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ABSTRACT

In the context of Industry 4.0, Condition Based Maintenance
(CBM) for complex systems is essential in order to identify
failures and mitigate them. After the identification of a sensor
set that guarantees the system monitoring, three main prob-
lems must be addressed for effective CBM: i) collection of the
right data; ii) choice of the optimal technique to identify the
specific data-set; iii) correct classification of the results. The
solutions currently used are typically data driven and, there-
fore, the results are variable, as it is sometimes challenging to
identify a pattern for all specific failures. This paper presents
a solution that combines a data driven approach with an in-
depth knowledge of the mechanical system’s behaviour. The
choice of the right sensor set is calculated with the aid of the
software MADe (Maintenance Aware Design environment),
whereas the optimal data-set identification technique is pur-
sued with a second tool called Syndrome Diagnostics. Af-
ter an overview of such methodology, this work also presents
RSGWPT (Redundant Second Generation Wavelet Packaged
Transform) analysis to show different possible outcomes de-
pending on the available sensor data and to tailor a detection
technique to a given data set. Supervised and unsupervised
learning techniques are tested to obtain either an anomaly
detection or a failure identification depending on the chosen
sensor set. By using the described method, it is possible to
identify potential failures in the system with sufficient notice
to implement the optimal maintenance actions.

Keywords: Failure identification, Condition Based Mainte-
nance, RSGWPT, Unsupervised learning, Supervised learn-
ing.
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1. INTRODUCTION

The evolution of advanced sensor technology, computer sci-
ence, Big Data, Artificial Intelligence (AI), Internet of Things
(IOT) has laid the foundations for a new industrial revolution,
namely Industry 4.0 (Yan, Meng, Lu, & Li, 2017). One of the
Industry 4.0 goals is to truly enable Smart Factories, also tak-
ing into account maintenance issues starting from the early
design stages. An intelligent/smart factory operates using
interconnected advanced sensors. Thus, Big Data process-
ing technology has became essential to build an integrated
environment in which the production process can be con-
trolled/managed in a more efficient way (Kang et al., 2016).
Big data has prevailed in recent years with its potential to as-
certain valued insights for enhanced decision-making, and it
has become a hot spot in both academic research and practi-
cal applications (Yi, Liu, Liu, & Jin, 2014). In this scenario,
reliability and safety are regarded among the most crucial
factors of the intelligent system. Industry Big Data analyt-
ics will have great benefits, such as improving system per-
formance, achieving near zero downtime, and ensuring pre-
dictive maintenance (Yan et al., 2017). Focusing on the lat-
ter aspect, failure identification or anomaly detection are es-
sentials to perform Condition Based Maintenance (CBM) on
industrial systems. Typically, many machine learning tech-
niques are associated with a specific data-set in order to test
the functioning of the different algorithms based on specific
cases. However, there are several possible mathematical and
engineering errors that often compromise the functioning of
these algorithms and, consequently, the failure identification.
In order to possibly improve the current practice, this paper
proposes a method which aims at combining a system be-
havioural model with machine learning techniques, trying, as
far as possible, to improve failure identification. The meth-
ods leverages on the use of two software tools named MADe
(Maintenance Aware Design environment) and Syndrome Di-
agnostics (currently in development stage), whose main fea-
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tures are recalled hereafter along with some failure identi-
fication techniques implemented within the above mentioned
tools. The rest of the paper is organized as follows: Sec. 2 de-
scribes the proposed methodology; Sec. 3 introduces the cre-
ation of a system model used to select the ideal sensor and to
simulate the propagation of failures through the system; Sec.
4 describes the two signal processing techniques used in this
paper, namely Redundant Second Generation Wavelet Trans-
form (RSGWPT) and fault frequency calculation; Sec. 5 de-
scribes the clustering techniques; Sec. 6 describes the link
between the causal model and the numerical results, whereas
Sec. 7 explains the failure identification; Sec. 8 present a case
study: finally, Sec. 9 draws our conclusions.

2. THE PROPOSED METHODOLOGY

The software MADe - Maintenance aware design environ-
ment (Hess, Stecki, & Clark, 2008) is a versatile tool that
can be used for different purposes. It enables better decisions
about the selection of critical equipment and aids in reducing
risks via analysis capabilities that consider technical, opera-
tional and economic requirements of system’s operators and
maintainers. As said, building upon MADe existing capabili-
ties, the aim of this paper is to improve failure identification
techniques by combing MADe with a new tool named Syn-
drome diagnostic, in order to enable accurate, precise and re-
liable CBM. The main aspect that is discussed in this report
is the failure identification process inside a system, a compo-
nent or a part. The procedure is illustrated in Fig. 1. The
three groups represent the main steps to follow in order to
obtain the correct information from the system, leading to a
complete failure identification, namely:

• Failure coverage aware data collection;
• Signal processing;
• Machine learning classification.

During the first phase, the mechanical system is modelled us-
ing MADe. Then, components failures are simulated in order
to study their propagation trough the system. Using this in-
formation combined with the PHM analysis in MADe (that
will be explained in section 3.2), it is possible to evaluate the
ideal sensor set that is essential to collect the right data. In
the second phase, explained in section 3.3, two different sig-
nal processing techniques are used depending on the data set.
The second one (bottom block in Figure 1) is a classical fault
frequency calculation that leads to an immediate failure iden-
tification. The first one (upper block) is based on a wavelet
transformation (explained in section 4.2.7) followed by a sta-
tistical features extraction. Those features are then used in
the third group to classify the signal using different machine
learning techniques. When a single signal has been classified,
it is fed to the tool named Syndrome Diagnostic that has the
ability to correlate a pattern of signal variation to a specific
failure (see section 6).

3. FAILURE COVERAGE AWARE DATA COLLECTION

The first section of this procedure is the Failure Coverage
aware Data Collection, which is, in turn, divided into: i)
MADe model creation and failure modeling; ii) PHM Analy-
sis; iii) sensor set selection and Data acquisition.

3.1. MADe Model of system and system’s failures

It is important to emphasize the usefulness of a causal model
within a fault identification procedure, namely the fundamen-
tal reason leading to the use of MADe. The main objective,
in this phase, is to create a Functional Block Diagram (FBD)
of a system, in order to investigate flow perturbations and ob-
serving the system responses. MADe has a hierarchical struc-
ture; the three main types of blocks that can be incorporated
in the system model are subsystems, components and parts
(Hess et al., 2008). Each model comprises an input and an
output block to display the flows coming in and out of the
system. Inside each subsystem, there are components and/or
parts and inside of each components could be parts or other
components (although not mandatory). Components are con-
nected together using flows and efforts connections related to
the functions that have been performed by them. For each
component, it is essential to define a function and also the in-
flows and outflows that are passing through.There are three
types of flows, namely Energy, Materials, Signal. Figure 2
shows the main steps to create a MADe system model, which
can be built following two different methods: FCM (Fuzzy
Cognitive Mapping) model or Bond modelling. As for FCM,
it can be used to model the functional behaviour of a complex
system. FCM is suitable to model signal and process-based
systems and it can be used to generate simulation response
graphs and fault propagation tables to qualitatively analyse
(and possibly mitigate) the system’s criticalities. To better
understand the functioning of MADe models, it is essential
to show an example to analyse the relevant aspects for this
failure identification process. Figure 3 shows the model of
a vehicle system, that is used during MADe training, where
several components are interconnected. Such model allows to
simulate a system failure, although it does not provide quan-
titative data about the systems dynamic behaviour. As for
the Bond graph technique, it is a domain-independent graphi-
cal representation of the system dynamic (D. Karnopp, 1968)
and it is required to quantitatively assess the system response
(thus, the knowledge of those coefficients employed in the
model become essential), hence building up a so-called dy-
namic equivalent. Following from the system models, Failure
diagrams can be built, which are a useful way to define all
possible system failures. Failure diagrams look at the causes
and progression of failures, focusing on their physical aspect.
Figure 4 shows an example of an air filter failure diagram:
green diamonds represent the failure concept mechanisms,
blue triangles represent the causes, red circles represent the
effects that are connected to the component outflow.
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Figure 1. Conceputal steps of the proposed methodology

Figure 2. MADe modelling phases

3.2. PHM analysis

Once the system has been modelled, it is possible to perform
the Prognostic Health Management (PHM) Analysis to gen-
erate the so-called propagation table. The main objective is
to perform the following:

• Analysing a Functional Block Diagram (FBD) system to
determine sensor test points;

• Modify existing sensor arrangements based on user knowl-
edge or trade-offs;

• Optimising sensor coverage using sensor sets;
• Enter/customise sensor information into a Sensor Library.

The PHM analysis provides a sensor set selection technique
adjusted on the system needs (Rudov-Clark, Ryan, Stecki,
Stecki, & Hess, 2010). For example, by the choice of the
system coverage, the user can adjust the percentage of cover-
age that is needed and calculate the number and the type of
sensors required. The so-called Propagation Table (Shanna,
Ryan, Stecki, & Stecki, 2009) is used for the analysis, and it
is derived directly from the system model. It is one of two
sets of data interrogated for sensor set analysis, the other be-
ing the observed failure responses that each sensor in the set
may detect. The table consists of:

• Initiating causes of failures listed in the left-most columns
(Item, Flow Property, Failure);

• Item Responses for remaining columns across the table;
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Figure 3. System model of a vehicle system

Figure 4. Failure diagram

• The healthy system state (first row), which represents the
system at a nominal state, included in the propagation ta-
ble, to ensure that a sensor set can observe a failure occur-
rence.

The result of the PHM analysis is a list of possible sensor sets
that are as close as possible to the characteristics chosen by
the user.

3.3. Sensor set selection

The choice of the sensor set that is more suitable for the anal-
ysed system is guided by the results proposed by MADe PHM
analysis, that provides a list of combinations of sensor sets
taking into account the parameters chosen by the user. The
most important parameters that needs to be considered are:
i) coverage; ii) cost; iii) ambiguities groups. The first two
usually direct the choice but it is important to consider the
ambiguity groups, a group of failures that cannot be distin-
guished with the sensor set under examination. This aspect
is essential for the uniqueness of the pattern linked to a spe-
cific failure, so it is crucial that all the critical failures are not
contained in an ambiguity group if they need to be detected
separately. After those considerations, a sensor set needs to
be selected and installed on the system in order to start the
data acquisition.

4. SIGNAL PROCESSING

The second section of the proposed methodology is related to
data processing, which is carried out using two techniques,
depending on the given Data set, namely: i) fault frequency
calculation; ii) RSGWPT. The latter approach consists in a
wavelet transform of the signal to extract features from the
wavelet coefficients. Those features will then be used to per-
form a machine learning classification of the given points.
The first approach is more classical and it is based on his-
torical and geometrical information to calculate the fault fre-
quency.

4.1. Fault frequency calculation

In vibration monitoring, Fault Frequency Calculation is es-
sential when direct failure identification of a critical com-
ponent is performed. Unfortunately, every component has
a different way to calculate the fault frequencies associated
to it. An example of one of the most common component
considered in vibration monitoring for mechanical systems is
listed in Tab. 1, summarizing different faults frequencies of
a rolling bearing (Saruhan H., 2014). Symbols are defined
as follows: z is the number of balls, ne and ni are the an-
gular velocities of outer and inner rings respectively, α is the
ball/roller contact angle, λ is the diameter ratio.

4.2. RSGWPT

4.2.1. Fourier analysis vs wavelet analysis

Traditional vibration signal analysis has generally relied upon
the spectrum analysis via the Fourier Transform (FT). Fourier
analysis transforms a signal from a time-based domain to a
frequency-based one, thus generating the spectrum that in-
cludes all of the signal’s constituent frequencies (fundamental
and its harmonics) (Al-Badour, Sunar, & Cheded, 2011). Fu-

Table 1. Bearing fault Frequency

Inner ring fault fi =
z|ne−ni|

120 (1 + λcosα)

Outer ring fault fe =
z|ne−ni|

120 (1− λcosα)

Balls fault fv =
z|ne−ni|

120
1−(λcosα)2

λ
Cage fault fp =

ne+ni

120 + ne−ni

120 λcosα
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Figure 5. Example of the so-called Propagation table, generated by MADe

elled by its huge success in processing stationary signals, un-
fortunately FT technique does not provide promising results
on non stationary signals. In particular, the FT main problem
is that it lacks time localization. A solution can be a time-
frequency representation like Short-time Fourier Transform
(STFT), although its disadvantage is that it provides constant
resolution for all frequencies since it uses the same window
for the analysis of the entire signal (Loutas & Kostopoulos,
2012). The Wavelet Transform (WT) is actually a time-scale
method as it transforms a function from the time domain to
the time-scale domain (scale is indirectly associated with fre-
quency). The WT is also a reversible transform which makes
the reconstruction or evaluation of certain signal components
possible. WT became very popular in condition monitor-
ing of complex signals (transient and/or non-stationary) for
two specific characteristics: de-noising and feature extrac-
tion. Feature extraction provides the input to an expert system
towards autonomic health degradation monitoring and data-
driven prognostics.

4.2.2. Mother wavelet

To perform the classical Wavelet Transforms, namely Con-
tinuous Wavelet Transform, Discrete Wavelet Transform or
Wavelet Packaged Transform, it is essential to select the cor-
rect mother wavelet. Different types of wavelets have differ-
ent time–frequency structures and thus it is always an issue of
how to choose the best wavelet function for extracting fault
features from a given signal. An “inappropriate” wavelet will
reduce the accuracy of the fault detection. The choice is often
challenging and it can affect the results. Some decision tech-
niques are provided in the reference (Wai Keng, Leong, Hee,
& Abdelrhman, 2013).

4.2.3. Continuous Wavelet Transform (CWT)

A wavelet is a wave-like oscillation that instead of oscillat-
ing forever like harmonic waves, drops rather quickly to zero.
The continuous wavelet transform breaks up a continuous sig-

nal into shifted and scaled versions of the mother wavelet ψ
(Loutas & Kostopoulos, 2012).

4.2.4. Discrete Wavelet Transform (DWT)

The DWT is a discrete form of the CWT. It adopts the dyadic
scale and translation to reduce computation time (Loutas &
Kostopoulos, 2012). The curves of scales function can be
modified by the scale parameter which is the inverse ratio to
frequency. The DWT analysis of a signal is calculated by
passing through a series of filters. The filters include both
high-pass filters and low-pass filters. The high-pass filters
analyse the high frequency bands (AJ ), whereas the low-pass
filters analyse the low frequency band (DJ).AJ andDJ repre-
sent the approximation and the detail signals of the J th level.
The decomposition is repeated to increase the resolution of
the frequency domain and the transient signals can be used to
detect the fault in the DWT domain. The number of decom-
position levels N is related to the sampling frequency of the
signal being analysed (fs). In order to get an approximation
signal containing frequencies below frequency f , the number
of decomposition levels that have to be considered is given by
(M. Steinbuch, 2005):

N = int

(
log( fsf )

log(2)

)
(1)

4.2.5. Wavelet Packaged Transform (WPT)

The WPT simultaneously decomposes approximations and
details whilst the DWT only breaks up the approximations.
In the first resolution, j = 1, the signal is decomposed into
two packets: A and D. Camp A represents the lower fre-
quency component of the signal, whilst camp D represents
the higher frequency component of the signal. Then, at the
second resolution, j = 2, each packet is decomposed again
into two sub-camps forming AA, AD, DA, DD and so on
(Loutas & Kostopoulos, 2012). The wavelet packets con-
tain the information of the signal in different time windows
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Figure 6. Wavelet packaged transform decomposition
(Loutas & Kostopoulos, 2012)

Figure 7. Lifting scheme (Liu et al., 2017)

at different resolutions. Each camp corresponds to a spe-
cific frequency band. Both WPT and DWT operate within
the framework of multi-resolution analysis (MRA). Unlike
DWT though, WPT has the same frequency bandwidth in ev-
ery level. Figure 6 depicts the WPT decomposition tree with
A and D corresponding to approximation and detail respec-
tively. The WPT can thus be seen as a generalization of the
WT and the wavelet packet function is also a time–scale func-
tion (Richard L. Lemaster, 2012).

4.2.6. Second Generation Wavelet Transform (SGWT)

SGWT is a new wavelet construction method using the lift-
ing scheme. The main feature of the SGWT is that it pro-
vides an entirely spatial domain interpretation of the trans-
form as opposed to the traditional frequency domain based
constructions (Tong et al., 2017). Compared with the clas-
sical wavelet transform, the lifting scheme possesses several
advantages including the possibility of adaptive design, in-
place calculations, irregular samples and integers-to-integers
wavelet transforms. The lifting scheme provides high flexi-
bility, which can be designed according to the properties of
the given signal and ensures that the resulting transform is
always invertible. The multi-resolution analysis property is
preserved, and the implementation is faster than the first gen-
eration wavelet transforms.
Figure 7 shows the decomposition of the SGWT that con-
sists of three main steps: split, predict, and update. In the
split step, an approximate signal at level l is split into even
and odd samples. The even samples are passed to the predict
function and they are subtracted from the odd samples then
the result is sent to the update function and is added to the

even part. The construction of the SGWPT is presented in
Figure 8 (Tong et al., 2017).

4.2.7. Redundant Second Generation Wavelet Packaged
Transform (RSGWPT)

In the redundant lifting scheme, the splitting step is discarded.
Assuming P l and U l represent the prediction and update op-
erators of the redundant lifting scheme at level l, the coeffi-
cients of Pl and Ul are obtained by padding prediction co-
efficients pn and update coefficients un of initial operator P
and U with zeroes (Hongkai, Zhengjia, Chendong, & Peng,
2006).

pli = p00, 0, ... 0︸ ︷︷ ︸
2l−1

, p01, 0, ... 0︸ ︷︷ ︸
2l−1

, p02, ..., p
0
N−2, 0, ... 0︸ ︷︷ ︸

2l−1

, p0N−1 (2)

ulj = u00, 0, ... 0︸ ︷︷ ︸
2l−1

, u01, 0, ... 0︸ ︷︷ ︸
2l−1

, u02, ..., u
0
N−2, 0, ... 0︸ ︷︷ ︸

2l−1

, u0N−1

(3)
The redundant lifting scheme possesses time invariant prop-
erty and keeps the signal information. The redundant decom-
position results of an approximation signal sl at level l with
the lifting scheme are expressed by the following equations:

dl+1 = sl − P lsl (4)

sl+1 = sl − U ldl+1 (5)

where dl+1 and sl+1 are detail signal and approximation sig-
nal at level l + 1. The reconstruction procedure of the redun-
dant lifting scheme is expressed as:

sl =
1

2

(
sl+1 − U ldl+1 + dl+1 + P l

(
sl+1 − U ldl+1

))
(6)

The forward and inverse transforms of the redundant lifting
scheme are shown in Figure 9. RSGWPT is easy to be con-
structed starting from the redundant lifting scheme and SG-
WPT. The prediction step and update step of RSGWPT at
level l are performed by using Pl and Ul, which are expressed
as follows:

sl,l = s(l−1),1 − P l
(
s(l−1),1

)
sl,2 = s(l−1),1 + U l (sl,1)

...
sl,(2l−1) = s(l−1),2l−1 − P l

(
s(l−1),2l−1

)
sl,2l = s(l−1),2l−1 + U l

(
sl,(2l−1)

) (7)

The reconstruction stage of RSGWPT can be obtained from
its decomposition stage and expressed by following equations
(Liu et al., 2017):

s(l−1),2l−1 = 1
2

(
sl,2 − U l (sl,1)

)
+ sl,(2l−1)

+P l
(
sl,2l − U l

(
sl,(2l−1)

))
...

s(l−1),1 = 1
2

(
sl,2 − U l (sl,1) + sl,1

+P l
(
sl,2 − U l (sl,1)

) (8)
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Figure 8. SGWPT Lifting scheme (Tong et al., 2017)

The RSGWPT not only possesses time invariance but can
also match the characteristics of vibration response signals,
so the features extracted from the resultant wavelet packet
coefficients of RSGWPT have a greater ability to reveal the
state changes of the system.

4.3. Statistical feature extraction

Feature extraction is performed using statistical variables ex-
tracted from the wavelet coefficients of the signal. The fea-
tures that have been chosen are classical Statistical time-domain
features such as mean, root mean square (RMS), standard de-
viation and variance. These were usually used in past stud-
ies to identify the differences between one vibration signal
and another. More advanced statistical-based features such
as skewness and kurtosis can be applied to the signal which
is not purely stationary. These features examine the probabil-
ity density function (PDF) of the signal. It is a well-known
fact that if the condition of the component changes, the PDF
also changes, thus the skewness and kurtosis might also be
affected. In particular, skewness is used to measure whether
the signal is negatively or positively skewed, whereas kurtosis
measures the peak value of the PDF and indicates if the signal
is impulse in nature. For a signal with a normal distribution
i.e., bearing without faults in a nominal state, the skewness
has value of zero (Caesarendra & Tjahjowidodo, 2017). Per-
centile also is been tested and provides a good representation
of the vibration signals. The features that have been used are:
RMS, Variance, Skewness, Kurtosis, Shape factor, Crest fac-
tor, Entropy, Percentile 50, 75, 5.

5. MACHINE LEARNING CLASSIFICATION

5.1. Principal component analysis (PCA)

Considering the number of features and the amount of data
that is analysed, a dimension reduction technique is essential
to complete the data analysis. Principal Component Analy-
sis (PCA) is a technique for reducing the dimensionality of

large data-sets thereby increasing interpretability but, at the
same time, minimizing information loss. It does so by cre-
ating new uncorrelated variables that successively maximize
variance (Maltoni, 2019).

5.2. Supervised and unsupervised learning

Supervised and unsupervised learning are used under differ-
ent conditions. Supervised learning uses built data labels
keeping track of the system failures during the data collection,
or calculated using different signal processing techniques. Un-
supervised learning can be used to classify unlabelled data-
sets, although not always with excellent results (Sathya &
Abraham, 2013).

5.2.1. Supervised Learning: SVM

Support Vector Machines (SVM) have been developed in the
framework of statistical learning theory (Vapnik, 1998; Cortes,
1995), and have been successfully applied to a number of
applications ranging from time series prediction (Fernández,
2020), to face recognition (Tefas, Kotropoulos, & Pit, 2000),
to data processing for medical diagnosis (Veropoulos, Cris-
tianini, & Campbell, 1999; Evgeniou & Pontil, 2001). SVM
is a supervised learning technique based on the methods of
separating hyper-planes. The function used in this paper is
the Radial Basis Function (RBF) kernel, a kernel that is in
the form of a radial basis function (more specifically, a Gaus-
sian function). The RBF Kernel SVM is used in many appli-
cations because there are many classification problems that
are not linearly separable or regressable in the space of the
inputs. These problems might be classifiable in a higher di-
mensionality feature space, given a suitable mapping. To cor-
rectly perform a classification, it is essential to optimize two
main hyper parameters to avoid problems such as over-fitting.
Those two parameters are γ and C (Pedregosa et al., 2011).
To avoid over-fitting, it is also important the cross-validation
of the results.
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Figure 9. Redundant Lifting scheme (Liu et al., 2017)

5.2.2. Unsupervised Learning: Agglomerative

Agglomerative clustering schemes start from the partition of
the data set into singleton nodes and merge step by step the
current pair of mutually closest nodes into a new node until
there is one final node left, which comprises the entire data set
(Müllner, 2011). The algorithms are generally bottom-up and
the end goal is trying to aggregate individual elements. At
each step (level) the agglomerative algorithm aggregates the
most similar elements (pattern to pattern, pattern to cluster,
or cluster to cluster), i.e. the less distant ones from a thresh-
old which depends on the level (Maltoni, 2019). The algo-
rithms to compute the distance between clusters are average,
centroid, complete, median, single, ward, weighted (Müllner,
2011).

5.2.3. Unsupervised Learning: K-Means

K-means minimizes distances from centroids. It requires as
an input the number of clusters (S) and an initial solution. It
produces good results as long as a reasonable initial solution
and an adequate number of classes are provided. It identifies
hyper-spherical clusters if the Euclidean distance is used as a
measure of distance between the patterns or hyper-ellipsoidal
clusters in the case of Mahalanobis distance (Maltoni, 2019).
The limitations of this technique are the possibility to create
only spherical clusters that sometimes are not the ideal shape
for all the data-sets. In addition, it exists the risk of conver-
gence towards local minima (Likas, Vlassis, & J. Verbeek,
2003).

5.3. Signal classification

Usually, by using only a numerical approach with cluster-
ing algorithms, it is very complicated to identify faults in
complex mechanical systems. In fact, the quantity of sig-
nals and the relationships between them are often manage-
able only with a solid knowledge of system failure mecha-
nisms. Anomalies are easier to be found and they are usually

classifiable as follows:

• Several types of system, components, or parts failures;
• A parameters change linked with the data acquisition;
• False positives (non-existent failures incorrectly identified)

or true negatives (non identified failures).

The biggest challenge is to identify the specific failure mech-
anisms that are occurring in the system. One strategy can be
the direct identification using the fault frequencies calcula-
tion of critical component for vibration signals. It is essential
to keep track of all the parameters adjustments such as gain
changes, to avoid false alarms and also to have a correct cor-
relation with the collected data and the results of the analysis
usually performed later from another person.

6. LINK WITH MADE PHM: SYNDROME DIAGNOSTIC

The link between MADe PHM Analysis, explained in sec-
tion 3.2, and failure identification using machine learing tech-
niques has lead to the creation of Syndrome Diagnostic, a
tool under development at PHM Technology. In this section,
the idea behind it is explained. The propagation table (see
e.g. Figure 5) contains a trinary flow variation pattern (Nom-
inal, High, Low) that associates all failures to the sensed flows
in the system. Unfortunately, the symptoms, like vibrations,
are not present in this table as it only shows the modelled
flows. Hence, starting from such propagation table (explained
in section 3.2), Syndrome Diagnostics will have the ability to
build a second table connecting the symptoms variation to the
flows behaviour. This table contains a specific pattern com-
posed by the signals of the sensors installed on the system,
which is directly connected to a specific failure. The Syn-
drome Diagnostics capability is not only limited at failures
detection but also aims at isolating failure and at providing a
understandable visualization to the user. The outputs of the
algorithm contained in Syndrome Diagnostic can be divided
in three steps: i) the detection raises an alarm to the user when
something is happening; ii) the isolation tends to identify the

8
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Figure 10. Failure identification techniques

said failure and to help the user understand what happened
and where; iii) the signals are visualized and displayed in an
easy way to understand. The new tool shows the reliability of
a specific failure using the probability of detection associated
with each sensor. The results are compared to the propaga-
tion table in order to quantify the probability/confidence of
each possible state of the entire system, i.e. of each possible
failure. A higher probability indicates more confidence in the
result.

7. FAILURE IDENTIFICATION

At last, the failure detection process is run in parallel with
several analyses shown in Figure 10. The first one, State
Space Reconstruction (SSR) (Casdagli, Eubank, Farmer, &
Gibson, 1991), is a method focusing on signal showing recur-
rent patterns (dynamic systems) such as periodic signals. The
idea is to draw a signal against itself delayed by a well cho-
sen time. If the system is healthy, the drawn picture should be
close to a geometric figure, whereas if a failure is occurring,
the drawing is completely messy. This is extremely visually
detectable and easy to understand. The second approach aims
at detecting outliner from healthy situations. The idea is easy
to understand and to visualize: signals are being clustered by
common properties. If a data point (corresponding to a time)
does not belong to any of the healthy groups (each group can
be, for example, of a different regime), it is likely that a fail-
ure is occurring. The third one is the RSGWPT with machine
learning classification (the one described in this paper), whilst
the fourth one is the calculation as a cumulative damaging
index that can be employed for monitoring fatigue sensitive
components. PHM Technology is currently working on the
development of other algorithms, which will be implemented
in the failure identification procedures.

Figure 11. Data collection set up (Qiu et al., 2006)

8. CASE STUDY: BEARING IMS DATA SET

The mentioned features have been tested on data generated by
the NSF I/UCR Center for Intelligent Maintenance Systems
(Qiu, Lee, Lin, & Yu, 2006) with support from Rexnord Corp.
in Milwaukee, WI. Four bearings are installed on a shaft. The
rotation speed is kept constant at 2000 RPM by an AC mo-
tor coupled to the shaft via rub belts. A radial load of 6000
lbs is applied onto the shaft and bearing by a spring mecha-
nism. All bearings are lubricated. Rexnord ZA-2115 double
row bearings are installed on the shaft as shown in Figure
11. PCB 353B33 High Sensitivity Quartz ICP accelerome-
ters are installed on the bearing housing (two accelerometers
for each bearing [x- and y-axes] for data set 1, one accelerom-
eter for each bearing for data sets 2 and 3). Sensor placement
is also shown in Figure 11. All failures occurred after ex-
ceeding designed life time of the bearing, which is more than
100 million revolutions. Three Data sets are included in the
data packet, were each data set describes a test-to-failure ex-
periment. Each data set consists of individual files that are
1-second vibration signal snapshots recorded at specific in-
tervals. Each file consists of 20,480 points with the sampling
rate set at 20 kHz.

8.1. Signal processing: Fault frequency calculation and
RSGWPT

The Dataset contains a bearing with a defect on the exter-
nal ring. Therefore, by knowing the characteristic fault fre-
quencies of the specific bearings, the signal spectrum can be
used to identify the fault peaks related to the defect for each
timestep. They are a precious tool for data labeling of the sig-
nal. Figure 12 shows the comparison between a healthy in-
stant and an instant with a fault. As shown in Figure 12 (Outer
race fault), the peak is clearly detectable at the calculated fault
frequency. Using a trigger, all the time-steps have been la-
belled. Then, the RSGWPT of the signal has been performed
for every time-step and the wavelet coefficients have been

Table 2. Fault frequencies

Vibration Frequency Fundamental Train 0.0072
Vibration Frequency Inner Ring Defect 0.1617
Vibration Frequency Outer Ring Defect 0.1217
Vibration Frequency Roller Spin 0.0559

9
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Figure 12. Comparison of bearing conditions at time-step 5
vs time-step 600

stored. The features mentioned on the previous chapters have
been extracted and PCA has been performed to reduce the di-
mensions of the Coefficients of the wavelet*Feature Matrix.
Subsequent computations are shown in the next paragraph.

8.2. Machine learning classification

As previously explained, three techniques have been tested
for classification purposes, namely SVM, Agglomerative and
K-means. SVM Kernel supervised learning algorithm has
been used to classify the time-steps in 2 clusters, dividing
50% of the data in the training set and 50 % in the testing
set. The algorithm has been cross validated and the hyper-
parameters have been optimized. The results are visible in
figure 13 (a). After those steps, the Agglomerative Unsuper-
vised learning clustering Method has been performed to clas-
sify the time-steps in 3 clusters representing the Normal State,
an Incipient Failure or a Failure. The results of the clustering
algorithm are visible in Figure 13 (b). Also, the K-means Un-
supervised learning clustering method has been performed to
classify the time-steps in 3 clusters as in the previous case.
The results of the clustering algorithm are visible in Figure
13 (c).

8.3. Failure identification

To evaluate the efficiency of the failure identification tech-
nique, the labels created using the fault frequency calcula-

Figure 13. (a) SVM supervised learning classification (b) Ag-
glomerative unsupervised learning classification (c) K-Means
unsupervised learning classification

10
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Table 3. Accuracy and F1score

Accuracy and F1score
Accurancy F1 Score

SVM 0.9756 0.9930
Agglomerative 0.9726 0.9897
K-means 0.9685 0.9907

Figure 14. SVM (left) Agglomerative (right) an k-means
(down) classification

tions have been used as ground truth to calculate the con-
fusion Matrix that is visible in Figure 14. The tree tech-
niques are able to identify the fault. Table 3 shows the re-
sults: the SVM performs better but agglomerative and K-
means are still giving accurate results. Note that there is a
difference between Agglomerative and K-means. In fact, Ag-
glomerative appears to have a more conservative approach,
reporting a greater number of false negatives. Therefore, it is
less convenient in situations where there is a lot of noise and
false alarms would be harmful. K-means is less conservative
and records a higher number of false positives. Therefore, it
is more advantageous in situations where the progression of
failure is slow.

9. CONCLUSION

By using the methodology presented in this paper, it is pos-
sible to identify potential failures in a system with sufficient
notice, in order to implement the optimal maintenance ac-
tions. On one hand, the aspect of combining a causal model
associated with the use of artificial intelligence is certainly a
promising approach. In parallel, the advantage of combining
different data processing methods is also very useful, since
some failures are not detectable from every signal or every
techniques. Therefore, the coexistence of different techniques
provides a winning weapon in those cases in which particu-
larly complex identification issues are present. Among all
possible ways to enable failure identification, this paper has
focused on a traditional method (i.e. calculation of character-

istic fault frequencies) and on the RSGWPT analysis, which
allows the identification of faults in nonlinear transient sig-
nals. Future work will test a large variety of data sets to opti-
mize the calculation times associated with each algorithm, in
order to determine the best performing. In addition, a com-
parative cross evaluation of the provided failure identification
accuracy (to be optimized on critical components) and the
computational times (possibly allowing real-time monitoring
applications) will be carried out.
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