, as these
compounds meet most of the requirements for low environmental
impact industrial projects [8,35,37].

Although for a long time the concept of biosurfactant was
restricted only to microbial surfactants, the current classification
divides biosurfactants, based on their origin, into first-generation
and second-generation compounds [3,38]. First-generation biosur-
factants are those extracted and purified from plant-based and
animal-based raw materials or entirely produced from renewable
resources through chemical synthesis, including, for example,
saponins, sugar esters, alkyl polyglucosides and alkanolamines
[39]. Main examples of second-generation biosurfactants, which
are instead produced entirely from renewable resources or by a
biological process (biocatalysis or fermentation), are microbial sur-
factants such as glycolipids and lipopeptides [35].

The physicochemical properties and classification of biosurfac-
tants are based on their structural characteristics, with a
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hydrophobic portion consisting of a hydrocarbon chain or one or
more fatty acids, which can be saturated, unsaturated, hydroxy-
lated, or branched, linked to a hydrophilic portion, which can be
an ester, hydroxyl group, phosphate, carboxylate, carbohydrate,
amino acid, or peptide. Most biosurfactants have neutral or anio-
nic polar groups ranging from small fatty acids to large polymers
[40,41].

As mentioned above, biosurfactants are of paramount impor-
tance in the current scenario, as these compounds are considered
ecologically sound products due to their low (or absent) toxicity
and high biodegradability. Compared to their synthetic counter-
parts, biosurfactants are more efficient at reducing surface and
interfacial tensions and are tolerant to high temperatures as well
as extreme values of pH and ionic strength [34,42]. They are also
considered versatile compounds thanks to their broad applicability
in the petroleum, chemical, food, pharmaceutical, textile, and agri-
cultural industries [43,44,45,46].
3.2.1. Biosurfactants of microbial origin
Microbial surfactants are a structurally diverse group of com-

pounds ranging from simple molecules, such as phospholipids
and fatty acids, to glycolipids, lipopeptides and high molecular
weight polymers, such as lipopolysaccharides. The hydrophilic por-
tion can be composed of a carbohydrate, amino acid, cyclic peptide,
phosphate, carboxylic acid, or alcohol, while the hydrophobic one
can be composed of long-chain fatty acids, hydroxylated fatty
acids, or other structures [34,35]. Microbial surfactants are mainly
classified into two categories: low molecular weight tensioactive
agents (biosurfactants) and high molecular weight tensioactive
agents (bioemulsifiers) [47,48].

A variety of microorganisms, such as bacteria, yeasts, and fila-
mentous fungi, are capable of producing biosurfactants with differ-
ent molecular structures. The main species investigated for this
purpose are Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter
calcoaceticus, Candida lipolytica, and Starmerella (Candida) bombicola
[23,38,49].

Some microorganisms produce biosurfactants when grown on
different substrates. The use of different carbon sources alters
the structure of the biosurfactant produced and, consequently,
its emulsifying properties. These changes can be beneficial when
specific properties are desired for a given application [23,35].

Most biosurfactants are glycolipids, i.e. carbohydrates linked
to aliphatic or hydro-aliphatic long-chain fatty acids via an ester
bond, the best known of which are rhamnolipids and sophoroli-
pids. Rhamnolipids are extracellular metabolites produced
mainly by the opportunistic pathogenic bacterium P. aeruginosa
on a variety of substrates, which allow to achieve surface ten-
sion values around 29 mN/m [50,51,52]. Sophorolipids are pro-
duced by yeasts and consist of a dimeric carbohydrate called
sophorose linked to a long-chain hydroxylated fatty acid via a
glycosidic bond [53]. Although Starmerella (Candida) bombicola
stands out among the different types of yeast used to produce
these biosurfactants [54], a survey of the literature also identi-
fied the potential of other species of the genus Candida as gly-
colipid producers, such as Candida sphaerica [55], C. lipolytica
[56,57,58], Candida utilis [59,60], and Candida tropicalis
[61,62,63]. These biomolecules achieve surface tension values
of about 30 mN/m.

Among the lipopeptides, surfactin, which is mainly produced by
the bacterium B. subtilis is considered one of the most powerful
biosurfactants ever reported in literature, as it is capable of reduc-
ing the surface tension of water from 72 mN/m to 27 mN/m [64].
Table 1 displays the main classes of biosurfactants and their
respective microbial sources, while Fig. 3 illustrates the structure
of some of the main types of biosurfactants produced.



Table 2
Use and functions of phospholipids (adapted from Dorsa [89]).

Industry Products Functions

Food Baked goods Modification of baking properties,
emulsifier, antioxidant

Chocolate Reduction in viscosity, antioxidant
Margarine Emulsifier, waterproofing, antioxidant
Dietetic
products

Nutritive supplement

Solubles Humectant, dispersant, emulsifier
Substitute in
milk

Emulsifier, humectant, dispersant

Chemistry Insecticides Emulsifier, dispersant
Paints Dispersant, stabiliser

Textiles Fabrics Softener, lubricant
Leather Softening agent, penetrating oil

Cosmetics Hair Foam stabiliser, emollient
Skin Emulsifier, emollient, humectant

Pharmaceuticals Parental
nutrition

Emulsifier

Suppositories Attenuating agent
Creams,
lotions

Emulsifier

Table 1
Main classes/subclasses of microbial biosurfactants.

Class Subclass Microbial source Reference

Glycolipids Rhamnolipids Pseudomonas
aeruginosa

[65,66]

Pseudomonas cepacia [52]
Lysinibacillus
sphaerica

[67]

Trehalose
lipids

Rhodococcus sp. [68]
Nocardia farcinica [69]

Sophorolipids Candida bombicola [70,71]
Starmerella bombicola [72]
Candida sphaerica [55,73]
Candida magnolia [74]
Torulopsis
petrophilum

[74]

Torulopsis apicola [74]

Lipopeptides Surfactin Bacillus subtilis [75]
Kocuria marina [76]

Lichenysin Bacillus licheniformis [77]

Phospholipids Pseudomonas putida [78]
Thiobacillus
thiooxidans

[79]

Polymeric
biosurfactants

Rufisan Candida lipolytica [80,79]
Liposan
Emulsan Acinetobacter

calcoceticus
[79]

Biodispersan
Alasan
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3.2.2. Biosurfactants of plant origin
Plant-based surfactants are widely distributed throughout the

planet, being present in different parts of plants, such as the roots,
stems, seeds, fruit, and leaves. They are amphiphilic compounds
(hydrophobic and hydrophilic) that constitute a diverse group of
compounds characterized by a structure of phospholipids, proteins
or protein hydrolysates and saponins [81].

Phospholipids, such as phosphatidylcholine, phos-
phatidylethanolamine, and phosphatidylinositol, are surfactants
with structures comprising a molecule of phosphoric acid bound
to nitrogenous bases (primary or secondary amines) and alcohols.
Lecithin is a commercial blend containing various compounds of
this class, whose hydrophilic/hydrophobic nature causes it to be
classified as a natural emulsifier that also offers stabilizing, thick-
ening, and lubricating properties, with applications in the food,
Fig. 3. Chemical structure of most studied microbiological surfactants: (A) rham-
nolipid; (B) sophorolipid, and (C) surfactin.
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pharmaceutical, detergent, paint, and cosmetic industries
[82,83,84,85,86].

Lecithin is currently one of the most widely used phospholipids
in the world market thanks to its surfactant properties and wide
availability, as it is produced through the degumming of soybean,
rice, canola, cottonseed, palm, corn, and sunflower oils. It is esti-
mated that 95% of commercially available lecithin is produced
from soy [84,87].

The technological bases used in processes for the production of
lecithin are diverse and normally involve extraction and purifica-
tion with solvents or a membrane. Production methods have been
continually adapted over the past decades to meet the demands of
internal and external markets and it has become necessary to find
new low-cost sources of lecithin with a high degree of purity. Thus,
industries are employing used soybean oil, formerly previously
considered a waste product, as a rich, low-cost substrate to
increase production [88]. A detailed description of the industrial
use of different types of phospholipids and their qualitative charac-
teristics is shown in Table 2.

Proteins have larger molar masses and contain various quanti-
ties of hydrophilic and hydrophobic groups randomly distributed
throughout the structure. Proteins are emulsifiers that generate
more stable emulsions and foams and do not reduce surface ten-
sion as much. However, in protein hydrolysates their structure is
modified by chemical, thermal, or enzymatic treatments that alter
their composition and size and improve their functional properties,
such as emulsification and foaming. The main applications of pro-
teins and protein hydrolysates are in the food and cosmetic indus-
tries [86].

Saponins are part of a group of tensioactive compounds synthe-
sised through the acetate mevalonate pathway, which lead to a sig-
nificant reduction in surface tension and abundant foaming
[23,90,91]. Foam is one of the consequences of the amphiphilic
structure of saponins that ensures their surfactant property. They
are stable even in the presence of diluted mineral acids, unlike
common soaps [39,84,92]. These biosurfactants are classified,
based on the type of aglycone structure, as steroids or triterpenes,
which have a high molecular mass (known as sapogenins) bound
to long glycidic chains. Steroidal aglycones are less common than
triterpene aglycones, but both types may be present in the same
plant, as occurs in Avena sp. and Lysimachia paridiformis (Fig. 4)
[93,94,95,96].



Fig. 4. Representative structure of steroidal (A) and triterpenic (B) saponins.
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Saponins are found nearly exclusively in plants, although there
are reports of these compounds in some marine animals such as
starfish and sea cucumbers [82,97]. A variety of raw materials
can be used to obtain saponins, which are widely reported in the
literature. The main sources of steroidal saponins are distributed
among the families Agavaceae, Alliaceae, Asparagaceae, Costaceae,
Dioscoreaceae, Liliaceae, Ruscaceae, and Solanaceae as well as the
species Aspilia montevidensis (Asteraceae), Balanites aegyptiaca
(Balanitaceae), Trigonella foenum-graecum (Leguminosae), and
Tribulus terrestris (Zygophyllaceae). Triterpene saponins are found
in a number of dicotyledons [98,99].

Saponins have been widely studied and are available commer-
cially as natural surfactants [39,84]. Studies have shown that the
surfactant power of saponins from the genus Quillaja is similar to
that of the commercial tensioactive agent Tween 80, suggesting
that these compounds have the potential to replace commercial
surfactants in food and beverage formulations [97]. Other biologi-
cal effects have been attributed to saponins such as immunostim-
ulating, anticarcinogenic, antimicrobial, antifungal, anti-
inflammatory, antiviral, antiallergic, and antioxidant properties
[100,101]. Therefore, these compounds are widely used in the food,
pharmaceutical, cosmetic, agricultural, and environmental sectors,
mainly as foaming agents and to reduce surface tension [23].
Table 3 provides examples of plant species from which saponins
are obtained.

Other studies report the effect of saponins on the biodegrada-
tion of hydrocarbons, the removal of organic compounds, and the
hydrophobicity of cells resulting from the use of these plant-
Table 3
Distribution of saponins in some plant species and applications.

Industry Family Surfactant

Pharmaceutical Quillaja (Family
Quillajaceae)

Triterpenic
Saponin

Hedera (Family Araliaceae)
Aesculus (Family Sapindaceae)
Calendula officinalis (Family Asteraceae)

Triterpenic
Saponin

Camellia sinensis, Camellia oleifera (Family Theaceae) Triterpenic
Saponin

Cosmetics Calendula officinalis (Family Asteraceae)
Camellia japonica (Family Theaceae)
Argania spinosa (Family Sapotaceae)

Triterpenic
Saponin

Camellia oleifera,
Camellia sasanqua (Family Theaceae)

Triterpenic
Saponin

Agricultural Tribulus terrestris (Zygophyllaceae) Steroidal Sap
Clematis tangutica Triterpenic

Saponin
Camellia Oleifera (Family Theaceae) Triterpenic

Saponin

Food Quillaja saponaria (Family
Quillajaceae)

Triterpenic
Saponin

Solanum melongena (Family Solanaceae) Steroidal Sap
Avena (Family Poaceae) Triterpenic

Saponin
and
Steroidal Sap
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based surfactants [102,103]. Zhou et al. [104], comparing the abil-
ity of saponin from the pericarp of Sapindus mukorossi to mobilize
phenanthrene from contaminated soil compared to the synthetic
surfactant Tween 80, demonstrated that the plant-based surfactant
promoted a linear increase in the solubilisation of the pollutant.

Saponins are quite effective in the biodegradation of hydrocar-
bons, although their concentration does not have significant influ-
ence on cellular hydrophobicity [105]. Smułek et al. [106] reported
that the addition of S. mukorossi extract can be a useful tool to
enhance the microbial degradation of hydrocarbons by strains pre-
sent in contaminated soil environments. Davin et al. [103], who
investigated the potential of saponins as intensifiers of the biore-
mediation of soils contaminated by polycyclic aromatic hydrocar-
bons, observed that the saponin solution (4 g.L�1) led to an
increase in the removal of acenaphthylene, fluorene, phenan-
threne, anthracene, and pyrene compared to the control (water)
after 28 d.
3.2.3. Economy and global market of green surfactants
The growing interest of consumers in eco-friendly products is a

factor that has increasingly influenced the cleaning products mar-
ket. This demand has prompted the search for natural or derived
biodegradable raw materials with fewer preservatives and petro-
chemicals. Biosurfactants and plant-based compounds are exam-
ples of materials that have been gaining more prominence in
attempts to create or transform products, making them more eco-
logically sustainable [8].

Recent studies have shown that the global market believes in
new initiatives and is looking for biological replacements for syn-
thetic surfactants, whose sales reached approximately $ 1.74 bil-
lion in 2011. In 2013, the world production of biosurfactants was
estimated at approximately 344 thousand tonnes, and in 2016 bio-
surfactant sales surpassed $ 1.8 billion. Estimates for 2018 were $
2.21 billion and approximately 442 thousand tonnes, with projec-
tions for 2020 of $ 2.31 billion and annual production of about 462
thousand tonnes. The expected annual growth rate for this market
was 4.3% between 2014 and 2020 [5,127,128]. Sales of biosurfac-
tants are likely to reach 2.6 billion in 2023, with sophorolipids
Applications Reference

Adjuvants in oral and injectable vaccines [91]

Phytotherapy [107,108,109]

Anti-protozoan [97,110]

Lipstick and shampoos [98,111,112]

Antioxidant [113,114,115]

onin Additives in animal feed (pet, bird and swine lines) [116,117]
Antifungal [92,118,119]

Insecticide [120,121,122,123]

Dentifrices and beverages (sodas, beer, sauces) [99,124]

onin Fermented vegetables and sauces [94,125]

onin

Sauces and beverages [126]
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and rhamnolipids expected to achieve 8% in sales growth. Another
market research predicted that the global biosurfactant market
will exceed $ 5.52 billion by 2022, with a Compound Annual
Growth Rate (CAGR) of 5.6% from 2017 to 2022 [129].

However, one of the biggest obstacles to the widespread use of
biosurfactants in industries is their high cost. While the average
price of synthetic surfactants, such as sodium dodecyl sulfate and
plant-based amino acid surfactants, is one to four dollars per kilo-
gram, the average price of sophorolipids, which are the most viable
microbial biosurfactants, is $ 34 per kilogram. The higher price of a
biosurfactant is due to production factors, such as lower yields,
longer times, higher downstream processing costs, energy require-
ments for sterilisation, and maintenance of biological culture,
among others [130]. Studies, however, have been seeking to reduce
costs using agro-industrial waste products as substrate for fermen-
tation processes, increasing yields and reducing downstream pro-
cessing costs [41,131,132]. Indeed, the choice of a low-cost
substrate is important for the economy of the process, as the sub-
strate represents for up to 50% of the final manufacturing cost. The
argument of using industrial wastes, however, cannot be limited to
the cost of the raw materials alone, since the availability, stability
and variability of each component are also critical factors to con-
sider. Moreover, the amount to be used, form (solid or liquid), par-
ticle size, texture, packaging, transportation, storage, stability and
purity all play a fundamental role in final selection and formulation
of any substrate for biosurfactant production [41].

In recent years, various strategies have been used to establish
biosurfactants as economical commercial compounds [41].
Response Surface Methodology (RSM) and statistical methods have
been applied to optimize the composition of culture media for bio-
surfactant production. The use of nanoparticles (NPs) is another
upcoming approach for enhanced biosurfactant production. Bio-
surfactant production is significantly affected by many metal salts,
especially of Fe. Hence, an upcoming potential strategy for
enhanced biosurfactant production is the use of low concentra-
tions of Fe-NPs. Coproduction of biosurfactants with another eco-
nomically important product in a single bioprocess would allow
the entire production chain to become more profitable. One such
compound used extensively in various industries is the enzyme
lipase. Another strategy that could play an important role in study-
ing and enhancing the large-scale yield of biosurfactants is the use
of microbioreactors for optimization studies [133]. Biosurfactants
Fig. 5. Global positioning in production of
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have a variety of applications, which differ in the different purity
required as well as the specific structure of the compound used.
Hence, utilization of raw product without expensive purification
processes would greatly contribute to lowering the overall produc-
tion cost. This would be particularly profitable in case of environ-
mental applications, where the use of the crude product would
be equally effective [41].

Other compounds, such as chemical surfactants derived from
vegetable oils and glycerol, are also sustainable alternatives con-
sidered by industries when creating formulations and products to
satisfy consumers concerned with environmental sustainability
[134,135,136]. Once a product is established in the market, it is
possible to focus on strategies to increase profit through marketing
strategies, improving consumer contact with the product, or
through the appeal of safety and innovation with the proposal of
a sustainable detergent. The success of a new environmentally
friendly product is linked to market planning and the recognition
that natural resources are renewable.

Fig. 5 illustrates the representativeness of the expected con-
sumption of some types of synthetic and natural surfactants
between 2012 and 2020. Some regions, such as China, Africa,
and Latin America, contribute to this estimate. Analysing Brazil,
the estimated sales were $ 2.1 billion for the year 2018 [137].
However, the European market was the largest consumer of bio-
surfactants, reaching 178.9 thousand tonnes in 2013, which repre-
sented more than 50% of global consumption. North America was
the second largest consumer of biosurfactants in the same year,
accounting for more than a quarter of the global market. The
Asia-Pacific block had a relatively small consumer market in
2013, although significant projections were indicated for this mar-
ket up to the end of 2019 due to the presence of large industries in
the region [5]. The main biosurfactant-producing companies in the
world market are Jeneil Biotechnology, Ecover, Soliance, Saraya,
MG Intobio, and AGAE Technologies (Table 5), which together
share the target markets of North America, Europe, and Asia-
Pacific [138].

The study of the production costs of a biotechnological product
is fundamental for the development of an economically sustainable
fermentation process, which allows the estimation of global profit
margins and ensures the continuity of the product in the market.
Initial cost analyses are critical to optimizing production opera-
tions and minimizing expenses [9].
synthetic surfactants over time [137].



Table 4
Industrial applications of biosurfactants.

Industries Properties References

Detergents Emulsifiers Demulsifiers Wetting
agents

Dispersants Foaming
agents

Corrosion
inhibition
agents

Antistatic,
Antiadhesive
agents

Antimicrobial
agents

Petroleum � � � � � � � [3,8,9,141]
Industrial cleaning � � � � � � [8,142]
Food � � � � � [25]
Cosmetic � � � � � � [23,143,144]
Pharmaceutical � � � � [145,146]
Medical � � � [147]
Agriculture � � � � [35,148]
Mining (metals),

construction
� � � [20,142]

Nanotechnology � � � � [3]

Table 5
Green surfactant-producing companies with different industrial applications.

Company site Tensioactive Application Reference

Fraunhofer IGB – Germany https://www.igb.fraunhofer.de/ Glycolipid and cellobiose
lipid biosurfactants

Cleaning products, dishwashing liquids,
pharmaceutical products (bioactive properties)

[3,150]

AGAE Technologies – USA https://www.agaetech.com/ Rhamnolipid
biosurfactants

Pharmaceuticals, cosmetics, personal care
products, bioremediation (in situ and ex situ),
enhanced oil recovery (EOR)

[3,150]

TeeGene Biotech – UK http://www.teegene.co.uk/ Rhamnolipids and
lipopeptides

Pharmaceutical products, cosmetics,
antimicrobials and anticarcinogen ingredients

[3,150]

Jeneil Biosurfactant – USA http://www.jeneilbiotech.com/ Rhamnolipid
biosurfactants

Cleaning and oil recovery from storage tanks,
EOR

[3,150]

Allied Carbon Solutions (ACS)
Ltd – Japan

https://www.allied-c-s.co.jp/english-
site

Sophorolipids Agricultural products, ecological research [150]

Rhamnolipid Companies – USA http://rhamnolipid.com/ Rhamnolipid
biosurfactants

Agricultura, cosmetics, EOR, bioremediation,
food products, pharmaceutical products

[3,150]

Saraya Co. Ltd. – Japan http://worldwide.saraya.com/ Sophorolipid
biosurfactants

Cleaning products, hygiene products [3,150]

BioFuture – Ireland https://biofuture.ie/ Rhamnolipid
biosurfactants

Washing of fuel tanks [3,150]

TensioGreen – USA http://www.tensiogreen.com/index.
php

Rhamnolipid
biosurfactants

Petroleum industry, cleaning, and oil recovery
from storage tanks, EOR

[150]

EcoChem Organics Company –
Canada

http://www.biochemica.co.uk/ Rhamnolipid
biosurfactants

Dispersant of insoluble hydrocarbons in water [150]

Logos Technologies – USA https://www.natsurfact.com/ Rhamnolipid
biosurfactants

Petroleum industry, cleaning, and oil recovery
from storage tanks, EOR

[3,150]

Synthezyme – USA http://www.synthezyme.com/index.
html

Sophorolipid
biosurfactants

Emulsification of crude oil, petroleum, and gas [3,150]

EnzymeTechnologies – USA Bacterial biosurfactant
(unknown)

Oil removal; oil recovery and processing, EOR [3,150]

Ecover Eco-Surfactant – Belgium https://www.ecover.com/ ACS-Sophor/Sophorolipid Oil recovery and processing, EOR; biofilm
removing agent, biofilm growth inhibitor;
detergent action

[3,8]

Cognis (BASF) – Germany, USA http://saifuusa.com/portfolio-item/
mildsurfactants/

Green surfactant alkyl
polyglucoside (APG) –
0810-65

Shampoo, body wash; facial wash; liquid hand
soap; moistened towelettes, laundry, hard
surface cleaning

[3]

Cognis (BASF) – Germany, USA http://saifuusa.com/portfolio-item/
mildsurfactants/

Green surfactant alkyl
polyglucoside (APG) –
0810H-70N

Industrial and institutional surface cleaning [3]

Cognis (BASF) – Germany, USA http://saifuusa.com/portfolio-item/
mildsurfactants/

Green surfactant alkyl
polyglucoside (APG) –
0810-70DK

Hard surface cleaning [3]

Paradigm Biomedical Inc – USA http://www.akama.com/company/
Paradigm_Biomedical_Inc_
a7bcb2680775.html

Rhamnolipid biosurfactant Pharmaceutical products [3]

Kaneka Corporation – Japan https://www.kaneka.co.jp/en/
business/qualityoflife/nbd_002.html

Sodium surfactin Cosmetics –

Sabo S.p.A. – Italy www.sabo.com/sabo/home.php. Sodium surfactin Cosmetics –
Groupe Soliance – France http://www.soliance.com/dtproduit.

php?id = 42
Sopholiance S
(Sophorolipid)

Cosmetics and pharmaceuticals [3]
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The vast structural diversity that characterizes biosurfactants
and the wide range of properties exhibited by this group of
molecules have increasingly attracted the scientific interest of
researchers and companies, which has led to an increase in the
35
number of patent applications [138]. Most of the patents relating
to biosurfactants concern acquisition processes involving microor-
ganisms, mainly belonging to the genera Pseudomonas, Bacillus,
Acinetobacter, and Candida, which include an infinity of industrial
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applications [139,140]. These appear to be effective strategies for
overcoming the competitiveness of synthetic products. Therefore,
efforts towards the development of biosurfactant production tech-
nologies will enable access to innovative products in a field that
has been little explored in one country [5].

The market for biosurfactants in Brazil is quite promising, given
the existence of companies specialized in the production of these
products. Although the biosurfactant industry has shown notable
growth in recent decades, the large-scale production of these bio-
molecules continues to pose an economic challenge mainly due to
the huge differences between the necessary financial investment
and industrial production. Therefore, for biosurfactant production
to become truly viable, the main criteria that should be considered
are the type of raw materials, type of microorganisms, proper
design of industrial bioreactors, target market, purification pro-
cesses, properties of the biosurfactant, production conditions, and
time required for adequate fermentation and achievable produc-
tion yields, as discussed above [19].

The target market is also of fundamental importance for the
installation of an industrial biosurfactant production project. For
cosmetic, medicinal and food products, production is more viable
on a small scale, as the methods required to separate the com-
pounds are not cheap on a large scale. Thus, the use of raw fermen-
tation broths could be a viable solution, especially if the
application is in an environmental context, as biosurfactants in
such cases do not have to be pure and can be synthesized using
a blend of inexpensive carbon sources, which would enable the
creation of an economically and environmentally sustainable tech-
nology for bioremediation processes [19].
3.2.4. Green surfactants manufacturing industries
Biosurfactants, besides being biodegradable, offer the advan-

tages of a low environmental impact and the possibility of in situ
production using renewable and cheap substrates. These biomole-
cules have many interesting properties that make them suitable for
application in various industrial processes, such as emulsification
and de-emulsification activities and dispersion, wetting and foam-
ing capacities. They have also been found to possess several prop-
erties of therapeutic and biomedical importance [19,20,23,25].
Various applications for biosurfactants in industry are shown in
Table 4.

Manufacturing industries are staking money on biosurfactants
due to their potential and prospective characteristics and proper-
ties. With the use of microorganisms with high production capac-
ities and inexpensive renewable substrates as raw material,
production has been improved on an industrial scale. Regardless
of the different composition and applications that biosurfactants
have shown, the large-scale industrial synthesis of these com-
pounds is the main goal today [3,149]. In this scenario, the biosur-
factant market is expected to overtake the synthetic surfactant
market in the future [5,9]. Table 5 lists some of the manufacturers
of several types of biodegradable surfactants in different parts of
the world and their products with potential use in different sectors.

The production of biotech products has currently become very
attractive and promising in Brazil. According to data from Asso-
ciação Brasileira das Empresas de Biotecnologia (ABRABI, Brazilian
Association of Biotechnology Companies), the annual revenue of
the biotechnology sector in the country is estimated to be between
R$ 5.4 and R$ 9 billion, with a percentage of the gross domestic
product of about 2.8% [151].
4. Conclusions

Global concern with sustainability has become a competitive
edge for industries applying these concepts in their production
36
processes, as the concern with the planet’s environmental future
has become an emerging trend among companies and consumers.
One of the notable advantages of companies in the biotech sector
over competitors is the biodegradable, non-toxic nature of these
products and the potential for using industrial waste products or
sustainably produced substrate as part of their manufacturing pro-
cess. Another important point that needs to be considered is that
the long-term global supply of fossil fuel-derived resources is
expected to decline, and price of petroleum to increase, as will
short-term market volatility. Furthermore, fossil fuel supply
depends upon stability in the socio-political scenario, which is
never guaranteed. In this scenario, the interest in green surfactants
will increase in the years to come, and the biosurfactant market is
expected to overtake the synthetic surfactant market in the long
term.
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