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Abstract. The linear galloping of prismatic structures having double-symmetric cross-section, subjected to steady
wind flow acting along a symmetry axis, is investigated. The continuous system is reduced to a three degree-of-
freedom system via a Galerkin approach. The quasi-steady assumption for the aerodynamic forces is applied, under
the hypothesis that the galloping instability is well-separated from the vortex induced vibration phenomenon. Due
to the structural symmetry conditions and accounting for the aerodynamic coupling, galloping is of flexural-torsional
type, occurring in the direction orthogonal to the incident wind. Moreover, coupling is stronger close to the resonance
between the flexural and torsional degrees of freedom. A linear stability diagram is built up in a two-parameter space,
highlighting the role of coupling in modifying the critical wind velocity, and in producing a veering phenomenon
between the two modes. The existence of points at which a double-Hopf bifurcation manifests itself is detected.
Both exact and perturbation solutions are provided, these latter in the non-resonant and resonant cases, useful to
throw light on the interactive mechanisms. The resonant perturbation solution permits to analytically investigate
under which conditions coupling has a detrimental effect on galloping, which manifests at a wind velocity lower
than the flexural and torsional critical velocities. Situations where coupling between modes leads to beneficial effect
with respect to the Den Hartog’s critical wind velocity are also highlighted. As an application, galloping of a family of
multi-story tower buildings having a square cross-section is studied.
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1. Introduction

The aeroelastic instability in a quasi-steady regime (called "galloping") is a typical phenomenon of aerodynamic instability that
occurs in slender structures with non-circular section. Concerning a system with a single degree-of-freedom (DOF), orthogonal to
the direction of the incident wind, the instability onset is defined by the well-knownDen Hartog criterion [1], which is also used from
a technical point of view in codes and guidelines (e.g., [2]) in order to estimate the structural safety with regard to critical conditions
of galloping. The validity of these evaluations is linked to the quasi-steady flow hypothesis (e.g., [3]), which allows to deduce the
dynamics of the body starting from aerodynamic coefficients obtained from static tests in wind tunnel. From a physical point of
view, this means that forces are determined only by the instantaneous position and instantaneous relative velocity field of the flow
around the cylinder, and that any memory effect is negligible. Such a hypothesis may be satisfied only if the characteristic times
of the velocity fluctuations in the wake of the cylinder are much smaller than the characteristic times of the cylinder’s oscillating
motion. This happens for sufficiently high values of the reduced speed Ur = U/fb (where U is the value of mean wind velocity, f the
cylinder’s oscillation frequency and b a reference size of the cylinder cross section, e.g., its diameter or side), for example greater than
20 (e.g, [4]) for a square section (with sharp edges) since in this case the vortex-induced oscillations (VIVs) occur for Ur ≃ 7− 8. The
quasi-steady theory is usually considered as wind loading model also to take into account the effects of the gust-excited vibrations
on slender structures (e.g., [5, 6]). Although the galloping onset is governed by the simple, deterministic Den Hartog criterion,
actually its value is affected by uncertainties related to structural and aerodynamic parameters [7]. Evaluations of critical galloping
conditions are possible for a single torsional degree-of-freedom too (e.g., [4]), even if in these cases the quasi-steady assumption is
somewhat forced and not always valid but can in some cases perform well, at least in terms of onset [8]. Nigol and Buchan [9] have
conducted detailed studies on conductors with natural ice shapes showing that galloping of overhead lines is caused largely by the
torsional mechanism. For particular structures, such as slender towers (e.g., [10]) and shallow cables in transmission lines (e.g., [11]),
not only the assessment of galloping critical conditions but also the analysis of post-critical oscillations is fundamental.

Focusing on the galloping onset, the study of sectional models with more degrees of freedom has attracted the interest of
researchers in order to investigate the possible modifications with respect to the classic Den Hartog case. To the best knowledge
of the authors, the first study that highlighted a galloping coupled response between plunging and torsional vibrations is due to
Slater [12], with reference to a structural angle section. In this context, Iwan and Blevins [13] present a model for two degree-
of-freedom instability, where the galloping is investigated by using asymptotic techniques to generate approximate steady-state
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solutions. Stability criteria of these solutions are also presented showing that they fall into two classes, depending on the ratio of
the natural frequencies in torsion and plunge [4]. The first class of solution is valid when the two frequencies are not approximately
equal or in the ratio of small integers. When the two natural frequencies are close to an integer multiple (i.e., internal resonance 1/3,
1, 3), the approximate analysis yields equations which must be solved numerically. In this latter case there is a strong interaction
between plunge and torsional modes, which appears greatest when the two structural frequencies are nearly equal. Desai et al. [14],
in addition to the bluff angle section, analyze the galloping flexural-torsional behavior of a square section. Instability conditions
are studied by applying the classic Routh-Hurwitz criterion; a limit cycle analysis in internal resonance as well as non-resonance
conditions is treated by employing an averaging method. The example of square prism section points out that, near the 1:1 internal
resonance condition, galloping can be initiated below the value predicted by a purely plunge approach. Therefore, torsion seems
to play a significant role and predictions based on a classic plunge theory can be erroneous in resonance conditions. Later papers
related to two DOF (plunge and torsion) galloping are addressed to iced cable sections [15, 16, 17], to study the effect of inertial
coupling between the degrees of freedom due to iced conductor’s eccentricity, making the 1:1 internal resonance vibration not
possible.

The two-degree-of-freedom translational galloping has been examined starting from Jones’ paper [18], where the solution of
the eigenvalue equation indicates that the coupled galloping criterion may be either more or less stringent than the Den Hartog’s
criterion. A formula defining the onset wind velocity for the bi-dimensional coupled galloping oscillations of tower buildings in
perfect 1:1 internal resonance is presented in [19]. The influence of the along-wind response on the across-wind vibration is also
discussed in [20] to study the large amplitude aeroelastic vibration of highway tubular poles, starting from a continuous model and
accounting for wind shear effects and variable cross-section. Through a perturbation approach, an approximated analytical solution
for the eigenvalue problem is determined in [21]. Differently from the expressions existing in literature, the proposed eigensolutions
are valid in both quasi-resonant and non-resonant conditions and allow depiction of all the possible bifurcation mechanisms in the
plane of the invariants of the aerodynamic damping matrix. Moreover, a closed form expression for the critical velocity is derived;
it coincides with the exact solution in the resonant case and presents very good agreement with the numerical solutions in quasi-
resonant conditions. In this way the critical velocities are compared with the Den Hartog velocity and the influence of the horizontal
motion is thus fully evaluated. In this context galloping critical conditions on square cylinders with an arbitrary attitude in the wind
flow are studied in [22], and the dependence of the critical behavior on the orientation of the principal structural axes of the cross-
section is presented in [23].

Moving to three degree-of-freedom sectional models capable of considering the two translations in the section plane together
with the torsion, Piccardo [24] proposed a general model whose linearization allows to study numerically the incipient instability
due to coupled aeroelastic phenomena in the Laplace domain. Yu et al. [25] developed a three DOF model to describe the galloping
of a multi-span, electrical transmission line having an asymmetrically iced cross-section; galloping initiation conditions are studied
according to the classic Routh-Hurwitz criterion. A similar approach to galloping critical conditions is presented in [26, 27] whereas
He and Macdonald [28] focus on obtaining a closed-form solution for the effective aerodynamic damping of the 3 DOF system with
perfectly tuned natural frequencies in the three structural modes, also considering the influence of inertial coupling [29]. Very
recently Lou et al. [30] propose an analytical stability criterion for 3-DOF galloping response of iced transmission lines by using the
eigenvalue perturbation method. The aerodynamic stiffness matrix is included in the zero-order stiffness matrix and analytical
expressions for the real parts of the eigenvalues are determined without explicitly considering the possible internal resonance
conditions that can occur between the three structural modes.

In this paper a continuous model representing a prismatic structure excited by a quasi-steady flow is considered. Through a
Galerkin approach the system is reduced to a discrete three-DOF model which is coupled only in the flexural-torsional directions
thanks to the hypothesis of double symmetry of the cross-section. The problem, therefore, becomes formally equal to a two DOF
(plunge-torsional) sectional model, whose damping matrix is full due to the presence of the fluid-structure interaction terms, and
in which there are also terms of aerodynamic stiffness of torsional nature. In this case an analytical study of incipient galloping
in resonance and quasi-resonance conditions is still lacking in the literature. On the other hand, internal resonance interactions
between the structural modesmay be able to remarkablymodify the critical conditions linked to the classic Den Hartog condition, as
noted on a square prism section in [14]. The aim of the present work is a detailed exact (Sect 3) and perturbation analysis (Sect 4) of
the critical conditions around the 1:1 resonance studying the matching to quasi-resonance and non-resonance conditions. Further-
more, as stated above, the discrete model (Sect 2) is not necessarily a sectional model (typically used in wind tunnel experiments)
but can be interpreted as the discretization of a continuous model of prismatic structure. In this regard, Sect 5 presents the study
of critical conditions for a shear-torsional building having a square cross-section in order to apply the proposed theory to a real
structure. Some relevant conclusions are drawn in the ending Sect 6.

2. Discrete model

A prismatic structure of axis z, having bi-symmetric cross-section in the (x, y)-plane, subjected to a steady and uniform wind
flowU , acting along the symmetry x-axis, is considered. The continuous structure is reduced to a three degree-of-freedommodel via
the Galerkin approach, in which q = (u (t) , v (t) , ϑ (t))T are the amplitudes of the trial functions, describing the along-wind, cross-
wind and twist amplitudes, respectively, and t is the time. By applying the quasi-steady theory for the aerodynamic forces (e.g.,
[3]), which holds when galloping is well-separated by the vortex shedding synchronization phenomenon, the linearized equations
of motion are:

Mq̈+ (Cs + Ca) q̇+ (Ks + Ka)q = 0 (1)

Here:

M :=

 M 0 0

0 M 0

0 0 JG

 , Cs :=

 2ξx
√
KxM 0 0

0 2ξy
√

KyM 0

0 0 2ξϑ
√
KϑM

 , Ks :=

 Kx 0 0

0 Ky 0

0 0 Kϑ



Ca :=
1

2
ρaUbL

 2cd 0 0

0
(
cd + c′l

)
−R

(
cd + c′l

)
0 bc′m −Rbc′m

 , Ka :=
1

2
ρaU

2bL

 0 0 0

0 0 c′l
0 0 bc′m


(2)

are, in the order: the inertia matrix, the structural damping matrix, the structural stiffness matrix, the aerodynamic damping ma-
trix, the aerodynamic stiffness matrix. Moreover: M,JG are the modal masses, of translational and rotational kind, respectively;
Kx,Ky ,Kϑ are the modal stiffnesses; ξx, ξy , ξϑ the modal damping ratios; cd, cl, cm the drag, lift and moment aerodynamic coeffi-
cients, respectively, with c′l, c

′
m their derivatives with respect the angle of attack; ρa is the air density; b is a characteristic length of
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the cross-section and R its characteristic twist radius (e.g., [8]); finally, L is the length of the cylinder. The constant forces due to
the mean wind velocity have been neglected; furthermore, the effect of atmospheric turbulence has not been explicitly considered,
even if it could be approximately recovered through suitably modified aerodynamic coefficients (e.g., [4]). The explicit influence of
turbulence is potentially important for tall, large building and towers; for slender towers in boundary-layer winds an increasing
turbulence intensity can lead to a decrease in the standard deviation of the response in the dominant mode [10].

Equations (1) can also be interpreted as the equations of a sectional model, to be tested in wind tunnel, where M,JG are the
masses of the cylinder (of length L) and Kx,Ky ,Kϑ are the stiffnesses of the springs supporting the body (see Fig 1). Due to the
double symmetry, all the structural matrices are diagonal, while the aerodynamic matrices are non-diagonal, providing coupling
between the cross-windmotion v (t) and the twist ϑ (t). The along-windmotion u (t), instead, being uncoupled and damped, decays
in time, so that it can be ignored in the galloping analysis. Similar considerations on the decoupling of the problem could be made,
albeit in an approximate way, even in the absence of symmetry, in the case in which the along-wind oscillations occur at a very
different frequency compared to the other two directions.

x

y

u

v
U

Kx, K y , K
x, y , 

Figure 1. Sectional model.

The following assumptions, holding throughout the paper, are made, concerning the signs of the aerodynamic coefficients:

c′l < 0,
∣∣c′l∣∣ > cd > 0, c′m > 0 (3)

The first two conditions, make it possible the cylinder instabilizes in the flexural mode (when twist is suppressed) at a sufficiently
high wind velocity; the last condition makes positive the torsional aerodynamic stiffness, in order to exclude torsional divergence
(when translation is prevented), while allowing torsional galloping to occur. As an example, the squared cross-section satisfies these
properties (e.g., [14]).

To transform the equation of motion (1) in a nondimensional form, the following quantities are introduced:

αyy := 2ξy + µηy
(
cd + c′l

)
, αyϑ := −µηy

R

b

(
cd + c′l

)
,

αϑy := µηϑc
′
m, αϑϑ (Ω) := 2ξϑΩ − µηϑ

R

b
c′m,

βyϑ := µ2ηyc
′
l, βϑϑ := µ2ηϑc

′
m,

ηy :=
ρab2L

2M
, ηϑ :=

ρab4L

2JG

ṽ :=
v

b
, t̃ := ωyt,

µ :=
U

ωyb
, Ω :=

ωϑ

ωy
,

(4)

where ωy :=
√

Ky

M
, ωϑ :=

√
Kϑ
JG

are the natural flexural and torsional frequency, respectively. Here, αij are nondimensional coeffi-

cients of the velocity-dependent forces (i.e., of the motion-induced forces which are in-phase with the local velocity of the moving
object); βij are nondimensional coefficients of the positional forces (i.e., of the out-of-phase components of the motion-induced
forces); Ω is the torsional-to-flexural frequency ratio; µ is the nondimensional wind velocity, which differs from the definition of
the reduced wind speed by a scalar factor 2π (see Sect 1). All αij , βij depend on µ (dependence understood); in addition, αϑϑ also
depends on Ω (dependence made explicit).

With the positions (4), the equations governing the flexural-torsional motions are recast in the form:(
1 0

0 1

)(
v̈

ϑ̈

)
+

(
αyy αyϑ

αϑy αϑϑ (Ω)

)(
v̇

ϑ̇

)
+

(
1 βyϑ

0 Ω2 + βϑϑ

)(
v

ϑ

)
=

(
0

0

)
(5)

where the tilde has been omitted, and the dot denotes differentiation with respect the nondimensional time.

3. Exact solution

The Eqs (5) admit the particular solution: (
v

ϑ

)
=

(
v̂

ϑ̂

)
exp (λt) (6)
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in which
(
v̂, ϑ̂
)T

is an eigenvector and λ is an eigenvalue of the following algebraic problem:

(
λ2

(
1 0

0 1

)
+ λ

(
αyy αyϑ

αϑy αϑϑ (Ω)

)
+

(
1 βyϑ

0 Ω2 + βϑϑ

))(
v̂

ϑ̂

)
=

(
0

0

)
(7)

Since the matrix of the coefficients is non-symmetric, both the eigenvectors and the eigenvalues are, in general, complex. The
characteristic equation of the problem is:

p(λ) : = λ4 + λ3 (αyy + αϑϑ) + λ2
(
1 +Ω2 − αyϑαϑy + αyyαϑϑ + βϑϑ

)
+ λ

(
Ω2αyy + αϑϑ − αϑyβyϑ + αyyβϑϑ

)
+Ω2 + βϑϑ = 0

(8)

3.1 Linear stability analysis

A linear stability analysis is carried out in the parameter space (µ,Ω). Here, µ is the distinguished parameter, andΩ is the splitting
parameter (since it splits the resonance and possible double Hopf bifurcations).

A (simple) Hopf bifurcation occurs when, by increasing the bifurcation parameter µ, a pair of complex conjugate eigenvalues
crosses the imaginary axis from the left. Therefore, at the incipient bifurcation, Eq (8) admits the root λ = iω, with ω unknown. By
substituting it in the equation and separating real and imaginary parts, two real equations are obtained:

Ω2 + βϑϑ − ω2 −Ω2ω2 + αyϑαϑyω
2 − αyyαϑϑ (Ω)ω2 − βϑϑω

2 + ω4 = 0 (9)

ω
[
Ω2αyy + αϑϑ (Ω)− αϑyβyϑ + αyyβϑϑ − ω2 (αyy + αϑϑ (Ω))

]
= 0 (10)

Equation (10) can be solved to supply ω = ω (µ;Ω), leading to:

ω1 = 0 (11)

ω2, 3 = ±

√
Ω2αyy + αϑϑ − αϑyβyϑ + αyyβϑϑ

αyy + αϑϑ (Ω)
(12)

When the first root, ω1 = 0, is substituted in Eq (9), Ω2 + βϑϑ (µ) = 0 is found, i.e. the condition for which the stiffness matrix
is singular. In this occurrence, a torsional divergence manifests at the critical wind velocity µd := Ω/

√
−ηϑc′m, requiring c′m < 0

(destabilizing aerodynamic torsional stiffness). In this paper, however, this casewill be excluded by the assumption that the torsional
effect is stabilizing, Eq (3) (i.e. c′m > 0).

When ω2, 3 is substituted in Eq (9), an algebraic equation of fifth degree in Ω is found, namely:

p1 (Ω)Ω4 + p2 (Ω)Ω2 + p3 (Ω) = 0 (13)

whose coefficients pi (Ω) are polynomials of Ω, whose expressions are reported in the Appendix A (Eqs (77)). Equation (13) calls
for a numerical solution. For any value of µ, five roots Ω are found, among which only the real and positive ones are kept. The
graph of the roots in the (Ω,µ) parameter plane (linear stability diagram) is a geometrical locus representative of a family of systems
(parameterized by Ω) at the incipient instability condition. The points of the plane below the lowest critical curve constitute the
stability domain.

At the stability boundary, the Hopf frequency ω (i.e. the frequency of limit-cycle about to be born there) is evaluated by Eq (12);
the eigenvector, from Eq (7), is:

(
v̂, ϑ̂
)T

=

(
1,

(
−βyϑ + ω2βyϑ − ω2αyyαyϑ

)
+ iω

(
αyϑ − αyyβyϑ − ω2αyϑ

)
β2
yϑ + ω2α2

yϑ

)T

(14)

in which v̂ = 1 has been taken for normalization. Since the mode is complex, the trajectory experienced by the system in the (v, ϑ)
configuration space is elliptical, of parametric equations:(

v

ϑ

)
=

(
1

Re
(
ϑ̂
) ) cos (ωt)−

(
0

Im
(
ϑ̂
) ) sin (ωt) (15)

(to within an unessential scaling factor).

3.2 Double-Hopf bifurcation points

The possible occurrence of Double-Hopf (DH) bifurcation points is explored. At these DH-points, two pairs of complex eigenval-
ues, λ = ±iω1,±iω2, simultaneously cross the imaginary axis, when the distinguished bifurcation parameter is increased. The phe-
nomenon is potentially dangerous, since it leads, in the nonlinear field, to a complex dynamics in which periodic and quasi-periodic
motions compete among them (see, e.g., [31, 32]). At a DH point, the characteristic equation reads p (λ) =

(
λ2 + ω2

1

) (
λ2 + ω2

2

)
; by

equating it to the general expression (8), four real equations are drawn, i.e.:

αyy + αϑϑ (Ω) = 0 (16)

1 +Ω2 − αyϑαϑy + αyyαϑϑ (Ω) + βϑϑ = ω2
1 + ω2

2 (17)

Ω2αyy + αϑϑ (Ω)− αϑyβyϑ + αyyβϑϑ = 0 (18)

Ω2 + βϑϑ = ω2
1ω

2
2 (19)
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Equation (16), after using the definitions (4), can be solved for linking the Ω and µ parameters, thus obtaining:

µ (Ω) = −
2 (ξy + ξϑΩ)

ηy
(
cd + c′l

)
− ηϑ

R
b
c′m

(20)

By substituting it into Eq (18), a cubic equation is found for the unknown Ω:

J0Ω
3 + J1Ω

2 + J2Ω + J3 = 0 (21)

whose coefficients are reported in Appendix A (Eqs (78)). Any real positive solutionΩ of Eq (21), together with the associated µ given
by Eq (20), selects a DH point in the parameter plane.

By using the remaining Eqs (17), (19), the Hopf frequencies ω1, ω2 can be evaluated. Usually, they are uncommensurable, so that
the bifurcation is non-resonant. If, however, a third parameter were considered (for example by exploring a family of aerodynamic
coefficients), a resonant DH bifurcation could occur, as for example studied in [33, 34, 35].

4. Perturbation analysis

Although the exact analysis developed above gives exhaustive answers to the stability problem, it cannot highlight the mecha-
nism of coupling, which is somewhat related to the resonance between flexural and torsional degrees of freedom. Moreover, since
it would be desirable to obtain closed-form solutions for the eigenvalue problem (7), a perturbation analysis is carried out. Two
cases are examined: non resonant problem (Ω ̸= 1) and resonant problem (Ω ≃ 1), each of which calling for a different perturbation
expansion.

4.1 Non resonant problem (Ω ̸= 1)

In starting a perturbation analysis, it needs to estimate the order ofmagnitude of the different terms, parameters and unknowns.
Such an ordering, of course, has to be checked a posteriori, in the sense that the perturbation solution is valid in the range in which
the unknowns assume the expected values. In the problem at hands, all αij , βij depend on µ, whose critical value is unknown. An
estimation of the expected µ is performed here, suggested by the following conjectures.

If any coupling between the two degree of freedoms were ignored, either: (i) flexural galloping would manifest at the wind
velocity µy , such that αyy = 0; or (ii) torsional galloping would occur at wind velocity µϑ, such that αϑϑ = 0. Both the conditions
denote vanishing of the total (structural plus aerodynamic) damping, according to the well-known Den Hartog criterion. By using
Eqs (4), these velocities are:

µy := −
2ξy

ηy
(
cd + c′l

) (22)

µϑ (Ω) :=
2ξϑΩ

ηϑ
R
b
c′m

(23)

They are both positive, according to the properties (3). Equations (22)-(23) describe two straight lines in the (µ,Ω) parameter plane.
Far from resonance, and when Ω > 1, it is expected that coupling is weak, so that the critical velocity is close to that of Den

Hartog, i.e. µ ≃ µy . Since the quasi-steady theory is believed to hold at the reduced velocities 2π U
ωyb

≡ 2πµ > 20 (for square or

compact sections, e.g. [4]), it is guessed that µ2 = O(10). Since the key-term βyϑ of the aerodynamic stiffness, responsible for the
coupling, is proportional to µ2, it is likely to enter among the leading terms of the eigenvalue problem, at the same order of the elastic
stiffnesses. The other stiffness term, βθϑ, is usually smaller, but it can be checked that, considering it of the same order of βyϑ, while
simplifying the analysis, does not entail significant errors. On the contrary, since the damping terms αij linearly depend on µ, and
some of them nearly vanishes at the bifurcation, they should be considered as small perturbations. In conclusion, the following
ordering is conjectured: αij = O (ϵ) , βij = O (1), where ϵ is a perturbation parameter. By rescaling αij → ϵαij , the eigenvalue
problem (7) becomes: ((

1 + λ2 βyϑ

0 Ω2 + βϑϑ + λ2

)
+ ϵλ

(
αyy αyϑ

αϑy αϑϑ (Ω)

))(
v̂

ϑ̂

)
=

(
0

0

)
(24)

The eigenvalues λ and eigenvectors u :=
(
v̂, ϑ̂

)T
, all depending on ϵ, are expanded in series as follows:

λ = λ0 + ϵλ1 + . . . (25)(
v̂

ϑ̂

)
=

(
v̂0

ϑ̂0

)
+ ϵ

(
v̂1

ϑ̂1

)
+ . . . (26)

where the coefficients are all unknowns. By substituting them in Eq (24), and separately equating to zero the coefficients of the same
power of ϵ, the following perturbation equations, up to the ϵ-order, are obtained:

Order ϵ0: (
1 + λ2

0 βyϑ

0 Ω2 + βϑϑ + λ2
0

)(
v̂0

ϑ̂0

)
=

(
0

0

)
(27)

Order ϵ1: (
1 + λ2

0 βyϑ

0 Ω2 + βϑϑ + λ2
0

)(
v̂1

ϑ̂1

)
= −λ0

(
αyy + 2λ1 αyϑ

αϑy αϑϑ (Ω) + 2λ1

)(
v̂0

ϑ̂0

)
(28)

The lower-order generating problem (27) admits two eigensolutions (and their complex conjugates), namely:

(F) Flexural mode:

λF
0 = i, uF

0 = (1, 0)T (29)
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Figure 2. A sketch of the loci of incipient instability for small and large values of Ω; shaded area stable.

(FT) Flexural-Torsional mode:

λFT
0 = i

√
Ω2 + βϑϑ, uFT

0 =

(
1,

Ω2 − 1 + βϑϑ

βyϑ

)T

(30)

From this first step it appears clear that, due to the nature of aerodynamic stiffness, the critical mode is a perturbation of either the
(F) or the (FT) modes; hence, torsion never prevails over flexure.

When the (F)-solution (29) is substituted in Eq (28), this latter reads:(
0 βyϑ

0 Ω2 − 1 + βϑϑ

)(
v̂1

ϑ̂1

)
= −i

(
αyy + 2λ1

αϑy

)
(31)

Since the matrix of the coefficients is singular, according to the Rouche-Capelli Theorem, λ1 must satisfy a compatibility (or solv-
ability) condition, supplying:

λF
1 =

1

2

(
−αyy + βyϑ

αϑy

Ω2 − 1 + βϑϑ

)
(32)

which is a purely real correction of the imaginary eigenvalue λF
0 . By solving the equations (31):

uF
1 =

(
0,−i

αϑy

Ω2 − 1 + βϑϑ

)T

(33)

is found, where v̂1 = 0 has been taken as normalization condition; it is a purely imaginary correction of the real eigenvector uF
0 .

When the (FT)-solution (30) is substituted in Eq (28), this latter reads:

(
1−

(
Ω2 + βϑϑ

)
βyϑ

0 0

)(
v̂1

ϑ̂1

)
= −i

√
Ω2 + βϑϑ

(
αyy + 2λ1 αyϑ

αϑy αϑϑ (Ω) + 2λ1

) 1
Ω2−1+βϑϑ

βyϑ

 (34)

Solvability establishes that:

λFT
1 = −

1

2

(
αϑϑ (Ω) +

αϑyβyϑ

Ω2 − 1 + βϑϑ

)
(35)

which is a purely real correction of the imaginary eigenvalue λFT
0 . The normalized solution of Eq (34) is:

uFT
1 =

(
0, i
√

Ω2 + βϑϑ

(
2λFT

1 + αyy

βyϑ
+

αyϑ

(
Ω2 − 1 + βϑϑ

)
β2
yϑ

))T

(36)

which is a purely imaginary correction of the real eigenvector uFT
0 .

By coming back to the series expansion (25), since Re (λ0 + ϵλ1) = ϵ λ1 for both the (F) and (FT) modes, stability is governed by
the ϵ-order part of the eigenvalues. Consequently, by letting λ1 = 0, since it depends on (µ,Ω), the geometrical locus of incipient
bifurcation is found on the parameter plane. Concerning the (F) mode, λF

1 = 0 (Eq 32) entails:

Ω2 (µ) = 1− βϑϑ +
αϑyβyϑ

αyy
(37)

This is a closed-form expression for the curve Ω = Ω (µ); its asymptotic character for Ω → +∞ or Ω → 0 are analyzed (see Fig 2 for
a sketch). When Ω → +∞, since αϑyβyϑ < 0, then αyy → 0−, i.e. µ → µ+

y ; therefore, the Den Hartog value µy , Eq (22), is recovered

from above. It is confirmed that, far from resonance, the system behaves as uncoupled. Close toΩ = 0, instead, αyy ≃ αϑyβyϑ

βϑϑ−1
; then,

so far βϑϑ < 1, it is αyy > 0, which means that galloping occurs at a critical value µ < µy , i.e. coupling has a detrimental effect on
flexural galloping.

Concerning the (FT) mode, λFT
1 = 0 (Eq 35) leads to:(

Ω2 − 1 + βϑϑ

)
αϑϑ (Ω) + αϑyβyϑ = 0 (38)

which is a cubic equation for Ω = Ω (µ), generally calling for a numerical solution. However, asymptotic information can be got for
Ω ≪ 1, or Ω ≫ 1, for which the following solutions hold (see Appendix B for details, and Fig 2 for a sketch):
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Ω ≃


1

2ξϑ

(
µηϑ

R
b
c′m + µ3 η2

y
R
b
c′l(cd+c′l)

1−µ2ηϑc′m

)
when Ω ≪ 1[

R
b

ηθ
2ξϑ

c′m +
(

b
R

)2 2ξϑ
ηϑ

ηyc
′
l

c′m

]
µ when Ω ≫ 1

(39)

These expressions entail that: (i) the plot of Ω (µ) is a curve passing through the origin, since, for the mechanical model adopted,
ωϑ = 0 entails ξϑ = 0; (ii) Ω (µ) is tangent at the origin to the straight line αϑϑ = 0, i.e. µ ≃ µϑ (Ω); (iii) in addition to the origin, Ω (µ)
crosses the µ-axis at a non-zero µ0 value, denoting a successive bifurcation; (iv) Ω (µ) is a straight line far from the origin, whose
angular coefficient, by virtue of Eq (3), is less than that αϑϑ = 0. The plot of Fig 2 highlights the stable domain (shaded area) and the
occurrence of a DH-point (red symbol) in the range Ω < 1.

Finally, is it worth noticing that, far from Ω = 1 and due to the perturbation method, the five-degree algebraic equation (13) is
broken into two equations, one of second-degree (Eq (37)), the other of third-degree (Eq (38)).

4.2 Resonant problem (Ω ⋍ 1)

The non-resonant solution does not hold when Ω2 + βϑϑ ⋍ 1, i.e. when the modified torsional frequency, accounting for the
(usually small) aerodynamic stiffness, is close to the flexural frequency. In this case, a resonance occurs between the two degrees of
freedom. Indeed, since the denominator in the Eqs (32), (35) tends to zero, in order that λ1 does not diverge to infinity, also µ must
tend to zero. Thus, a quite unrealistic occurrence it depicted, i.e. that the critical load tends to zero at the resonance. It will be proved,
in the following, that this wrong information is a consequence of a wrong ordering of the coefficients in the equation of motion
(1). Indeed, when µ → 0, the coupling coefficient βyϑ tends to zero, too. Therefore, for µ small, it must be ordered at the higher-
order ϵ, and not more included among the leading terms, as done in Eq (24). By performing the same rescaling for the companion
coefficients, the ordering βij → ϵβij is performed, still keeping αij → ϵαij . Moreover, to express the closeness of Ω to 1, a detuning
parameter σ is introduced, such that:

Ω = 1 + ϵσ (40)

Hence, the eigenvalue problem (7) is recast in the form:((
1 + λ2 0

0 1 + λ2

)
+ ϵ

(
λαyy βyϑ + λαyϑ

λαϑy 2σ + βϑϑ + λαϑϑ (1)

))(
v̂

ϑ̂

)
=

(
0

0

)
(41)

where ϵαϑϑ (θ) = ϵαϑϑ (1) + O
(
ϵ2
)
has been used. The eigenvalue λ (ϵ) appears as a perturbation of a semisimple double eigenvalue

λ (0) = ±i (i.e. a double root admitting two independent eigenvectors). The relevant perturbation algorithm is applied (see, e.g.,
[36, 37]).

By using the same expansions (25)-(26) of the non-resonant case, the following perturbation equations are derived:
Order ϵ0 (

1 + λ2
0 0

0 1 + λ2
0

)(
v̂0

ϑ̂0

)
=

(
0

0

)
(42)

Order ϵ1 (
1 + λ2

0 0

0 1 + λ2
0

)(
v̂1

ϑ̂1

)
= −

(
λ0αyy + 2λ0λ1 βyϑ + λ0αyϑ

λ0αϑy 2σ + βϑϑ + λ0αϑϑ (1) + 2λ0λ1

)(
v̂0

ϑ̂0

)
(43)

The generating perturbation equation (42) admits the double root λ0 = i (and its complex conjugate). Infinite eigenvectors, spanning
a plane, are associated with λ0: (

v̂0

ϑ̂0

)
= a1

(
1

0

)
+ a2

(
0

1

)
(44)

where a1, a2 are arbitrary constants. To resolve indeterminacy, it needs to go to the ϵ-order. With the previous results, the Eq (43)
reads: (

0 0

0 0

)(
v̂1

ϑ̂1

)
= −i

(
αyy + 2λ1 αyϑ − iβyϑ

αϑy αϑϑ − iβϑϑ − 2iσ + 2λ1

)(
a1

a2

)
(45)

Solvability requires the right hand member vanishes, from which a new eigenvalue problem in λ1 is drawn, whose characteristic
equation is:

4λ2
1 + λ1 (2trA− 2iβϑϑ − 4iσ) + detA+ iαϑyβyϑ − iαyyβϑϑ − 2iαyyσ = 0 (46)

where trA := αyy + αϑϑ (1) and detA := αyyαϑϑ (1) − αyϑαϑy are trace and determinant, respectively, of the aerodynamic and
structural damping matrix A := [αij ], evaluated at Ω = 1.

On the stability boundary, Re (λ1) = 0, i.e. λ1 = iω1 (with ω1 the unknown Hopf frequency). Substituting it in Eq (46) and
separating real and imaginary parts, two real equations follow:

−4ω2
1 + 2ω1 (βϑϑ + 2σ) + detA = 0 (47)

2ω1trA+ αϑyβyϑ − αyy (βϑϑ + 2σ) = 0 (48)
From Eq (48), ω1 is expressed in terms of σ and µ:

ω1 = −
αϑyβyϑ − αyy (βϑϑ + 2σ)

2trA
(49)

When it is substituted into Eq (47), a quadratic equation for the detuning is derived, namely:[
αϑyβyϑ − αyy (βϑϑ + 2σ)

] [
αϑyβyϑ + (βϑϑ + 2σ)αϑϑ (1)

]
− detA tr2A = 0 (50)

or:
I0σ

2 + I1σ + I2 = 0 (51)
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where the (µ-dependent) coefficients Ij are:
I0 : = 4αyyαϑϑ (1) (52)

I1 := 2αϑyβyϑ (αyy − αϑϑ (1)) + 4αyyαϑϑ (1)βϑϑ (53)

I2 := detA tr2A− α2
ϑyβ

2
yϑ + βϑϑαϑyβyϑ (αyy − αϑϑ (1)) + β2

ϑϑαyyαϑϑ (1) (54)

From Eqs (51) two solutions for σ (µ) are obtained:

σ± (µ) =
−I1 ±

√
I21 − 4I0I2

2I0
(55)

If they are real, two values for the Hopf frequency ω±
1 (µ) are derived from Eq (49), and two values for the frequency ratio are drawn

from Eq (40), with the parameter ϵ reabsorbed:
Ω± (µ) = 1 + σ± (µ) (56)

It is observed that:

1. At µ = µy , or µ = µϑ (1), it is αyy = 0 or αϑϑ (1) = 0, respectively, so that I0 = 0. One of the two roots σ of Eq (51), consequently,
tends to infinity, i.e. the graph of Ω (µ) has two horizontal asymptotes.

2. When βyϑ = O (1) , βϑϑ = O (1) together with σ = O (1), i.e. the ordering of the resonance analysis is violated, the resonant
solution recovers the non-resonant solution. Indeed, the factorized expression (50) of the second-degree equation (51) brakes
in two linear equations, supplying:

σ− =
1

2

αϑyβyϑ

αyy
− βϑϑ, σ+ = −

1

2

αϑyβyϑ

αϑϑ (1)
− βϑϑ (57)

These are consistent with the non-resonant conditions λF
1 = 0 (Eq 32) and λFT

1 = 0 (Eq 35), the latter with αϑϑ (Ω) approxi-
mated by αϑϑ (1). It is therefore confirmed the role of the coupling parameters βyϑ, βϑϑ, previously conjectured.

The eigenvectors
(
v̂, ϑ̂
)T

= (a1, a2)
T at the critical conditions are evaluated from Eq (45); their expressions are reported in the

Appendix C.

4.3 Discussion on perfect resonant galloping

The behavior of the system at the perfect resonance (Ω = 1, i.e. σ = 0) is discussed. Aim of the analysis is to investigate the
effect of coupling on galloping. The task is to check if, and under which conditions, resonance reduces the uncoupled critical wind
velocities (22)-(23), exerting a detrimental effect on the mechanical behavior.

According to Eq (51), the critical wind velocity at the resonance, viz. µ = µr , is the smallest root of the algebraic equation
I2 (µ) = 0. It is interesting to compare µr to µmin := min (µy , µϑ (1)), in order to find the conditions under which µr < µmin. To this
end, by making use of the definitions (22)-(23), the αij and βij coefficients are rewritten as follows:

αyy := 2ξy

(
1−

µ

µy

)
, αyϑ := 2

R

b
ξy

µ

µy
,

αϑy :=
2ξθ
R
b

µ

µϑ (1)
, αϑϑ (1) := 2ξϑ

(
1−

µ

µϑ (1)

)

βyϑ := −2
µ2

µy
ξyδ, βϑϑ :=

2ξϑ
R
b

µ2

µϑ (1)

(58)

where:

δ :=

∣∣c′l∣∣∣∣c′l∣∣− cd
> 1 (59)

and use has been made of Eqs (3). To simplify algebra, the usual hypothesis R
b

= 1
2
(valid for compact sections) will be introduced

from now on. With the previous expressions:

trA = 2 (ξy + ξϑ)− 2µ

(
ξy

µy
+

ξϑ

µϑ (1)

)
detA = 4ξyξϑ

[
1− µ

(
1

µy
+

1

µϑ

)] (60)

A simpler case is considered first, in which βϑϑ is so small (as a consequence of c′m being small) that it can be neglected. Accordingly,
I2 (µ) = 0 brakes in two equations: (i) trA (µ) = 0 and, (ii) detA (µ) = 0. Since trA (µ) > 0 in the interval (0, µmin), the smallest root
is supplied by the vanishing of detA (µ), occurring at:

µ0
r :=

µyµϑ (1)

µy + µϑ (1)
< min (µy , µϑ (1)) (61)

It is concluded that, in the special (but frequent) case βϑϑ ≃0, the coupling decreases the critical load. This conclusion can be
extended to the (frequent cases) in which βϑϑ is different from zero but it is small, for which it is expected that µr is a small
perturbation of µ0

r .
In the general case βϑϑ = O (1), a closed form for µr is no longer possible. However, it can be stated that µr < µmin, when I2 (0)

and I2 (µmin) are opposite in sign (this being a sufficient, but not necessary condition, since an even number of roots could fall in
the (0, µmin) interval). Since, I2 (0) = detA (0) tr2A (0) > 0, this occurrence calls for I2 (µmin) < 0.

The different monomials in the expression (54) for I2 are considered: (i) since detA (µ) decreases with µ and vanishes at µr <
µmin, it is detA (µmin) < 0; (ii) the second monomial is always negative; (iii) since either αyy or αϑϑ (1) vanish at µmin, the last
monomial vanishes. The key term, therefore, is the third one in Eq (54), in which, due to Eqs (58), βϑϑ > 0, αϑy > 0, βyϑ < 0 for any
µ. Two cases must been examined, namely:
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• if µmin = µϑ (1), it is αyy (µmin) > 0, αϑϑ (1;µmin) = 0, so that also the third term in I2 (µmin) is negative; it is concluded,
again, that µr < µmin;

• if µmin = µy , it is αyy (µmin) = 0, αϑϑ (1;µmin) > 0, so that the third term in I2 (µmin) is positive, calling for checking if it is
larger or smaller than the sum of the moduli of the remaining terms.

It needs, therefore, to analyze the sign of I2 (µy) when µy < µϑ. To this end, use is made of Eqs (58), to recast I2 (µy) in the form:

I2 (µy) = −16ξyξ
2
ϑ

µy

µ3
ϑ (1)

[
4ξyµϑ (1)µ3

yδ
2 + ξϑ (µϑ (1)− µy)

(
µϑ (1)− µy − 4µ3

yδ
)]

(62)

An exact analysis of this expression is difficult. However, it can be strongly simplified if the following assumption is introduced, i.e.
O
(
µ3
y

)
≫ O (µy , µϑ (1)), consistently with the initial guess O

(
µ2
y , µ

2
ϑ (1)

)
= 10. Therefore, by neglecting µϑ (1) and µy with respect

4µ3
yδ, it follows that: I2 (µy) < 0 when, either (a) ξy

ξϑ
δ > 1, or, (b):

µϑ (1)

µy
<

1

1− ξy
ξϑ

δ
when

ξy

ξϑ
δ < 1 (63)

The plane domain in Fig (3-a) resumes the results of this discussion. The shaded regions denote systems for which coupling is surely
detrimental, i.e. µr < µmin. The white region denotes system for which the resonant wind velocity is likely to be larger than µmin.
This circumstance calls for: (i) ξy

ξϑ
δ < 1, (ii) µϑ sufficiently larger that µy , according to the inequality (63). Since δ > 1, condition (i) is

quite difficult to realize. By summarizing, the effect of coupling is almost everywhere detrimental in perfect resonance conditions.
Figure (3-b) shows the plot of I2 (µ)(Eq (62), with no simplifications) in three cases: (A) ξy

ξϑ
δ > 1, (B) ξy

ξϑ
δ < 1 and µϑ(1)

µy
satisfying

inequality (63), (C) ξy
ξϑ

δ < 1 and µϑ(1)
µy

violating inequality (63). The smaller intersection of the plot with the abscissa axis defines µr ,

which is smaller than µy in cases (A) and (B), and larger than µy in case (C).

A

B

C
μr<μy

μr<μϑ(1)

◆

◆

◆

0 1 2 3

1

2

3

ξy

ξϑ
δ

μϑ (1)

μy

A

B C μy

μr
A μr

B μr
C

◆ ◆ ◆

1 2 3

2x10-5

0

-2x10-5

I2(μ)

μ

(a) (b)

Figure 3. Analysis of the critical wind velocity µr at the perfect resonance (Ω = 1): (a) plane parameter domain: shaded regions denote systems for
which µr < min (µy, µϑ (1)); (b) plots of I2 (µ) for systems (A), (B), (C) marked in Fig (a), whose intersections with the abscissa axis define µr ; µy = 3,
δ = 1.5; (A) µϑ (1) = 6, ξy = 0.015, ξϑ = 0.02, (B) µϑ (1) = 4, ξy = 0.015, ξϑ = 0.05, (C) µϑ (1) = 6, ξy = 0.015, ξϑ = 0.05.

5. Galloping of a tower building

To show how to apply the results of the proposed theory to a real prismatic structure, a sample problem is addressed, concern-
ing the flexural-torsional galloping of a tower building, modeled as a homogeneous continuous. The mechanical properties of an
equivalent cross-sectional model are first derived, and, in particular, the torsional-to-flexural frequency ratio is investigated over a
range of geometrical parameters. Then, the aeroelastic stability of the discrete model is studied, for which exact and asymptotic
solutions are implemented and compared.

5.1 Continuous and sectional models

Amulti-story tower building of height ℓ is considered, consisting of n = ℓ/h equal stories of height h, made of (assumed) infinitely
rigid floors and elastic columns, arranged in a regular layout, respectful of the double symmetry (Fig (4)). The 3D discrete periodic
system, according to [38, 39, 40], is modeled as a shear-shear-torsional 1D continuous beam, whose motion, transverse to the wind,
is governed by (Fig 4-b):

GA∗V ′′ (z, t)−mV̈ (z, t) = fa
y (z, t) + fd

y (z, t)

GJ Θ′′ (z, t)−mr2GΘ̈ (z, t) = caz (z, t) + cdz (z, t)

V (0, t) = Θ (0, t) = V ′ (ℓ, t) = Θ′ (ℓ, t) = 0

(64)

Here: V (z, t) is the transverse displacement;Θ(z, t) is the twist angle;GA∗ the shear area;GJ the torsional stiffness;m themass per
unit length; r2G the squared inertia radius of the cross-section with respect its centroid G; fα

y (z, t), cαz (z, t) (α = a, d) are distributed
aerodynamic and damping forces and couples; a dash denotes differentiation with respect the material coordinate z, and a dot with
respect the time t.
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Based on an energy equivalence (see, e.g., [38]), the mechanical properties of the continuous beam are linked as follows to those
of the discrete system (see also [41], about the inclusion of shear walls in the model, and [42], for accounting for diagonal bracings):

GA∗ =
12

h2

N∑
k=1

EIxk, GJ =

N∑
k=1

GJk +
12

h2

N∑
k=1

(
EIxk x2

k + EIyk y2k
)

m =
γfAf

h
, r2G = r2Gf

(65)

where: EIxk, EIyk are the flexural stiffnesses of the kth column (k = 1, 2 . . . N) with respect its principal inertia axes, assumed
coincident with the coordinate axes; GJk is the torsional stiffness of the kth column; (xk, yk) are the coordinates of the intersection
point of kth column with the floor, measured with respect to G; Af is the area of the floor and γf its surface mass density (the
columns being assumed massless); r2Gf = 1

Af

∫
Af

(
x2 + y2

)
dA is the squared inertia radius of the floor; moreover, fa

y , caz are the

resultant forces, per unit length, of the aerodynamic pressures exerted by wind on the (supposed) continuous skin of the building;
by referring to the quasi-steady theory [3] they are evaluated as:

fa
y :=

1

2
ρaUb

[(
cd + c′l

)
V̇ −R

(
cd + c′l

)
Θ̇
]
+

1

2
ρaU

2bc′l Θ

caz :=
1

2
ρaUb

[
bc′mV̇ −Rbc′mΘ̇

]
+

1

2
ρaU

2bc′m Θ

(66)

with symbols previously defined. Finally, the damping forces will be introduced as modal components.

x

y

z

U
l

h
h
h
h
h
h

z

(z, t) V(z, t)

(a) (b)

y

xG

yk

xk

A f

I xk , I yk

b/3

b/3

b/3

b

IcIb

(c) (d)

Figure 4. Tower building: (a) 3D view, (b) equivalent 1D beam, (c) generic column layout; (d) sample layout.

Equations (64), when the aerodynamic and damping forces are ignored, admit the exact fundamental natural frequencies:

ωy =
( π

2ℓ

)√GA∗

m
, ωΘ =

( π

2ℓ

)√ GJ

mr2G
(67)

It is worth noticing that the frequency ratio Ω := ωΘ
ωy

is independent of length, as a consequence of having neglected the extension of the

columns (which would call for a more complex Timoshenko beam model (see, e.g., [41]). Frequencies (67) are associated with the
(uncoupled) natural modes: (

V̂ (z)

Θ̂ (z)

)
=

(
1

0

)
sin
(πz
2ℓ

)
,

(
V̂ (z)

Θ̂ (z)

)
=

(
0

1

)
sin
(πz
2ℓ

)
(68)
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By following the Galerkin approach, the beam is constrained to oscillated in its first flexural and torsional modes, i..e:

V (z, t) = v (t) sin
(πz
2ℓ

)
, Θ(z, t) = ϑ (t) sin

(πz
2ℓ

)
(69)

with v (t) , ϑ (t) Lagrangian parameters. The kinetic energy T , the elastic energy U , and the external work W spent by the forces
(assumed constant in space) are computed as:

T =
1

2

ℓ∫
0

mV̇ 2 (z, t) dz +
1

2

ℓ∫
0

mr2G Θ̇2 (z, t) dz =
1

2
m

ℓ

2
v̇2 (t) +

1

2
mr2G

ℓ

2
ϑ̇2 (t)

U =
1

2

ℓ∫
0

GA∗V ′2 (z, t) dz +
1

2

ℓ∫
0

GJ Θ′2 (z, t) dz =
1

2
GA∗ π

2

8ℓ
v2 (t) +

1

2
GJ

π2

8ℓ
ϑ2 (t)

W =

ℓ∫
0

fyV (z, t) dz +

ℓ∫
0

czΘ(z, t) dz =
2

π
fyℓv (t) +

2

π
czℓϑ (t)

(70)

By equating these energies/work to those of the two degree-of-freedom system, the modal masses M,JG, the modal stiffnesses
Ky ,Kϑ and the modal forces/couples Fy , Cz , are evaluated as:

M := m
ℓ

2
, JG :=Mr2G (71)

Ky :=
π2

8

GA∗

ℓ
, Kϑ :=

π2

8

GJ

ℓ
(72)

Fy =
2

π
fyℓ, Cz =

2

π
czℓ (73)

Equations (71),(72) supply the inertial and stiffness parameters appearing in the discrete model, Eqs (2). When Eqs (73) are compared
with the resultant of forces acting on a rigid cylinder of length L, i.e. Fy = fyL, Cz = czL, its length is identified as L = 2ℓ

π
.

5.2 Frequency analysis of a family of tower buildings

A family of tower buildings of squared cross-section of side b is considered. The column layout consists of four rows of four eq-
uispaced columns, all having squared cross-sections. Columns at the boundary, however, have geometrical characteristics EIb, GJb
different from those of the four central columns, EIc, GJc. The elastic properties (65), when specialized to the case at hand, read:

GA∗ =
12

h2
EIb (12 + 4χ)

GJ = GJb (12 + 4χ) +
8

3

(
b

h

)2

EIb (19 + χ)

(74)

where χ := EIc
EIb

= GJc
GJb

is a stiffness ratio. The inertial properties (65) are:

m =
γf b

2

h
, r2G =

b2

6
(75)

By substituting Eqs (74), (75) in the modal quantities (71)-(72), the parameters of the sectional model are evaluated. In particular, the

frequency ratio Ω =

√
GJ

GA∗r2
G

reads:

Ω =

√
1

2

GJb

EIb

(
h

b

)2

+
1

3

(
19 + χ

3 + χ

)
(76)

Since, for a squared cross-section of side a, it is Jb ≃ 0.141a4, Ib = 1
12

a4, by assuming G = 0.4E, it results that GJb
EIb

= 0.677. In Fig 5

the frequency ratio is plotted vs the parameter χ for two values of the h
b
geometrical ratio. It is seen that the torsional stiffness of

the columns is negligible with respect the flexural one. When χ is varied, the frequency ratio crosses the resonance value Ω = 1, at
χ = χr ≃ 5. When χ < χr the lower frequency is of flexural type; when χ > χr the lower frequency is of torsional type. For example:
if the columns are all equal (χ = 1), it is Ω ≃ 1.29; if the central columns have side double of that at the boundary, it is χ = 16, and
therefore, Ω ≃ 0.78. When χ → ∞, then Ω → 0.577. The example shows that both ranges Ω < 1 and Ω > 1 are worth of being
investigated.

5.3 Galloping analysis of a sample building

Referring to the family systems in Fig. (4-d), a sample building is considered, characterized by the following dimensional char-
acteristics: b = 15m, m ≃ 105 kg/m, r2G ≃ 37.5m2, considering ρa = 1.25 kg/m3. Therefore, the relevant dimensionless parameters
become: ηy = 0.0014, ηϑ = 0.0084. The aerodynamic coefficients are taken as [14]: cd = 2.04, c′l = −4.381, c′m = 0.496; moreover, the
following modal damping ratios are set: ξy = 0.0080, ξϑ = 0.0089. According to Eqs (4): αyy := 0.16− 0.0032774µ, αyϑ := 0.0016387µ,
αϑy := 0.0041664µ, αϑϑ (Ω) := 0.0178Ω − 0.0020832µ, βyϑ := −0.0061334µ2, βϑϑ := 0.0041664µ2. From Eqs (22)-(23), µy := 4.88192
(corresponding to a reduced wind speed greater than 30) and µϑ (Ω) := 8.54455Ω follow, so that µϑ (Ω) < µy , when Ω < 0.571349
and µϑ (Ω) > µy , when Ω > 0.571349, with Ω given by Eq (76). For the sake of simplicity, the mean wind speed U is not considered
variable along the height of the building but it is representative of the wind velocity at a suitable height of the building (e.g., 0.8ℓ),
as usual in technical papers on aeroelastic phenomena (e.g., [43]).
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Figure 5. Frequency ratio of the tower building Ω vs the stiffness ratio parameter χ (story height h, cross-section side b).

5.3.1 Linear stability analysis

An exact galloping analysis is first carried out along the lines discussed in Sect 3. The numerical solution of the fifth-degree
characteristic equation (13) leads to the linear stability diagram of Fig. (6-a), plotted on the bifurcation parameter plane (Ω,µ). Up
to three real and positive solutions Ω (µ) are found. Four branches are recognized: branches (I,II) are of flexural (F) type (as it will
appear clear from the eigenvector analysis); branches (III,IV) are of flexural-torsional (FT) type. The branches mutually cross at two
points, DH1 = (0.3578, 4.1730), DH2 = (1.4199, 7.6995), denoting the occurrence of double Hopf bifurcations, according to the findings
of Sect 3.2 (in particular, Eq (21)). The shaded region in the parameter plane denotes stable systems, the remaining part unstable
systems. When, for a fixed Ω, the distinguished wind parameter µ is increased from zero, the system loses stability at a critical
value which depends on Ω. By monotonically increasing Ω, galloping manifests in sequence as FT, F, FT and again F type. The
critical wind velocity is lower than the Den Hartog velocity µy until Ω is slightly bigger than 1 (about 1.1 in Fig. 6-a), reaching the
minimum value µr close to the resonance; then it becomes greater than µy with maximum value at DH2 point, where it reaches an
increase of about 50% compared to µy , highlighting a remarkable beneficial effect due to the modal interaction. Finally, the critical
wind velocity decreases asymptotically (from above) to the Den Hartog critical speed µy for large Ω (greater than 2); moreover, it is
almost everywhere lower than µϑ (Ω), except for small Ω’s, where it is slightly higher. This results is in agreement with the analysis
developed in Sect 4.3, relevant to the perfect resonance Ω = 1, since ξy

ξ
ϑ
δ = 1.68218 > 1 (see Fig. (3)). On the whole, the scenario fully

agrees with the qualitative one envisaged by Fig. (2), predicted for small and large Ω’s via asymptotic analysis.
Figure (6-b) reports the Hopf frequency ω (i.e. the imaginary part of the critical eigenvalue) at the incipient bifurcation, according

to Eq (12). It is seen that: (i) when galloping is of flexural type (branches I,II) it is ω = 1, i.e. periodic oscillations arise at the
nondimensional flexural frequency (to be corrected by nonlinearities as a function of the amplitude); (ii) when galloping is of flexural-
torsional type, the Hopf frequency is equal to the nondimensional torsional frequency Ω along branch IV (large Ω) but remarkably
differs from it along branch III (smallΩ). Figures (6-c,d) are enlargements of the previous sub-figures (6-a,b), explaining the transition
from the different branches in order to the better depict the situation in the neighborhood of the resonance condition. The gap
between branches I and II in Fig. (6-b) is due to the fact that only branches III and IV exist in this interval of µ, on the boundary of
the stability domain, Fig. (6-a).

The previous analysis is repeated by using perturbation expansions, in order to check the reliability of the analytical solutions.
First, the non-resonant asymptotic solution (Sect 4.1) is employed, leading to the results displayed in Fig (7). Figure (7-a) shows the
linear stability diagram. Here, the (green) branches I,II denote incipient instability via a flexural mode, as described by the explicit Eq
(37); the (green) branches III, IV are loci of incipient instability of flexural-torsional type, as determined by solving the cubic equation
(38). The associated Hopf frequencies are shown in Fig. (7-b): they are provided by the imaginary part of the λ0 eigenvalue, as given
by Eqs (29) and (30), respectively. Both figures report, for comparison, the exact solution of Fig. (6-a,b) (light red markers). As a
general comment, it was found that the non-resonant asymptotic solutions provide an excellent approximation of the exact solution, except
for a narrow interval around the perfect resonance, Ω = 1, where they predict wrong results.

Close to Ω = 1, the resonant solution obtained in Sect 4.2 must be used. By solving the second-degree Eq (51), the linear stability
diagram of Fig. (8-a) is obtained. A suitable enlargement (Fig. 8-b) shows that the resonant solution accurately describes the smooth
transition from the (F) branch I to the (FT) branch IV, capturing the strong reduction of the critical wind velocity: however, it also
gives a reasonably good approximation of the exact solution for Ω sufficiently greater than 0 (Fig. 8-a), since the larger errors
concern bifurcations higher than the first one. Finally, concerning the Hopf frequency, Fig. (8-c) confirms an excellent precision of
the resonant perturbation solution for Ω ≃ 1.

To analyze possible different effects due to the presence of torsion, the damping ratios of the sample systems are modified
into ξy = 0.015, ξϑ = 0.050 , then ξy

ξϑ
δ = 0.5614 < 1 , while leaving the mass ratios unchanged; the critical wind velocities become

µy = 9.1536, µϑ (Ω) = 48.0031Ω, so that, at the perfect resonance, µϑ(1)
µy

= 5.2441, violating the inequality (63). The relevant

linear stability diagram of Fig. (6-a) changes into that of Fig. (9), which shows a possible beneficial effect of the interaction also in
perfect resonant conditions, being µr = µ (1) > µy . This diagram shows the excellent agreement of the resonant and non resonant
perturbation solutions with the exact one in the whole Ω interval, also in this particular case. Moreover, the branch IV here rises
towards the vertical asymptote Ω = 1 and the branch II lowers, so that there is no more intersection between these two branches.
Figure (9) clearly shows that, if Ω is quasi-statically increased, the stability diagram falls from point P1, on branch IV, to point P2, on
branch II, with a sudden, noticeable decrease in the critical wind velocity.

Finally, a discussion on the role of the βij parameters (mainly βyϑ), namely on the error could be committed by neglecting
them, is carried out. A measure of the error committed by neglecting both βij parameters is displayed in Table 1, where the exact
and approximate values of the critical wind velocity, and their relative errors, have been evaluated for different Ω’s ratios. The
numerical values show that, far away from the resonance (e.g., Ω = 0.5, 2, on flexural branches), the βij parameters have a small
influence on the critical wind velocity, while, close to the resonance (Ω = 1) or even quite far from it (e.g., Ω = 1.3, 1.5, on both
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Figure 6. Exact galloping analysis of the sample system: (a) linear stability diagram in the bifurcation parameter plane (Ω,µ); (b) Hopf frequency ω vs
µ; (c,d) enlargements of the resonant region, Ω ≃ 1. (I,II) flexural branches, (III,IV) flexural-torsional branches.
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Figure 7. Non-resonant perturbation solutions: (a) linear stability diagram, (b) Hopf frequency. Flexural branches (green I,II lines), flexural-torsional
branches (green III,IV lines) vs exact solution (light red markers).

flexural-torsional and flexural branches), they strongly affect it. This is due to the role that the βij parameters exert on the coupling
between the two DOFs. Therefore, the βij parameters are important in a large Ω range containing the resonant condition.

5.3.2 Critical modes

The analysis of themodes in critical conditions is then carried out. Figure (10) shows the real and imaginary parts of the torsional
component ϑ̂ of the critical eigenvector, as evaluated by the exact solution, Eq (14), having put v̂ = 1. The perturbation results are
also reported, in terms of both non resonant solutions (green lines), Eqs (29), (33) and (30), (36) for F and FT modes respectively,
and resonant solutions (black lines), Eqs 44 and Appendix C. The analysis of critical eigenvectors versus Ω confirms the F or FT
character of the associated branches in Fig. (6). The agreement of the non resonant perturbation solutions with the exact solution
is excellent except for a small interval around the resonance; the resonant perturbation solution perfectly matches with the exact
solution when Ω ≃ 1, as highlighted by the enlargements of the resonance region, Figure (10-c,d). Moreover, Figure (10-e,f) shows
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the analysis of critical modes in terms of magnitude and phase angle of the (complex) torsional component ϑ̂, in order to highlight
the relative phase between flexure and torsion. For the sake of simplicity, these last two figures are carried out through the only
exact solution (light red thin lines), which is in excellent agreement with the perturbation solutions, as shown above. It can be
noted that the phase angles of the critical modes are approximately piece-wise constant as Ω varies, with the exception of the
resonance zone. Flexural branches I e II have a phase angle of approximately ±π

2
, respectively, since the torsional component is

nearly pure imaginary and very small in these cases, except in the vicinity of the resonance. Flexural-torsional branches III e IV
have an argument approximately equal to 0 and −π, respectively, since the torsion is almost real for these critical conditions.

Figure (10) points out that the critical modes are generally complex in nature because of the aerodynamic coupling of the system
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Table 1. Influence of the βij parameters on the critical wind velocity as Ω varies.

Ω Branch µ (βij ̸= 0) µ (βij = 0) % relative error

0.5 I 4.0947 4.2722 4.3
1 I 2.4182 3.1068 28.5
1.2 IV 5.9155 4.879 -17.5
1.3 IV 6.7761 4.8805 -28
1.5 II 6.1980 4.8813 -21.2
2 II 5.2425 4.8817 -6.9
2.5 II 5.0710 4.8818 -3.7

under investigation, which presents a full damping matrix due to the fluid-structure interaction terms. The modal interaction in
resonance appears evident from the arising of a significant real part of torsional type. The imaginary component is present in
a limited way in the F modes away from resonance, while it becomes significant close to the resonance and characterizes all FT
modes as a whole, even though it is much smaller than the corresponding real component.

Limited to non resonant conditions, few sample elliptical trajectories, each relevant to the different branches (from I to IV)
executed by the system on the border of stability, are presented in Fig. (11) using the exact solution, Eq (15). It appears that the
’degree of complexity’, denoted by the minor-to-major semi-axis length ratio, is however very limited in all these cases, and it is
definitely larger when themode is of FT-type (branches III and IV). The enlargement in the figure shows the shape of F-type branches
by means of a strongly deformed scale on the ordinate axis. The trajectories deriving from the perturbation solutions are nearly
coincident with those depicted by the exact solution; therefore, they have not been reported here for the sake of simplicity.

Moving on to analyze the behaviour near the resonant region, Fig. (12) presents the eigensolutions resulting from the application
of the exact solution on the critical border. Fig. (12-a) shows the real part of the two eigenvalues while Fig. (12-b) shows the
corresponding imaginary part. The critical eigenvalue (red line) has an initially unitary imaginary part (F-type branch) that undergoes
a sharp upward bend when it approaches the imaginary part of the stable eigenvalue (green line), near the condition of perfect
resonance (Ω ≃ 1). At the same time the stable eigenvalue undergoes an opposite trend, passing from an imaginary part less than 1,
typical of FT-type branches, to a unitary imaginary part approaching the resonance. This hybridization between a critical and a stable
mode recalls the veering of conservative systems (e.g., [44]) which, however, occurs between two (marginally) stable modes. This
phenomenon has also been observed in aeroelastic problems (e.g., [45]) when wind speed is varying, close to the critical condition;
here it is instead presented on the shape evolution of the eigensolutions relative to the first critical condition of the system, as the
frequency ratio Ω varies. Veering can also be effectively observed on trajectories. Fig. (12-c) shows the trajectories of the critical
eigenvectors around the resonance, while Fig. (12-d) points out those of the stable eigenvectors, which are stable spirals, having
the corresponding eigenvalues real negative part, Fig. (12-a). The critical trajectories start from a F-type behavior and, turning
counterclockwise, are transformed into FT-type as Ω increases; at the same time, in an opposite way, the stable trajectories start
from a type FT-type behavior to become F-type reaching the resonance. The ’degree of complexity’ of the modes, which is very
modest outside the resonance, as seen in Fig. (11), becomes much more relevant in these resonant cases.

6. Conclusions

A linear stability analysis of prismatic structures, possessing two planes of symmetry and undergoing galloping, has been carried
out. A two degree-of-freedommodel has been implemented, accounting for cross-wind translation and rotation of the cross-section.
They describe, in a Galerkin perspective (or in an equivalent sectional model approach), the flexural and torsional behavior of the
cylinder. By using the quasi-steady assumption for the aerodynamic forces, a set of two coupled ordinary differential equations has
been derived.

An exact analysis has first been carried out, calling for numerical solutions of polynomial equations describing the eigensolu-
tion of the system under investigation. The analysis revealed the possible existence of double Hopf bifurcation points, at which
two galloping modes manifest simultaneously. Then, an asymptotic analysis has been developed, both (i) far and (ii) close to the
resonance. The analysis provided either (i) closed-form formulas for critical velocity, Hopf frequency and eigenvectors or, (ii) im-
plicit formulas of lower-degree with respect the exact ones. Moreover, it allowed for drawing qualitative information on stability for
small and large flexural-to-torsional frequency ratios. More remarkably, the asymptotic analysis furnished a sufficient criterion to
establish under which conditions, close to the resonance, the critical load of the coupled system is lower than the critical load of
the one degree-of-freedom systems in which coupling is ignored.

As an application, a tower building has been considered, modeled as an equivalent shear-torsional beam. It has been shown that,
by varying the stiffnesses of the columns, the frequency ratio spans an interval containing the unitary resonant value. A sample
system has been considered, by using the frequency ratio as a parameter. For it, the following conclusions are drawn.

1. The boundary of the stability diagram in the wind-frequency ratio plane is made of flexural-torsional and flexural branches,
which alternate each other, separated by two double Hopf bifurcation points.

2. The critical wind velocity is smaller than the two uncoupled critical velocities for a significant interval of the Ω-axis, usually
for values sufficiently greater than zero and slightly larger than one. Outside of this interval, the beneficial effects on the
critical wind velocity, due to the modal interaction, prevail. This behavior typically occurs for Ω sufficiently greater than 1,
but, in particular conditions, it can also propagate at perfect resonance. At the Double Hopf bifurcation DH2, for Ω ≃ 1.42 in
the example presented above, the critical velocity is considerably greater (e.g., +50%) than that of pure plunge, ruled by the
classic Den Hartog criterion.

3. Flexural motion at bifurcation occurs at the flexural frequency; flexural torsional motions at a frequency which depends on
both the structural frequencies.

4. Modes are generally complex, so that the system travels elliptical trajectories in the plane of the configuration variables.
Their ’degree of complexity’ is very small in non-resonance cases (i.e., the ellipses are very flattened) while it becomes more
significant around the resonant condition.
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Figure 10. Galloping critical mode analysis: (a) real and (b) imaginary of the torsional component ϑ̂ vs Ω; (c,d) enlargements of the previous diagram
around the resonant region, Ω ≃ 1; (e) magnitude and (f) argument of the torsional component ϑ̂ vs Ω. Perturbation resonant solution (black thin
lines), perturbation non resonant solution (green thick lines), exact solution (light red markers in a-d, light red thin lines in e-f). v̂ = 1 was taken as
normalization.

5. Close to the resonance, a veering phenomenon occurs with a hybridization between a critical and a stable mode: the critical
mode changes its nature from flexural to flexural-torsional type.

6. The asymptotic analysis is in excellent agreement with exact results. The non-resonant solution provides very good results
everywhere, except in a narrow interval close to the resonance; the resonant solution accurately captures the solution in this
interval, and supplies reasonably approximated results far from resonance. As a whole, the asymptotic approach allows to
correctly describe the global scenario from a qualitative point of view.

As a further theoretical research to be developed on this topic, the study of the nonlinear behavior of the system, beyond the loss of
linear stability, is of great importance. Moreover, the nonlinear analysis of the double Hopf bifurcation is believed to supply a key for
an understanding of the complex interaction phenomenon. All the nonlinear analysis can be carried out via perturbation analysis,
along the lines of, e.g., [31, 32, 35].
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Figure 11. Trajectories of critical modes in the (v, ϑ) plane for non resonant cases : Ω = 0.35 (III), 0.7 (I), 1.4 (IV), 2 (II).
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Appendix A: Coefficients of the exact equations (13), (21)

The coefficients appearing in Eq (13) are:

p1 (Ω) := −αyyαϑϑ (Ω)

p2 (Ω) := −α3
yyαϑϑ (Ω) + α2

yy

(
αyϑαϑy − α2

ϑϑ (Ω)
)
+ αϑyαϑϑ (Ω)βyϑ + αyy

[
−αϑyβyϑ + αϑϑ (Ω)

(
2 + αyϑαϑy − 2βϑϑ

)]
p3 (Ω) := −

(
αϑϑ (Ω)− αϑyβyϑ

) [
α2
yyαϑϑ (Ω) + αyy

(
1− αyϑαϑy + α2

ϑϑ (Ω)
)
+ αϑy

(
−αyϑαϑϑ (Ω) + βyϑ

)]
+ βϑϑ

{
αyy

[
2αϑϑ (Ω)− (αyy + αϑϑ (Ω))

(
−αyϑαϑy + αyyαϑϑ (Ω)

)]
+ αϑyβyϑ (−αyy + αϑϑ (Ω))

}
− αyyαϑϑ (Ω)β2

ϑϑ

(77)

The coefficients in Eq (21) are:

J0 := −2
(
cd + c′l

)
ηy

((
cd + c′l

)
ηy − c′mηϑ

R

b

)2

ξϑ − 8cdc
′
mηyηϑξ

3
ϑ

J1 := 2c′mηϑξy

(
−
R

b

((
cd + c′l

)
ηy − c′m

R

b
ηϑ

)2

− 4

(
2cdηy − c′lηy + c′m

R

b
ηϑ

)
ξ2ϑ

)

J2 := 2

((
cd + c′l

)
ηy

((
cd + c′l

)
ηy − c′m

R

b
ηϑ

)2

− 4c′mηϑ

(
cdηy − 2c′lηy + 2c′m

R

b
ηϑ

)
ξ2y

)
ξϑ

J3 := 2c′mηϑξy

(
R

b

((
cd + c′l

)
ηy − c′m

R

b
ηϑ

)2

+ 4

(
c′lηy − c′m

R

b
ηϑ

)
ξ2y

)
(78)

Appendix B: Asymptotic solutions to the non-resonant flexural-torsional equation (38)

Equation (38) is recast to make explicit the dependence on µ, i.e.:(
Ω2 − 1 + µ2β̆ϑϑ

)
(2ξϑΩ − µᾰϑϑ) + µ3ᾰϑyβ̆yϑ = 0 (79)

where the following positions hold:

β̆ϑϑ := ηϑc
′
m, ᾰϑϑ := ηϑ

R

b
c′m, ᾰϑy := ηϑc

′
m, β̆yϑ := ηyc

′
l (80)

When Ω is small, by neglecting it with respect to 1, it is:

Ω =
1

2ξϑ

(
µᾰϑϑ + µ3 ᾰϑyβ̆yϑ

1− µ2β̆ϑϑ

)
(81)

When use is made of Eqs (80), the first of Eqs (39) is obtained. The curve (81) intersects the µ-axis at µ = 0 and

µ = µ0 :=

√
ᾰθθ

ᾰθθ β̆ϑϑ−ᾰϑy β̆yϑ
, which is larger than zero in the hypotheses assumed.

When Ω is large, Eq (79) is approximated by:

2ξϑ

(
Ω

µ

)3

− ᾰϑϑ

(
Ω

µ

)2

+ ᾰϑy β̆yϑ = 0 (82)

which shows that Ω is proportional to µ. By solving it by successive approximations:

Ω

µ
≃

1

2ξϑ

ᾰϑϑ +
ᾰϑy β̆yϑ(
ᾰϑϑ
2ξϑ

)2
 (83)

from which the second of Eqs (39) is obtained.
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Appendix C: Asymptotic critical eigenvectors close to the resonance

From the eigenvalue problem (45), the normalized eigenvector (a1, a2)T = (1, a2)
T is evaluated, in which:

a2 = −
αyy + 2λ1

αyϑ − iβyϑ
(84)

On the stability boundary, λ1 = iω±
1 , as given by Eqs (49) and (55). After elementary algebraic manipulations, separating real and

imaginary parts, it follows:

Re
(
a±2

)
= −

αyyαyϑ − 2ω±
1 βyϑ

α2
yϑ + β2

yϑ

Im
(
a±2

)
= −

2ω±
1 αyϑ + αyyβyϑ

α2
yϑ + β2

yϑ

(85)
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