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0. Introduction

The concept of expressing complicated objects in terms of simpler basis elements is
ubiquitous in mathematics. It is central in linear algebra, and permeates many branches
of the sciences. Such an expression often allows to answer questions concerning the
original object by considering the better-known basis elements. As just one prominent
instance, a fundamental challenge in signal and image processing is to fit the parameters
of a model to measured data, e. g., for purposes of interpolation, extrapolation or spectral
analysis, see, for instance, the textbook of Marple [43].

It is therefore of great importance to have efficient as well as general techniques at
one’s disposal to analyze data and obtain (or “learn”), such structured decompositions.

The problem is highly relevant in vector spaces of functions, with many important
examples being infinite-dimensional. In this scenario, strategies that do not employ
direct searches within the basis B become a necessity. An often-used approach is to
first consider the subproblem of determining the support of a vector f ∈ V w. r. t. B,
that is, the (finite) set of basis vectors occurring in the expansion of f with a non-zero
coefficient. It is usually much easier to determine the coefficients once the support is
known. Of course, this strategy may also be applied in the finite-dimensional case.

The paradigmatic instance is Prony’s method [56] to decompose a sum f of exponential
functions. It uses evaluations to construct a polynomial whose roots correspond to the
summands of f . Generalizations and variations of Prony’s method have been intensely
studied, with motivations stemming from, e. g., signal processing and biology. Classic
applications of Prony’s method include for example Sylvester’s method for Waring de-
compositions of binary forms [64, 65] and Padé approximation [69, 7]. Over centuries,
these tools have been further developed, with [52, 46, 54, 63] being a small sampling of
the recent literature. New applications have been found (see, e. g., [30, Section 2.2] for
connections to the Berlekamp-Massey algorithm). For a recent overview see [51].

Recently also advances have been made on multivariate versions. Direct attempts can
be found in, e. g., [53, 47, 38, 57, 45], for methods based on projections to univariate
exponential sums see, e. g., [17, 18, 14]. A numerical variant can be found in, e. g., [20],
and further related results and applications in, e. g., [19, 24, 40, 12, 31, 55, 9, 10, 29, 50,
33, 32, 27, 15].

Among the spaces (V,B) for which instances of the problem have been studied are, in
particular, the space of polynomials V = K[y] (K a field) with the monomial basis B [5]
or bases of Chebyshev polynomials [40, 31, 46, 55, 27]. These investigations led to anal-
ogous results and “Prony-like” decomposition methods for these spaces. The apparent
similarities motivate the search for a common framework in which to study and extend
these methods.

In 1991, Dress and Grabmeier [19] proposed a framework for the decomposition of
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character sums, i. e., linear combinations of monoid homomorphisms mapping a commu-
tative monoid to the multiplicative monoid of a field. This setup encompasses, among
others, the above mentioned methods for decomposition into of sums of exponentials
and sums of monomials. Refinements have been proposed by Grigoriev, Karpinski, and
Singer [24] and in 2013 by Peter and Plonka [46], the latter containing an alternative
“analytic” approach to the Chebyshev decomposition problem which does not seem to
fit into the earlier frameworks.

In order to facilitate the simultaneous study of these classes of methods, we introduce
the axiomatic notion of Prony structures (cf. Definition 1.7). We will see that a large
part1 of the instances that could be treated within previously established frameworks
and also Lakshman and Saunders’ Chebyshev decomposition method are included in this
setup.

In typical Prony situations one has a natural identification of basis elements with
points in an affine space. For example, in the classic case of exponential sums the basis
function expb is identified with its base point b ∈ Cn. It is this identification that allows
to describe the support of f by polynomial equations. A key idea of Prony is to construct
Hankel (or Toeplitz) matrices using evaluations of f to obtain the desired data from their
kernels.

In our framework we assume that an identification as above is given as part of the
initial data. Then suitable sequences of matrices are computed from evaluations of f
which are constructed in a way such that their kernels eventually have to yield systems
of polynomial equations to determine the support of f .

The thesis is organized as follows. Chapter 1 begins with a brief presentation of
Prony’s method for the reconstruction of exponential sums, and two well-known variants
for polynomial spaces, emphasizing their similarities. With this motivation, we set out
on our task of unifying these methods. After fixing the setup and some notation, we
introduce our main definition of a Prony structure. Besides the function space and
the basis as key parts of the data it consists of families of linear maps and associated
ideals defined by their kernels. These ideals are then used to attack the decomposition
problem. We discuss properties of evaluation maps on vector spaces of polynomials and
their kernels. As one of the main results in this chapter, we prove in Theorem 1.18
a very useful characterization of Prony structures in terms of factorizations through
evaluation maps. It can be seen that given some mild assumptions the ideals of a Prony
structure are zero-dimensional and radical, which leads to the natural question to provide
sufficient conditions which guarantee that the ideals of kernels of evaluation maps have
this property. We study this problem, proving a theorem we learned from H. M. Möller on
Gröbner bases of zero-dimensional radical ideals with interesting consequences for Prony
structures. At the end of the chapter we introduce the category of Prony structures and
prove a useful transfer for Prony structures.

In Chapter 2 we discuss examples and applications of Prony structures. We introduce
the notion of t-exponential in order to treat Hankel and Toeplitz variants of Prony’s

1The main exception are characters of not finitely generated monoids, which, roughly speaking, corre-
sponds to the case of functions in an unbounded number of variables.
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method for exponential sums w. r. t. various vector space bases in a unified manner.
Versions for polynomials with the corresponding monomial and Chebyshev bases and
Gaußian sums then follow by the transfer principle.

In Chapter 3 we show how the framework of Prony structures relates to previously
known frameworks for the decomposition of sums of characters [19] or eigenfunctions [24,
46].

A priori knowledge can be that functions are supported for example on a torus or a
sphere, see, e. g., [36, 37]. Classic techniques do not take this additional information into
account. As a novel approach we extend the notion of Prony structures for functions
supported on algebraic sets to a relative version in Chapter 4. A first key result is a
characterization of such structures in Theorem 4.8. We discuss how to obtain Prony
structures in this relative case. Main examples include relative Prony structures for
spaces of spherical harmonics.

This work is based on the article [39] by Kunis, Römer, and von der Ohe. A main
addition is the unified treatment using the concept of t-exponentials in Chapter 2. We
do not cite individual results from this publication. This work also constitutes a contin-
uation, generalization, and update of the earlier thesis [68] of the author. The articles
Kunis, Peter, Römer, and von der Ohe [38], Kunis, Möller, Peter, and von der Ohe [36],
and Kunis, Möller, and von der Ohe [37] have been the basis of this earlier thesis and
they, as well as [68], and are cited appropriately.
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1. Prony structures

In this chapter we define our main notion of Prony structure and deduce relevant prop-
erties. We start in Section 1.1 by presenting three classic results that will yield typical
examples of Prony structures: Prony’s reconstruction method for exponential sums,
Ben-Or and Tiwari’s method for polynomials, and Lakshman and Saunders’ method
for Chebyshev polynomials. Each of these methods involve the construction of a set of
polynomials whose zero locus corresponds to the support of the input function. We take
this as motivation to introduce a common abstraction, Prony structures, in Section 1.2.
We discuss fundamental properties of Prony structures in Section 1.3 where the close
connection to evaluation maps on spaces of polynomials is established. Their relevant
basic properties are recalled and additional properties are proven, leading to a theorem
of Möller. In Section 1.4 we define structure preserving maps between Prony structures
and prove a useful transfer principle that will be applied in the following chapter.

1.1. Prelude: Three classic results

In the following subsections we briefly discuss three well-known and exemplary “Prony-
like” results. All three are formulated analogously and to mesh with later material.

1.1.1. Reconstruction of exponential sums

We start with the classic method due to G. C. F. M. Riche, baron de Prony [56]. Let F be
an arbitrary field. For b ∈ F we call the sequence

expb : N −→ F , k 7−→ bk,

exponential. Here it is understood that b0 = 1 for all b ∈ F , in particular for b = 0.
The element b is called the base of expb; it is uniquely determined since b = expb(1). An
exponential sum is defined to be an F -linear combination of exponentials.

To an exponential sum f one associates the sequence (Φd(f))d∈N of linear maps with

Φd(f) : F [x]≤d −→ F d,
d∑

k=0

pkx
k 7−→ Pd(f) · (p0, . . . , pd)

⊤,

where Pd(f) is the Hankel matrix

Pd(f) :=
(
f(i+ j)

)
i=0,...,d−1
j=0,...,d

=




f(0) · · · f(d− 1) f(d)
f(1) · · · f(d) f(d+ 1)

...
...

...
...

f(d− 1) · · · f(2d− 2) f(2d− 1)




∈ F d×(d+1).
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For a set A ⊆ F [x] let the zero locus of A be denoted by

Z(A) = {b ∈ F | p(b) = 0 for all p ∈ A}.

(In the univariate situation at hand, of course Z(A) consists precisely of the roots of
a generator p ∈ F [x] of the principal ideal 〈A〉 = 〈p〉 of F [x].) The following theorem
forms the basis for Prony’s method.

Theorem 1.1 (Prony, 1795): Let f =
∑r
i=1 fi expbi be an exponential sum with non-

zero coefficients fi ∈ F and pairwise distinct bases bi ∈ F . Then the following are
equivalent:

(i) Z(kerΦd(f)) = {b1, . . . , br};

(ii) d ≥ r.

Using Prony’s theorem, one can approach the problem of computing the bases bi of
the exponential sum f by computing the roots of a polynomial. Always choosing the
least index d = r that is sufficient to perform the computations, the size of the matrices
and number of evaluations depends only on the number r of summands of f ; we will call
this number also the rank of f . Methods whose computational complexity is essentially
determined by the rank of the input may be called sparse methods, and Prony’s method
for the decomposition of exponential sums is among the prime examples.

1.1.2. Sparse monomial interpolation

Prony’s method for exponential sums has since attracted much attention and has in
particular inspired variants for other families of functions and generalizations.

Among the classes that Prony’s method has been adapted to, and closely related to
the case of exponential sums, are polynomial functions over a field F . For decompo-
sitions w. r. t. the monomial basis a result can be found explicitly as a special case in
Ben-Or and Tiwari [5]. It is quickly obtained as a corollary of Theorem 1.1 as follows. We
emphasize that [5] is mostly concerned with the efficient treatment of the multivariate
case, which we omit in this introductory discussion.

Let F be an arbitrary field. The objective is to determine the support of a polynomial
over F w. r. t. the monomial basis using only evaluations. Of course, this cannot be
achieved in general with evaluations only in F and hence we allow evaluating in a field
extension of F .

Let b be an element in a suitable field K ≥ F such that the sequence (bi)i∈N ∈ KN is
injective. For f ∈ F [y] let the sequence (Φd(f))d∈N of K-linear maps be defined by

Φd(f) : K[x]≤d −→ Kd,
d∑

k=0

pkx
k 7−→ Pd(f) · (p0, . . . , pd)

⊤,
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where Pd(f) denotes the matrix

Pd(f) :=
(
f(bi+j)

)
i=0,...,d−1
j=0,...,d

=




f(b0) · · · f(bd−1) f(bd)
f(b1) · · · f(bd) f(bd+1)

...
...

...
...

f(bd−1) · · · f(b2d−2) f(b2d−1)




∈ Kd×(d+1).

For f =
∑
i fiy

i ∈ F [y] let suppf = {i ∈ N | fi 6= 0} denote the support of f . The
following is a version of Theorem 1.1 for polynomials instead of exponential sums.

Corollary 1.2 (Ben-Or and Tiwari, 1988): Let b ∈ K ≥ F be chosen as above and
let f ∈ F [y]. Then the following are equivalent:

(i) Z(kerΦd(f)) = {bi | i ∈ supp f};

(ii) d ≥ |supp f |.

Indeed, Corollary 1.2 follows from Theorem 1.1 by the observation that the function
N → K, i 7→ f(bi), is an exponential sum with support {expbi | i ∈ supp f}. In order to
decompose polynomials in this way, it is essential to have an efficient way of computing
logarithms w. r. t. the element b ∈ K. Those logarithms may be precomputed for specific
choices of b.

1.1.3. Sparse Chebyshev interpolation

In 1995, Lakshman and Saunders [40] proposed the following as a method to compute
Chebyshev decompositions of polynomials. Let F be a field of characteristic zero. Recall
that the Chebyshev polynomials Ti ∈ Z[y] ≤ F [y], i ∈ N, are defined inductively by

T0 := 1, T1 := y, and Ti := 2yTi−1 − Ti−2 for i ≥ 2.

It follows immediately from the definition that deg(Ti) = i. Hence, B := {Ti | i ∈ N}
is an F -basis of F [y] and for any d ∈ N, {T0, . . . ,Td} is an F -basis of F [y]≤d.

Let b ∈ F be suitably chosen (since charF = 0 there is a unique embedding of Q into F
and here it is sufficient that b ∈ Q ⊆ F with b > 1 as an element of Q), set ui := Ti(b) ∈
F , and let the sequence of linear maps (Φd(f))d∈N be defined by

Φd(f) : F [x]≤d −→ F d,
d∑

k=0

pkTk 7−→ Pd(f) · (p0, . . . , pd)
⊤,

where Pd(f) denotes the matrix

Pd(f) :=
(
f(ui+j) + f(u|j−i|)

)
i=0,...,d−1
j=0,...,d

,
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i. e., Pd(f) is the sum of the d× (d+ 1) Hankel matrix

Hd(f) =




f(u0) · · · f(ud−1) f(ud)
f(u1) · · · f(ud) f(ud+1)

...
...

...
...

f(ud−1) · · · f(u2d−2) f(u2d−1)




and the d× (d+ 1) Toeplitz matrix

Td(f) =




f(u0) f(u1) f(u2) · · · f(ud−1) f(ud)
f(u1) f(u0) f(u1) · · · f(ud−2) f(ud−1)
f(u2) f(u1) f(u0) · · · f(ud−3) f(ud−2)

...
...

...
. . .

...
...

f(ud−1) f(ud−2) f(ud−3) · · · f(u0) f(u1)




.

For f =
∑
i fiTi ∈ F [y] let suppf = {i ∈ N | fi 6= 0}.

Theorem 1.3 (Lakshman and Saunders, 1995): Let ui ∈ F be as above and let f ∈
F [y]. Then the following are equivalent:

(i) Z(kerΦd(f)) = {ui | i ∈ supp f};

(ii) d ≥ |supp f |.

With b suitably chosen, the sequence (ui)i∈N is injective and hence the support
of f w. r. t. the Chebyshev basis B is determined by the set {ui | i ∈ supp f}. To per-
form the method in practice, analogously to the monomial case one must (pre-)compute
the “Chebyshev logarithms” of b, i. e., the inverse of the mapping i 7→ ui = Ti(b) for
appropriate ui. A computational illustration of the method is given in Example 2.18.

The preceding discussion indicates a structural analogy of the results of Prony, Ben-Or
and Tiwari, and Lakshman and Saunders, which we will investigate more closely in the
following.

1.2. Foundation

Motivated by the methods discussed in Section 1.1 and other recent variations and
generalizations of Prony’s method, we introduce a framework that allows to treat these
variants simultaneously and which can be applied in various contexts.

We first fix some notation regarding evaluation maps for polynomials.

Definition 1.4: Let K be a field, n ∈ N, S := K[x1, . . . , xn], and let U ⊆ S be a
K-subvector space of S. For X ⊆ Kn we set

evXU : U −→ KX , p 7−→ (p(x))x∈X ,
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and call evXU evaluation map at X on U . Of course, evaluation maps are K-linear. We
set

IU (X) := ker evXU ,

and call IU (X) the vanishing space of X on U .
The space U is called X-interpolating if evXU is surjective.

Observe that for U = S, IU (X) = I(X) is the usual vanishing ideal of X. In this
special situation we also set evX := evXS . Note that in general we have

IU (X) = I(X) ∩ U .

Occasionally we will identify the monomial xα ∈ S with its exponent α ∈ Nn. Then, for
D ⊆ Nn we set evXD := evXU and ID(X) := IU (X) where U denotes the K-subvector space
generated by {xα | α ∈ D} in S, and we call D X-interpolating if U is X-interpolating.
In Section 1.3 we will state and prove all results on evaluation maps and their ker-
nels that are relevant here. The zero locus of a set A ⊆ S is denoted by Z(A) =
{x ∈ Kn | p(x) = 0 for all p ∈ A}.

In the following three definitions we introduce the central notion of a Prony structure.
The key point is to provide a general formal setting that captures the essence of Prony’s
method with the aim of laying the foundation for a structural theory. In Definition 1.5
we formulate the crucial properties of a Prony structure without reference to the space
of elements that are to be decomposed. This forms the basis for Definition 1.7 where
the algebraic set X corresponds to the support of a vector.

As usual, for a sequence a = (ak)k∈N and a property P , we say that a satisfies P even-
tually or that P (ak) holds for all large k if there is an m ∈ N such that for all k ≥ m,
ak satisfies P .

Definition 1.5 (Prony structure, abstract version): Let X ⊆ Kn be an algebraic
set.

(a) Let U be a K-subvector space of S = K[x1, . . . , xn] and let W be an arbitrary
K-vector space. We say that a K-linear map ϕ : U → W has a Prony kernel for X
if the following conditions (P1) and (P2) are satisfied:

Z(kerϕ) = X (P1)

and
IU (X) ⊆ kerϕ. (P2)

(b) Let (Sd)d∈N be a sequence of K-subvector spaces of S = K[x1, . . . , xn] and let
(Wd)d∈N be a sequence of arbitrary K-vector spaces. We call a sequence

ϕ ∈
∏

d∈N

HomK(Sd,Wd)

a Prony structure for X if for all large d, ϕd has a Prony kernel for X.

9



In this case, the number

indϕ(X) := min{c ∈ N | for all d ≥ c, ϕd has a Prony kernel for X}

is called ϕ-index of X.

The typical situation we consider is that the set X corresponds to the support of a
vector f w. r. t. a basis B of some vector space V . Given such a correspondence, the
kernel of ϕ consists of equations for the support of f . We formalize this in the following
definition.

Definition 1.6: Let F be a field, V be an F -vector space, and B be an F -basis of V .
For f ∈ V , f =

∑r
i=1 fibi with f1, . . . , fr ∈ F \ {0} and distinct b1, . . . , br ∈ B, let

suppB f := {b1, . . . , br} and rankB f := |suppB f | = r

denote the support of f and rank of f (w. r. t. B), respectively. For a field K, n ∈ N,
and an injective map u : B → Kn let

suppu f := {u(b1), . . . , u(br)}.

We call suppu f ⊆ Kn the u-support and its elements the support labels of f .

In many situations we will choose K = F , but for reasons of flexibility we allow
the choice of possibly different fields. Unless mentioned otherwise, we will assume
that F , V , B, K, n, and u are given as in Definition 1.6.

Definition 1.7 (Prony structure): Given the setup of Definition 1.6, we define the
following:

(a) Let U be a K-subvector space of S = K[x1, . . . , xn] and let W be an arbitrary
K-vector space. Let f ∈ V . We say that a K-linear map ϕ : U → W has a Prony
kernel for f w. r. t. u if ϕ has a Prony kernel for X = suppu f .

(b) Let (Sd)d∈N be a sequence of K-subvector spaces of S = K[x1, . . . , xn] and let
(Wd)d∈N be a sequence of arbitrary K-vector spaces. Let f ∈ V . We call a
sequence ϕ ∈

∏
d∈N HomK(Sd,Wd) a Prony structure for f w. r. t. u if ϕ is a Prony

structure for X = suppu f .

In this case, the number

indϕ(f) := indϕ(suppu f)

is called ϕ-index of f .

(c) Let (Sd)d∈N be a sequence of K-subvector spaces of S = K[x1, . . . , xn] and let
(Wd)d∈N be a sequence of arbitrary K-vector spaces. We call a function

Φ : V −→
∏

d∈N

HomK(Sd,Wd)

10



a Prony structure on (V,B, u) if for every f ∈ V the sequence Φ(f) is a Prony
structure for f w. r. t. u.

For f ∈ V we call the Φ(f)-index of f simply Φ-index of f and denote it by indΦ(f).

Remark 1.8: A key point of a Prony structure Φ on (V,B, u) is that the idea of
Prony’s method works, i. e. to compute the support of a given f ∈ V w. r. t. the basis B
through a system of polynomial equations. More precisely, one can perform the following
(pseudo-)algorithm:

1. Choose d ∈ N.

2. Determine the linear map Φd(f): Sd → Wd.

3. Compute U := kerΦd(f) ⊆ Sd.

4. Compute Z := Z(U) ⊆ Kn.

5. Compute u−1[Z] ⊆ B.

If d is chosen sufficiently large, then the zero locus Z is the u-support and its pre-
image u−1[Z] is the support of f (and in particular these sets are finite). Note that for
this strategy to work in practice, it is important that the maps Φd(f) can be computed
from “standard information” on f (such as evaluations if f is a function), in particular
without prior knowledge of its support; see also Remark 1.10. Computations will usu-
ally be performed with matrices of the linear maps Φd(f). Often computation of the
zero locus as well as a good choice of d turn out to be problematic steps.

In classic situations of Prony’s method the non-zero coefficients of f w. r. t. B can be
computed in an additional step by solving a system of linear equations involving only
standard information; this system is finite since one has already computed the support.

Common options for the sequence (Sd)d∈N of subvector spaces of S = K[x1, . . . , xn]
are Sd = STd , Sd = SMd

, or Sd = SCd , where

Td :=
{
α ∈ Nn

∣∣∣
n∑

j=1

αj ≤ d
}

,

Md := {α ∈ Nn | max{αj | j = 1, . . . , n} ≤ d},

and Cd :=
{
α ∈ Nn

∣∣∣
n∏

j=1

(αj + 1) ≤ d
}

.

Choosing Sd = STd yields the subvector space of polynomials of total degree at most d.
The choice of Sd = SMd

yields the subvector space of polynomials of maximal degree
at most d. One motivation for considering these spaces lies in the fact that sometimes
it is possible to reduce statements involving polynomial functions in several variables to
the univariate case using the fact that K[x1, . . . , xn] ∼= K[x1] ⊗K · · · ⊗K K[xn]. With
this technique, estimates of the (total) degree of univariate solutions naturally lead
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to estimates of the maximal degree of solutions in the multivariate case. Examples
include estimates for the degree of polynomials approximating continuous functions in
multivariate versions of the Weierstraß approximation theorem, see, e. g., Trefethen [67,
Chapter 6]; also proofs of the absolute convergence of Cauchy products of absolutely
convergent sequences can be seen in this light, cf., e. g., Forster [21, § 8, proof of Satz 3].

Choosing Sd = SCd gives rise to a space of polynomials that is particularly well-suited
for zero-testing and interpolation of polynomials. The earliest use of Cd, the non-negative
orthant of the hyperbolic cross of order d, in the context of Prony-like methods that we
are aware of is in articles by Clausen, Dress, Grabmeier, and Karpinski [8] and by Dress
and Grabmeier [19]. For more recent applications see in particular Sauer [58] and the
recent preprint of Hubert and Singer [27].

Often one sets Wd = Sd, Wd = Sd−1, or chooses a similar relation between the
sequences (Wd)d∈N and (Sd)d∈N.

For the case of total degree we will also use the notation

S≤d := STd = 〈xα | α ∈ Td〉K , evX≤d := evXTd , and I≤d(X) := ITd(X).

Remark 1.9: A framework for the decomposition of sums of characters of commuta-
tive monoids has been proposed by Dress and Grabmeier [19] and derivations for sums of
eigenfunctions (or more generally eigenvectors) of linear operators have been developed
by Grigoriev, Karpinski, and Singer [24] and by Peter and Plonka [46]. We recast these
frameworks in the language of Prony structures in Chapter 3. See Remark 3.8 for an
overview.

While there is considerable overlap with the one we propose, the approaches make
different compromises between generality and effectivity. We aim at a formalization
of the most general situation in which Prony’s strategy still works. Our treatment is
axiomatic rather than the explicit constructions of [19, 24, 46]. While trading in some
directness, this abstraction also allows to stay within the language of linear algebra.
When dealing with applications, a detour through character sums can seem unnatural
(or, as in the Chebyshev decomposition, impossible) given the concrete situation. In this
sense, we also find our framework to be more effectively verifiable.

Remark 1.10: For f ∈ V , X := suppu f , let Φd(f) := evX≤d. It follows immediately
from the noetherianity of the polynomial ring S that the sequence (Φd(f))d∈N is a Prony
structure for f , cf. Lemma 1.14. We call Φ(f) trivial Prony structure for f .

The trivial Prony structure itself is useless for the practical computation of the support
of f : If one is able evaluate Φd(f), then one can compute the u-support of f using
Φd(f)(xj) = (bj)b∈X for d ≥ 1. While this cannot be viewed as a computational shortcut,
trivial Prony structures still provide a possible strategy to construct Prony structures
that may be obtained from the available data, see Corollary 1.16.

Note also that the function

Φ : V −→
∏

d∈N

HomK(S≤d,K
X), f 7−→ (Φd(f))d∈N,
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is in general not a Prony structure on (V,B, u) since the sequences of spaces (Wd) in
Definition 1.7 (c) cannot depend on f . This holds for Wd = KX = Ksuppu f only in the
trivial case that V = {0}.

Example 1.11: We reformulate the methods discussed in Section 1.1 in the language
of Prony structures as follows.

(a) Let E := {expb | b ∈ F} and Exp := 〈E〉F be the F -vector space of exponential
sums. Set

u : E −→ F , expb 7−→ b = expb(1).

Then u is clearly a bijection. Let Φd(f) be defined as in Section 1.1.1 and

Φ : Exp −→
∏

d∈N

HomF (F [y]≤d, F
d), f 7−→ (Φd(f))d∈N.

Then by Theorem 1.1, Φ is a Prony structure on (Exp, E, u). Moreover, one has
indΦ(f) = rankE(f) for every exponential sum f ∈ Exp.

(b) Let M := {yi | i ∈ N} be the F -basis of monomials of F [y]. With b ∈ K ≥ F
chosen as in Section 1.1.2, set

u : M −→ K, yi 7−→ bi.

By the choice of b, u is an injection. Let Φd(f) be defined as in Section 1.1.2 and

Φ : F [y] −→
∏

d∈N

HomF (F [y]≤d, F
d), f 7−→ (Φd(f))d∈N.

Then, by Corollary 1.2, Φ is a Prony structure on (F [y],M, u). Moreover, one has
indΦ(f) = rankM (f) for every polynomial f ∈ F [y].

(c) Let F be a field of characteristic zero and C := {Ti | i ∈ N} be the Chebyshev
basis of F [y]. With b ∈ F chosen as in Section 1.1.3, set

u : C −→ K, Ti 7−→ Ti(b).

By the choice of b, u is an injection. Let Φd(f) be defined as in Section 1.1.3 and

Φ : F [y] −→
∏

d∈N

HomF (F [y]≤d, F
d), f 7−→ (Φd(f))d∈N,

Then, by Theorem 1.3, Φ is a Prony structure on (F [y], C, u). Moreover, one has
indΦ(f) = rankC(f) for every polynomial f ∈ F [y].

In each of these cases, this provides a means to compute the support w. r. t. to the
respective basis under the assumption that an upper bound d = df ∈ N of the rank of f
is known. Further generalizations and variants will be discussed in Chapters 2 and 3
(see also Peter and Plonka [46], Kunis, Peter, Römer, and von der Ohe [38], Sauer [57],
and Mourrain [45]).
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Remark 1.12: One might be tempted to remove the technical condition (P2) from
Definition 1.5 (a). For the sake of discussion we say that ϕ : U → W has a quasi Prony
kernel for X ⊆ Kn if ϕ satisfies condition (P1) of Definition 1.5 (a), and define quasi
Prony structures for X ⊆ Kn respectively for f ∈ V in the nearby way. We observe the
following:

(a) All practically relevant examples of quasi Prony structures that we are aware of
are indeed Prony structures.

(b) One of the main reasons why we include condition (P2) in the definition of Prony
structures is that the analogues of several of our statements on Prony structures
do not hold or are not known to hold for quasi Prony structures; see, for example,
Theorem 1.18 and Corollary 4.14.

(c) An “artificial” example of a quasi Prony structure that is not a Prony structure:
Let U := K[x]≤2, W := K[x]≤1, and ϕ : U → W the linear map with ϕ(1) = 1,
ϕ(x) = x, and ϕ(x2) = 0. Then kerϕ = 〈x2〉K ⊆ K[x], so Z(kerϕ) = Z(x2) = {0}.
Hence we see that ϕ has a quasi Prony kernel for the exponential f := exp0. Since
x ∈ IU (0) \ kerϕ, ϕ does not have a Prony kernel for X.

Remark 1.13: (a) The generalization of Prony’s problem to polynomial-exponen-
tial sums (i. e., sums of functions α 7→ p(α) expb(α) with polynomials p), also known
as “multiplicity case”, can be found in the univariate case in Henrici [25, Theo-
rem 7.2 c]. Further developments such as a characterization of sequences that allow
interpolation by polynomial-exponential sums have been obtained by Sidi [62] and
a variant based on an associated generalized eigenvalue problem is given in Lee [41],
see also Peter and Plonka [46, Theorem 2.4] and Stampfer and Plonka [63]. For gen-
eralizations of many of these results to the multivariate setting see Mourrain [45].
It would be interesting to extend the notion of Prony structures to also include
these cases. We leave this for future work. See also Remark 3.7.

(b) In general, if ϕ : U → W has a Prony kernel for X ⊆ Kn and K is algebraically
closed, then we have rad(〈kerϕ〉) = I(Z(kerϕ)) = I(X) by Hilbert’s Nullstellensatz.
It is an interesting problem whether always or under which conditions the ideal
〈kerϕ〉 is already a radical ideal. We return to this question in Section 1.3 where
we provide partial answers also over not necessarily algebraically closed fields.

1.3. Prony structures and the evaluation map

In this section we first recall some well-known properties of evaluation maps on vector
spaces of polynomials and their kernels. Since they are the vector spaces of polynomials
vanishing on a set X ⊆ Kn, these kernels play a crucial role in the theory and application
of Prony structures. This will be made precise in Theorem 1.18 and its Corollary 1.19.

After providing these essential facts, we study ideal-theoretic issues related to evalu-
ation maps. Inspired by a theorem we learned from H. M. Möller [44], we introduce a
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condition that allows a characterization of the surjectivity of evaluation maps, cf. Corol-
lary 1.28. We are very grateful toward H. M. Möller for several inspiring discussions
related to these results. Consequences of these results for Prony structures are summa-
rized in Corollary 1.32.

Lemma 1.14: Let X ⊆ Kn be an arbitrary subset. Then there is a d ∈ N with
〈I≤d(X)〉 = I(X). For finite X this implies Z(I≤d(X)) = X.

Proof: This follows immediately from the fact that S = K[x1, . . . , xn] is noetherian
and thus I(X) is finitely generated. If X is finite, then it is Zariski closed. q. e. d.

The following is a “quantitative” version of Lemma 1.14. The arguments are well-
known, see, e. g., Kunis, Peter, Römer, and von der Ohe [38, proof of Theorem 3.1].

Proposition 1.15: (a) Let X ⊆ Kn be finite. With d := |X| we have

〈I≤d(X)〉 = I(X).

(b) Let K be an infinite field. Then for every d ∈ N there is an X ⊆ Kn with
|X| = d+ 1 such that 〈I≤d(X)〉 $ I(X).

Corollary 1.16: Let X ⊆ Kn be finite. Then for any K-vector space W and in-
jective K-linear map i : KX →֒ W one has I≤d(X) = ker(i ◦ evX≤d). In particular,
Z(ker(i ◦ evX≤d)) = X for all large d. The following diagram illustrates the situation.

S≤d KX

W

evX
≤d

i
i◦evX

≤d

Proof: The first statement clearly holds. Together with Lemma 1.14 this implies the
second one. q. e. d.

The following result on polynomial interpolation is well-known and is, in slightly
generalized form, also part of von der Ohe [68, Lemma 2.12].

Lemma 1.17: Let X ⊆ Kn be finite. If d ∈ N and d ≥ |X| −1 then evX≤d is surjective.

Proof: It is easy to see that given x ∈ X, there is a polynomial p ∈ S of degree |X| −1
such that p(x) = 1 and p(y) = 0 for y ∈ X \ {x} (see, e. g., the proof of Cox, Little, and
O’Shea [11, Chapter 5, § 3, Proposition 7]). By linearity this concludes the proof. q. e. d.

As usual, we call a sequence (Sd)d∈N of K-subvector spaces of S = K[x1, . . . , xn] a
filtration on S if Sd ⊆ Sd+1 for all d ∈ N. A filtration (Sd)d∈N on S is called exhaustive
if
⋃
d∈N Sd = S.

We obtain the following characterization of Prony structures.

15



Theorem 1.18: Let X ⊆ Kn be an algebraic set. Let (Wd)d∈N be a sequence of K-
vector spaces and (Sd)d∈N be an exhaustive filtration on S. Let ϕ ∈

∏
d∈N HomK(Sd,Wd).

Then the following are equivalent:

(i) ϕ is a Prony structure for X;

(ii) For all large d there is an injective K-linear map ηd : KX →֒ Wd such that the
diagram

Sd Wd

KX

ϕd

evXSd

ηd

is commutative;

(iii) For all large d one has kerϕd = ISd(X).

Proof: (i) ⇒ (ii): By Definition 1.4 and since ϕ is a Prony structure for X, for all
large d we have

ker evXSd = ISd(X) ⊆ kerϕd.

Since (Sd)d∈N is an exhaustive filtration on S, we have S≤|X| ⊆ Sd for all large d. Then
evXSd is surjective by Lemma 1.17. Together, these facts imply the existence of K-linear
maps ηd such that the required diagrams are commutative.

It remains to show that ηd is injective for all large d. Let c ∈ N be such that for all
d ≥ c we have that

Z(kerϕd) = X, evXSd is surjective, and ηd exists.

Let v ∈ ker ηd. By the surjectivity of evXSd we have evXSd(p) = v for some p ∈ Sd. Then
ϕd(p) = ηd(evXSd(p)) = ηd(v) = 0. Thus, and since X is Zariski closed, we have

p ∈ kerϕd ⊆ I(Z(kerϕd)) = I(X) = ker evX .

Hence, v = evX(p) = 0. Thus, ηd is injective.
(ii) ⇒ (iii): Since ηd exists and is injective (for all large d), we have

kerϕd = ker(ηd ◦ evXSd) = ker evXSd = ISd(X).

(iii) ⇒ (i): Since (Sd)d∈N is exhaustive, by Lemma 1.14 for all large d we have

Z(kerϕd) = Z(ISd(X)) = Z(I(X)) = X.

Condition (P2) in Definition 1.5 (a) is obviously satisfied. q. e. d.
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For the decomposition of functions one applies Theorem 1.18 to the zero-dimensional
set X := suppu f for an f ∈ V . Theorem 1.18 intuitively states that to construct a “com-
putable” Prony structure for a given f is to findK-linear embeddings ηd : Ksuppu f →֒ Wd

into K-vector spaces Wd such that (matrices of) the compositions

Φd(f) := ηd ◦ evsuppu f
Sd

: Sd −→ Wd

can be computed from standard data of f .
In that setting, the following variation of Theorem 1.18 for generating subsets is useful

when it is not a priori clear that B is linearly independent. Then the existence of a
structure that satisfies variants of the conditions in Theorem 1.18 implies that B is a
basis of V and that Φ is a Prony structure.

Corollary 1.19: Let B be a generating subset of the F -vector space V and u : B →
Kn be injective. Let (Sd)d∈N and (Wd)d∈N be as in Theorem 1.18 and

Φ : V −→
∏

d∈N

HomK(Sd,Wd).

Then the following are equivalent:

(i) B is a basis of V and Φ is a Prony structure on (V,B, u).

(ii) For all f ∈ V , if M ⊆ B is a finite subset and fb ∈ F \ {0} with f =
∑
b∈M fbb,

then for all large d there is an injective K-linear map ηd : Ku[M ] →֒ Wd such that
the diagram

Sd Wd

Ku[M ]

Φd(f)

ev
u[M]
Sd

ηd

is commutative;

(iii) For all f ∈ V , if M ⊆ B is a finite subset and fb ∈ F \ {0} with f =
∑
b∈M fbb,

then for all large d one has kerΦd(f) = ISd(u[M ]).

Proof: (i) ⇒ (ii) and (i) ⇒ (iii): This is part of Theorem 1.18.
(ii) ⇒ (iii): As in Theorem 1.18.
(iii) ⇒ (i): By Theorem 1.18 it is sufficient to show that B is linearly independent.

Let b1, . . . , br ∈ B be pairwise distinct and f1, . . . , fr ∈ F such that f1b1 + · · ·+frbr = 0.
Suppose that f1 6= 0. By hypothesis, for all large d we have kerΦd(f1b1 + · · · + frbr) =
kerΦd(0) = ISd(∅) = Sd. On the other hand, since f1 6= 0, kerΦd(f1b1 + · · · + frbr) ⊆
ISd({u(b1)}) $ Sd for all large d, a contradiction. Thus f1 = 0 and B is linearly
independent. q. e. d.

Theorem 1.18 and Corollary 1.19 establish a close link between Prony structures and
evaluation maps. Therefore carefully studying these maps can reveal joint properties of
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Prony structures. In the rest of the section we study ideal-theoretic issues related to the
questions raised in Remark 1.13 (b).

In the following we do not distinguish between α ∈ Nn and the monomial xα ∈ Mon(S).
For general facts about initial ideals and Gröbner bases see, e. g., the textbooks of Cox,
Little, and O’Shea [11] or Kreuzer and Robbiano [34, 35].

Remark 1.20: Let X ⊆ Kn be finite. A direct consequence of Proposition 1.15 (a)
is that for all d ≥ |X| the vanishing spaces I≤d(X) generate the same radical ideal in S
(namely, I(X)).

We record an immediate consequence for Prony structures in the following corollary.

Corollary 1.21: Given the setup of Definition 1.7, let (Sd)d∈N be an exhaustive
filtration on S and ϕ be a Prony structure for f ∈ V . Then for all large d

〈kerϕd〉 = I(suppu f).

In particular, for all large d, 〈kerϕd〉 is a radical ideal in S.

Proof: Let X := suppu f and r := rankB f = |X|. By hypothesis there is a d ∈ N
with S≤r ⊆ Sd, hence by Theorem 1.18 we have kerϕd = ISd(X) ⊇ I≤r(X). Since also
Sd ⊆ S≤e for an e ∈ N, we have

I(X) = 〈I≤r(X)〉 ⊆ 〈ISd(X)〉 ⊆ 〈IS≤e
(X)〉 ⊆ I(X).

This concludes the proof. q. e. d.

Observe that for D ⊆ Nn, the ideal 〈ID(X)〉 is not a radical ideal in general. This is
shown already by the example n = 1, X = {0}, D = {x2

1}, where 〈ID(X)〉 = 〈x2
1〉.

On the other hand, in the total degree setting where d = |X| − 1 is sufficient for the
evaluation map evX≤d to be surjective for a given X ⊆ Kn, evX≤d can be surjective also
for d < |X| − 1. Furthermore, it is also possible that I≤d(X) generates a radical ideal
for small d. The following simple example exhibits both of these behaviors.

Example 1.22: Let
X := {(0, 0), (1, 0), (0, 1)} ⊆ K2.

One can see immediately that evX≤1 is bijective by considering its matrix

VX
≤1 = (t(x))x∈X

t∈T1

=




1 0 0
1 1 0
1 0 1


 ∈ KX×T1 .

Therefore, evX≤1 is surjective and I≤1(X) = ker evX≤1 = {0}. So 〈I≤1(X)〉 is the zero ideal
of S, which is prime and thus radical (and of course not equal to I(X)).

Since |X| = 3, evX≤2 is surjective by Lemma 1.17. Hence dimK I≤2(X) = |T2| − 3 = 3
and it is easy to see that

I≤2(X) = 〈x1(x1 − 1), x2(x2 − 1), x1x2〉K .

In fact, a computation shows that the vanishing ideal I(X) of X is generated by I≤2(X).
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We consider special situations and prove results related to Corollary 1.21 and Exam-
ple 1.22.

For a monomial order < on Mon(S) and an ideal I of S we denote by

N<(I) := Mon(S) \ in<(I)

the normal set of I. If there seems to be no danger of confusion, we omit the mono-
mial order from the notation and write, e. g., in(I) and N(I) for in<(I) and N<(I),
respectively.

For example, for I = I(X) with X ⊆ K2 as in Example 1.22, one has

in(I) = 〈x2
1, x1x2, x2

2〉 and thus N(I) = {1, x1, x2}

for the degree reverse lexicographic order <.

Lemma 1.23: Let < be a monomial order on Mon(S), X ⊆ Kn be finite and I :=
I(X). Then the following holds:

(a) evXN(I) : SN(I) → KX is bijective. In particular, |N(I)| = |X|.

(b) Let D ⊆ Mon(S) be such that evXD : SD → KX is surjective. Then there is a
C ⊆ Mon(S) with the following properties:

(1) C ⊆ D.

(2) evXC : SC → KX is bijective. In particular, |C| = |X| = |N(I)|.

(3) For all t ∈ D \ C we have evXD(t) ∈ 〈evXC (s) | s ∈ C and s < t〉K .

Proof: (a) It is a standard fact that SN(I)
∼= S/I ∼= KX , see, for example, Cox,

Little, and O’Shea [11, Chapter 5, § 3, Proposition 4]. Let p ∈ ker(evXN(I)) and

suppose that p 6= 0. Then in p ∈ in(I) ∩ N(I) = ∅, a contradiction. Thus, evXN(I) is
injective and hence an isomorphism.

(b) Note that necessarily |D| ≥ |X|. We prove the assertion by induction on k =
|D| − |X| ∈ N. If k = 0, then |D| = |X|. So evXD is bijective and C = D works
trivially.

Let k ≥ 1. Then |D| > |X| and the elements evXD(t), t ∈ D, are linearly dependent
in KX . Hence there are λt ∈ K with

∑
t∈D λt evXD(t) = 0 and λt 6= 0 for at least

one t ∈ D. Let

t0 := max<{t ∈ D | λt 6= 0} and D1 := D \ {t0}.

Clearly, evXD1
: SD1 → KX is surjective and |D1| − |X| = k − 1. By induction

hypothesis there is a C1 ⊆ D1 such that evXC1
: SC1 → KX is bijective and

evXD1
(t) ∈ 〈evXC1

(s) | s ∈ C1, s < t〉K for all t ∈ D1 \ C1.
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Clearly, C1 ⊆ D. We claim that C := C1 fulfills the assertion also for D. It remains
to show statement (3) for t = t0. For this let U := 〈evXC (s) | s ∈ C, s < t0〉K . From
the linear dependency above it follows that

evXD(t0) =
∑

s∈D1

µs evXD1
(s) =

∑

s∈C

µs evXC (s) +
∑

s∈D1\C

µs evXD1
(s) with µs ∈ K.

Trivially
∑
s∈C µs evXC (s) ∈ U since by the choice of t0 we have s < t0 for all s ∈ D

with µs 6= 0. Also by the choice of t0 and the induction hypothesis mentioned above
we have

∑
s∈D1\C µs evXD1

(s) ∈ U . Thus we have evXD(t0) ∈ U . This concludes the
proof. q. e. d.

Remark 1.24: Let the notation be as in Lemma 1.23 (b) and evXD surjective. There
are the following interesting questions:

(Q1) Under which conditions do we have N(I) ⊆ D?

(Q2) Under which conditions does C = N(I) satisfy (1), (2), and (3) in Lemma 1.23 (b)?

Of course, C = N(I) implies that N(I) ⊆ D. A simple example that shows N(I) ⊆ D
does not hold in general is given by n = 1, X = {1} ⊆ K, D = {x1} ⊆ Mon(S).

Definition 1.25: Let < be a monomial order on Mon(S) and D ⊆ Mon(S) be an
order ideal w. r. t. divisibility. We call D distinguished (w. r. t. <) if for all t ∈ D and
s ∈ Mon(S) \D we have t < s.

For an arbitrary non-empty order ideal D ⊆ Mon(S) we define

∂(D) := (x1D ∪ · · · ∪ xnD) \D.

We also set
∂(∅) := {1}.

Usually, ∂(D) is called the border of D.

Example 1.26: Our standard examples of distinguished order ideals and a counterex-
ample are the following.

(a) Let d ∈ N. Then

D := Td = {α ∈ Nn | α1 + · · · + αn ≤ d}

is a distinguished order ideal w. r. t. <degrevlex (or any other degree compatible
monomial order).

(b) Choose any w ∈ (N \ {0})n, let

degw(xα) :=
n∑

j=1

wjαj
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and define a monomial order <w by letting xα <w xβ if degw(xα) <w degw(xβ) or
degw(xα) = degw(xβ) and xα <lex xβ. Let d ∈ N and

D := {α ∈ Nn | degw(xα) ≤ d}.

Then D is a distinguished order ideal w. r. t. <w.

(c) Clearly, for any n ∈ N,

D := Md = {α ∈ Nn | max{α1, . . . , αn} ≤ d}

is an order ideal. For n ≥ 2 and d ≥ 1, there is no monomial order < on Mon(S)
such that D is a distinguished order ideal w. r. t. <. Indeed, if x2 > x1, then
D ∋ x2xd1 > x1xd1 = xd+1

1 /∈ D.

Lemma 1.27: Let < be a monomial order on Mon(S), X ⊆ Kn be finite and D ⊆
Mon(S) be a distinguished order ideal w. r. t. < such that evXD is surjective. Let I := I(X)
and C ⊆ D be as in Lemma 1.23 (b). For t ∈ Mon(S) let pt ∈ SC be the uniquely
determined polynomial such that evXC (pt) = evX(t) and set qt := t − pt. Then the
following holds:

(a) For t ∈ Mon(S) we have qt ∈ I.

(b) For t ∈ Mon(S) \ C we have supp pt ⊆ {s ∈ C | s < t}.

(c) For t ∈ Mon(S) \ C we have in qt = t.

(d) For p ∈ I \ {0} we have suppp * C, i. e. p /∈ SC .

(e) We have C = N(I).

Here, supp p denotes the support of p w. r. t. the monomial basis of S.

Proof: (a) This is an immediate consequence of the definition, since I = ker(evX).

(b) If t ∈ D \ C then there are µs ∈ K such that

evXD(t) =
∑

s∈C,s<t

µs evXC (s) = evXC
( ∑

s∈C,s<t

µss
)
.

Hence pt =
∑
s∈C,s<t µss, and clearly supp(pt) ⊆ {s ∈ C | s < t}. If t ∈ Mon(S)\D

then t > s for all s ∈ D since D is a distinguished order ideal. In particular, we
see also in this case that supp(pt) ⊆ C = {s ∈ C | s < t}, finishing the proof of
the claim.

(c) This is an immediate consequence of part (b).

(d) Suppose that supp(p) ⊆ C. Then p ∈ IC(X) = ker(evXC ) = {0}, a contradiction.
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(e) If t ∈ Mon(S) \ C then t = in(qt) ∈ in(I) by part (c). Thus N(I) ⊆ C and since
|N(I)| = |X| = |C|, we have N(I) = C. q. e. d.

Corollary 1.28: Let < be a monomial order on Mon(S), X ⊆ Kn be finite, I :=
I(X), and D ⊆ Mon(S) be a distinguished order ideal w. r. t. <. Then the following are
equivalent:

(i) evXD is surjective;

(ii) N(I) ⊆ D.

Proof: (i) ⇒ (ii): Let t ∈ N(I) and let C ⊆ D be as in Lemma 1.23 (b). Then we have
N(I) = C by Lemma 1.27 (e) and thus N(I) ⊆ D.

(ii) ⇒ (i): By Lemma 1.23 (a), evXN(I) is bijective, and since N(I) ⊆ D, evXD is surjec-
tive. q. e. d.

The special case of the next theorem for a degree compatible monomial order < and
D = Td can already be found in [68, Theorem 2.48].

Theorem 1.29 (Möller): Let < be a monomial order on Mon(S), X ⊆ Kn finite,
and D a distinguished order ideal w. r. t. < such that evXD is surjective. Then there is a
Gröbner basis G of I(X) such that

G ⊆ SD∪∂(D) and |G| = |D| + |∂(D)| − |X|.

Proof: Let I := I(X) and let C = N(I) ⊆ D, pt ∈ SC , and qt = t − pt be as in
Lemma 1.27.

Define
G := {qs | s ∈ D ∪ ∂(D) \ C} ⊆ I.

We show that G is a Gröbner basis of I. Set J := 〈in(G)〉S . It suffices to show that
J = in(I). It is clear that J ⊆ in(I). The reverse inclusion is certainly true if X = ∅,
since then

I = 〈1〉 = in(I), C = ∅, 1 ∈ D ∪ ∂(D), and 1 = in(q1) ∈ in(G).

Thus let w. l. o. g. X 6= ∅. Assume that in(I) * J . Then there is a monomial s ∈ in(I)\J .
Let t be a minimal monomial generator of in(I) with t | s. Since t ∈ in(I) we have
t /∈ N(I) = C.

Case 1: t ∈ D. Then qt ∈ G and t = in(qt) ∈ in(G), hence s ∈ 〈in(G)〉 = J , a
contradiction.

Case 2: t /∈ D. Since X 6= ∅ we have t 6= 1, so there is a j ∈ {1, . . . , n} such that xj | t.
Let t̃ := t/xj. Since t is a minimal generator of in(I), we have t̃ /∈ in(I), so t̃ ∈ C ⊆ D.
Hence, t = xj t̃ ∈ (xjD) \ D ⊆ ∂(D) ⊆ in(G). Thus we obtain that s ∈ 〈in(G)〉 = J ,
again a contradiction.

Thus we have in(I) ⊆ J and G is a Gröbner basis of I. By Lemma 1.27 it is clear
that |G| = |D ∪ ∂(D) \ C| = |D| + |∂(D)| − |X|. Moreover, for t ∈ D∪∂(D) \C we have
supp(qt) = {t} ∪ supp(pt) ⊆ {t} ∪ {s ∈ C | s < t} ⊆ D ∪ ∂(D), i. e., qt ∈ SD∪∂(D), which
concludes the proof. q. e. d.
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Note that in Theorem 1.29, in general G contains a border prebasis induced by ∂(D).
In particular, if the distinguished order ideal D equals N(I), then G is a border basis
of I. See, e. g., Kreuzer and Robbiano [35, Section 6.4] for further details related to the
theory of border bases.

Example 1.30: Let w ∈ (N \ {0})n and degw and the monomial order <w be defined
as in Example 1.26 (b). Let D := {α ∈ Nn | degw(xα) ≤ d}. Then for any X ⊆ Kn such
that evXD is surjective, by Theorem 1.29 there is a Gröbner basis G (w. r. t. <w) of I(X)
of cardinality |D| + |∂(D)| − |X| contained in SD∪∂(D).

For a simple concrete example over any field K of characteristic 6= 2, let

w := (1, 2),

X := {(0, 0), (1, 0), (−1, 0), (0, 1)} ⊆ K2

and
D := {1, x, y, x2} = {xα | degw(xα) ≤ 2}.

Then evXD : SD → KX ∼= K4 is surjective as can easily be seen from its matrix

VX
D =




1 0 0 0
1 1 0 1
1 −1 0 1
1 0 1 0


 ∈ KX×D.

Since by Example 1.26 (b), D is a distinguished order ideal w. r. t. <w for the weight
w = (1, 2), Theorem 1.29 implies that there is a Gröbner basis G (w. r. t. <w) of I(X)
with G ⊆ SD∪∂(D). Note that

D ∪ ∂(D) = {1, x, y, x2, xy, x3, x2y, y2} $ T3,

so in particular, this statement cannot be obtained by specializing Theorem 1.29 to the
total degree situation.

We list two immediate consequences of Theorem 1.29 in the following corollary. We
state the special case of the total degree part (b) separately; it is also included in [68,
Theorem 2.48].

Corollary 1.31: (a) With notation and assumptions as in Theorem 1.29, the ideal
generated by ID∪∂(D)(X) is a radical ideal in S.

(b) If evX≤d is surjective, then the ideal generated by I≤d+1(X) is a radical ideal in S.

We have the following implications for Prony structures.

Corollary 1.32: Given the setup of Definition 1.7, let ϕ be a Prony structure for f ∈
V w. r. t. u. Let d ∈ N be such that kerϕd = ISd(suppu f). If there is a distinguished order

ideal D (w. r. t. some monomial order < on Mon(S)) such that evsuppu f
D is surjective and

D ∪ ∂(D) ⊆ Sd then
〈kerϕd〉 = I(X).

In particular, 〈kerϕd〉 is a radical ideal in S.
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1.4. Maps between Prony structures

In this section we define structure preserving maps between Prony structures. This gives
rise to a category of Prony structures.

We then show a principle to transfer given Prony structures to other vector spaces.
In Chapter 2 we will see that many known constructions of Prony structures arise as
applications of the transfer principle.

For reasons of brevity, whenever we say that Φ is a Prony structure, we mean that Φ
is a Prony structure on (V,B, u) where V is an F -vector space with F -basis B and
u : B → Kn is an injection. Similarly, when Φ̃ is a Prony structure, then this means
that Φ̃ is a Prony structure on (Ṽ , B̃, ũ) for an F̃ -vector space Ṽ with F̃ -basis B̃ and an

injection ũ : B̃ → (K̃)ñ.
The following is a natural definition of structure preserving maps between Prony

structures.

Definition 1.33: Let Φ and Φ̃ be Prony structures and let

• ι : F → F̃ be a field homomorphism (turning Ṽ into an F -vector space),

• ϕ : V → Ṽ be an F -vector space homomorphism, and

• µ : Φ[V ] → Φ̃[Ṽ ] be a function, where Φ[V ] = {(Φd(f))d∈N | f ∈ V }.

Then ψ := (ι, ϕ, µ) is called map of Prony structures from Φ to Φ̃, abbreviated as Prony
map in the following, and written ψ : Φ → Φ̃, if the inclusion

ϕ[B] ⊆
⋃

b̃∈B̃

〈b̃〉

holds and the following diagram is commutative.

V Φ[V ]

Ṽ Φ̃[Ṽ ]

Φ

Φ̃

µϕ

Remark 1.34: (a) The definition of Prony map given here is slightly more general
than the one in [39] where the inclusion “ϕ[B] ⊆ B̃” is part of the definition. The
general version follows the philosophy that Prony structures see only the support of
a vector and beyond this are oblivious of the coefficients. This allows in particular
to see the transfer principle below in terms of Prony maps.

(b) Under a similar name certain moment maps are considered in Batenkov and
Yomdin [4]. These are not related to our Prony maps.
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(c) One might expect a map between (subsets of) Kn and (K̃)ñ (that is compatible
with the other data) to play a role in the definition of Prony map. However,
such a function is implicitly defined by a Prony map ψ = (ι, ϕ, µ) : Φ → Φ̃. Set
h :
⋃
b̃∈B̃

〈b̃〉 \ {0} → B̃, λb̃ 7→ b̃. Since u is injective, there is a function

̺ψ : u[B] −→ ũ[B̃], ℓ 7−→ (ũ ◦ h ◦ ϕ)(u−1(ℓ)),

that maps elements of u[B] ⊆ Kn to elements of ũ[B̃] ⊆ (K̃)ñ. In other words, the
following diagram is commutative.

B
⋃
b̃∈B̃

〈b̃〉 \ {0} B̃

u[B] ũ[B̃]

ϕ h

̺ψ

u ũ

Clearly, ̺ψ is injective if and only if ϕ is injective.

Definition 1.35: Let P = (O,Hom, id, ◦) be defined as follows.

• O := {Φ | Φ Prony structure} is the class of all Prony structures.

• For Φ, Φ̃ ∈ O,
Hom(Φ, Φ̃) := {ψ | ψ : Φ → Φ̃ Prony map}

is the set of all Prony maps from Φ to Φ̃.

• For Φ ∈ O, let
idΦ := (idF , idV , idΦ[V ]).

• For Φ, Φ̃, ˜̃Φ ∈ O, ψ = (ι, ϕ, µ) ∈ Hom(Φ, Φ̃), and ψ̃ = (ι̃, ϕ̃, µ̃) ∈ Hom(Φ̃, ˜̃Φ), let

ψ̃ ◦ ψ := ((ι̃ ◦ ι), (ϕ̃ ◦ ϕ), (µ̃ ◦ µ)).

It is straightforward to show that P is a category (cf., e. g., the classic textbooks by
Mac Lane [42] or Adámek, Herrlich, and Strecker [1] for the basic notions). We call P
the category of Prony structures.

In the following we single out a basic but useful transfer principle for Prony structures
that will be applied repeatedly in Chapter 2.

Lemma 1.36 (Transfer principle): Let V, Ṽ be vector spaces over F resp. F̃ with F -
resp. F̃ -bases B, B̃, respectively, and let u : B → Kn and ũ : B̃ → Kn be injective. Let
ϕ : V → Ṽ (not necessarily linear) and for every f ∈ V let

suppu f = suppũ(ϕ(f)).
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Then every Prony structure Φ̃ on (Ṽ , B̃, ũ) induces a Prony structure ϕ∗(Φ̃) on (V,B, u)
with

ϕ∗(Φ̃)d(f) = Φ̃d(ϕ(f))

for f ∈ V and d ∈ N. The following commutative diagram illustrates the situation.

V Ṽ

∏
d∈N Hom

K̃
(S̃d, W̃d)

ϕ

Φ̃
ϕ∗(Φ̃)

Moreover, if ϕ is linear, then ψ = (ι, ϕ, µ) ∈ Hom(ϕ∗(Φ̃), Φ̃), where µ : ϕ∗(Φ̃)[V ] →
Φ̃[Ṽ ], ϕ∗(Φ̃)(f) 7→ Φ̃(ϕ(f)).

Proof: By the hypotheses, for f ∈ V and all large d we have

suppu f = suppũ(ϕ(f)) = Z(ker Φ̃d(ϕ(f))) = Z(kerϕ∗(Φ̃)d(f))

and
I
S̃d

(suppu f) = I
S̃d

(suppũ(ϕ(f))) ⊆ ker(Φ̃d(ϕ(f))) = ker(ϕ∗(Φ̃)d(f)).

This shows that Φ is a Prony structure on (V,B, u).
Let ϕ be F -linear. By the hypothesis, for b ∈ B we have

suppũ(ϕ(b)) = suppu b = {u(b)},

hence rank
B̃

(ϕ(b)) = |suppũ(ϕ(b))| = 1, and thus ϕ(b) ∈ 〈b̃〉 \ {0} for some b̃ ∈ B̃.
The required diagram for µ is commutative by the definition of µ. This concludes the
proof. q. e. d.
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2. Applications of Prony structures

In this chapter we discuss several examples and applications of Prony structures.
In Section 2.1 we introduce a generalized notion of exponentials that contains the

ordinary exponentials and also “Chebyshev exponentials”. It admits a natural Prony
structure that specializes to the Hankel, Toeplitz, and Hankel-plus-Toeplitz structures
for sums of (Chebyshev) exponentials and allows to treat Prony structures for these
types of functions in a unified way.

Corresponding Prony structures for sparse polynomial interpolation w. r. t. the mono-
mial and the Chebyshev bases are obtained in Section 2.2 as an application of the results
of Section 2.1 and the transfer principle from Chapter 1.

A reconstruction method for multivariate Gaußian sums was recently proposed by
Peter, Plonka, and Schaback [47]. In Section 2.3 we recast this result in the context of
Prony structures as an application of the transfer principle.

2.1. Prony structures for t-exponentials

Multivariate generalizations are among the main directions of recent research on Prony’s
method, see Potts and Tasche [53], Kunis, Peter, Römer, and von der Ohe [38], Sauer [57,
58], Diederichs and Iske [17, 18], Cuyt and Lee [14], Mourrain [45], and Hubert and
Singer [27], among others. For the basis of exponentials, multivariate versions based on
either Hankel-like or Toeplitz-like matrices have been studied previously, also in [38, 68].
Since for the Toeplitz case one needs evaluations also at negative arguments, one must
either restrict the discussion to a class of exponentials which allows these evaluations,
or one has to distinguish two different variants of exponentials. The first one has only
non-negative arguments and no constraints on the bases in Kn. The second variant is
defined also for negative (integer) arguments under the constraint that the bases lie on
the algebraic torus (K \{0})n. Observe that it is not possible to define Toeplitz versions
of Prony’s method for the first variant. This is a technical difficulty that any unification
of these methods must cope with.

Moreover, the framework of t-exponentials we introduce in this section also suggests
Prony structures for exponential sums w. r. t. a vector space basis derived from Cheby-
shev polynomials. This will later be used to recast the Lakshman-Saunders method as
a simple application of the transfer principle, cf. Section 2.2.2.

Unless stated otherwise, F will always be a field and K will be a field extension of F .

Definition 2.1: Let A be a set and t = (tα)α∈A ∈ F [y±1
1 , . . . , y±1

n ]A. We call b ∈ Kn

t-admissible if tα(b) ∈ K is defined for all α ∈ A. For a t-admissible b ∈ Kn let

gxptb : A −→ K, α 7−→ tα(b).
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We call the functions gxptb t-exponentials.
We call a subset Y ⊆ Kn t-admissible if every b ∈ Y is t-admissible. For a t-admissible

subset Y ⊆ Kn let
Bt
Y := {gxptb | b ∈ Y }

and
GxptY (F ) := 〈BY 〉F .

We call the elements of GxptY (F ) t-exponential sums (with bases in Y ).

Before giving examples, we state and prove the following simple lemma.

Lemma 2.2: Let A be a set and t = (tα)α∈A ∈ F [y±1
1 , . . . , y±1

n ]A be such that for all
j = 1, . . . , n we have that

yj ∈ 〈tα | α ∈ A〉F or 1/yj ∈ 〈tα | α ∈ A〉F .

Let Y ⊆ Kn be t-admissible. Then

utY : Bt
Y −→ Kn, gxptb 7−→ b,

is well-defined and injective.

Proof: Let b, c ∈ Y be such that gxptb = gxptc. We show that b = c. Let j ∈ {1, . . . , n}.
Case 1: yj ∈ 〈tα | α ∈ A〉F . Then there are pα ∈ F , almost all zero, with yj =∑
α∈A pαtα. Hence we have

bj =
∑

α∈A

pαtα(b) =
∑

α∈A

pα gxptb(α) =
∑

α∈A

pα gxptc(α) =
∑

α∈A

pαtα(c) = cj .

Thus b = c.
Case 2: 1/yj ∈ 〈tα | α ∈ A〉F . Analogously to Case 1 one shows 1/bj = 1/cj .
Hence utY is a function. It is clear that utY is injective. q. e. d.

The following Example 2.3 provides the fundamental examples of t-exponentials.
Part (a) generalizes the univariate case in Example 1.11 (a). See also [68, p. 12].

In part (b) we introduce the new notion of Chebyshev exponentials.
Part (c) is a variation of part (a) where all bases are restricted to lie on the al-

gebraic torus (K \ {0})n. See also [68, pp. 38f.]. This allows also for non-negative
arguments, i. e., the exponentials are functions on the domain Zn. As a consequence it
is possible to define not only sequences of Hankel-like but also of Toeplitz-like matrices
associated to an exponential sum (with domain Zn).

Example 2.3: (a) Let A := Nn and set tα := yα = yα1
1 · · · yαnn for α ∈ A. Then

every b ∈ Kn is t-admissible for t = (tα)α∈A. For b ∈ Kn we have

gxptb : Nn −→ K, α 7−→ bα,
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i. e., gxptb is the usual n-variate exponential with base b, which we denote also
by expb.

As in [68], for Y ⊆ Kn we also write

ExpnY (F ) := GxptY (F ) = 〈Bt
Y 〉F

and call the elements of ExpnY (F ) (n-variate) exponential sums (with domain Nn).

(b) Let A := N and F be a field of characteristic zero. For i ∈ A let Ti ∈ Z[y] ≤ F [y]
denote the i-th Chebyshev polynomial, defined inductively by

T0 := 1, T1 := y, and Ti := 2yTi−1 − Ti−2 for i ≥ 2.

Let t = (Ti)i∈A denote the sequence of Chebyshev polynomials,

Let K be a field extension of F . Every b ∈ K is t-admissible. For b ∈ Kn let

txpb := gxptb : A −→ K, i 7−→ Ti(b).

We call txpb Chebyshev exponential with base b.

For Y ⊆ Kn we also write

TxpY (F ) := GxptY (F ) = 〈Bt
Y 〉F

and call the elements of TxpY (F ) Chebyshev exponential sums.

(c) Let A := Zn and tα := yα = yα1
1 · · · yαnn for α ∈ A. For t = (tα)α∈A, the set of all

t-admissible elements is the algebraic torus (K \{0})n. For b ∈ (K \{0})n we have

gxptb : Zn −→ K, α 7−→ bα,

i. e., gxptb is the usual n-variate exponential with base b and domain Zn, which we
denote also by expZ,b.

As in [68], for Y ⊆ (K \ {0})n we also write

ExpnZ,Y (F ) := GxptY (F ) = 〈BY 〉F

and call the elements of ExpnZ,Y (F ) (n-variate) exponential sums (with domain Zn).

Remark 2.4: Observe that considered merely as vector spaces, the spaces Exp1
Y (F )

and TxpY (F ) are identical. However, here we consider them equipped with the bases
of exponentials and Chebyshev exponentials, respectively, and provide the notation to
keep track of this distinction.

For the rest of the section we assume that (tα)α∈A is a family of linearly indepen-
dent elements of F [y±1

1 , . . . , y±1
n ] such that yj ∈ 〈tα | α ∈ A〉F for all j = 1, . . . , n. In

particular, uY : BY → Kn is a well-defined injection according to Lemma 2.2.
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Definition 2.5: Let A be a subset of Zn. For α ∈ A let tα ∈ F [y±1
1 , . . . , y±1

n ] and let
tα ∈ F [y1, . . . , yn] for α ∈ A ∩ Nn. In this context, for I ⊆ A ∩ Nn we write

SI = 〈tα | α ∈ I〉F ≤ F [y1, . . . , yn].

Let Y ⊆ Kn be t-admissible for t := (tα)α∈A. For b ∈ Y and Σ = (σ1, . . . , σn) ∈ An we
write

Σb := (tσ1(b), . . . , tσn(b)) ∈ Kn

and for M ⊆ Y
MΣ := {Σb | b ∈ M} ⊆ Kn.

Let I,J ⊆ A ∩ Nn. For f =
∑
b∈M fb gxptb ∈ GxptY (F ) with fixed finite M ⊆ Y and

fb ∈ F \ {0} we set

ΦJ
I (f) :=

(
evMΣ

I

)⊤
◦ κf ◦ evMJ : SJ −→ (SI)∗,

where κf : KM → (KMΣ)∗ denotes the K-linear map that maps ub to fbuΣb∗ for b ∈ M .

Proposition 2.6: In the notation of Definition 2.5, the matrix of ΦJ
I (f) w. r. t. the

bases {tβ | β ∈ J } of SJ and {tα
∗ | α ∈ I} of (SI)∗ is

(∑

b∈M

fb gxptb(β) gxptΣb(α)
)
α∈I
β∈J

.

Proof: For β ∈ J we have

ΦJ
I (tβ) =

(
evMΣ

I

)⊤
◦ κf ◦ evMJ (tβ)

=
(
evMΣ

I

)⊤
◦ κf

(∑

b∈M

tβ(b)ub
)

=
∑

b∈M

tβ(b) ·
(
evMΣ

I

)⊤
◦ κf (ub)

=
∑

b∈M

fbtβ(b) ·
(
evMΣ

I

)⊤
(uΣb

∗)

=
∑

b∈M

fbtβ(b) · (uΣb∗ ◦ evMΣ
I )

=
∑

b∈M

fb gxptb(β) · (uΣb
∗ ◦ evMΣ

I ).

It is also easy to see that for b ∈ M we have

uΣb∗ ◦ evMΣ
I =

∑

α∈I

gxptΣb(α) · tα
∗,

i. e., the coordinate vector of the linear form uΣb∗ ◦ evMΣ
I ∈ (SI)∗ w. r. t. {tα

∗ | α ∈ I}
is (gxptΣb(α))α∈I . The claimed formula follows. q. e. d.
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Remark 2.7: Proposition 2.6 allows to compute ΦJ
I (f) under the assumption that

one has an expression of the products

gxptb(α) · gxptΣb(β)

for b ∈ Y , α ∈ I and β ∈ J , as a linear combination of evaluations of gxptb. For
applications see the following example.

Example 2.8: (a) As in Example 2.3 (a), let A := Nn and tα = yα = yα1
1 · · · yαnn

for α ∈ A. Then for b ∈ Kn and α, β ∈ A we have

expb(α) · expb(β) = expb(α+ β),

hence by Proposition 2.6 with σj = uj ∈ Nn for j = 1, . . . , n, the matrix of ΦJ
I (f)

is the Hankel-like matrix

HJ
I (f) := (f(β + α))α∈I

β∈J
.

(b) As in Example 2.3 (b), let charF = 0, A := N, and ti = Ti for i ∈ A. It is
well-known that for i, j ∈ A one has

ti · tj =
1
2

(ti+j + t|i−j|)

and thus for b ∈ Kn

txpb(i) · txpb(j) =
1
2

(
txpb(j + i) + txpb(|j − i|)

)
.

Hence by Proposition 2.6, the matrix of ΦJ
I (f) is

PJ
I (f) =

1
2

(
f(j + i) + f(|j − i|)

)
i∈I
j∈J

.

Of course, the map 2 · ΦJ
I has a Prony kernel if and only if ΦJ

I does so. Thus for
our purposes the factor 1/2 in the above formula can safely be removed.

(c) As in Example 2.3 (c), let A := Zn and tα = yα = yα1
1 · · · yαnn for α ∈ A. As in

part (a), for b ∈ (K \ {0})n and α, β ∈ A we have

expb(α) · expb(β) = expb(α+ β).

Hence by Proposition 2.6 with σj = −uj ∈ Zn for j = 1, . . . , n, the matrix of ΦJ
I (f)

is the Toeplitz-like matrix

TJ
I (f) := (f(β − α))α∈I

β∈J
.

We summarize the resulting Prony structures in the following corollary.
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Corollary 2.9 (Prony structures for exponential sums): Let I,J be sequences of
finite subsets of Nn such that (SJd)d∈N and (SId)d∈N are exhaustive filtrations on S.
Then the following holds, with Y ⊆ Kn in part (a), Y ⊆ (K \{0})n in parts (b) and (c),
and Y ⊆ K in part (d):

(a) (See [68, Corollary 2.19].) The map

H: ExpnY (F ) −→
∏

d∈N

KId×Jd, f 7−→ (Hd(f))d∈N =
(
(f(β + α))α∈Id

β∈Jd

)

d∈N
,

induces a Prony structure on (ExpnY (F ), BY , uY ).

(b) (See [68, Corollary 2.35].) The map

T: ExpnZ,Y (F ) −→
∏

d∈N

KId×Jd, f 7−→ (Td(f))d∈N =
(
(f(β − α))α∈Id

β∈Jd

)

d∈N
,

induces a Prony structure on (ExpnZ,Y (F ), BY , uY ).

(c) The map

H: ExpnZ,Y (F ) −→
∏

d∈N

KId×Jd, f 7−→ (Hd(f))d∈N =
(
(f(β + α))α∈Id

β∈Jd

)

d∈N
,

induces a Prony structure on (ExpnZ,Y (F ), BY , uY ).

(d) Let n = 1 and charF = 0. The map

ΦJ
I : Exp1

Y (F ) −→
∏

d∈N

KId×Jd, f 7−→
((
f(j + i) + f(|j − i|)

)
i∈Id
j∈Jd

)

d∈N
,

induces a Prony structure on (ExpnY (F ), BY , uY ).

Proof: These statements follow immediately from the preceding discussion. q. e. d.

Corollary 2.9 implies in particular that the set BY is a basis of ExpnY (F ) (and analo-
gously for ExpnZ,Y (F )), a fact that had been noted explicitly in von der Ohe [68, Corol-
lary 2.22] and more generally in Mourrain [45, Lemma 2.4]; it also follows from the
Dedekind lemma (see also Section 3.1).

Remark 3.3 shows that the linear independence of the Chebyshev exponential sums
(which holds by part (d)) does not simply follow from the Dedekind lemma. In particular,
in all cases the notation suppuY f is justified.

Multivariate versions of Corollary 2.9 (d) are not easily obtained, because of the ap-
pearance of “mixed terms” that seemingly cannot be expressed as evaluations at a single
point in A. We refer to Hubert and Singer’s preprint [27] for recent developments in the
multivariate case.
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Remark 2.10: Comparing the Prony structures from Corollary 2.9, as previously
mentioned, one advantage of the Hankel Prony structure H over the Toeplitz Prony struc-
ture T is that H works with exponential sums with arbitrary bases in the n-dimensional
affine space while T requires the bases to lie on the algebraic torus. On the other hand,
there are relevant results in this context that are known only for Toeplitz matrices;
see, e. g., [38, Theorem 3.7] regarding condition numbers.

In the spirit of Díaz and Kaltofen [16] and Garg and Schost [23], we discuss one
additional advantage of the Toeplitz variant regarding the number of used evaluations.
Let K be a field extension of F . Let I be a set, V ≤ KI be an F -vector space of
functions I → K and B be a basis of V . Moreover, let ϕ : K → K be an F -automorphism
of K such that for b ∈ B we have ϕ ◦ b ∈ B. Further, assume that a subset I0 ⊆ I is
given together with a function ψ : I → I such that ψ[I0] ⊆ I1 := I \ I0 and for every
f ∈ V the following diagram is commutative.

I K

I K

f

ψ ϕ

f

(It is of course sufficient to check this diagram for every f = b ∈ B.) Thus, under
these assumptions, one can replace the evaluations of f at α ∈ I0 by evaluations of ϕ at
f(ψ(α)). Since ψ(α) /∈ I0, one does not need the evaluation of f at any element of I0.

An application is the case F = R, K = C, and the space V = ExpnZ,Tn(R) of exponen-
tial sums with real coefficients supported on the analytic torus

Tn = {z ∈ Cn | |zj | = 1 for j = 1, . . . , n} ⊆ Cn.

Take ϕ : C → C to be the complex conjugation and let I = Zn, ψ : I → I, α 7→ −α, with
I0 = {α ∈ I | α1 < 0}. In this case, one can often (depending on I and J ) define the
Toeplitz matrix TI,J ,d(f) using fewer evaluations than in the Hankel matrix HI,J ,d(f).

Let f ∈ ExpnZ,(K\{0})n(F ) be arbitrary. Then the number sH,I,J ,d of evaluations
needed to define the Hankel matrix HI,J ,d(f) can be different from the number sT,I,J ,d

of evaluations needed to define TI,J ,d(f), depending on the choice of I and J . In general
one has

sH,I,J ,d = |Id + Jd| and sT,I,J ,d = |Jd − Id|.

Thus for example, in the bivariate case n = 2 one has

sH,M,M,d = sT,M,M,d for all d

and
sH,T ,T ,2 = 15 6= 19 = sT,T ,T ,2.

A more detailed discussion of this fact can be found in Josz, Lasserre, and Mourrain [29,
Section 2.3.2].

It would be interesting to compare Prony indices indHI,J
(f) and indTI,J

(f) of f ∈
ExpnZ,Y (F ) for various choices of the involved parameters.
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2.2. Sparse interpolation of polynomials

We give a unified exposition of sparse polynomial interpolation with regards to the
monomial basis and the Chebyshev basis based on the notion of t-exponentials.

Definition 2.11: For j = 1, . . . , n let 0 6= pj, qj ∈ F [y±1
j ] ≤ F [y±1

1 , . . . , y±1
n ] and set

p := p1 · · · pn and q := q1 · · · qn. We call (p1, . . . , pn) and (q1, . . . , qn) ∗-commuting if

p(q1, . . . , qn) = q(p1, . . . , pn)

holds in F (y1, . . . , yn). If it is clear which factorizations are meant, we simply call p
and q ∗-commuting if (p1, . . . , pn) and (q1, . . . , qn) are ∗-commuting.

Example 2.12: (a) If p, q ∈ F [y±1
1 , . . . , y±1

n ] are “Laurent monomials” (i. e., yα with
α ∈ Zn) then p, q are ∗-commuting. Indeed, if p = yα1

1 · · · yαnn and q = yβ1
1 · · · yβnn

with α, β ∈ Zn, one has

p(yβ1
1 , . . . , y

βn
n ) = yα1β1

1 · · · yαnβnn = q(yα1
1 , . . . , yαnn ).

(b) It is well-known that the Chebyshev polynomials Ti, i ∈ N, satisfy

Ti(Tj) = Tj(Ti)

for all i, j ∈ N. Hence, Ti and Tj are ∗-commuting, and more generally, also
p = Tα1(y1) · · · Tαn(yn) and q = Tβ1(y1) · · · Tβn(yn) are ∗-commuting since

p(Tβ1 , . . . ,Tβn) = Tα1(Tβ1) · · · Tαn(Tβn)

= Tβ1(Tα1) · · · Tβn(Tαn) = q(Tα1 , . . . ,Tαn).

The following Proposition 2.13 shows that for suitable sequences t of polynomials, a
Prony structure on the space of t-exponential sums induces a Prony structure on the
space of polynomials w. r. t. t by the transfer principle. We apply Proposition 2.13 in
Sections 2.2.1 and 2.2.2 to the monomial and Chebyshev bases.

Proposition 2.13: For j = 1, . . . , n let Aj be a set, t(j) = (t(j)a )a∈Aj
∈ F [y±1

j ]Aj ,

A := A1 × · · · × An, and tα := t
(1)
α1 · · · t

(n)
αn ∈ F [y±1

1 , . . . , y±1
n ] for α ∈ A. Assume that

the tα, α ∈ A, are linearly independent, let B := {tα | α ∈ A}, V := 〈B〉F , and assume
that yj ∈ V for all j = 1, . . . , n. Let b ∈ Kn be such that bj is t(j)-admissible and such
that

u : B −→ Kn, tα 7−→ (tα1(b1), . . . , tαn(bn)),

is injective and u[B] is t-admissible. Let B̃ := {gxptc | c ∈ u[B]}, Ṽ := Gxptu[B](F ), and

ũ : B̃ → Kn be according to Lemma 2.2.
For p ∈ V let

fp : A −→ K, α 7−→ p(u(tα)).

Let tα and tβ be ∗-commuting for all α, β ∈ A. Then the following holds:
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(a) For all p ∈ V we have fp ∈ Ṽ .

(b) For all p ∈ V we have suppu p = suppũ(fp).

Proof: (a) Let p ∈ V and let supp p = {β ∈ A | tβ ∈ suppB p} and pβ ∈ F with
p =

∑
β∈supp p pβtβ. Then for α ∈ A we have

fp(α) = p(u(tα)) =
∑

β∈supp p

pβtβ(u(tα)) =
∑

β∈supp p

pβtβ(tα1(b), . . . , tαn(b))

=
∑

β∈supp p

pβtα(tβ1(b), . . . , tβn(b)) =
∑

β∈supp p

pβtα(u(tβ))

=
∑

β∈supp p

pβ gxptu(tβ)(α).

This shows that fp ∈ Ṽ .

(b) Since u is injective, the computation in the proof of part (a) shows that

suppũ(fp) = {u(tβ) | β ∈ suppp} = {u(t) | t ∈ suppB p} = suppu p.

This concludes the proof. q. e. d.

2.2.1. Sparse interpolation w. r. t. the monomial basis

The following Corollary 2.14 identifies a well-known sparse interpolation technique for
polynomials w. r. t. the monomial basis (see, e. g., Ben-Or and Tiwari [5] or Mourrain [45,
Section 5.4]) as a Prony structure. In particular, our framework allows a simultaneous
treatment of the Hankel and Toeplitz cases.

Let A := Zn. For α ∈ A set

tα := yα = yα1
1 · · · yαnn ∈ F [y±1

1 , . . . , y±1
n ].

As in Proposition 2.13 set B := {tα | α ∈ A} and V := 〈B〉F . Choose a field exten-
sion K of F and let b ∈ (K \ {0})n be such that the function

u : B −→ Kn, yα 7−→ (bα1
1 , . . . , bαnn ),

is injective.1 Observe that then necessarily u[B] ⊆ (K \ {0})n. Set Ṽ := ExpnZ,u[B](F ),

B̃ := {expc | c ∈ u[B]}, and ũ : B̃ → Kn, expc 7→ c. For p ∈ V let

fp : A −→ K, α 7−→ p(u(tα)),

be as in Proposition 2.13. By Example 2.3 (c) we have fp ∈ Ṽ .

1For example, for K = F = C, any b ∈ Cn such that bj 6= 0 and bj is not a root of unity for all
j = 1, . . . , n works. Of course, K cannot be finite, for otherwise u : B → Kn cannot be injective.
One may always choose K := F (w) (with w an indeterminate over F ) and b := (w, . . . , w) ∈ Kn.

35



Let
ϕ : V −→ Ṽ , p 7−→ fp.

By Proposition 2.13 the premises of the transfer principle (Lemma 1.36) are satisfied.
Hence, any Prony structure Φ̃ on the space of exponential sums (Ṽ , B̃, ũ) induces a Prony
structure ϕ∗(Φ̃) on the space of polynomials (V,B, u). The following corollary describes
the matrices of the Prony structures induced by the Hankel and Toeplitz Prony structures
from Corollary 2.9.

Corollary 2.14 (Prony structures for monomial-sparse interpolation):
The following holds:

(a) Let H̃ be the Prony structure on (Ṽ , B̃, ũ) from Corollary 2.9 (c) and H := ϕ∗(H̃).
Then for p ∈ V and d ∈ N, the matrix of Hd(p) is

(fp(β + α))α∈I
β∈J

= (p(bβ1+α1
1 , . . . , bβn+αn

n ))α∈I
β∈J

.

(b) Let T̃ be the Prony structure on (Ṽ , B̃, ũ) from Corollary 2.9 (b) and T := ϕ∗(T̃).
Then for p ∈ V and d ∈ N, the matrix of Td(p) is

(fp(β − α))α∈I
β∈J

= (p(bβ1−α1
1 , . . . , bβn−αn

n ))α∈I
β∈J

.

Proof: The assertions follow immediately from Proposition 2.13, Lemma 1.36, and
Corollary 2.9 (c) and (b), respectively. q. e. d.

Example 2.15: The reconstruction method for p ∈ V = F [y1, . . . , yn] from Corol-
lary 2.14 is efficient if p has small rank, i. e., is a “sparse polynomial”. To give an
illustration, let n = 2, b ∈ (K \ {0})n be chosen appropriately and p = yβ − yγ ∈ V be
a binomial. Then rank(fp) = 2, hence the polynomial p can be reconstructed, indepen-
dently of its degree, from the |T3| =

(n+3
3

)
=
(5

3

)
= 10 evaluations used for the matrix

HT1,T2(fp).
The number of evaluations of p can be further reduced if p is known to be of degree

at most d − 1. In this case, q := p(z, zd, . . . , zd
n−1

) ∈ F [z] is a binomial of degree at
most dn − 1 in one variable. The above binomial can thus be reconstructed from four
evaluations.

2.2.2. Sparse interpolation w. r. t. the Chebyshev basis

Decomposing a polynomial f ∈ Q[y] w. r. t. the Chebyshev basis B is in principle pos-
sible by first decomposing f in terms of the monomial basis (Corollary 2.14) and then
computing the Chebyshev decomposition from that. However, the natural assumption
of an upper bound on the rank of f w. r. t. B does not imply an upper bound on the
rank of f w. r. t. the monomial basis, so that it may be impossible to check the premises
of Corollary 2.14. Even if such a bound were given, efficiency would be a concern.
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Lakshman and Saunders [40] proposed a sparse method to compute Chebyshev decom-
positions directly, which follows at this point effortlessly and as in the monomial case
(Corollary 2.14) from the case of Chebyshev exponential sums (Corollary 2.9 (d)) and
the transfer principle.

As observed by Lakshman and Saunders [40, p. 390], the crucial properties of the
Chebyshev polynomials for their Prony structures are that for all i, j ∈ N one has the
linearization relation

Ti · Tj =
1
2

(Ti+j + T|i−j|)

and the commutativity relation

Ti(Tj) = Tj(Ti).

We already exploited the linearization relation to obtain Corollary 2.9 (d) and will not
need it further. We use the commutativity relation through Proposition 2.13.

It is now straightforward to derive a well-known sparse interpolation technique for
polynomials w. r. t. the Chebyshev basis (see, e. g., Lakshman and Saunders [40]) by
transferring the Prony structure for Chebyshev exponential sums from Corollary 2.9 (d)
to the space of polynomials using Lemma 1.36. To this end, let F be a field of charac-
teristic zero and consider

V := F [y]

as an F -vector space with the Chebyshev basis

B := {Ti | i ∈ N}.

Choose a field extension K of F and let b ∈ K be such that the function

u : B −→ K, Ti 7−→ Ti(b),

is injective.2

Moreover, set Ṽ := Txpu[B](F ), B̃ := {txpc | c ∈ u[B]}, and ũ : B̃ → K, txpc 7→ c.
For p ∈ V let fp be as in Proposition 2.13 and let

ϕ : V −→ Ṽ , p 7−→ fp.

By Proposition 2.13 the premises of the transfer principle (Lemma 1.36) are satisfied.
Hence, any Prony structure Φ̃ on the space of Chebyshev exponential sums (Ṽ , B̃, ũ)
induces a Prony structure ϕ∗(Φ̃) on the space of Chebyshev polynomials (V,B, u). The
following corollary describes the matrices of the Prony structure ϕ∗(Φ̃) induced by the
Hankel-plus-Toeplitz Prony structure Φ̃ from Corollary 2.9 (d).

Corollary 2.16 (Prony structures for Chebyshev-sparse interpolation):
Let Φ̃ be the Prony structure on (Ṽ , B̃, ũ) from Corollary 2.9 (d) and set Φ := ϕ∗(Φ̃).
Then for p ∈ V and d ∈ N the matrix of Φd(p) is

Pd(f) := (fp(j + i) + fp(|j − i|)) i∈Id
j∈Jd

= (p(tj+i(b)) + p(t|j−i|)) i∈Id
j∈Jd

.

2A choice that always works is b ∈ Q ⊆ F with b > 1.
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Proof: This follows from Proposition 2.13, Lemma 1.36, and Corollary 2.9 (d). q. e. d.

Remark 2.17: While versions of Corollary 2.9 hold for any basis of polynomials sat-
isfying a linearization relation with fixed coefficients for products (cf. Remark 2.7 and
see Corollary 4.15 for a variant in the relative setting of Chapter 4), it is in general not
easily possible to obtain corresponding versions of Corollaries 2.14 and 2.16, i. e. sparse
interpolation techniques, since bases satisfying commutativity relations are rather elusive
and these conditions are not straightforward to replace. However, there are variants for
other kinds of Chebyshev bases, see, e. g., Potts and Tasche [55] and Imamoglu, Kaltofen,
and Yang [28].

Peter and Plonka show how to view Chebyshev polynomials of the first kind as eigen-
functions of a suitable endomorphism of the space W of continuous real-valued functions
on the interval [−1, 1], see [46, Remark 4.6]. Thus, also the “analytic” reconstruction
technique for these functions given by Potts and Tasche [55] is recast in the framework
for eigenfunction sums. It is however not clear how this might be translated into a purely
algebraic version.

Multivariate variants for Chebyshev polynomials of first and second kind can be found
in a very recent preprint of Hubert and Singer [27].

Example 2.18: We give a toy example computation to illustrate Corollary 2.16. Let

f = y3 ∈ Q[y].

(The polynomial f = 1/8 · T3 + 1/4 · T1 has Chebyshev rank 2.) We choose b := 2.
Then the matrix of the linear map Φ2(f) = (ϕ∗(Φ̃))2(f) w. r. t. the bases {T0,T1,T2} of
F [x]≤2 and {T0

∗,T1
∗} of F [x]≤1

∗ is

P2(f) =

(
f(T0(b)) f(T1(b)) f(T2(b))
f(T1(b)) f(T2(b)) f(T3(b))

)
+

(
f(T0(b)) f(T1(b)) f(T2(b))
f(T1(b)) f(T0(b)) f(T1(b))

)

=

(
1 8 343
8 343 17576

)
+

(
1 8 343
8 1 8

)

=

(
2 16 686
16 344 17584

)
∼

(
1 8 343
0 1 56

)
.

Thus, in these coordinates the kernel of Φ2(f) is generated by (105,−56, 1)⊤ ∈ Q3.
Hence we have

ker(Φ2(f)) = 〈T2 − 56T1 + 105T0〉 = 〈(x − 2)(x − 26)〉,

and since Φ = ϕ∗(Φ̃) is a Prony structure, we recover the support of f as

suppB f = u−1[suppu f ] = u−1[Z(kerΦ2(f))] = u−1[{2, 26}] = u−1[{T1(b),T3(b)}]

= {T1,T3}.

If desired, the coefficients 1/4 and 1/8 can now easily be computed by solving a 2 × 2-
system of linear equations.
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Remark 2.19: Probabilistic results related to sparse interpolation in various bases
are known in the literature under the name “early termination”, see for example Kaltofen
and Lee [30]. In the language of the present work, the quest there is to find probabilistic
estimates of the Prony index indΦ f of a polynomial f where the Prony structure Φ
is given in similar ways as in Corollary 2.14 or Corollary 2.16. The general idea is to
perform the interpolation method repeatedly on increasingly large intervals and estimate
the probability of having computed the “true” interpolating polynomial in terms of the
number of successive intervals with the same result and a bound for the degree of f . For
more details and further refinements we refer to [30].

Early termination strategies can also be combined with sparse interpolation methods
for rational functions. For details we refer to, e. g., Kaltofen and Yang [31] and Cuyt
and Lee [13]. In a related direction, probabilistic methods tailored to sparse polynomial
interpolation over finite fields can be found, e. g., in Arnold, Giesbrecht, and Roche [2].

It would be interesting to look for generalizations of these results in the framework
of Prony structures. However, in full generality this is unlikely to be fruitful, since one
has to be able to make additional assumptions like degree bounds for which the Prony
structures are not well-adapted.

Another potential avenue for further research could be the investigation of the compu-
tational complexity of Prony structures w. r. t. an underlying model of computation, such
as arithmetic circuits in polynomial identity testing. See Shpilka and Yehudayoff [61]
and Saxena [59, 60] for recent surveys of this field.

Arnold and Kaltofen [3] propose an error-correcting interpolation method for Cheby-
shev-sparse polynomials with a bounded number of erroneous evaluations.

We leave the search for suitable settings for the future.

2.3. Gaußian sums

In this section we recast the main result in Peter, Plonka, and Schaback [47] concerning
the reconstruction of multivariate Gaußian sums in the framework of Prony structures.
We will see that it can be derived as an application of the transfer principle.

To this end, let A ∈ Rn×n be a fixed positive definite symmetric matrix. We call the
functions

gA,t : Rn −→ R, x 7−→ e−(x−t)⊤A(x−t), t ∈ Rn,

Gaußians. Let
B := {gA,t | t ∈ Rn} and V := 〈B〉C.

The elements of V are called Gaußian sums.
For t ∈ Rn set

bA,t := ez = (ez1, . . . , ezn) ∈ (R \ {0})n with z = 2t⊤A ∈ R1×n

and let
u : B −→ Rn, gA,t 7−→ bA,t.
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Since A is positive definite, gA,t obtains its unique maximum in t. This implies that u is
well-defined. Also since A is positive definite, bA,t = bA,s for t, s ∈ Rn implies that
t = s, and thus u is injective. For the following theorem we set Ṽ := ExpnZ,u[B](C),

B̃ := {expb | b ∈ u[B]}, and ũ : B̃ → Kn, expb 7→ b.

Theorem 2.20 (Prony structure for Gaußian sums): For g ∈ V let

fg : Zn −→ C, α 7−→ g(α) · eα
⊤Aα.

Then the following holds:

(a) For all g ∈ V we have fg ∈ Ṽ and ϕ : V → Ṽ , g 7→ fg, is a C-vector space
isomorphism with ϕ(gA,t) = λA,t · expbA,t for some λA,t ∈ R \ {0}. In particular,
B is a basis of V .

(b) For all g ∈ V we have suppũ(fg) = suppu g.

Hence, any Prony structure on Ṽ (in particular those in Corollary 2.9 (b) and (c))
induces a Prony structure on V by the transfer principle (Lemma 1.36).

Proof: (a) Note that for all t ∈ Rn and α ∈ Zn and with λA,t := e−t⊤At ∈ R \ {0}
we have

fgA,t(α) = gA,t(α) · eα
⊤Aα = e−(α−t)⊤A(α−t) · eα

⊤Aα = e−t⊤At · e2t⊤Aα

= λA,t · expbA,t(α).

By definition we have bA,t ∈ u[B], and hence ϕ(gA,t) = fgA,t ∈ Ṽ . Since clearly

fλg+µh = λfg + µfh for all λ, µ ∈ C and g, h ∈ V , we have that ϕ[V ] ⊆ Ṽ and ϕ is
C-linear. Since B̃ is a C-basis of Ṽ , there is a unique C-linear map ψ : Ṽ → V
with ψ(expbA,t) = 1/λA,t · gA,t for all t ∈ Rn. Then ψ is the inverse of ϕ and this
concludes the proof of part (a).

(b) Let g =
∑
t∈F µt gA,t with finite F ⊆ Rn and µt ∈ C \ {0}. Using part (a) we

obtain

suppũ(fg) = suppũ
(∑

t∈F

µtλA,t expbA,t
)

= {bA,t | t ∈ F} = suppu g,

i. e., the assertion. q. e. d.

An alternative approach to the reconstruction problem in Theorem 2.20 which is based
on Fourier transforms and takes inexact evaluations into account, is proposed in Peter,
Potts, and Tasche [48, Section 4].
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3. Relations with other frameworks

In this chapter we discuss and compare the framework of Prony structures with previous
ones from the literature, namely for character sums (Dress and Grabmeier [19]), for
eigenfunction sums (Grigoriev, Karpinski, and Singer [24]), and for eigenvector sums
(Peter and Plonka [46]).

3.1. Character sums

The following theorem recasts the Dress-Grabmeier framework [19] for sparse interpo-
lation of character sums in terms of Prony structures. As before, K is a field and
S = K[x1, . . . , xn].

Recall that a monoid homomorphism χ : (M,+) → (K, ·) from a commutative monoid
(M,+) to the multiplicative monoid of K is called character of M in K. The Dedekind
independence lemma states that the set of characters of M in K is linearly independent
as subset of the K-vector space KM of functions from M to K.

Theorem 3.1 (Prony structure for character sums): Let (M,+) be a finitely gener-
ated commutative monoid generated by the elements a1, . . . , an ∈ M . Consider a set B of
characters of M in K and let

V := 〈B〉K

be the K-subvector space of KM generated by B. Let

u : B −→ Kn, χ 7−→ (χ(a1), . . . , χ(an)).

Let I,J be sequences of finite subsets of Nn such that (SJd)d∈N and (SId)d∈N are ex-
haustive filtrations on S. For f ∈ V and d ∈ N set

Pd(f) :=
(
f
( n∑

j=1

(αj + βj)aj
))

α∈Id
β∈Jd

∈ KId×Jd ∼= HomK(SJd , (SId)
∗).

Then u is injective and Pd(f) induces a Prony structure on (V,B, u).

Proof: If u(χ1) = u(χ2) for characters χi then χ1(aj) = χ2(aj) for all j = 1, . . . , n.
Since M is generated by {a1, . . . , an}, this implies χ1 = χ2, and thus u is injective. For
f ∈ V write f =

∑
x∈suppu f

fxχx with fx ∈ K \ {0} and χx ∈ B with u(χx) = x for

x ∈ suppu f . Let κf : Ksuppu f → (Ksuppu f )
∗

be the K-linear map with κf (ux) = fxux∗.
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Clearly, κf is an isomorphism. A computation on the corresponding matrices shows that
one has the following commutative diagram.

KJd (KId)∗

SJd Ksuppu f (Ksuppu f )
∗

(SId)
∗

Pd(f)

∼=

ev
suppu f
Jd κf , ∼= (ev

suppu f
Id

)
⊤

∼=

Thus P is a Prony structure on (V,B, u) by Lemma 1.17 and Theorem 1.18. q. e. d.

Remark 3.2: (a) Since for b ∈ Kn one has expb ∈ Hom((Nn,+), (K, ·)), the Dress-
Grabmeier framework contains the Prony structures for exponential sums.

(b) Note that Dress and Grabmeier [19] allow arbitrary monoids whereas in Theo-
rem 3.1 we allow only finitely generated ones. Roughly speaking, in applications
to function spaces this corresponds to allowing only a fixed finite number n of
variables. This is no restriction in any case we have in mind.

(c) While Theorem 3.1 is formulated in the safe knowledge that according to the
Dedekind lemma B is linearly independent, a minor variation of the proof using
Corollary 1.19 also proves the Dedekind lemma.

Remark 3.3: There is no operation ⊕ on N such that the Chebyshev exponen-
tials txpb, b ∈ Q, are characters of (N,⊕) in Q. Indeed, otherwise one would have

T1⊕1(b) = txpb(1 ⊕ 1) = txpb(1) · txpb(1) = T1(b) · T1(b) = b2

for all b ∈ Q. Hence, T1⊕1 = y2 ∈ Z[y]. This is a contradiction, since the only Chebyshev
polynomial of degree 2 is T2 = 2y2 − 1 6= y2. The framework of Prony structures, being
able to handle the basis of Chebyshev exponentials (Corollary 2.9 (d)) thus is strictly
more general than the one for character sums.

3.2. Eigenvector and eigenfunction sums

Related decomposition frameworks have been proposed for related families of vector
spaces by Grigoriev, Karpinski, and Singer [24] and by Peter and Plonka [46]. In this
section, we discuss these frameworks from the point of view of Prony structures.

We start with a method that was given in the case of a single endomorphism ϕ ∈
EndK(W ) in Peter and Plonka [46]. Roughly speaking, here the number of endomor-
phisms corresponds to the dimension of the affine space associated to a Prony structure.
See also Mourrain [45] for related discussions in the multivariate case with several endo-
morphisms and the book of Plonka, Potts, Steidl, and Tasche [49, Section 10.4.2].

The framework proposed by Grigoriev, Karpinski, and Singer [24] then follows by
specialization to the case of ∆ being a point evaluation functional. We derive the Peter-
Plonka framework directly from Theorem 3.1.
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As usual, the point spectrum of an endomorphism ϕ ∈ EndK(W ) of a K-vector
space W is denoted by

σp(ϕ) = {λ ∈ K | ker(ϕ− λ idW ) 6= {0}}

and for λ ∈ σp(ϕ) let
Wϕ
λ = ker(ϕ− λ idW )

be the eigenspace of ϕ w. r. t. λ. For pairwise commuting operators ϕ1, . . . , ϕn ∈
EndK(W ) and α ∈ Nn we use the notation

ϕα := ϕα1
1 ◦ · · · ◦ ϕαnn ∈ EndK(W ).

Corollary 3.4 (Prony structure for eigenvector sums): Let ϕ1, . . . , ϕn ∈ EndK(W )
be pairwise commuting operators and consider Λ ⊆

∏n
j=1 σp(ϕj). Assume that for every

λ ∈ Λ we have
⋂n
j=1W

ϕj
λj

6= {0} and choose

bλ ∈
n⋂

j=1

W
ϕj
λj

\ {0}.

Let

B := {bλ | λ ∈ Λ}, V := 〈B〉K , and u : B → Kn, bλ 7→ λ.

Let ∆ ∈ W ∗ = HomK(W,K) be such that

V ∩ ker(∆) = {0}.

Let I,J be sequences of finite subsets of Nn such that (SJd)d∈N and (SId)d∈N are ex-
haustive filtrations on S. For f ∈ V and d ∈ N set

Pd(f) := (∆(ϕα+β(f)))α∈Id
β∈Jd

∈ KId×Jd ∼= HomK(SJd , (SId)
∗).

Then Pd(f) induces a Prony structure on (V,B, u).

Proof: We apply Theorem 3.1 similarly as in Grigoriev, Karpinski, and Singer [24,
pp. 78f.]. Let M denote the submonoid of (EndK(W ), ◦) generated by ϕ1, . . . , ϕn. For
λ ∈ Λ let

χλ : M −→ K, ϕα 7−→
∆(ϕα(bλ))
∆(bλ)

.

Clearly, χλ is well-defined. Since χλ(ϕα) = λα for every α ∈ Nn, χλ is a character
of M in K. Thus, by Theorem 3.1, Qd(f) = (f(ϕα+β))α∈Id,β∈Jd

induces a Prony
structure on the vector space X := 〈χλ | λ ∈ Λ〉K ≤ KM with respect to the injection
v : X → Kn, χλ 7→ λ. Since suppu(bλ) = λ = suppv(χλ), the assertion follows. q. e. d.
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Observe that there are interesting situations where the condition that the bλ, λ ∈ Λ,
can be chosen in the desired way is fulfilled. For example this is the case if W is a
finite-dimensional C-vector space see, e. g., Horn and Johnson [26, Lemma 1.3.19].

With a little more effort in a direct proof, one can avoid the commutativity assumption
in Corollary 3.4 (but of course one still needs that

⋂n
j=1W

ϕj
λj

6= {0} for every λ ∈ Λ).

The case n = 1 identifies the method in [46] as a Prony structure.

Corollary 3.5 (Peter and Plonka [46, Theorem 2.1]): Let ϕ ∈ EndK(W ) and con-
sider Λ ⊆ σp(ϕ). For λ ∈ Λ choose

bλ ∈ Wϕ
λ \ {0}.

Let

B := {bλ | λ ∈ Λ}, V := 〈B〉K , and u : B → K, bλ 7→ λ.

Let ∆ ∈ W ∗ be such that

V ∩ ker(∆) = {0}.

For f ∈ V and d ∈ N set

Pd(f) := (∆(ϕα+β(f)))α=0,...,d−1
β=0,...,d

∈ Kd×(d+1) ∼= HomK(S≤d, (S≤d−1)∗).

Then Pd(f) induces a Prony structure on (V,B, u).

Proof: Take n = 1, Id = Td−1 and Jd = Td in Corollary 3.4. q. e. d.

Example 3.6: Several applications for various choices of the endomorphism ϕ and
the functional ∆ can be found in [46], for example, with ϕ ∈ End(W ) chosen as a
Sturm-Liouville differential operator (W = C∞(R)) or as a diagonal matrix with distinct
elements on the diagonal (W = Kn).

Remark 3.7: Besides Corollary 3.5, Peter and Plonka [46, Theorem 2.4] extended
their method, e. g., to include generalized eigenvectors and multiplicities; see also Mour-
rain [45] and Stampfer and Plonka [63]. At present Prony structures do not cover this
variation. Since none of the examples we have in mind use generalized eigenvectors and
multiplicities, we omit a detailed discussion here. See also Remark 1.13.

Remark 3.8: Summarizing the preceding discussion on frameworks for character [19]
and eigenfunction/eigenvector sums [24, 46] and the algebraic and analytic sparse poly-
nomial interpolation techniques w. r. t. the Chebyshev basis [40, 31, 55], we obtain the
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following diagram of “inclusions”.

Prony structures

character sums algebraic Chebyshev interpol.

eigenvector sums

eigenfunction sums
(over fields)

analytic Chebyshev interpol.

Theorem 3.1 Corollary 2.16

Corollary 3.4

(arbitrary functionals ∆)

Remark 2.17

Lakshman and Saunders remark on the possibility to “reconcile” the frameworks for
character or eigenfunction sums with their algorithm for sparse polynomial interpola-
tion w. r. t. the Chebyshev basis [40, p. 388]. As the framework of Prony structures is of
a very general nature, we would not propose it as a final answer to this question. How-
ever, it can be hoped that it will be helpful in finding more particular reconciliations.
See also Remark 2.17.

Remark 3.9: There is a close relationship between Prony’s method and Sylvester’s
method [64, 65] for computing Waring decompositions of homogeneous polynomials.
Although Sylvester’s method does not fit directly into our framework of Prony structures
(since it is not a method to reconstruct the support of a function), one may still view it
as an application of the classic Prony structure from Theorem 1.1: Given a homogeneous
polynomial

p =
d∑

i=0

pixiyd−i ∈ C[x, y]

of Waring rank at most r, the linear map associated to the matrix

C(p) := (ci+j) i=0,...,r
j=0,...,d−r

∈ C(r+1)×(d−r+1)

with ci := pi/
(d
i

)
has a Prony kernel for an exponential sum fp ∈ Exp1(C). Then this

exponential sum fp and its reconstruction as fp =
∑r
k=1 µk expbk can be used to compute

a Waring decomposition of p. Sylvester’s method has recently been generalized to the
multivariate case, cf., in particular, Brachat, Comon, Mourrain, and Tsigaridas [6].
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4. Relative Prony structures

A Prony structure on a vector space (V,B, u) can be seen as a tool to solve the problem:
Compute a set P of polynomials that has the u-support suppu f ⊆ Kn of a given f ∈ V
as its zero locus.

Suppose that a priori one is given a set of polynomials I ⊆ S = K[x1, . . . , xn] with
suppu f ⊆ Z(I). For example, one could have K = R and know that suppu f ⊆ Sn−1. It
would be desirable to be able to exploit this additional information in order to simplify
the solution process.

In particular, instead of searching directly for a solution P as above, it would be
reasonable to search for a set Q of polynomials such that P = I ∪Q solves the problem.
Such a set Q could have fewer elements or indeed be a strict subset of any solution to
the original problem.

Prony structures as discussed so far have no way of taking this into account. In this
chapter we modify the concept of Prony structures in order to handle and take advantage
of the additional information in the relative situation.

In Section 4.1 we present the general setup for the relative setting.
There are two distinct scenarios:

• One already has a Prony structure Φ on (V,B, u) and wants to construct from Φ
a “relative Prony structure” Φ/I that takes the equations in I into account.

• The possible construction of a “relative Prony structure w. r. t. I” without using
an ordinary Prony structure Φ on (V,B, u).

In Section 4.2 we show one possible construction for the first case and in Section 4.3
we recast an earlier result from [37] concerning the decomposition of function on the
sphere w. r. t. a basis of spherical harmonics in this context.

4.1. Definition of relative Prony structures

We begin by giving appropriate variants of earlier definitions for this context. As before,
let K always be a field and S = K[x] = K[x1, . . . , xn].

Definition 4.1: For Y ⊆ Kn let

K[Y ] := S/I(Y )

be the usual coordinate algebra of Y . For a K-subvector space U of S let

K[Y ]U := {p+ I(Y ) | p ∈ U} ≤ K[Y ].

We call K[Y ]U the coordinate space of Y w. r. t. U .
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Remark 4.2: Let Y ⊆ Kn and U ≤ S a K-subvector space. Then we have

U/IU (Y ) ∼= K[Y ]U .

Indeed, the K-linear map ϕ : U → K[Y ]U , p 7→ p = p+ I(Y ), is an epimorphism with
kerϕ = IU (Y ). In the following we identify these two K-vector spaces.

Definition 4.3: Let U ≤ S be a K-subvector space S. For X ⊆ Y ⊆ Kn we call

evXU/Y : K[Y ]U −→ KX , p+ IU (Y ) 7−→ evXU (p) = (p(x))x∈X ,

the relative evaluation map at X w. r. t. U modulo Y and

IU/Y (X) := ker evXU/Y

the relative vanishing space of X on U/Y .

Remark 4.4: Let U ≤ S be a K-subvector space and X ⊆ Y ⊆ Kn, with X finite.
Then there is a U0 ⊆ U such that B := {p+ IU (Y ) | p ∈ U0} is a K-basis of K[Y ]U .
Without loss of generality, choose U0 such that |B| = |U0|.

Observe that then the matrix of evXU/Y w. r. t. B and the canonical basis of KX is the

Vandermonde matrix VX
B = (p(x))x∈X,p∈U0

. Hence the matrices of the relative evaluation
map evXU/Y and the “ordinary” evaluation map evXU are identical.

Definition 4.5: For J ⊆ K[Y ] we call

ZY (J) := {y ∈ Y | for all q ∈ S with q + I(Y ) ∈ J , q(y) = 0}

the relative zero locus of J w. r. t. Y .

After these general preparations, we define relative Prony structures, which are the
topic of this chapter. Recall that Y ⊆ Kn is called algebraic set if Y is the zero locus of
a set of polynomials, i. e., if Y = Z(I) for some set of polynomials I ⊆ S. By Hilbert’s
basis theorem, I can always be chosen to be finite.

Definition 4.6 (Relative Prony structure, abstract version): Let X ⊆ Y ⊆ Kn be
algebraic sets.

(a) Let U be a K-subvector space of K[Y ] and let W be an arbitrary K-vector space.
We say that a K-linear map ϕ : U → W has a Prony kernel for X relative to Y if
the following conditions (R1) and (R2) are satisfied:

ZY (kerϕ) = X (R1)

and
IU/Y (X) ⊆ kerϕ. (R2)
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(b) Let (Sd)d∈N be a sequence of K-subvector spaces of K[Y ] and let (Wd)d∈N be a
sequence of arbitrary K-vector spaces. We call a sequence

ϕ ∈
∏

d∈N

HomK(Sd,Wd)

a Prony structure for X relative to Y if for all large d, ϕd has a Prony kernel for X
relative to Y .

In this case, the least c ∈ N such that for all d ≥ c, ϕd has a Prony kernel for X
relative to Y is called ϕ-index of X relative to Y and denoted by indϕ,Y (X) := c.

Remark 4.7: Over an infinite field K, “ordinary” Prony structures are precisely the
Prony structures relative to Y = Kn. This follows immediately from K[Y ] = K[x].

We obtain a characterization of relative Prony structures analogous to the one for
ordinary Prony structures in Theorem 1.18.

Theorem 4.8: Let X ⊆ Y ⊆ Kn be algebraic sets, (Wd)d∈N be a sequence of K-vector
spaces and let (Ud)d∈N be an exhaustive filtration on K[Y ]. Let ϕ ∈

∏
d∈N HomK(Ud,Wd).

Then the following are equivalent:

(i) ϕ is a Prony structure for X relative to Y ;

(ii) For all large d there is an injective K-linear map ηd : KX →֒ Wd such that the
diagram

Ud Wd

KX

ϕd

evX
Ud/Y

ηd

is commutative;

(iii) For all large d one has kerϕd = IUd/Y (X).

Proof: Using Remark 4.4 for the surjectivity evXUd/Y for all large d, the proof is anal-
ogous to the one of Theorem 1.18. We write it out for completeness.

(i) ⇒ (ii): By Definition 4.3 and since ϕ is a Prony structure for X relative to Y , for
all large d we have

ker evXUd/Y = IUd/Y (X) ⊆ kerϕd.

Since (Ud)d∈N is an exhaustive filtration on K[Y ], there is an exhaustive filtration (Sd)d∈N
on S = K[x1, . . . , xn] such that Ud = Sd/IUd(Y ). Hence we have S≤|X| ⊆ Sd for all
large d and evXSd is surjective by Lemma 1.17. Therefore, also evXUd/Y is surjective by
Remark 4.4. Together, these facts imply the existence of K-linear maps ηd such that the
required diagrams are commutative.

It remains to show that ηd is injective for all large d. Let c ∈ N be such that for all
d ≥ c we have that

ZY (kerϕd) = X, evXUd/Y is surjective, and ηd exists.
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Let v ∈ ker ηd. By the surjectivity of evXUd/Y we have evXUd/Y (p) = v for some p ∈ Ud.

Then ϕd(p) = ηd(evXUd/Y (p)) = ηd(v) = 0. Thus, and since X is Zariski closed, we have

p ∈ kerϕd ⊆ IUd/Y (ZY (kerϕd)) = IUd/Y (X) = ker evXUd/Y .

Hence, v = evXUd/Y (p) = 0. Thus, ηd is injective.
(ii) ⇒ (iii): Since ηd exists and is injective (for all large d), we have

kerϕd = ker(ηd ◦ evXUd/Y ) = ker evXUd/Y = IUd/Y (X).

(iii) ⇒ (i): Since (Ud)d∈N is exhaustive, by Lemma 1.14 for all large d we have

ZY (kerϕd) = ZY (IUd/Y (X)) = ZY (IS/Y (X)) = X.

Condition (R2) in Definition 4.6 (a) is obviously satisfied. q. e. d.

Definition 4.9 (Relative Prony structure): Extending the setup of Definition 1.6 let
Y ⊆ Kn be an algebraic set.

(a) Let U be a K-subvector space of K[Y ] and let W be an arbitrary K-vector space.
Let f ∈ V with

suppu f ⊆ Y .

We say a K-linear map ϕ : U → W has a Prony kernel for f relative to Y w. r. t. u
if ϕ has a Prony kernel for suppu f relative to Y .

(b) Let (Sd)d∈N be a sequence of K-subvector spaces of K[Y ] and let (Wd)d∈N be a
sequence of arbitrary K-vector spaces. Let f ∈ V with

suppu f ⊆ Y .

We call a sequence ϕ ∈
∏
d∈N HomK(Sd,Wd) a Prony structure for f relative

to Y w. r. t. u if ϕ is a Prony structure for suppu f relative to Y .

In this case, the number

indϕ,Y (f) := indϕ,Y (suppu f)

is called ϕ-index of f relative to Y .

(c) Let (Sd)d∈N be a sequence of K-subvector spaces of K[Y ] and let (Wd)d∈N be a
sequence of arbitrary K-vector spaces. We call a function

Φ : V −→
∏

d∈N

HomK(Sd,Wd)

a Prony structure on (V,B, u) relative to Y if for every f ∈ V the sequence Φ(f)
is a Prony structure for f relative to Y w. r. t. u.

For f ∈ V we call the Φ(f)-index of f relative to Y simply Φ-index of f relative
to Y and denote it by indΦ,Y (f).
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4.2. Construction of relative Prony structures

The following proposition provides a method to obtain a relative Prony structure from
an “ordinary” one. The relative Prony structure then uses smaller matrices.

Definition 4.10: Let X ⊆ Y ⊆ Kn be algebraic sets, U be a K-subvector space of
S = K[x1, . . . , xn], and let ϕ ∈ HomK(U,W ) have a Prony kernel for X. Observe that

IU (Y ) ⊆ IU (X) ⊆ kerϕ.

Hence there is a unique K-linear map, which we denote by ϕ/Y , such that the diagram

U W

K[Y ]U

ϕ

πIU (X)
ϕ/Y

is commutative.

The following simple lemma is a variant of [68, Lemma 2.38].

Lemma 4.11: Let Y ⊆ Kn be an algebraic set and let U be a K-subvector space of
S = K[x1, . . . , xn]. Let W be an arbitrary K-vector space and ϕ : U → W be K-linear.
Then one has

Y ∩ Z(kerϕ) ⊆ ZY (ker(ϕ/Y )) ⊆ Z(kerϕ).

Proof: Let y ∈ Y ∩Z(kerϕ) and p ∈ ker(ϕ/Y ). Then p = q+IU (Y ) for some q ∈ kerϕ.
Hence p(y) = q(y) = 0. This proves the first inclusion.

To prove the second inclusion, let y ∈ ZY (ker(ϕ/Y )) and p ∈ kerϕ. Then (ϕ/Y )(p+
IU (Y )) = ϕ(p) = 0 and thus p + IU (Y ) ∈ ker(ϕ/Y ). It follows that p(y) = (p +
IU (Y ))(y) = 0 and the proof is done. q. e. d.

Corollary 4.12: Let U be a K-subvector space of S = K[x1, . . . , xn], W be an
arbitrary K-vector space and ϕ : U → W be K-linear. If X ⊆ Y ⊆ Kn are algebraic sets
and ϕ has a Prony kernel for X, then ϕ/Y has a Prony kernel for X relative to Y .

Proof: We check that the conditions (R1) and (R2) in Definition 4.6 (a) are satisfied.
(R1): We have to show that ZY (ker(ϕ/Y )) = X.
“⊆”: By Lemma 4.11 and the hypothesis we have ZY (ker(ϕ/Y )) ⊆ Z(kerϕ) = X.
“⊇”: By Lemma 4.11 and the hypothesis we have X ⊆ Y ∩ Z(kerϕ) ⊆ ZY (ker(ϕ/Y )).
(R2): We have to show that IU/Y (X) ⊆ ker(ϕ/Y ). Let p ∈ U be such that p +

IU (Y ) ∈ IU/Y (X) = ker evXU/Y . Then evXU (p) = evXU/Y (p + IU (X)) = 0, i. e., p ∈ IU (X).
Since ϕ has a Prony kernel for X, we have p ∈ kerϕ, and thus (ϕ/Y )(p + IU (X)) =
ϕ(p) = 0. q. e. d.
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Remark 4.13: Given bases B of U and C of W , let A = (a(c,b))c∈C,b∈B ∈ KC×B be
the matrix of ϕ w. r. t. B,C. Let A/Y be the matrix of ϕ/Y w. r. t. the basis B of K[Y ]U
consisting of the vectors b+ IU (X) with b ∈ B \ IU (X) and the basis C of W . Then

A/Y = (a(c,b))c∈C,b∈B ∈ KC×B.

Thus, with Corollary 4.12 one has a basic method to reduce the size of the involved
matrices when applying a Prony structure on a function supported on the algebraic
set Y .

Application of the previous discussion to spaces of t-exponential sums yields the fol-
lowing corollary.

Corollary 4.14 (Relative Prony structures for t-exponential sums): In the setup of
Definition 2.5 let Y ⊆ Kn, in addition to being t-admissible, be an algebraic set. Let
f =

∑
b∈M fb gxptb ∈ GxptY (F ) with fixed finite M ⊆ Y and fb ∈ F \ {0}. Then the

following holds:

(a) The matrix of ΦJ
I (f)/Y is

(∑

b∈M

fb gxptb(β) gxptΣb(α)
)
α∈I
β∈J ′

∈ KI×J ′

where J ′ ⊆ J with |J ′| = dimK K[Y ]U is chosen such that {tβ + IU (Y ) | β ∈ J ′}
is a K-basis of K[Y ]U .

(b) Let I,J ⊆ A∩Nn be such that ΦJ
I (f) has a Prony kernel for f . Let J ′ ⊆ J be as

in part (a) and I ′ ⊆ I be such that {tα
∗ | α ∈ I ′} is a K-basis of W := (K[Y ]SI

)∗.

Then ΦJ
I′(f)/Y : K[Y ]U → W has a Prony kernel for f relative to Y and the matrix

of ΦJ
I′(f)/Y w. r. t. these bases is

(∑

b∈M

fb gxptb(β) gxptΣb(α)
)
α∈I
β∈J ′

∈ KI′×J ′

.

Proof: (a) By elementary linear algebra the matrix of ΦJ
I (f)/Y is the submatrix of

the matrix of ΦJ
I (f) obtained by deleting the columns indexed by J \ J ′. Thus

the assertion follows from Proposition 2.6.

(b) This follows in a similar way by linear algebra arguments. q. e. d.

While Corollary 4.14 (a) provides a general way to reduce the number of columns of
the involved matrices, in part (b) also the number of rows gets reduced.
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4.3. Applications of relative Prony structures

While Section 4.2 yields a general recipe to construct relative Prony structures from
“ordinary” ones, in concrete situations it can be possible to achieve better results. We
end the chapter with one such example, recasting the main result of [37] in the context
of relative Prony structures. See also [68, Section 3.1] for an alternative approach to the
reconstruction problem on the sphere. Let K = R, S = R[x1, . . . , xn], and

Y := Sn−1 = Z
(
1 −

n∑

j=1

x2
j

)
= {x ∈ Rn | ‖x‖2 = 1} ⊆ Rn.

Consider the R-vector space

SH≤d := R[Sn−1]≤d = S≤d/I≤d(Sn−1) ∼= {p ↾ Sn−1 | p ∈ S≤d}.

Let ∆: S → S, p 7→
∑n
j=1 ∂

2
j (p), denote the Laplace operator. A polynomial p ∈ S is

called harmonic if p ∈ ker ∆.
Let harmHk be the R-vector space generated by the restrictions p ↾ Sn−1 of harmonic

homogeneous polynomials p ∈ Sk of degree k to the sphere, usually called the space of
spherical harmonics. Using Gallier and Quaintance [22, Theorem 7.13, discussion after
Definition 7.15] it is easy to see that one has the decomposition (as vector spaces)

SH≤d
∼=

d⊕

k=0

harmHk.

For k = 0, . . . , d, let Hk = (y1
k, . . . , y

dk
k ) be an R-basis of harmHk. Hence H≤d :=

⋃d
k=0Hk

is a basis of SH≤d. For x ∈ Sn−1 let

hx : {(k, ℓ) | k ∈ N, ℓ = 1, . . . , dk} −→ R, (k, ℓ) 7−→ yℓk(x).

For finite X ⊆ Sn−1 let WX
≤d be the matrix of evX≤d/Sn−1 w. r. t. H≤d and the basis of RX .

Corollary 4.15 (Relative Prony structure for spherical harmonic sums): Let

B := {hx | x ∈ Sn−1}, V := 〈B〉R, and u : B → Rn, hx 7→ x.

For f ∈ V , f =
∑
x∈suppu f

fxhx with fx ∈ R \ {0}, let Cf = (fxux)x∈X and

H̃d(f) = (W suppu f
≤d )

⊤
· Cf ·W

suppu f
≤d .

Then the function

H̃ : V −→
∏

d∈N

RH≤d×H≤d, f 7−→ (H̃d(f))d∈N,

induces a Prony structure on (V,B, u) relative to Sn−1.
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Proof: This follows from Kunis, Möller, and von der Ohe [37, Theorem 3.14]. q. e. d.

Remark 4.16: Observe that by [37, Theorem 3.14], the matrix H̃d(f) can be com-
puted solely from Θ(dn−1) evaluations of f . One may also use Corollary 4.14 (a) or even
Corollary 4.14 (b) to get a Prony structure on SH≤d relative to Sn−1. The matrices so
obtained have the same number of columns or the same size as the ones in Corollary 4.15,
respectively. But then the number of used evaluations is not in general in Θ(dn−1).
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Index

A

admissible element, 27
admissible subset, 28
algebraic set, 48

B

base
Chebyshev exponential, 29
exponential, 5, 29

border of D, 20
Bt
Y , 28

C

category of Prony structures, 25
character of M in K, 41
Chebyshev exponential, 29
Chebyshev exponential sum, 29
Chebyshev polynomial, 7, 29
commutativity relation, 37
coordinate algebra of Y , 47
coordinate space of Y w. r. t. U , 47

D

distinguished order ideal w. r. t. <, 20

E

evaluation map at X on U , 9
eventual satisfaction, 9
evXU , 8
evXU/Y , 48

evX , 9
exhaustive filtration on S, 15
expb, 5, 29
ExpnY (F ), 29
ExpnZ,Y (F ), 29
exponential, 5, 28, 29

Chebyshev, 29
t-, 28
with domain Nn, 29
with domain Zn, 29

exponential sum, 5, 28, 29
Chebyshev, 29
t-, 28
with domain Nn, 29
with domain Zn, 29

expZ,b, 29

F

filtration on S, 15
exhaustive, 15

for all large k, 9

G

gA,t, 39
Gaußian, 39
Gaußian sum, 39
gxptb, 27
GxptY (F ), 28

H

harmonic polynomial, 53
hyperbolic cross of order d, 12

I

indΦ(f), 11
indϕ(f), 10
indϕ(X), 10
indΦ,Y (f), 50
indϕ,Y (f), 50
indϕ,Y (X), 49
interpolating, 9
IU (X), 9
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IU/Y (X), 48
I(X), 9

K

K[Y ], 47
K[Y ]U , 47

L

Laplace operator, 53
Laurent monomial, 34
linearization relation, 37

M

map of Prony structures, 24
maximal degree, 11

N

normal set of I, 19

P

(P1), 9
(P2), 9
∂(D), 20
Φ-index of f , 11

relative to Y , 50
ϕ-index of f , 10

relative to Y , 50
ϕ-index of X, 10

relative to Y , 49
Φ → Φ̃, 24
ϕ/Y , 51
Prony kernel for f , 10

relative to Y , 50
Prony kernel for X, 9

relative to Y , 48
Prony map, 24
Prony structure for f , 10

relative to Y , 50
Prony structure for X, 9

relative to Y , 49
Prony structure on (V,B, u), 11

relative to Y , 50
Prony structures

for character sums, 41
for eigenvector sums, 43

for exponential sums, 32
for Gaußian sums, 40
for polynomials

Chebyshev basis, 37
monomial basis, 36

Q

quasi Prony kernel for X, 14
quasi Prony structure for f , 14
quasi Prony structure for X, 14

R

(R1), 48
(R2), 48
rank of f , 6, 10
rankB f , 10
relative evaluation map at X w. r. t. U

modulo Y , 48
relative vanishing space of X on U/Y ,

48
relative zero locus of J w. r. t. Y , 48

S

sparse method, 6
spherical harmonic, 53
∗-commuting, 34
suppB f , 10
support labels of f , 10
support of f , 10
suppu f , 10

T

t-admissible element, 27
t-admissible subset, 28
t-exponential, 28
t-exponential sum, 28
Ti (i-th Chebyshev polynomial), 7, 29
total degree, 11
transfer principle, 25
trivial Prony structure, 12
txpb, 29
TxpY (F ), 29

U

u-support of f , 10
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V

vanishing ideal of X, 9
vanishing space of X on U , 9

X

X-interpolating, 9

Z

zero locus, 6, 9
relative, 48

Z(I), 6, 9
ZY (J), 48
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