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Abstract—This paper proposes an adaptive method to enable
imitation learning from expert demonstrations in a multi-agent
context. Our work employs the inverse reinforcement learning
method to a coupled Dynamic Bayesian Network to facilitate dy-
namic learning in an interactive system. This method studies the
interaction at both discrete and continuous levels by identifying
inter-relationships between the objects to facilitates the prediction
of an expert agent’s demonstrations. We evaluate the learning
procedure in the scene of learner agent based on probabilistic
reward function. Our goal is to estimate policies that predicted
trajectories match the observed one by minimizing the Kullback-
Leiber divergence. The reward policies provide a probabilistic
dynamic structure to minimize the abnormalities.

Index Terms—imitation learning, multi-learning, Q-learning,
Dynamic Bayesian network, performance analysis

I. INTRODUCTION

Imitation learning (IL) [1] approaches aim to mimic an
expert behavior by transferring skills through observations and
by following the demonstrations step-by-step [2]. However,
imitating each step often becomes impracticable when the
learning-agent and the environment are different from those
in the demonstration. Meanwhile, using IL to track and reach
a target in motion is still a challenging task. In many cases,
the agent does not have to follow the expert unconditionally.
Instead, it must care about the demonstrator’s intention or the
goal-based imitation [3]. A moving object can be modeled
as a series of interactions with its surroundings such that its
dynamics result from forces that act on it over time [4].

Modeling and understanding expert demonstrations (e.g.,
trajectories) are essential tasks in the successes of multi-
agent learning in a dynamic environment such as intelligent
transportation [5], autonomous systems [6]–[8] and sports
tracking data [9]. In order for autonomous multi-agent to
learn such skills, they need a supervision signal that indicates
the goal of the expected behavior. Typically, this supervision
can come from a reward function in reinforcement learning
(RL) that specifies which states and actions are desirable [10].
Recent advances in RL have improved IL to learn complicated
behaviors in dynamic environments [11]. The integration of
both modalities, RL and IL, enables the learning of complex
skills from raw sensory observations [12]. However, the reward
function in RL is task-specific, and the difficulty of manually
specifying a reward function represents a significant barrier
to the broader applicability of RL in complex observations

[13]. Inverse reinforcement learning (IRL) [14] bypasses this
issue by assuming that an agent receives the sequences of
observation-action tuples. It tries to learn how to map obser-
vations to actions from these sequences through estimating
a reward function. By approximating this function rather than
directly learning the state-action, the apprentice is able to learn
a reward function in new scenarios that explains the observed
expert behavior. Moreover, it allows adapting to disarrays in
the dynamics of the environment [15].
Accordingly, the demonstrations can be explained by a set of
configurations between the moving objects each time instant.
Therefore, we can provide complex models that explain the
interaction between objects and their surroundings [16]. We
aim to take advantage of such interactions in a probabilistic
manner through a coupled Dynamic Bayesian Network (DBN)
structure. DBNs have been used for representing temporal
relationships of the agent and a dynamic target. It is the case
of predictive models based on objects’ locations and their time
derivatives [17]–[20]. To build this interaction model, we first
use a set of spatial zones in a scene where the configurations
are valid based on multiple expert demonstrations. Then,
we use transitions between the zones to track observations
by employing a set of Kalman filters [21] coupled with a
Particle filter [22] method to take advantage of both discrete
and continuous variables under an interaction assumption.
Finally, we employ the IRL approach using Q-network [23] to
extract the probabilistic reward function regarding the detected
abnormalities to match and evaluate the learner agent state
trajectory (evidence) with the expert’s demonstration (expec-
tation). We employ simulated data to validate the proposed
method performance at the interacting rules into probabilistic
models.
Our contribution are summarized as follows: i) we employ IRL
approach to a coupled DBN structure that facilitates the char-
acterization of objects’ dynamics and their inter-relationships;
ii) we learn a probabilistic multiple reward functions without
exploiting the expert demonstration explicitly; iii) Inferences
from the proposed integrated method are used to minimize the
abnormalities depending on the state of their surroundings.
Learning a probabilistic reward function allows us to take
uncertainty about the agent’s dynamic into account, which
reduces learning bias due to model errors.
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Fig. 1: Overview of the system.

II. TRAJECTORY REPRESENTATION

Probabilistic Graphical Models (PGMs) employ graph-
based representation to encoding a variety of multi-
dimensional random variables and represent causal relation-
ships among them [24]. A particular type of PGM is the Dy-
namic Bayesian Network (DBN) [25]. Due to its hierarchical
nature, DBN can express the temporal relationship between
high-level variables (capturing abstract semantic information
of the world) and low-level distributions (capturing rough
sensory information of the environment) with their respective
evolution through time. Recent works studied several algo-
rithms for inference in PGMs based on a data-driven way [26],
[27]. A modern inference mechanism, namely, the Markov
Jump Particle Filter (MJPF) presented in [26] can be employed
to facilitate the generation of behavior based on DBN models
learned computationally from data.

A. Dynamic Interaction Model

Let Z1
k and Z2

k be the observed positions of two entities,
namely Teacher (Te) and Reference Target (TRef ). Both agents
are assumed to interact with each other at a given time
instant k. Let us consider a KF which uses zero order motion
dynamical equation:

X̃k = AX̃k−1 + wk, (1)

where X̃k represents the object’s state composed of its gener-
alized coordinate positions and their velocities in a time instant
k, such that X̃k = [x ẋ]ᵀ where x ∈ Rd and ẋ ∈ Rd.
d represents the number of coordinates of the environment.
In (1), A = [A1 A2] is a dynamic model matrix where
A1 = [Id 0d,d]

ᵀ and A2 = 02d,d. In represents a square
identity matrix of size n and 0l,m is a l ×m null matrix. wk
represents the prediction noise which is here assumed to be
zero-mean Gaussian for all variables in Xk with a covariance
matrix Q, such that wk ∼ N (0, Q). The proposed model in (1)
suggests that moving objects will rest in a quasi-static location
and only random noise perturbations, modeled by wk will
affect their states. At each time instant k a new measurement
Zk is made and it is assumed a linear relationship between
Zk and X̃k, such that:

Zk = HX̃k + vk, (2)

where H = [Id 0d,d] is the observation matrix that maps
hidden states (X̃k) to measurement (Zk) and vk is the mea-
surement noise which is assumed to be zero-mean Gaus-
sian with covariance R, such that, vk ∼ N (0, R). The

deviations from predicted velocities are approximated using:
ẋ = H−1

(
Zt −HX̃k−1

)
. A joint state space vector (System

generalized states) is defined as X̃k and consists of both Te
and TRef states at each time instant k, such that:

X̃k = [X̃1
k X̃2

k ]
ᵀ
, (3)

where X̃1
k and X̃2

k represent the Generalized States (GS) of
Te and TRef respectively. To learn a situation model for
our system, we perform a coupled DBN [16] by using two
vocabularies, Te and TRef . The vocabularies are based on
generalized joint states coming from training examples that de-
scribe a specific type of interaction between the objects. Each
vocabulary is composed of configurations where X̃k data is
clustered. Each configuration represents a region where quasi-
linear models are valid to present the interactive dynamical
system over time (Fig.2.a). Vocabularies are defined as:

Si = {si1, si2, . . . , siLi
}, (4)

where Li is the total number of prototypes associated with the
object i and sil indexes the cluster of generalized joint states
that favors object i’s motion.

In a time instant k, each object i is represented by a situation
state Sik ∈ Si . Active situation state from different objects are
considered together as an activated configuration. For our case,
the activated configuration at the time instant k is written as
Dk = [STk , S

TRef

k ]ᵀ. Consequently, it is possible to the define
a dictionary containing possible configuration, such that:

D = {D1, D2, · · · , DM}, (5)

where Dm encodes a given identified configuration, M
represents the total number of configurations (situation states
combinations) and Dk ∈D. So, the configurations are created
based on the different situation states related to the considered
objects at the same time instant. Thus, D defines the whole
system’s discretization and the corresponding dynamics.
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Fig. 2: a) A coupled-DBN for the inteaction between Te and
TRef . b) The provided learning model by L.

Transition models at the discrete level. By observing
the configurations over time, it is possible to estimate a set
of temporal transition matrices that encode the probabilities
of passing from a current configuration to another one to
estimate p(Dk|Dk−1, tk), where tk encodes the time spent in
the current word Dk−1.



Linear dynamic model at the continuous level. The ob-
ject’s motion can be modeled based on quasi-constant velocity,
that is a function of the previously obtained regions Si.

B. Probabilistic Learning Model

Each situation configuration Si includes the Te and TRef
features [(Xbi, Vbi), (Xβj , Vβj)]s, where Xbi and Xβj repre-
sent the position of Te and TRef , and Vbi and Vβj represent
the velocity of Te and TRef . Here, we can associate an average
distance dZ to each configuration, that is a difference between
Xbi and Xβj .

The situation position is not meaningful because the agent
in a dynamic environment is usually required to dealing with
limited information. In order, by moving from one reference
configuration to the other one, the system computes the
distance in each time instant. This feature must be comparable
with the current model. Current model is based on the Learner
agent (L) and the current target (TCur) in the real-time through
the online learning. Also, in the current model, we consider the
interaction between L and TCur as a configuration in each time
instant [(Xbi, Vbi), (Xβj , Vβj)]cur. Therefore, the L measures
the distance from the target which will change each time due
to the action performed.

The L uses the transition model estimated from the sit-
uation model (i.e. by observing the interaction between
the teacher and the target) to learn a new DBN en-
coding the dynamic behaviour followed by the teacher
to reach the dynamic target (Fig.2-b). The transition
model encodes the probability of moving from a cer-
tain configuration [(Xbi, Vbi), (Xβj , Vβj)]k−1 to another one
[(Xbi, Vbi), (Xβj , Vβj)]k in the situation model. In this way,
the L can predict the expected future configurations based
on the dynamic transition rules encoded in the model and
imitates a similar trajectory as the one it observed from the
T. We employ the Markov Jump Particle Filter (MJPF) [28]
which uses a combination of Particle Filter (PF) and Kalman
Filter (KF) for prediction and inference purposes. Using the
MJPF allows to predict the interaction among configurations
at different levels: i) at the discrete level, to predict future
configurations by means of PF which uses the transition
probabilities (p(Dk|Dk−1)) encoded in the transition model as
a proposal distribution to propagate a set of particles realizing
the predicted discrete variables (i.e. configurations); ii) at the
continuous level, where velocity measurements and motion
estimation of the states are are predicted using a bank of KFs.

Both levels provide a qualitative comparison between the
current model’s evidence in real-time and the corresponding
prediction of the situation model through the learning proce-
dure. Belief in hidden variables can be updated after receiving
a new observation. Here the observations are the estimated
distances d(Te, TRef ). Then we estimate the expected dz in
the next time instant.

III. LEARNING DYNAMIC MULTIPLE REWARD

The objective of learning the reward policies is to integrate
the IL with IRL by taking turns to i) optimize imitation policies

that minimize the abnormalities (imitation loss). Hence, here,
learning is relatively robust to modeling errors. ii) provide
a probabilistic dynamic structure by an interactive reward
estimation.

This work hypothesizes that during the learning phase, the
learner uses a probabilistic interactively model. It employs
the model in a Q-network context for i) learning a multiple
reward function and ii) regulating the learners’ movement in
the learning phase. We explain both contributions as below.

A. Reward function

Two different policies are considered:
Policy I. Learning to minimize the difference between the
current learner’s action, ak and the mean action Ċk−1 of the
activated configuration Sk ∈ Strain in the situation model,
such that:

P Ik = dM
(
ga(Sk), ak

)
, (6)

where ga(·) is a function that extracts the action-distribution
from a GS-distribution, such that ga(Sk) ∼ N (Ċk, Σak) and
Σak is the action’s covariance information. dM(X, x) is the
Mahalanobis distance between a distribution X and a point
x. Sk ∼ N (C̃k, ΣK), which can be written as:

Sk = argmin
Sm

‖sk − Cm‖2. (7)

Policy II. Learning to minimize the divergence between the
distribution over the learner state (Sk) (calculated after taking
an action ak−1) and the discrete probability p(Sk|Sk−1) from
the situation model (calculated by transition model (dz)k). The
term Sk−1, required in p(Sk|Sk−1), is calculated based on
Eq.(7).

The PF is employed to provide distributions over the learner
state to have dynamic weight in the reward computation.
The goal is to track the distributed state sequence (Pk) of a
dynamic model. The word distributed emphasizes imperfect
measurement from the current model by adapting noise to
the learner state. The probability distribution over the learner
state allows us to represent the uncertainty about the agent’s
dynamics. For estimating d, two sources of information are
required, the prior knowledge on how the dK is expected to
evolve and a measurement model related to evaluated (Pk).
Here, we use the transition model to find the expected d, and
we calculate Kullback–Leibler (KL) divergence [29] between
two estimation, the dz and dpi to adjust the learner state.
The KL presents a control input on the particles’ weight. KL
is used to refine the particles by comparing the expectation
and the current model measurements. The particles with the
more likelihood to the prediction survive, and we use the
mean of them to have probabilistic reward by considering the
uncertainty. The policy II can be written as:

P IIk = dM
(
gs(dk|k−1) || X̄

n∑
i=1

dpi
)
, (8)

where gs(·) as a function that extracts the state-distribution
from a GS-distribution, such that gs(Sk) ∼ N (Ck, Σst ). Σst is



the state’s covariance information.
This paper considers both policies in parallel as a reward:

RIIk := P Ik + P IIk . (9)

B. Abnormality measurement

This work proposes an abnormality measurement based on
the KL divergence between the situation states p(S̃ik|S̃ik−1)

and the evidence p(dk|X̃k), such that:

λik =

∫
p(S̃ik|S̃ik−1)log

p(S̃ik|S̃ik−1)

p(dk|X̃k)
. (10)

The values of λik indicates how much the prediction is
supported by the observation. If the observation matches the
prediction, then λik is close to 0. Otherwise the prediction
deviates from the observation which leads to a high value of
λik (close to 1) revealing the presence of an abnormality.

IV. RESULTS

In this section, we provide numerical results to validate
the proposed method. We consider a table of trained data
where the L, chases TCur in a 40 × 40 space. In training
data, the L’s motion is described by 8 different motion unit-
vectors associated with the cardinal and intercardinal direc-
tions. The TCur motions consists in a horizontal dynamics
along the x axis at a fixed height point yTCur

. Accordingly,
the TCur can move in two senses: right or left inside the
interval [x

(min)
TCur

, x
(max)
TCur

]. The TCur’s dynamics consists of a
continuous motion in one sense until it reaches an interval
boundary. Then, it starts moving in the opposite sense covering
only the defined interval points. The speed of TCur movements
is different from the TRef in the situation model to guarantees
that the L learns to reach the target in a new scenario. The
following parameters are employed for simulation purposes:
yTCur

= 15, x(min)TCur
= −15 and x(max)TCur

= 15. Results related
to the capabilities of detecting abnormalities and evaluating
the current model are explained in detail as follows.

Abnormality detection. Evaluating the current model’s
configurations during the learning phase is employed to detect
abnormalities. Training includes 500 episodes from a different
start position that each episode presents 8 trajectories. It means
L tries 4000 trajectories through 500 different start positions.
Fig. 3-a shows the result of motion’s difference between the L
and T at the continuous level at time K by using Mahalanobis
distance.

Fig. 3-b shows abnormality estimation in case of the di-
vergence between the current model’s configuration and the
situation model’s prediction at the discrete level at time K+1
through KL divergence measurements. From both figures, it
is possible to see how high abnormality values are present in
the learning’s initial portion. Once the L learns the reward
policies, the measurements go down dramatically. In Fig. 3-
b, although the divergence measurements is not too high (the
highest value is 11× 10−3), it learns to minimize it.

Current model evaluation. Here the situation model is
available as a ground truth. To evaluate the current model’s
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Fig. 3: Comparison between learned policies and the expert.
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efficiency, we translate the testing phase’s result to a switching
DBN based on L and TCur interaction. Fig. 4-b shows the
result of a comparison between the motions generated based
on the situation model and the respective evidence of the
translated current model by using KL measurements.

As Fig.4-b shows, when the L’s distance to the TCur is
between [15,40], where the L follows the expert trajectory,
the abnormality estimation is lower than other positions.
In the range [10,15], the measurement increases gradually
because the L tries to adapt to the TRef behavior. The highest
difference belongs to the distance between [0, 5] to the target,
where the L’s motion is goal-based. However, most of the
abnormality measurements (75%) are less than 0.03, that as we
mentioned previously, values close to 0 indicate that evidence
matches with the expectation.

V. CONCLUSION

In this paper, we proposed an adaptative probabilistic model
for IL based on observation. Algorithms for performing in-
ferences and learning the probabilistic reward structure are
presented, which enables the learning-agent to take uncer-
tainty appropriately into account. Our method demonstrates
learning from an interaction model to estimate the reward
function through online learning. Experimental results show
the capability to minimize the abnormalities while learning the
policies from the demonstrations. Comparisons between the
simulated Learner agent and encoded DBN configurations in
the proposed model can encode multiple IRL policies. Future
works include more complex interactions between objects,
such as more than one learner agent, to create robust DBN
structures for IRL.
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