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Abstract—This paper proposes a novel Automatic Modulation
Classification (AMC) method for CR-IoT based on learning
multiple Generalized Dynamic Bayesian Networks (GDBN) as
representations of multiple signals under different modulation
schemes. The CR-IoT performs multiple predictions on-line in
parallel and evaluates multiple abnormality measurements based
on a Modified Markov Jump Particle Filter (M-MJPF) to select
the best model that better explains the received signal and
recognize the modulation scheme accordingly. The simulated
results based on a real dataset demonstrate that the proposed
GDBN-based AMC method outperforms both Long Short-Term
Memory (LSTM) and Convolutional Neural Network (CNN) in
terms of classification accuracy.

Index Terms—Cognitive Radio, Internet of Things, Automatic
Modulation Classification, Bayesian Filtering.

I. INTRODUCTION

The rapid development of the Internet of Things (IoT) has
attracted a multitude of research and industrial interests [1].
With the explosive growth in the number of connected IoT
devices in a variety of applications, the scarcity of spectrum
resources has become a serious problem [2]. In addition, most
of the studies on IoT are focused on the communication,
computing and connectivity aspects which are of great con-
cern, however, IoT cannot fulfil its potentials and deal with
growing challenges without comprehensive cognitive capabil-
ities and empowering IoT with high-level intelligence [3]. It
is envisioned that future IoT networks should be equipped
with cognitive capabilities to think, learn and understand the
demands of both the physical and social world [4]. Moreover,
reliable communications realize the key to allow IoT devices to
connect, interact and exchange information securely anytime,
anywhere.

The integration of Cognitive Radio (CR) and IoT (known
as CR-IoT) could alleviate the spectrum scarcity problem by
enhancing the spectral efficiency and improving the network
performance [5]. Furthermore, CR endows the IoT devices
with cognitive facility to take smart decisions and perform
intelligent operation by analyzing network conditions [6]. It
can also provide intelligent services by processing different
types of data generated by connected devices in a variety of

applications such as smart manufacturing, smart homes and
smart cities and handle intelligent tasks. CR is envisaged as a
radio that employs the cognition cycle (observe-think-act) to
achieve a high level of competence in radio-related domains
[7]. It can autonomously observe and learn from the radio
environment, infers the signals’ dynamic behaviours to plan,
decide and act accordingly. Awareness about the presence
of licensed users to achieve optimum spectrum access is a
precondition for CR, however, it is not enough to identify
multiple licensed users’ signals inside the spectrum. There-
fore, Automatic Modulation Classification (AMC) is crucial
in understanding the modulation scheme of the received (or
sensed) radio signals and the type of communication has been
used [8]. Also, since CR does not require control information
about the transmitter a priori, it is essential for a CR receiver
to detect the modulation mode of the received signal to be
able in demodulating it correctly [9]. In addition, AMC is an
indispensable task in CR towards achieving secure networks
after being able to identify multiple malicious users (e.g.,
eavesdroppers and jammers) attacking the network due to the
openness of the wireless medium and the dynamic nature of
CR, as well as heterogeneity in IoT [6], [10].

In our previous investigations, we introduced the concept of
Self-Awareness (SA) in CR to empower the radio with a brain
for high-level intelligence [11], [12]. The SA module allows
the radio to reach the capability of learning a representation
of the radio environment encoded in a generative dynamic
model and stored in the radio’s brain. The generative model
describes in a probabilistic manner how a given signal might
have been generated by predicting new data samples and
inferring the hidden states that caused the observed signal.
This allows to evaluate the radio situation through different ab-
normality measurements at hierarchical levels and understand
if the radio situation is normal or abnormal (e.g. detecting
normal and jamming signals). If an abnormality is detected
the radio can characterize it to discover the new rules and
encode it incrementally in a new dynamic model. However,
an important question that needs to be addressed here is when
the radio must learn a new model based on the current radio



situation? Abnormality detection is not enough to answer this
question, while abnormality classification is an indispensable
functionality towards this understanding. But why incremental
learning is of fundamental importance in CR? Normally, CR
does not know any prior knowledge about the surrounding
radio environment, thus incremental learning is crucial to
enable the radio with the capability to keep learning on-line
in the field. Identifying the detected signals based on the
knowledge acquired previously allows the radio to know when
it is necessary to learn a new model. Hence, this work realizes
the key to achieve incremental learning in CR.

In this paper, we propose an AMC framework based on
learning Generalized Dynamic Bayesian Network (GDBN)
models. Initially, the CR begins with null memory without
any prior knowledge about the radio environment supposing
that signals are evolving according to static rules and starts to
build up the knowledge about the environment by exploiting
the generalized errors (i.e. prediction errors) to discover the
real dynamic rules of how the signals are behaving inside
the radio spectrum. These errors can be clustered in an
unsupervised manner to learn the corresponding GDBN model.
After learning different GDBN models for multiple signals
under different modulation schemes and by facing new radio
experience the radio can use the acquired models in parallel
to perform multiple predictions using a Modified Markov
Jump Particle Filter (M-MJPF) and evaluate the best GDBN
model that explains the current observation and recognize the
modulation scheme consequently. The main contributions of
this work are as follows: 1) we propose an efficient learning
mechanism within the Growing Neural Gas (GNG) to capture
the dynamic transitions of the radio signal modulated under
certain modulation schemes; 2) we formulate the modulation
classification problem in terms of an objective function that
aims to minimize the surprise (i.e. abnormality); 3) extensive
simulations verify that the proposed GDBN-based AMC per-
forms with superior classification accuracy than Long Short-
Term Memory (LSTM) and Convolutional Neural Network
(CNN); 4) the GDBN models can achieve higher interpretabil-
ity than Deep Learning-based models since they can explain
the predictions explicitly at hierarchical levels and use the
abnormality measurements and generalized errors as self-
information to keep learning by understanding incrementally.

II. LITERATURE REVIEW

AMC is widely used in both civil and military fields
and finds applications in CR-IoT for an efficient spectrum
management and secure communications. Deep learning-based
methods for AMC are extensively investigated in the literature.
In [13], a LSTM is used where the data-augmentation methods
are studied to cope with small datasets by expanding the data
and thus improving the robustness and classification accuracy.
However, expanding the dataset might lead to several problems
as increasing latency which is vital in some applications as
IoT and vehicular communications. Authors in [14] proposed
a gated recurrent residual network (GrrNet) consisting of
a ResNet extractor module, fusion module and GRU-based

classification module. However they used a supervised training
by feeding the networks with the signal features along with the
labels that indicate the modulation scheme of the input. This
may require a big effort in labeling large amounts of training
examples which can be expensive and time consuming. An
interesting research has been conducted in [15] to study the
visualization methods for deep learning-based AMC and thus
understanding the modulation classification mechanism for
better interpretability. However, such visualization techniques
do not exploit the extracted radio features in an unsupervised
way allowing the radio to encode the dynamic changes be-
tween different modulation schemes which by the way enhance
the learning and perception processes of the radio.
Other studies treated the AMC as an image recognition prob-
lem by converting the radio signal into images as in [16], [17]
and they obtained promising results. However, they require
high computational processing to convert signals to images
and they might lose important information and ignore crucial
details by passing from time-frequency representation to image
representation.

III. SYSTEM MODEL

We consider an IoT network as shown in Fig. 1, consisting
of different clusters of IoT devices which are sending different
information to the Base Station (BS). The BS collects data
and processes them with its equipped cognitive capability
aiming to classify between the received signals based on the
modulation scheme used by IoT devices in each cluster. The
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Fig. 1. Illustration of the system model

received signal under the k-th modulation scheme which is
related to a specific IoT cluster is given by:

rt = hej(2πft+θ)s
(k)
t + vt (1)

where h is the channel coefficient, f the frequency offset and
and θ is the phase offset. Moreover, s(k)t is the complex symbol
belonging to the k-th modulation scheme and vt is the Additive
White Gaussian Noise (AWGN) which is drawn from a zero
mean normal distribution with variance (σ2

v).

IV. PROPOSED METHOD FOR AUTOMATIC MODULATION
CLASSIFICATION.

A. Radio Environment Representation

In our approach, we use a generalized state-space model to
represent the radio environment. We assume, that the observed



signal Z̃(k)
t which is modulated under the k-th modulation

scheme, is a linear combination of one latent generalized state
X̃

(k)
t that represents the direct cause of the observation and a

multivariate Gaussian noise vt and defined as follows:

Z̃
(k)
t = HX̃

(k)
t + vt (2)

where H ∈ Rd×d is the matrix that maps hidden states
to observations. The generalized observation Z̃

(k)
t ∈ Rd

comprises the signal’s states in terms of I (in-phase) and
Q (quadrature) components and the corresponding first order
temporal derivatives (İ , Q̇), thus the space dimensionality d
is equal to 4.
The evolution of the hidden generalized states X̃(k)

t can be
approximated as a linear combination of the previous state
X̃

(k)
t−1 which is guided by the deep hidden cause S̃

(k)
t and

formulated as follows:

X̃
(k)
t = AX̃

(k)
t−1 +BU

S̃
(k)
t

+ wt (3)

where, A ∈ Rd×d and B ∈ Rd×d are the dynamic model
and control model matrices. The generalized superstates (S̃(k)

t )
are discrete variables that explains the discrete regions of the
signal. The evolution of these variables is expressed in the
following form:

S̃
(k)
t = f(S̃

(k)
t−1) + wt (4)

where f(.) is a non-linear function that describes the relation-
ship between the previous superstate and the current super-
state, realizing the dynamics of how the signal is transiting
among the discrete regions and its evolution over time.

The BS equipped with cognitive capabilities aims to learn
and encode the radio environment representation in a Gen-
eralized Dynamic Bayesian Network (GDBN) under each
modulation scheme. Thus, after finishing the training process,
it will be possessed with a set (SM) of GDBN models, such
that:

SM = {M1,M2, . . . ,MK} (5)

where, model Mk is associated with the k-th modulation
scheme and explains how the signal’s dynamics evolve under
this scheme.

B. Learning Stage

We propose to learn a GDBN as a representation of the
radio environment. GDBN can model dynamic processes de-
scribing the signal’s temporal evolution at hierarchical levels.
GDBN provides a graphical structure representing hidden and
observed states in terms of random state variables encoding
the conditional dependencies among them and specifying a
compact parameterization of the model. It can be represented
by two sets of parameters. The first includes the number of
nodes in each time slice and the corresponding topology which
depends on the state-space model in question, while the second
set consists of the conditional probability distribution (CPDs)
described by edges of the network. The proposed GDBN
depicted in Fig. 2 consists of three levels. The discrete level
stands for the discrete variables describing the discrete regions

of the signal. The medium level stands for the continuous
states encoded inside each discrete region and the bottom level
stands for the observation.
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Fig. 2. Generalized Dynamic Bayesian Network.

Initially, the cognitive BS starts perceiving the radio envi-
ronment using an initial GDBN (i.e., a null force filter with
static assumption about the environmental states) by interpret-
ing the received generalized observations Z̃(k)

t that comprises
the variable and its generalized coordinates of motion coming
from the receivers. In fact, since the signals inside the radio
spectrum are following a certain dynamic behavior the BS will
detect abnormalities all the time and calculate the generalized
errors (ε̃(k)t ) which are the differences between predictions and
observations and it is expressed as:

ε̃
(k)
t = H−1Z̃

(k)
t − X̃(k)

t (6)

The generalized errors that capture the real dynamics of
the signal are used as input to an unsupervised clustering
technique, the Growing Neural Gas (GNG). GNG encodes the
generalized errors into discrete regions described by a set of
neurons or superstates S(k), such that:

S(k) = {S(k)
1 , S

(k)
2 , . . . , S

(k)
M } (7)

where M is the total number of neurons. After obtaining the
neurons we analyzed how the signal is transiting between them
to learn the transition matrix Π(k) by estimating the transition
probabilities: π(k)

ij = P (S
(k)
t = i|S(k)

t−1 = j) over a period
of time (i.e. the training time), where i, j ∈ S(k). Thus, the
generalized superstates (S̃

(k)
) can be expressed in terms of

current discrete variable S(k)
t and the event E(.) of passing to

that variable conditioned to be in S
(k)
t−1 in the previous time

instant and it is given by:

S̃
(k)
t = [S

(k)
t Ṡ

(k)
t ] = [S

(k)
t E(S

(k)
t |S

(k)
t−1)] (8)

Each discrete variable S̃(k)
m (S̃(k)

m ∈ S(k)) is associated with
specific statistical properties as covariance matrix Σ

S̃
(k)
m

and
generalized mean value µ̃

S̃
(k)
m

= [µ
S̃

(k)
m
, µ̇
S̃

(k)
m

] that consists
of the mean value µ

S̃
(k)
m

describing the average of all the data
samples encoded in this superstate in terms of I and Q as well
as the average of the corresponding derivatives (i.e. µ̇

S̃
(k)
m

).
In this work we propose to learn additional statistical

properties for each S̃
(k)
m , namely, a set µ̃

S̃
(k)
m

of transition
generalized mean values defined as:

µ̃
S̃

(k)
m

=
[
µ̃
S̃

(k)
m |S̃(k)

1
, µ̃
S̃

(k)
m |S̃(k)

2
, . . . , µ̃

S̃
(k)
m |S̃(k)

M

]
(9)



where the transition control vectors (U
S̃

(k)
m

) are encoded such
that:

U
S̃

(k)
m

=
[
U
S̃

(k)
m |S̃(k)

1
, U

S̃
(k)
m |S̃(k)

2
, . . . , U

S̃
(k)
m |S̃(k)

M

]
(10)

and a set Σ
S̃

(k)
m

of transition covariance matrices defined as:

Σ
S̃

(k)
m

=
[
Σ
S̃

(k)
m |S̃(k)

1
,Σ

S̃
(k)
m |S̃(k)

2
, . . . ,Σ

S̃
(k)
m |S̃(k)

M

]
(11)

This additional information allow to understand not only the
dynamic random changes at the discrete level (through the
transition probabilities encoded in the transition matrix) but
also to discover the force of those changes and the rules by
which the signal is shifting among them which by the way
describe the dynamic flow of the signal at the continuous level.
This realizes the key towards predicting efficiently the dynamic
changes of different modulation modes.

C. Testing Stage

GDBN can decompose data with complex and non-linear
dynamics into segments that are explainable by simpler dy-
namical units. The Modified Markov Jump Particle Filter
(M-MJPF) (which is an evolved version of the MJPF in-
troduced in [18]) is a specific class of switching dynamic
systems employed on the learned GDBN model to discover
the dynamical units and explain their switching behaviour and
their dependency on both observations and discrete/continuous
hidden states during the real-time process. The M-MJPF uses
a combination of Particle Filter (PF) to predict the generalized
superstates at the discrete level and a bank of Kalman Filters
(KFs) at the continuous level to predict the generalized states.
The M-MJPF within the Bayesian Filtering framework pro-
vides two probabilistic inference modes, namely the predictive
or causal inference (top-down) and the diagnostic inference
(bottom-up). The predictive inference is based on passing
predictive messages in a top-down manner where predictions
are performed based on the acquired knowledge in previous
experience. The diagnostic inference is based on propagating
likelihood messages after receiving the real measurement in
a backward manner from bottom to up where the likelihood
messages evaluate how much the observation matches the
predictions at hierarchical levels to update the belief in hidden
variables accordingly. PF relies on a proposal density encoded
in the learned transition matrix to sample a set of particles re-
alizing the predicted superstates at the discrete level. Initially,
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Received signal in a certain event

Models learned and stored at the BS
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Fig. 3. GDBN-Based Modulation Classification Framework.

PF propagates N equally weighted particles associated with a
specific superstate, such that:

< S̃
(k)n
t ,W

(k)n
t >∼< π(S̃

(k)
t ), 1/N >, n ∈ N (12)

It is worth noting that in our scenario there is no need to use
a big number of particles since the discrete level consists of
a finite number of discrete regions and thus it is sufficient
to use few particles to represent the posterior accurately with
low complexity (unlike the continuous space which may need
a huge number of particles to represent the posterior correctly).
After that, a KF is employed for each particle (.n) to predict
X̃

(k)
t . The prediction at this level (continuous level) is guided

by the prediction performed at the higher level as pointed out
in (3) and can be expressed in terms of the conditional prob-
ability P (X̃

(k)
t |X̃

(k)
t−1, S̃

(k)
t ). In (3), the control vector (U

S̃
(k)
t

)
which realize the dynamic flow of the signal starting from
the previous state, depends on the transition control vector
defined in (10) which by the way depends on the predicted
event at the discrete level to choose the proper vector. The
posterior probability associated with the predicted generalized
state is given by: π(X̃

(k)
t ) = P (X̃

(k)
t , S̃

(k)
t |Z̃

(k)
t−1), where

P (X̃
(k)
t , S̃

(k)
t |Z̃

(k)
t−1) =

∫
P (X̃

(k)
t |X̃

(k)
t−1, S̃

(k)
t )λ(X̃

(k)
t−1)dX̃

(k)
t−1

and λ(X̃
(k)
t−1)=P (Z̃

(k)
t−1|X̃

(k)
t−1). Accordingly, a message back-

ward propagated from the bottom-level to the higher levels
once a new evidence Z̃

(k)
t is received can be exploited to

adjust the expectations in hidden variables and estimate the
posterior probability P (X̃

(k)
t , S̃

(k)
t |Z̃

(k)
t ) which is defined as:

P (X̃
(k)
t , S̃

(k)
t |Z̃

(k)
t ) = π(X̃

(k)
t )λ(X̃

(k)
t ). Consequently, the

likelihood message λ(S̃
(k)
t ) is propagated towards the top-level

to update the belief in the hidden discrete variable by updating
the weights according to: W (k)n

t = W
(k)n
t λ(S̃

(k)
t ). The mes-

sage λ(S̃
(k)
t ) is a discrete probability distribution represented

by: λ(S̃
(k)
t ) = λ(X̃

(k)
t )P (X̃

(k)
t |S̃

(k)
t ), where P (X̃

(k)
t |S̃

(k)
t ) ∼

N (µ
S̃

(k)
m
, Σ

S̃
(k)
m

) denotes a Gaussian distribution with mean

µ
S̃

(k)
m

and covariance Σ
S̃

(k)
m

. While, λ(X̃
(k)
t ) = P (Z̃

(k)
t |X̃

(k)
t )

denotes a Gaussian distribution with mean µ
Z̃

(k)
t

and covari-

ance R such that λ(X̃
(k)
t ) ∼ N (µ

Z̃
(k)
t
, R) (refer to [12] for the

detailed calculation of λ(S̃
(k)
t )). After updating the weights,

PF uses the Sequential Importance Resampling (SIR) and
discriminate among all the available particles to select the one
associated with the maximum weight.

We have seen that predictive and diagnostic reasoning can
be used to estimate a joint posterior at different hierarchical
levels. An additional process can be done here to evaluate
the differences between two messages arriving at a given
node and estimate the surprise (i.e. the abnormality) using
a proper probabilistic distance (e.g. Bhattacharyya distance,
Kullback–Leibler divergence, etc.). In this paper, we use
the abnormality indicator (Abn) based on the Bhattacharyya
distance between the two messages, that represent multivariate
Gaussian probability distributions, π(X̃

(k)
t ) and P (X̃

(k)
t |S̃

(k)
t ).

This allows to evaluate if the predictions at the continuous
level matches the predictions at the discrete level and thus
explains if the signal’s dynamics at both the discrete and



continuous level evolve according to the rules learned before
in a way that it can explain the received signal.

Abn = − ln

(
BC
(
π(X̃

(k)
t ), P (X̃

(k)
t |S̃

(k)
t )
))

(13)

where, BC =
∫ √

π(X̃
(k)
t )P (X̃

(k)
t |S̃

(k)
t )dX̃

(k)
t , is the Bhat-

tacharyya Coefficient.

D. Classifier

In order to recognize the correct modulation scheme of the
received signal (i.e. current observation), the BS will perform
multiple predictions in parallel using the learned and stored
models during the training process. Thus, at each time instant
t, we have multiple predictions related to multiple GDBN
models, where each modelMk explains the signals dynamics
modulated under the k-th modulation scheme. The BS can
evaluate which of these predictions explain the current radio
situation by using the abnormality measurement defined in
(13). A set of abnormalities SAbn is available at each time
instant t, such that:

SAbn(t) = {Abn1, Abn2, . . . , AbnK} (14)

The classifier at the BS is supposed to recognize correctly the
modulation scheme of the received signal from a set (Sk) of
candidate modulations denoted by integer values, such that:
Smod = {1, . . . ,K}. Then, the modulation classification can
be made by comparing between all the abnormality values and
selecting the index of the minimum abnormality in the set
SAbn(t) to recognize the modulation scheme, which is given
by:

k̂(t) = min {SAbn},where k̂(t) ∈ Smod (15)

The probability of correct classification Pcc can be used as
performance metric to evaluate the AMC task, calculated as:

Pcc =
1

T

T∑
t=1

P (k̂(t) = k(t)|k(t)) (16)

where, T is the total testing time and P (k̂(t) = k(t)|k(t))
is the probability that the modulation scheme is correctly
predicted as k(t) at time (t).

V. EXPERIMENTAL RESULTS

A. Real DataSet

We employed a real dataset named RadioML (version
20181) [19] to assess the performance of the proposed GDBN-
based AMC after running extensive simulations. The candidate
set of the modulation schemes picked from the dataset is
Smod={OOK, QPSK, 32-PSK, 16-QAM, 32-QAM, 64-QAM,
256-QAM}. The dataset was built using GNU radio block that
includes different effects as center frequency offset, sample
rate offset, selective fading and AWGN to simulate real-
world radio conditions. The dataset consists of about 2 million
examples (which we call events) under different SNR values.

1Data set available on https://www.deepsig.ai/datasets

The SNR ranges from -20dB to +30dB with a step size of
2dB. In our study, each event is divided into two subsets
50% for training and 50% for testing and the classification
task is performed at each event to classify between single
complex symbols. The challenge of this approach is the ability
to perform accurate classification without requiring many
symbols which improve the latency and make it possible to
recognize the modulation scheme in real time manner just by
processing one symbol which is crucial in the IoT networks.

B. Results and discussion

During the training process, the CR-IoT learns a GDBN
model for each modulation scheme. After this process, the
radio possesses K GDBN models stored in its brain where
each model encodes the dynamic behaviour of the correspond-
ing modulation. During the testing process, the radio performs
multiple predictions in parallel and calculate the abnormality
indicator as defined in (13) where the classifier pick the min-
imum abnormality signal (among the K abnormality signals)
as defined in (15) to recognize the modulation scheme.

In Fig. 4, we showed the classification accuracy of the
proposed GDBN for each modulations scheme in Smod. We
can observe that GDBN achieves high classification accuracy
for most of the modulation schemes especially at SNR>5dB.
The low accuracy at low SNRs (<0dB) for the majority of
the modulation schemes in Smod can be explained by the
fact that at low SNR the data samples of each modulation are
concentrated around the origin (in the complex IQ plane) and
thus the dynamics become very fast which make it difficult to
discover and capture these dynamic rules that are encoded
in the GDBN model in an efficient way. In addition, we
compared the performance of the proposed GDBN with the
CNN and the LSTM. We followed the same approach used
to learn the GDBN (thus by using the same state vector
which is used as input to the GNG to learn the GDBN)
for both CNN and LSTM for a fair comparison. Moreover,
for CNN we used the same configuration (i.e. same number
of layers) employed in [19] but with different input, here
we used a state vector consisting of IQ components and
the corresponding derivatives. While the LSTM used here
has 3 layers, one LSTM layer, one fully connected layer
and finally a dense softmax layer that maps the classified
features to one of the available modulations schemes in Smod.
Again, Fig. 4 shows the performance comparison between the
proposed GDBN, LSTM and CNN. It can be seen that the
GDBN outperforms the other techniques in the majority of
the available modulation schemes. This can be understood
better by plotting the overall comparison performance, i.e.,
the average probability of correct classifications among all
the Pcc related to each modulation. The overall comparison
is depicted in Fig. 5 and it shows that the proposed GDBN
beats both LSTM and CNN especially at SNR>5dB. This
means that the proposed approach succeeded to learn the
dynamic proprieties (at hierarchical levels) of the signal under
a certain modulation scheme, which allows to predict the
future behaviour of the signal based on the rules encoded



in that model. In addition, LSTM and CNN performs the
supervised learning by using the input vector along with the
labels of each modulation scheme during the learning process
while in the case of GDBN we followed an unsupervised
approach to learn the model. Also, we have seen that GDBN
allows to learn the relationships among the random variables
(at hidden layers) in the network explicitly and evaluate the
situation using abnormality measurements which can be used
as self-information by the radio itself to extract new features
and learn emergent rules representing new radio situations
incrementally. This is difficult in the case of LSTM and
CNN where the dependencies between the hidden variables
at multiple layers are viewed as a black-box and thus results
can not be explained. This limitation impact the capability
of learning by understanding which is crucial in CR to learn
continually while observing the environment.
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Fig. 4. The performance comparison between GDBN, LSTM and CNN.
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Fig. 5. The overall performance comparison among GDBN, LSTM and CNN.

VI. CONCLUSION AND FUTURE WORK

We proposed a method for AMC in CR-IoT network based
on learning a set of GDBN models representing multiple
signals inside the radio spectrum under different modulation
schemes. The method performs multiple predictions using the
M-MJPF during a new radio experience and selects the best
model that explains the current situation to recognize the
modulation scheme of the received signal. Simulation results
using a real dataset showed that the proposed method outper-
forms both LSTM and CNN as well as providing interpretable
results where multiple abnormality measurements and gener-
alized errors can be used as self-information to keep learning
incrementally. Our future objectives include optimizing the

proposed approach to achieve high classification accuracy at
low SNR and studying the interaction among multiple models
stored in the radio’s brain to understand the causality among
them to drive the incremental learning process.
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