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Abstract— This paper deals with the problem of state esti-
mation of dynamic systems with Lipschitz nonlinearities using
a new high gain observer design. The aim of this new design
procedure is to reduce the value of the tuning parameter and
the observer gain compared to the standard high gain observer
on the one hand without solving a set of LMIs as in the LMI-
based observer on the other hand. Towards this end, a novel
approach based on system state augmentation that transforms
the original system of dimension n into a new system whose
dimension is (n + js), where the new nonlinear function does
not depend on js last components of the new state. A numerical
example is reported to evaluate the effectiveness of the proposed
observer for different values of the Lipschitz constant.

Index Terms— Observer design, high-gain methodology, Lip-
schitz systems, LMIs.

I. INTRODUCTION

The observer is a mathematical tool acting as a sensor,
which allows to collect an estimate of unknown states
of a given physical system. There are many approaches
in literature for designing observers whether for linear or
nonlinear case. The first approaches dealt with time-invariant
linear systems, using the popular Kalman filter [1] and the
Luenberger observer [2], however, with nonlinear systems,
the Kalman filter does not guarantee an asymptotic con-
vergence of the estimation error. Therefore, many research
activities have been devoted to the design of observers for
nonlinear systems. The method of linearizing the estimation
error [3], [4], [5], [6], [7], [8], [9] and [10] was one
of the starting points for nonlinear observer design. This
method has the particularity of transforming the nonlinear
system to an affine form according to the state in which
the nonlinearities depend only on the input and output using
an appropriate change of coordinate, allowing thereafter the
design of a Luenberger observer. However, this method does
not deliver a systematic transformation and the search for
such a transformation to linearize the estimation error is not
necessarily easy. A second approach for nonlinear systems
is based on LMI (Linear Matrix Inequality), which aims to
transform the observability problem into an LMI resolution
problem [11] and [12]. Despite theoretical advances in this
field with some enhancements that have been proposed
recently [13], [14], [15], the problem still remains open.
Another approach is based on observability canonical forms
which is derived from the fact that the observability of
nonlinear systems depends on input [16]. In particular, a
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diffeomorphism has been proposed in [17] to transform the
system uniformly observable and affine in the control into
an observable canonical form where the nonlinear part is
triangular according to its new coordinates. In case where
the considered system is Lipschitz, it is possible to de-
sign a high gain observer whose estimation error always
converges exponentially towards zero by tuning a single
parameter that should be chosen large enough [18]. The
design of high gain observers was essentially motivated by
its simplicity to implement; however, it has three limitations
that are worth mentioning. The first constraint is related to
numerical problems concerning large systems as high values
of the observer gain are required. The second constraint
is the output sensitivity to noise measurements since the
correction term of the high gain observer is equal to the
product of the observer’s gain and the output estimation
error. The last constraint is the phenomenon characterized
by large amplitudes of the estimates during transient, namely
the ”peaking phenomenon”. To overcome this restrictions,
several solutions have been proposed to reduce the sensitivity
of the high gain observer to measurement noise. The main
solutions are generally based on a time-varying gain that
is appropriately updated by taking into account the stability
and convergence requirements [19], [20], [13], [21] and [22].
More recently, a high gain observer with a lower gain, called
a high gain observer ”low power”, has been proposed in
[23] for a class of nonlinear systems with one output and
dimension n ≥ 3. The cornerstone of this contribution
consists in limiting the power of the observer’s gain to 2,
thus improving the performance of the observer with respect
to the measurement noise on the output. Two characteristics
of the proposed observer should then be highlighted. First,
the dimension of the observer is equal to 2(n − 1) where
n is the size of the original system. Secondly, the observer
provides an estimate of the first and last component of the
system’s state as well as two estimates for each intermediate
component of the state. This particular design was then
reconsidered in [24] and [25] where they have incorporated
saturation functions in order to limit the phenomenon of
the ”peaking” mentioned before. Another recent high gain
observer with the same dimension as the original system
and the observer’s gain power is limited to 1 was proposed
in [26] for the same class of systems considered in [24].
As in [24] and [25], nested saturation functions have been
used to limit the peaking phenomenon. However, even if their
gain power is limited, the higher dimension of the observer
(2n − 2) may increase the size of the tuning parameter but
from the sensitivity to measurement noise point of view, this
new high gain observer is better than the standard one as



shown in [23].
In this paper, we will present a new observer structure

for triangular systems having Lipschitz nonlinearities. The
proposed observer is based on system state augmentation
which transforms the original system of dimension n into
an augmented system of dimension n + js which allows to
obtain a new threshold on the observer parameter θ that
guarantees the exponential convergence of the estimation
error and reduces the value of the observer gain. The paper
is organized as follows. In Section II, important background
results on the design of high gain observer are presented. The
problem formulation is given in section III which describes
the motivation behind this work and describes the design
methodology of this new observer. A numerical example
with simulation results are reported in SectionIV. Finally,
the conclusions are drawn in Section VI.

II. PROBLEM FORMULATION AND BACKGROUND
RESULTS

A. System Description
Consider the class of nonlinear systems described by the

following set of equations:
ẋ =



ẋ1

ẋ2

.

.

.
ẋn−1

ẋn


=



x2

x3

.

.

.
xn

f(x)


y = x1

(1)

with f : Rn → R satisfying the Lipschitz property
formulated under the following form:∣∣∣f(x1 + ∆1, . . . , xn + ∆n)− f(x1, . . . , xn)

∣∣∣
≤ γf

n∑
j=1

|∆j | . (2)

For the sake of compactness, we write system (1) under
the form: {

ẋ = Ax+Bf(x)
y = Cx

, (3)

where

B =
[
0 . . . 0 1

]T
, C =

[
1 0 . . . 0

]
(4)

and the state matrix A is defined by

(A)i,j =

{
1 if j = i+ 1
0 if j 6= i+ 1

. (5)

Consider the following Luenberger observer:

˙̂x = Ax̂+Bf(x̂) + L
(
y − Cx̂

)
. (6)

The dynamics of the estimation error x̃ = x−x̂ is then given
by:

˙̃x =
(
A− LC

)
x̃+B

[
f(x)− f(x̂)

]
. (7)

B. Standard high-Gain Design

Here, we recall the basic high gain observer as in [27]. Ba-
sically, in the high-gain methodology, we write the observer
gain L under the form:

L := T(θ)K, θ ≥ 1. (8)

where

T(θ) := diag
(
θ, . . . , θn

)
and K ∈ Rn.

In addition, the high-gain methodology focuses on the trans-
formed estimation error

ˆ̃x := T−1(θ)x̃, (9)

where T−1(θ) is the inverse of T(θ) given by

T−1(θ) = diag
(1

θ
, . . . ,

1

θn

)
.

It is well-known that the dynamics of the error ˆ̃x is given by

˙̂
x̃ = θ

(
A−KC

)
ˆ̃x+

1

θn
B∆f, (10)

with

∆f := f(x)− f(x− T(θ)ˆ̃x).

From the Lipschitz condition (2) and the fact that θ ≥ 1, we
can show as in [28] that there always exists a positive scalar
constant kf , independent of θ, so that

‖T−1(θ)B∆f‖ ≤ kf‖ˆ̃x‖. (11)

Consequently, by following the high-gain methodology we
obtain the following theorem.

Theorem 1 ( [27]): If there exist P > 0, λ > 0, Y , and
θ ≥ 1 such that

ATP + PA− CTY − Y TC + λI < 0, (12)

θ > θ0 =
2kfλmax(P )

λ
, (13)

then the estimation error x̃ is exponentially stable with

K = P−1Y T ,

where λmax(P ) is the largest eigenvalue of the matrix P .

Proof: For more details about the proof of this theorem,
we refer the reader to [27], [28], [29].

One of the drawbacks of the standard high gain observer
is clearly related to the increasing power (up to the order
n) of the high-gain parameter θ, which makes the practical
numerical implementation a hard task when n is very large.



C. Astolfi/Marconi Observer

In [23] a new high-gain observer structure has been pro-
posed for a class of uniformly observable nonlinear systems
which are diffeomorphic to the canonical observability form.
Specifically, a high-gain observer structure is presented with
a gain growing up only to power 2 (regardless the dimension
n of the system), at the price of having the observer state
dimension 2n − 2. The structure of the proposed observer
has the following form:

ξ̇i = Aξi +Nξi+1 + T2(θ)Kiei i = 1 . . . n− 2

...

ξ̇n−1 = Aξn−1 +Bf(x̂′) + T2(θ)Kn−1en−1, (14)

where (A,B,C) is a triplet in prime form of dimension 2,

N =

[
0 0
0 1

]
, ξi ∈ Rn, Ki = (ki1, ki1)> are coefficient to

be chosen according to [23, Lemma 1], T2(θ) = diag(θ, θ2)
where θ is the high gain parameter. The variable x̂′ = L1ξ
represents an asymptotic estimate of the state x of (3). It
is obtained by “extracting” n components from the state
ξ = col(ξ1, . . . , ξn−1) ∈ R2n−n according to the matrix L1

defined as:

L1 = blkdiag( C, . . . , C︸ ︷︷ ︸
(n−2)times

, I2)

and

e1 = y − Cξ1 ei = B>ξi−1 − Cξ i = 2, . . . , n− 1.

The redundancy of the observer can be used to extract from
ξ an extra state estimation that is

x̂′′ = L2ξ, L2 = blkdiag(I2, B
>, . . . , B>︸ ︷︷ ︸

(n−2)times

)

According to [23], the following proposition shows that the
observer (14) recovers the same asymptotic properties for the
two estimates x̂′ and x̂′′ of the “standard” high-gain observer.
Let X̂ = col(x̂′, x̂′′), X = col(x, x).

Theorem 2 ( [23]): Consider system (3) and the observer
(14) with the coefficients (ki1 ki2) fixed so that the matrix
M defined in [23, Lemma 1] is Hurwitz. Then, there exist
θ∗ ≥ 1 such that for any θ ≥ θ0 and for any ξ(0) ∈ R2n−2,
the variable x̂ converges exponentially to x.

Proof: For the proof we refer the reader to [23].
It is important to notice that several details are omitted in

this section to avoid cumbersome notations. We should keep
in mind that Theorems 1 and 2 are introduced for clarifying
comparisons between different high-gain design procedures.
For more details on these theorems and on the definition of
some variables, we refer the reader to [27] and [23].

III. NEW SOLUTION USING STATE AUGMENTATION
APPROACH

This section is devoted to the main result of this paper.
The motivation of this work is inspired from the HG/LMI
design presented in the previous section. We will show that
by augmenting the state of the system, we can reduce the
value of the tuning parameter and the power of the observer
gain.

A. Motivation

The motivation of developing the new solution comes from
work in [30]. Indeed, as demonstrated in [30], if the nonlinear
function f(.) satisfies the condition

∂f

∂xj
(x) ≡ 0,∀ j > n− js (15)

for a given js ≥ 0, then the Lipschitz inequality (11)
becomes

‖T−1(θ)B∆f‖ ≤ kf
θjs
‖ˆ̃x‖. (16)

It follows that the high-gain inequality (13) becomes

θ >

(
2kfλmax(P )

λ

) 1
1+js

= θ
1

1+js
0 . (17)

This new threshold on θ to guarantee exponential conver-
gence of the estimation error is significantly reduced due
to the power 1

1+js
. Indeed, instead of T(θ) in L, we have

T(θ)
1

1+js .
Hence it is important to exploit condition (15) for systems

satisfying it, since it allows decreasing considerably the
values of the high-gain observer. A solution is proposed
in [30] by using a decomposition of the nonlinearity into
two parts. Such a solution improves highly the standard high-
gain observer, however, the decomposition of the nonlinearity
affects the design of the matrices P and K subject to a
set of 2js LMIs to be solved. The aim of this paper is
to provide a design procedure without solving 2js LMIs
depending on the nonlinearity of the system. To this end, we
propose in this note, a novel approach based on system state
augmentation. The idea is to transform the original system
of dimension n into a new one with augmented dimension
n+js, where the new nonlinear function does not depend on
js last components of the new state. The technique is stated
in the next subsection.

B. System state augmentation

This section is devoted to the main result of this paper.
The system state augmentation approach and the design
procedure are stated in the following Theorem 3.

Theorem 3: Let us consider the uniformly observable
system: {

ẋ=ψ(x, u)
y=φ(x, u)

(18)



Assume that there exists a state transformation (an imbed-
ding) given as:

Ψ : Rn → Rn+js

x→ z = Ψ(x) (19)

which transforms the system (18) into the following:{
ż = AΨz +BΨfΨ(z)
y = CΨz

(20)

where AΨ, BΨ, and CΨ have the same structure than A,B,
and C, respectively, but with dimension n+ js.
We also have:

fΨ(z) , fΨ(z1, . . . , zn) ⇔ ∂fΨ

∂zj
(z) ≡ 0,∀ j > n. (21)

Consider the state observer described by (22).{
˙̂z = AΨx̂+BΨfΨ(ẑ) + LΨ

(
y − CΨẑ

)
x̂ = Φ(ẑ),

(22)

where Φ is a continuous left invert of the imbedding Ψ
satisfying x = Φ(z) and LΨ , TΨ(θ)KΨ, with TΨ(θ) ,
diag(θ, . . . , θn+js). If there exist P > 0, λ > 0, Y , and
θ ≥ 1 such that:

A>ΨP + PAΨ − C>ΨY − Y >CΨ + λI < 0, (23)

KΨ , P−1Y >, (24)

θ > θΨ ,
1+js

√
2kfΨ

λmax(P )

λ
, (25)

then the estimation error x̃ = x− x̂ converges exponentially
towards zero.

Proof: The proof is straightforward. Indeed, from
Theorem 1, if the conditions (23)-(25) are satisfied, then the
error z̃ = z−ẑ converges exponentially to zero. The presence
of (1+js)

th root in (25), as also mentioned in (17), is due to
the fact that fΨ does not depend on the js last components
of z, which leads to:

‖T−1
Ψ (θ)BΨ∆fΨ‖ ≤

kfΨ

θjs
‖ˆ̃z‖, (26)

where ˆ̃z = T−1
Ψ (θ)z̃. Hence, exponential convergence of x̃

towards zero is then preserved due to the continuity of Φ.

C. Particular transformation: Adding a chain of integrators
This section is devoted to a special case of transforming

the system (3) into a higher dimensional system by adding
js integrators. The aim of this section is to show that there
exists a transformation satisfying the properties stated in
Theorem 3.

Let us consider the following transformation

z =

 z1

...
zn+js

 = Ψ(x) ,



x1

...
xn

f(x(t))
df(x(t))

dt
...

d(js−1)f(x(t))
dt(js−1)


. (27)

It is obvious to see that

żi = zi+1, for i = 1, . . . , n+ js − 1, (28)

żn+js =
djsf(x(t))

dtjs
, fΨ(z1, . . . , zn), (29)

x =

z1

...
zn

 =

Φ︷ ︸︸ ︷[
In 0Rn×js

]
×z. (30)

Then following the previous section, the corresponding ob-
server is{

˙̂z = AΨx̂+BΨfΨ(ẑ) + LΨ

(
y − CΨẑ

)
x̂ =

[
In 0Rn×js

]
ẑ.

(31)

The advantage of the proposed augmentation system is

the presence of the θΨ , 1+js

√
2kfΨ

λmax(P )

λ , instead of
2kfΨ

λmax(P )

λ if the standard high-gain observer is applied
on the augmented system. We are aware that if the stan-
dard high-gain observer is applied directly on the original
system (3), the obtained value of θ0 in (13) will be smaller
than 2kfΨ

λmax(P )

λ . However, the presence of power 1
1+js

will
reduce significantly the values of the observer gains.

IV. ILLUSTRATIVE EXAMPLE

We will illustrate the particular case of adding a chain of
integrators. Towards this end, we consider the following fifth
dimensional triangular system:

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5

ẋ5 = f(x) , kf sin(x5)
y = x1

(32)

The Lipschitz constant of f is kf .
By adding an integrator, we will get a sixth dimensional

system (js = 1):

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = z5

ż5 = z6

ż6 = f6
Ψ(x) , k2

f sin(z5) cos(z5) =
k2
f

2 sin(2z5)

y = z1

(33)

Also, if we add two integrators instead of one, we get the
new system of dimension 7 (js = 2):

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = z5

ż5 = z6

ż6 = z7

ż7 = f7
Ψ(x) , k3

f sin(z5) cos(2z5)

y = z1

(34)



Standard high gain observer
kf θ K

0.1 4.7625 3.6448 6.5296 6.9649 4.2985 1.2402
1 31.7155 5.6568 13.1152 16.4885 11.1147 3.4150
5 140.6488 9.3106 24.7578 33.1298 22.8594 7.1489

Astolfi/Marconi observer [23]
kf θ K1 K2 K3 K4

0.1 27.329

[
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

]
1 273.4418

[
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

]
5 1366.8

[
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

] [
2.9

8.0629

]
State Augmentation Approach in Theorem 3

js kfΨ
θψ = θ

1
js+1 Kψ

0.1 1.7345 3.4069 5.8042 6.2497 4.4499 1.9770 0.4284
1 1 8.5805 5.9510 15.6107 23.8689 22.7052 12.8155 3.4185

5 39.1490 17.5262 57.7707 96.2147 95.0459 54.9930 15.0285
0.1 1.3979 3.4103 5.8151 6.3716 4.8225 2.5160 0.8391 0.1384

2 1 6.1043 6.8077 20.5086 36.7942 42.9236 32.6395 15.2357 3.4267
5 28.3107 37.0682 151.6654 310.1128 387.8794 306.2467 146.7035 33.8209

TABLE I: Comparisons between the high-gain observers for different values of kf .

Standard high-gain observer is applied directly to sys-
tem (32). Also, the Astolfi/Marconi observer of dimension
2(n−1) = 8 is applied to estimate the states of system (32).
Afterwards, the results of Section III-C are applied on (33)
and (34) with js = 1 and js = 2, respectively. Table I
summarize the comparison between all the above high-gain
observer. The values in Table I are obtained with kf = 0.1,
kf = 0.5, and kf = 1, respectively. It is quite clear from
Table I that the proposed methodology provides smaller gains
due to the introduction of additional integrators.

V. CONCLUSION

In this paper we presented a new technique in the design
of high gain observer which is based on system state aug-
mentation. The remarkable assets related to this new design
procedure are the ability to provide lower gain compared
to the standard high observer in addition to a reduced
sensitivity to noise measurements. These advantages are
clearly confirmed by the fifth dimensional triangular system
numerically simulated for different values of the Lipschitz
constant. For future work we will consider another manner
to synthesize the observer parameter KΨ and the Lyapunov
matrix P while relying on the elegant work proposed by
Gauthier [31] based on Riccati equation. We also aim to to
provide explicit bounds on the estimation error for different
high-gain observers developed in the literature.
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