
sensors

Article

Emotion Recognition on Edge Devices: Training and Deployment

Vlad Pandelea 1 , Edoardo Ragusa 2 , Tommaso Apicella 2, Paolo Gastaldo 2 and Erik Cambria 1,*

����������
�������

Citation: Pandelea, V.; Ragusa, E.;

Apicella, T.; Gastaldo, P.; Cambria, E.

Emotion Recognition on Edge

Devices: Training and Deployment.

Sensors 2021, 21, 4496.

https://doi.org/10.3390/s21134496

Academic Editor:

Zdzislaw Kowalczuk

Received: 31 May 2021

Accepted: 28 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave,
Singapore 639798, Singapore; vlad.pandelea@ntu.edu.sg

2 Department of Naval, Electric, Electronic and Telecommunications Engineering, University of Genoa,
16145 Genova, Italy; edoardo.ragusa@edu.unige.it (E.R.); tommaso.apicella@edu.unige.it (T.A.);
paolo.gastaldo@unige.it (P.G.)

* Correspondence: cambria@ntu.edu.sg

Abstract: Emotion recognition, among other natural language processing tasks, has greatly benefited
from the use of large transformer models. Deploying these models on resource-constrained devices,
however, is a major challenge due to their computational cost. In this paper, we show that the
combination of large transformers, as high-quality feature extractors, and simple hardware-friendly
classifiers based on linear separators can achieve competitive performance while allowing real-time
inference and fast training. Various solutions including batch and Online Sequential Learning are
analyzed. Additionally, our experiments show that latency and performance can be further improved
via dimensionality reduction and pre-training, respectively. The resulting system is implemented on
two types of edge device, namely an edge accelerator and two smartphones.

Keywords: emotion recognition; embedded systems; deep learning

1. Introduction

Sentiment analysis and emotion recognition are key tasks to build empathetic systems,
as well as to enable intelligent behavior driven by the user’s emotions [1–3]. With the
advent of pervasive computing the challenge of migrating solutions that were originally
designed for servers to edge devices becomes increasingly important and paves the way
for novel applications and for the upgrading of existing ones.

Fine-tuning models on user’s devices using user’s data is of primary importance for
multiple reasons. First, smart devices produce an amount of data that cannot be processed
using server-based solutions. Even with the development of super-computers only a small
portion of the data produced can be processed [4]. For this reason, it is unrealistic to build
user-taylored solutions without employing edge devices. It is important to stress out that
this bottleneck will drive most of the choices in the rest of the paper. Second, the so-called
subjective perception problem [5] affects all the general purpose solutions for sentiment
analysis. Indeed, building a general purpose sentiment model implies an underlying
consensus of the users regarding topics like religion, politics, and many other controversial
topics. Obviously, building a model for each user using cluster based solutions is prevented
by the computational bottleneck discussed in the first point. Third, cloud computing is
subject to a weak and still under-development regulation. Accordingly, privacy concerns
arise especially when one recalls that emotion recognition and sentiment analysis allow for
user profiling [6,7].

Deep learning paradigms prove effective in gauging the sentiment of users, but
resource-constrained devices cannot support the training process, and even deploying
trained models on embedded systems still remains a challenging task. Thus, large pre-
trained models [8–10] that can be fine-tuned for downstream tasks are not apt to be
deployed and customized for the end-user due to their large computational power require-
ment. Most of research activity then tackles the deployment problem using a high power
machine that perform a set of optimization during and after the training phase. Shrinking

Sensors 2021, 21, 4496. https://doi.org/10.3390/s21134496 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2885-2005
https://orcid.org/0000-0002-5527-6325
https://orcid.org/0000-0002-5748-3942
https://orcid.org/0000-0002-3030-1280
https://doi.org/10.3390/s21134496
https://doi.org/10.3390/s21134496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134496
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134496?type=check_update&version=2


Sensors 2021, 21, 4496 2 of 17

the models using pruning and compression strategies [11] are appealing solutions. In the
later years knowledge distillation has been largely employed to embed the high quality
feature extraction capability of large size models on small size networks [12]. Finally,
one can recall quantization techniques that, when supported by appropriate hardware
resources, can reduce memory requirements, inference time, and energy consumption [13].
Despite their effectiveness, all these techniques assume a large set of hardware resources
during training and their deployment cannot be supported by most edge devices.

At the same time, the larger models can be exploited as high quality feature extractors
as the inference phase of these models is orders of magnitude faster than their training.
Indeed, one can rely on the standard fine-tuning paradigm with only the last layer, i.e., the
classification layer of the network, trained on the novel problem. Obviously, one can also
replace the last layer with a standard classifier. As a major advantage, the training problem
can be deployed on constrained devices.

In this paper, thus we demonstrate that training of models at the edge is feasible and
can maintain good performance while attaining real-time inference and extremely fast
training time without the usual assumptions on the availability of computational resources,
such as powerful servers or distributed computing reliance. The paper benchmarks a
set of state-of-the-art solutions for feature extraction, and proves that a two stage fine-
tuning strategy can lead to efficient yet effective predictors. As a major result, the paper
proves that classifiers that only require the training of a simple linear separator lead to
satisfactory generalization performance for the target problem. Thus, while we do not
propose novel architectures or algorithmic innovation aimed at advancing the state-of-the-
art in emotion recognition, we show that the fast and efficient training procedure in this
paper can be easily deployed on edge devices. In addition, empirical studies concerning
dimensionality reduction, task-specific pre-training, and tuning on single user data are
presented. Finally, the eventual training pipeline is deployed on a edge accelerator, namely
Nvidia Jetson Nano, and on two smartphones. Code for the test on smartphones available
at: https://github.com/SEAlab-unige/Sensors-2021-Emotion, accessed on 29 June 2021.

Contribution

The main contribution of this work is the design and deployment for edge devices
of competitive emotion recognition solutions, that is, solutions that maintain good gener-
alization performance while allowing for fast on-device training and real-time inference.
Accordingly, a novel training pipeline suitable for edge devices is proposed. The pipeline is
novel in that the fine-tuning process leads to satisfactory performance using simple and fast
training procedures based on linear separators. This result is due to the excellent feature
extraction capabilities of transformer models. Two categories of devices are considered for
the deployment of the proposed solution: first is a high performance system for embedded
deep learning applications, second is the class of smartphone devices.

Our experiments demonstrate the feasibility of the proposed models and the trade-offs
in terms of accurate emotion detection and computational requirements as assumptions
and design choices vary. Additionally, as minor contributions we present empirical studies
that demonstrate that:

1. pre-training on a different dataset for emotion recognition can improve performance
at no additional cost after deployment;

2. dimensionality reduction can achieve reasonable trade-off between performance and
computational requirements;

3. limited single-user data maintains comparable performance to a larger number of
data samples.

2. Related Work

There is a vast literature on emotion recognition from video and user-generated
speech [14–18]. Similarly to other natural language processing (NLP) tasks, recent years
have seen large transformer based models being increasingly used as they are able to effec-

https://github.com/SEAlab-unige/Sensors-2021-Emotion


Sensors 2021, 21, 4496 3 of 17

tively model contextual data and extract high quality features [19,20]. At the same time, the
challenges posed by the computational load of these models have been previously acknowl-
edged by proposing variants of the original Bidirectional Encoder Representations from
Transformers (BERT) [8]. Ref. [21] proposed MobileBERT, a thin version of BERTLARGE.
Refs. [22–24] proposed compact models trained through knowledge distillation. Ref. [25]
used grouped convolutions to accelerate the inference process.

Beyond the comparison of these compact architectures inspired to their larger coun-
terparts, few works that empirically study or propose different approaches to tackle the
limitations posed by embedded devices have also been published in related task such
as polarity detection from visual data [26,27], speech recognition [28] and conversational
agents [29]. In addition, the trade-off between computational cost and generalization
performance for sentiment analysis was studied in [30,31], but the focus was not on the
deployment of the solution.

Training deep learning models on single edge devices is a relatively new topic be-
cause most work is still spent on the implementation of the inference phase [32]. Indeed,
significant efforts are spent in the definition of novel hardware architectures that support
energy efficient inference phases [33]. The most active research line for training on con-
strained environment envision an edge server that coordinates the training process with
multiple edge devices [34]. This paradigm augments computing resources using multiple
nodes. In this setting, communications bandwidth, updates frequency, and workload
split among different nodes play a major role. Federated learning handles effectively the
aforementioned issues [35,36]. The basic flow starts with a trained global deep learning
model. Each device receives a copy of the trained model. This global model is then updated
locally on each device with local data. Then, the new models are sent back to the server
and combined. Other interesting options to share the work load on different nodes came
from distributed training strategies inspired by online distillation [37]. However, all these
solutions assume a sufficient support from hardware resources. This assumption is rarely
met by most of the constrained devices typically employed in real-world applications.
Indeed, incremental learning strategies were tested because they reduce the burdensome
cost of batch learning [38,39].

To perform training on a single device we rely on the standard feature extractor-
classifier paradigm [40]. For the classifiers we explore models based on a specific kind
of Single-Layer Feed-Forward Neural Networks(SLFNs). Actually, in recent years most
of the work concerning SLFNs targets random based solutions [41]. Among the existing
paradigms for Random Based Networks (RBNs) we can mention Random Radial Basis
Functions [42], Random Vector Functional-Link (RVFLs) [43], Extreme Learning Machines
(ELMs) [44], and Weighted Sum of Random Kitchen Sinks [45], that offer interesting
opportunities. For convenience, hereinafter we will refer to Random networks as ELM,
because it features a vast, long-standing literature within the existing RBN approaches.
These paradigms features fast learning and an efficient forward phase due to the fact that
the hidden parameters are not tuned during the learning process. The literature shows
that SLFNs [41,46] offer a viable solution for low-power, resource-constrained digital
implementations of the inference function [47,48], even making the on-device support of
the training process possible on dedicated systems on chip [49–52]. In addition, SLFNs can
be straightforwardly extended to Online Sequential Learning [53].

Unlike previous approaches, the method proposed in this paper allows for direct
on-device training in addition to real-time inference of emotion recognition systems. In
practice, we admit only learning paradigms with a training strategy that coincides with the
training of a linear separator. From a pure mathematical point of view, fully-trained shallow
networks have the same generalization capabilities of deep learning approaches [54].
However empirical results proved that in real world applications deep learning networks
converge to better solutions.



Sensors 2021, 21, 4496 4 of 17

3. Materials and Method

The primary objective of this work is to tackle the understudied problem of deploying
emotion recognition on constrained devices, including the training phase. This is a difficult
problem as training directly on a resource-constrained devices requires additional precau-
tions to efficiently balance between performance, in terms of accuracy or F1 Score, and
computational cost. To do so, we propose a pipeline that combines state-of-the-art solutions
for feature extraction in NLP with hardware-friendly methods for emotion classification.

A key observation is that while executing the training phase of deep models on
resource-constrained devices is not practical, it is possible to exploit their inference phase
to extract high-quality features from the raw data, that can then be fine-tuned via much
smaller and simpler models whose training phase can be reasonably executed directly on
such constrained devices. Because the deep models cannot be fine-tuned, it is of utmost
importance to select models that can extract features conducive to good performance
without being trained on the specific data. Moreover, additional steps can be taken to
increase both performance and efficiency. Figure 1 illustrates the pipeline, and in the
following we go into greater detail as concerns our design choices. Given a new data point
s, we also illustrate the process it goes through:

1. Feature Extractor (FE) Selection: a sensible choice for the feature extractor is found in
the large models based on the transformer architecture [55] that have been trained
on huge corpora and shown to achieve impressive results in various tasks once fine-
tuned. In fact, these models have been proven to be able to extract high-quality
features that can adapt to a range of different tasks with little fine-tuning. Despite
requiring only a brief fine-tuning phase as opposed to training from scratch, when
considering the additional constraints of embedded and portable devices, this is
still too demanding. Therefore, as will be shown in our experiments, some loss in
performance is inevitable when the fine-tuning of the entire architecture does not take
place, however on-device training becomes possible.
When a new data point s is collected, its features are extracted via FE:

hs = FE(s) (1)

2. Pre-training on Labelled Dataset (LD): an optional step that can increase performance
is, when the feature extractor is tunable, pre-training on a labelled dataset from
a similar domain. While the available pre-trained transformer models are already
pre-trained, this is done on quite general language modeling tasks. Thus, a further pre-
training on data that more closely resembles the end application can prove beneficial.
At the same time, doing so could aggravate the subjective perception problem.

3. Dimensionality reduction: if efficiency in terms of latency and/or training time is
crucial, such efficiency can be further improved at the cost of some performance.
A standard method to do so is reducing the input data dimensionality. This often can
lead to performance degradation as information may be lost in the process, however
the efficiency generally increases.
The features hs undergo a transformation via a dimensionality reduction method DR:

hdr
s = DR(hs) (2)

For example, with Principal Component Analysis (PCA):

hdr
s = W Ths (3)

where W is the matrix of eigenvectors of the PCA.
4. Classifier (C) Selection: the previous steps refer to the pre-processing of raw data

in order to obtain high-quality features on which to fine-tune a classification model
C. C should be a classifier satisfying the constrained environment assumption, thus,
depending on the device, most modern deep learning based models may not be
suitable. We pick simple neural models, such as SLFNs, with a training that coin-
cides with the tuning of a linear separator. In practice, the tested solutions range



Sensors 2021, 21, 4496 5 of 17

from random based solutions to simple perceptron-like networks. These models
feature a set of advantages when training is performed directly on edge devices.
First, with certain cost functions, the training procedure admits a closed form solution.
Second, the optimization process is convex and the computational cost is small. Third,
the number of hyper-parameters is small, as a consequence of which little human
intervention is needed.
The prediction is obtained via the classifier as:

ys = C(hs) (4)

where we use hs for convenience. hdr
s if dimensionality reduction was applied.

For example, in the case of a SLFN, random based solution, we would have:

ys = so f tmax(W oσ(Whhs + bh) + bo) (5)

where W o and bo are trainable parameters, Wh and bh are initialized randomly, and
σ is an activation function.

5. Deployment on Edge Device: after the deployment, C can be fine-tuned as new
batches of data are collected. The frequency of the updates should depend on the
end-application as well as on C. For instance, in the case of OS learning solutions,
more frequent updates are possible.

Feature Extractor
(FE) Selection

Yes

FE tunable && Labelled
Dataset (LD) available?

Pre-train FE on LD

Yes

NoEfficiency more important
than performance?

Dimensionality
Reduction

Classifier (C)
Selection

Deployment on Edge
Device

Figure 1. Pipeline of the system.

Algorithm 1 briefly recaps the pipeline.
The following subsections detail the key components of the proposed solution.

Algorithm 1: Complete procedure outline.
Input:
- (optional) Labelled Dataset (LD) from similar domain as end application;
- Feature Extractor (FE);
- Edge device;
Pre-deployment:
- Place a standard classifier (C) satisfying the edge device constraints on top of the FE;
- (optional) Further train the FE on LD;
After deployment
- While (condition to update) not met:

- Collect data point s
- Extract features hs = FE(s)
- (optional) Apply dimensionality reduction hdr

s = DR(hs)

- Use classifier C to get the prediction ys = C(hs), or ys = C(hdr
s )

- Fine-tune C on the new data points collected



Sensors 2021, 21, 4496 6 of 17

3.1. Feature Extractor

Throughout this paper we explore a range of solutions, including near-state-of-
the-art solutions as concerns transformers used in NLP, for emotion recognition from
conversational data. In particular, we experiment with four transformer-based models,
to act as feature extractors, that differ in the pre-training strategy, number of layers, layer
width, and embedding size. In this section, we briefly describe each of them:

1. RoBERTa: Robustly Optimized BERT [9] is an approach that modifies BERT pre-
training by, among others, using more data and removing the Next Sentence Predic-
tion (NSP) objective. It was shown to significantly benefit from these changes and
achieve state-of-the-art performance in several tasks. Like BERT, two configurations
differing in the model size are released. For our experiments we use the BASE version
that uses a hidden layer size of 768. This model presents the same computational
complexity as BERT once pre-trained. It is the most computationally intensive model
that we experiment with in this paper. The estimated model size as imported without
further optimization is 499 MB.

2. MobileBERT: MobileBERT [21] reduces the computational load of BERT by equipping
the model with bottleneck structures. The original paper shows that the model is up
to 5.5 times faster than the BASE version of BERT. The output size of this model is
512. Unlike other compact versions of BERT, MobileBERT maintains the depth while
only reducing the width, which may allow more representation power that could in
turn prove useful when fine-tuned. The estimated model size as imported without
further optimization is 99 MB.

3. BERT-Medium: BERT-Medium [24] is another model that aims to reduce the compu-
tational load of BERT, via a three stage approach, including pre-training of compact
models, distillation from a larger model and optional fine-tuning. We use two ver-
sions that differ in model size. The first one has 8 layers and a hidden size of 512.
This model has about 38% of the parameters of BERT and achieves a speedup of
3.64 [24] with respect to BERTLARGE. The estimated model size as imported without
further optimization is 167 MB.

4. BERT-Tiny: Similar to BERT-Medium, this compact version of BERT differs in the
number of transformer layers, featuring 2 of them, and in the hidden size equal to
128. This is the smallest model in our experiments with only 4% of the parameters of
BERT and a speedup of 65.24 with respect to BERTLARGE. The estimated model size
as imported without further optimization is 18 MB.

3.2. Classification Model

The selection of the classifier is one of the most critical steps in the system. In fact,
training without fine-tuning the feature set implies that the eventual classifier is strong
enough to learn rules from sub-optimal features. This requirement clashes with the limited
computing resources in that accurate approaches usually stand on demanding training
processes. In order to limit the search space we opted for solutions based on shallow neural
networks because they offer a favorable trade-off between generalization performance and
computational cost. For each of the feature extractors we employ, three different setups
are considered.

1. Linear: a linear layer is placed on top of the frozen FE. The FE parameters are not
updated during backpropagation, which greatly accelerates the training process at
the cost of less problem-specific features, and thus a drop in performance is expected.
Indeed, this solution underlies the strong assumption that different classes, in the
general purpose feature space, are linearly separable.

2. ELM [56]: ELM is a training paradigm for single hidden layer neural networks
where the parameters of the hidden layer are not tuned during the training phase.
In theory this model has universal approximation capabilities like SLFN, but the
training phase involves the same computational cost of a linear separator. In practice,
ELM training allows fast non-iterative procedures, including closed-form solutions.



Sensors 2021, 21, 4496 7 of 17

At the same time, in the general case it requires a Least Squares Loss, which might
lead to performance degradation on classification problems.

3. OSELM: Online Sequential ELM (OSELM) is another implementation of ELM that is
suitable for online learning scenarios as it can update its parameters with chunks of
data at a time, including chunks of a single data point. Under the assumption that
the first batch of data contains no less data points than the number of hidden nodes,
OSELM can achieve the same performance as ELM [57].
OSELM [53] features two appealing peculiarities for our target applications. Firstly,
training using chunks of data reduces memory requirements. Secondly, it allows
updates of the model every time that novel data are available.

3.3. Hardware Setup

The selection of the hardware device is driven by two hard constraints: (1) the sys-
tem should support the forward phase with small latency. When a new sample is avail-
able the system prediction should be provided within a few milliseconds; (2) the system
should support the training of the classifier C when new data are available. Obviously,
these two hard constraints are paired with the requirements of low power and small size.
In practice, we would like to solve this problem with the smallest and less power hungry
system possible.

The market offers several edge devices suitable for the deployment of deep learning
models. These devices differ in power constraints, dimension, memory size, overall
architecture, and software support. Here we explore two classes of solutions. The first
solution is a high performance system for embedded deep learning called Jetson Nano.
The second solution is represented by smartphone devices.

Jetson Nano is a System On Module (SOM) composed of an ARM A57 quad-core,
a 1.43 GHz CPU, and a Maxwell 128 core GPU equipped with 4 GB of RAM memory.
The device hosts an OS derived from Ubuntu 16 that enables a high level of control of
hardware resources. The entire Jetson Nano module measures 7 cm × 4.5 cm.

Nvidia proposes two optimized configurations of the hardware resources of Jetson
Nano that can be selected from a software interface, namely 5 W and Max-N. Informally
speaking, 5 W is the low power mode. In this configuration, only two cores of the ARM
A57 are power supplied, and the clock frequency is limited to 0.9 GHz. Moreover, the clock
frequency of the GPU is bounded to 0.64 GHz. The Max-N mode turns on all the 4 cores
and sets the frequency of the CPU to 1.5 GHz. GPU clock frequency is 0.92 GHz.

Nvidia provides a dedicated SDK and TensorRT for the optimization and quantization
of deep learning models. The software engine uses native TensorFlow. Accordingly, almost
all the layers are supported on these devices. This aspect allows deploying recent solutions
that are not supported by most of the embedded systems relying on custom inference
engines. This offer high computing power with small form factor. However, power
consumption might represent a critical issue in Jetson Nano. This device could represent
a valuable option in two scenarios: (1) applications such as smart-houses where a power
source is available; (2) embedded in portable devices with an ad-hoc battery management
strategy that powers on the devices only when needed.

The second class of devices are the smartphone processors. These systems represent
a reliable solution due to the excellent ecosystems with high-level of integration with
standard deep learning tools. We consider only smartphone processors, avoiding the use
of dedicated GPUs and NPUs that are efficient but non standard. Two different solutions
have been tested, namely, Snapdragon 765G and HiSilicon Kirin 655, to demonstrate that
our solution can be deployed to systems with different processing capabilities.

Among the available libraries for deployment we selected TFLite that supports the
majority of the deep learning layers. In addition, one can setup the tool for post training
quantization of the deployed model.



Sensors 2021, 21, 4496 8 of 17

4. Generalization Performance Results

To evaluate the effectiveness of the proposed solution, an experimental setup simu-
lated a real use-case. The experiments were divided in 4 subsections, one for each topic
previously introduced. In Section 4.1 the generalization performance of the proposed
approach is compared against two baseline solutions, including the end-to-end counterpart.
In Section 4.2 we explore the benefits of task-specific pre-training. In Section 4.3 we study
the use of input dimensionality reduction to reduce the overall computational load. Finally,
in Section 4.4 we show the performance of the system on limited single user data.

The experiments make use of two datasets. The first, MELD [58], is a dataset containing
conversations from the TV series Friends. There are six main speakers and each utterance
is annotated with one of seven categorical emotions, namely Anger, Disgust, Sadness, Joy,
Neutral, Surprise and Fear. We use the data splits provided. In particular, there are 9989
utterances in the training split, 1109 in the validation split and 2610 in the test split. All
of the results reported are on the test set. The same subjects appear in all of the splits.
The average utterance length in the dataset is 8 words. For convenience, we report the
distribution of emotions of this dataset in Table 1.

In Table 2 we show a few samples from this dataset together with our system’s
predicted label as per the single user training experiment described in Section 4.4. Notice
how, even when emotion recognition systems are wrong, the predicted label can actually
be reasonable, as it happens in the second and third samples. Other times, like in the
fourth sample, additional context is needed to detect the correct emotion as the textual
information may not suffice.

IEMOCAP [59] also contains annotated conversations, between pairs of two speakers.
Conversations are acted and the actors either improvise or follow a script depending
on the particular conversation. Like [60], we also use the six most common emotions,
namely happy, sad, neutral, angry, excited, and frustrated, and the same data splits. In the
future, however, we plan to use the Hourglass of Emotions [61] as categorization model.
The distribution of the emotions in the data used is reported in Table 3.

Table 1. Emotion distribution in MELD. Data splits as reported in [58].

Train Validation Test

Neutral 4710 470 1256
Joy 1743 163 402

Surprise 1205 150 281
Anger 1109 153 345

Sadness 683 111 208
Disgust 271 22 68

Fear 268 40 50

Table 2. Sample utterances from the dataset with the real label in the second column, and the
predicted label in the third column.

Utterance Real label Prediction

Ohh, that’s a good one. Joy Joy
Someone on the subway licked my neck! Licked my neck!! Disgust Anger
Bob. Bob! Bob!!! What the hell are you doing?! Surprise Anger
Oh my good God. Disgust Joy



Sensors 2021, 21, 4496 9 of 17

Table 3. Emotion distribution in IEMOCAP.

Train Validation Test

Frustrated 1210 258 381
Neutral 1080 244 384
Angry 749 184 170
Sad 764 75 245
Excited 520 222 299
Happy 376 128 144

Training Setup

Throughout the experiments, for the fine-tuning of the transformer and the Linear
and Hidden solutions we employ the Cross Entropy loss function during training, whereas
ELM and OSELM use a MSE loss. Model selection is performed for each solution varying
the L2 regularization factor and number of hidden units, where applicable. In particular,
for the Hidden solution the set of hidden units is {10, 15, 25, 50, 100, 200, 500, 1000} and
the set of L2 regularization coefficients {0.0, 0.001, 0.003, 0.01, 0.03}. We use the Adam
optimizer with learning rate 0.0001 when training the Linear and Hidden solution on all
users, and SGD with learning rate 0.01 when training on single user data and to measure
on-device training time. Batch size is set to 64. All the utterances are padded to 32 tokens.

We consider, as baselines, two solutions that do not satisfy our training require-
ments assumptions:

1. The entire model is fine-tuned: a linear layer is placed on top of the FE and the
whole model is fine-tuned end-to-end. This is expected to produce the most accurate
result as the FE can adapt to the task and dataset, and extract features that are highly
problem-specific. At the same time it is also the most computationally intensive one as
we need to backpropagate the error, during gradient descent, through all of the layers.
This solution is intended as an upper-bound reference to compare performance in
terms of accurate emotion recognition, and is not generally applicable in edge devices.

2. Hidden: a single hidden layer feedforward network with tanh activation is placed
on top of the frozen FE. This allows for non-linear transformation of the features
extracted by the FE. Since these features are not problem-specific, this solution is
expected to increase performance with respect to a linear transformation, at the cost
of fine-tuning an additional layer and performing a non-linear operation.

4.1. Generalization Performance

Table 4 reports the performance in terms of weighted F1 score of the various architec-
tures. The headers in the first row denote the transformer used. The second row represents
the solution in which the transformer is fine-tuned using backpropagation (BP), whereas
in the subsequent rows the transformer is frozen and acts only as a feature extractor.
In particular, the third row (Hidden) reports the results for the second baseline solution.
The rows from 4 to 6 identify the classifiers introduced in Section 3.2.

Unsurprisingly, the larger models tend to perform better, and fine-tuning always
improves performance significantly at the cost of drastically increased training time. More-
over we find that the Linear solution tends to outperform ELM and OSELM, which is due
to the more suitable cost function for the classification task. A hidden layer proves not to
significantly aid performance in the case of RoBERTa, likely due to the higher quality of
the features extracted by this model when it is frozen. It is worth to recall that not only
training time but also memory constraints prevent fine-tuning of all network parameters in
embedded devices.

For additional comparison, state-of-the-art method COSMIC reports an F1 score of
0.6521 [60]. However this method uses a commonsense knowledge extractor trained
on large knowledge bases. As reported in [60], RoBERTa achieves similar performance
(0.6202) to what we report here. Combining RoBERTa with more context-aware methods
such as DialogueRNN, slightly increases the performance (0.6361). Both COSMIC and



Sensors 2021, 21, 4496 10 of 17

DialogueRNN utilize additional context and involve more computations. Instead, in this
paper we only train simple classifiers such as SLFNs.

Table 4. Weighted F1 Score on test set. The results are averaged over three runs.

RoBERTa MobileBERT BERT-Medium BERT-Tiny

BP 0.615 BP 0.609 BP 0.591 BP 0.574
Hidden 0.587 Hidden 0.568 Hidden 0.578 Hidden 0.519
Linear 0.586 Linear 0.531 Linear 0.566 Linear 0.507
ELM 0.565 ELM 0.537 ELM 0.532 ELM 0.508
OSELM 0.569 OSELM 0.54 OSELM 0.524 OSELM 0.486

4.2. Feature Extractor Task-Specific Pre-Training

While the feature extractors are pre-trained via methods such as Masked Language
Modeling [8], that are self-supervised and represent a solid starting point to a wide range
of NLP tasks, it might prove useful to further pre-train in a supervised setting that more
closely resembles the final deployment condition. To this end, we experiment with pre-
training on a different dataset, IEMOCAP, that is labelled for emotion recognition, albeit
using slightly different emotion categories.

Although both datasets are scripted to some extent, the style of the conversations
that take place is largely different, thus representing a realistic scenario to improve the
performance for the application’s end-users.

When pre-training on IEMOCAP, we perform early stopping at about 80% of the final
performance, as from our experiments we find that carrying out the pre-training up to the
optimal point on one dataset is not conducive to increased performance on a different one.
We surmise that this is due to the feature extractor slowly moving from being task-agnostic,
to task-specific, to dataset specific.

Table 5 shows the results for this experiment in terms of F1 score. The headers of
the column pairs denote the base transformer architecture, the sub-headers denote the
regular and the pre-trained variants respectively, the rows denote the top-structure that
is fine-tuned. We find that in almost all the cases the pre-training proves to considerably
enhance performance. Again, Hidden is the baseline solution. Another beneficial effect of
this is that the increased quality of the features extracted through the pre-trained variant
often leads to a flattening of the differences between the top-structures thus enabling more
efficient solutions without sacrificing as much in terms of accurate emotion recognition [62].

Table 5. Comparison, in terms of weighted F1 Score, with the the variants that are pre-trained
on IEMOCAP.

RoBERTa MobileBERT BERT-Medium BERT-Tiny

Regular Pretrained Regular Pretrained Regular Pretrained Regular Pretrained
Hidden 0.587 0.598 0.568 0.589 0.578 0.54 0.519 0.544
Linear 0.586 0.598 0.531 0.584 0.566 0.524 0.507 0.523
ELM 0.565 0.586 0.537 0.56 0.532 0.51 0.508 0.531
OSELM 0.569 0.591 0.54 0.561 0.524 0.505 0.486 0.505

4.3. Dimensionality Reduction

When the goal is to obtain efficient solutions in terms of latency and/or memory
consumption, it is often worthwhile to explore dimensionality reduction techniques. PCA
is one such technique, and the one that we adopt in this work. In particular, we reduce the
dimensionality to 50% and 25% of the original one for BERT-Tiny, and to 25% and 12.5%
for BERT-Medium.

Table 6 shows the results in terms of F1 score. The first column identifies the feature
extractor and the output dimensionality after PCA. When PCA is not specified, the original
output size is maintained and placed after the name of the model. The remaining columns
remark the classifier that elaborates the extracted features.



Sensors 2021, 21, 4496 11 of 17

As can be seen from Table 6, reducing the input data size leads, in most cases, to a
noticeable drop in performance and thus its use should be carefully evaluated based on the
application requirements. For BERT-Tiny we can reduce the feature set size by 50% with an
average absolute loss in performance, across the models, of 0.725% and by 75% with an
average loss of 1.875%. Similar results can be observed for BERT-Medium.

Table 6. Comparison, in terms of weighted F1 Score, with the variants to which PCA reduction
is applied.

Linear Hidden ELM OSELM

BERT-Tiny 128 0.507 0.519 0.508 0.486
BERT-Tiny PCA 64 0.496 0.514 0.509 0.472
BERT-Tiny PCA 32 0.482 0.511 0.499 0.453
BERT-Medium 512 0.566 0.578 0.532 0.524
BERT-Medium PCA 128 0.538 0.567 0.53 0.506
BERT-Medium PCA 64 0.534 0.553 0.526 0.495

4.4. Performance under Limited Data Assumption

A realistic use-case scenario for embedded systems often involves handling solely the
data pertaining to a single user. Moreover, such data can often be scarce. To consider this
setting we design an experiment in which the system is trained and evaluated on each user
in our dataset separately. Additionally, we cover three cases that differ in the amount of
data available. The dataset contains six frequent users, whereas the others are aggregated
under the “Others” label in the original annotation. We only use the six most frequent users.

The results of this experiment are reported in Table 7. Here, each row denotes an user
and each column denotes the amount of data. Again, all results refer to the weighted F1
score. “All” indicates that all of the data available for the user, 1200 to 1500 data points
depending on the user, is utilized. For validation and testing we utilize the same splits as
in the previous experiments (limited to the user we train on). The scores reported refer
to the BERT-Tiny model with IEMOCAP pre-training and PCA with 32 components. The
classification layer is the Linear one. As can be seen, in most cases 500 data points can
maintain a satisfactory performance, whereas in some cases 200 data points may lead to a
steeper drop.

Table 7. Performance when a single user data is used. Results in terms of weighted F1 Score for all
the users, varying the amount of data used, are reported.

All 500 200

Phoebe 0.475 0.479 0.431
Joey 0.522 0.525 0.498
Ross 0.497 0.477 0.447
Rachel 0.495 0.472 0.418
Monica 0.474 0.46 0.437
Chandler 0.474 0.458 0.477

5. Hardware Deployment Results

We designed tests dedicated to measure the performance of the proposed solution
when deployed on the embedded devices. We propose two tests: (1) feature extraction
where we measure the time to process one sentence; in fact, this test also measures the
trend for the prediction time because the additional cost introduced by the linear separator
during the forward phase is negligible. (2) training time where we measure the time to
train a linear separator on the device.



Sensors 2021, 21, 4496 12 of 17

5.1. Feature Extraction

The test encompassed two models, BERT-Tiny and BERT-Medium. We measured
the time for the elaboration of a sentence, starting from the tokenization until the end
of the forward phase of the deep learning model. The system processed the sentences
individually, i.e., the batch size was fixed to 1 and the utterances were padded to 32 tokens.

The first deployment pipeline involved the Jetson devices. The pipeline started from
the trained model described using Keras API. We converted the model in TensorFlow and
we froze it. Thus, the frozen model coincides with the original model where all the software
structures supporting the training phase were removed. The frozen model was then optimized
for Jetson Nano using the TensorTRT tool (https://developer.nvidia.com/tensorrt, accessed on
29 June 2021). The output is again a TensorFlow frozen graph where the computed layers are
replaced with optimized versions.

TensorTRT can adopt different data sizes when deploying a network on Jetson Nano:
standard floating-point representation (FP32) and half-precision floating point (FP16).

Table 8 shows the summary results of the experiments for Jetson Nano. The rows
show the working mode of the device. The first and second columns identify the inference
performed using the BERT-Tiny model with 16 and 32 bits quantization, respectively.
The third and fourth columns reports the same information for the BERT-Medium model.
Each cell contains the average inference time (in ms) for a sentence measured over 80
random sentences extracted from the MELD test set. Between brackets we show the
standard deviation.

Table 8. Feature extraction on Jetson Nano.

TINY MED

FP16 FP32 FP16 FP32

Max-N 17.2 (1.1) 17.1 (0.7) 24.28 (0.7) 24.02 (0.7)
5W 33.96 (1.5) 33.59 (1.5) 41.62 (1.8) 42.13 (0.3)

Numerical results point out some interesting outcomes. First, both the configurations
ensure the elaboration of a sentence in less than 50 ms. Accordingly, the device can extract
features in real time. Second, quantization in 16 bit does not yield a significant advantage in
terms of computing time. This is likely due to the fact that the models are relatively small.

The second set of experiments considered the smartphones. The pipeline started from
the Keras model converted into TFLite graph using Keras API. TFLite supports different
quantization levels. In this paper, we consider three quantizations: FP32, FP16 and INT8.
The host devices were a Snapdragon 765G, and a HiSilicon Kirin 655. All versions are
deployed on actual devices through an Android app. The app performs the inference phase
using only the CPU and collects mean and standard deviation of the forward phase time,
which also includes the tokenization process.

Table 9 inherits the structure from Table 8. The difference is that the rows stand
for different chipsets and the groups of columns contain an additional column denoting
INT8 quantization.

Table 9. Feature extraction on smartphone.

TINY MED

CHIPSET FP32 FP16 INT8 FP32 FP16 INT8

Snapdragon 765G 2.6 (0.5) 2.6 (0.5) 1.9 (0.3) 88.0 (4.5) 85.0 (2.8) 32.8 (0.5)
HiSilicon Kirin 655 12.3 (0.7) 12.1 (0.5) 9.6 (0.8) 460.6 (0.9) 456.8 (1.7) 242.5 (0.7)

Experiments highlight a few interesting outcomes. First, the BERT-Tiny model, opti-
mized with TFLite, is faster than the fastest model on Jetson Nano. However, the BERT-
Medium model introduces a larger latency. This is due to the trade-off between memory

https://developer.nvidia.com/tensorrt


Sensors 2021, 21, 4496 13 of 17

fetch and capability of parallel computing. The empirical results suggest, as obvious,
that when model size grows Jetson Nano can handle the floating point operations more
efficiently. On the other hand, for small size models TFLite proves more efficient than
TensorRT in data transfer, that becomes the bottleneck of the computational pipeline. A sec-
ond outcome is that, as in the case of Jetson Nano, FP16 quantization provides a negligible
speedup. Meanwhile, INT8 inference ensures a faster inference phase.

Despite being convenient in terms of latency and memory requirements, the quantiza-
tion introduces a rounding error. Figure 2a shows the histogram for the quantization error
introduced by FP16 and Figure 2b remarks the error for the INT8 case. In both the cases the
error is computed against the FP32 representation. The histogram takes into consideration
the quantization error for all the features and all the data in the MELD test set:

e = (hFP32
i,j − hQuant

i,j )2 (6)

where hi,j refers to the j-th output of the feature extractor for the i-th datum. The superscrpt
denotes the representation. FP32 is the reference. Quant stands for FP16 and INT8 for the
two experiments.

(a) FP16 (b) INT8

Figure 2. Rounding error distribution on MELD test set using TFLite interpreter.

The results show that for FP16 the quantization error is negligible, i.e., the values
are lower than 10−5. For INT8 the average error is small. However in a few cases, the
measured difference is in the order of 0.1. Indeed, this value can introduce small changes
in data representation. However, the classifier C is trained directly on the new quantized
representation. Accordingly, the effect for the generalization performance are very limited.
To verify this, we experiment with the Linear model on top of BERT-Tiny, where the features
are extracted with the three different representations FP32, FP16 and INT8. We find that
FP16 does not lead to any noticeable drop in F1 score and, similarly, INT8 leads only to a
0.05% decrease in performance. Therefore, quantization proves to be an effective strategy
to reduce resource consumption.

5.2. Linear Separator Training

The second set of experiments encompasses the training of a linear separator using
the embedded devices. This setup proves empirically that the selected embedded devices
can support the proposed training phase.

The experiments analyze a worst-case configuration where a linear separator is trained
using gradient descent. This setup has an higher cost with respect to OSELM training.
However, it is more general because it can be applied to a wide set of cost functions.

The setup aims to test the computational cost. The simulation employs random data,
ensuring that the solution does not converge in a small number of iterations. The number
of iterations was set to 100 epochs, as all of the models trained on complete single user data
in Section 4.4 converged in less than 100 epochs.



Sensors 2021, 21, 4496 14 of 17

The code for the tests on the Jetson Nano was developed in Python using sklearn
module utilities. This solution was selected because it can be easily interfaced with Tensor
RT and TensorFlow and offers optimized implementation of the learning algorithms.

Table 10 shows the results concerning the simulations on Jetson Nano. The first
column identifies the working mode of the Jetson device. The second column denotes the
number of features. The range of values tested includes the number of features extracted
by BERT-Tiny, BERT-Medium, as well as the variants where PCA is applied. The remaining
columns stand for the number of training data samples. We use 1300 to represent the case in
which all of the user’s data is available. Each cell shows, in milliseconds, the average time
required to complete 100 epochs using SGD. The average was computed over 30 random
extractions of the training data. Between brackets we report the standard deviation.

Table 10. Training of the linear classifier on Jetson Nano.

Working Mode # Features Z = 200 Z = 500 Z = 1300

5W

32 44.4 (2.8) 103.8 (6.7) 328.2 (12.7)
64 53.4 (3.1) 149.9 (10.2) 475.5 (21.1)
128 47.2 (2.3) 227.8 (12.2) 799.3 (43.9)
512 78.4 (3.9) 264.5 (3.0) 1909.6 (165.4)

Max-N

32 28.3 (2.1) 69.8 (6.2) 199.8 (12.5)
64 33.3 (2.9) 96.7 (9.9) 304.4 (26.5)
128 31.5 (0.9) 145.7 (14.9) 525.4 (40.4)
512 52.5 (2.2) 179.6 (14.9) 1284.3 (117.4)

The results unveil that Jetson Nano can handle the training procedure of the model in
less than a second. When Z = 200 the training time for a dataset with 128 features is smaller
than the one for 64 feature. This could be attributed to the trade-off between data transfer
and parallelization capabilities. Except for this particular case, the measures confirm that
training data and features set size play a major role in determining the training time.

The same set of experiments was performed on smartphones. The experiments were
performed using an app written in Kotlin.

Table 11 inherits the structure from Table 10. The only difference is that, in this case,
the first column denotes the chipset.

The results confirm that the smartphones can host the training process. Indeed the
worst time measured was around 7 s. This time refers to a training that should be performed
only periodically and that does not affect the inference time at all.

Table 11. Training of the linear classifier on smartphones.

CHIPSET # Features Z = 200 Z = 500 Z = 1300

Snapdragon 765G

32 291.4 (6.12) 749.5 (5.85) 1847.4 (20.16)
64 255.1 (8.51) 760.9 (33.46) 1964.8 (163.69)
128 331.5 (7.96) 766.5 (73.2) 2119.8 (90.45)
512 447.2 (8.56) 1376.2 (66.27) 2596.8 (138.59)

HiSilicon Kirin 655

32 378.27 (27.40) 943.8 (28.82) 2461.4 (40.94)
64 413.8 (28.98) 1033.8 (28.07) 2723.3 (34.65)
128 488.1 (31.38) 1224.9 (31.12) 3230.9 (28.82)
512 1103.1 (28.90) 2778.9 (31.16) 7250.3 (36.28)

6. Conclusions

In this paper, we explored the combination of various state-of-the-art architectures
for feature extraction in NLP with simple and fast classifiers, whose training strategy is no
more demanding than a linear separator, for emotion recognition. Further, we proposed a
pipeline to optimize the system and deploy it in a constrained environment. Experiments



Sensors 2021, 21, 4496 15 of 17

demonstrated that the final system can achieve real-time inference and fast training, for
single user data, on two classes of edge devices while retaining satisfactory performance
in terms of accurate emotion detection. We have also shown how techniques such as
task-specific pre-training, dimensionality reduction and quantization can be employed to
boost performance or trade-off generalization capabilities and efficiency. In the future, we
will investigate whether the use of different feature extraction techniques but also emotion
categorization models, e.g., the Hourglass model, can further improve performance.

Author Contributions: Conceptualization, V.P. and E.R.; methodology, V.P. and E.R.; software, V.P.
and T.A.; validation, V.P., E.R. and T.A.; investigation, V.P. and E.R.; data curation, V.P.; writing—
original draft preparation, V.P. and E.R.; writing—review and editing, V.P, E.C. and P.G.; supervision,
E.C. and P.G.; project administration, V.P. and E.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were used. The original papers introducing
the datasets were cited.

Acknowledgments: This research is supported by the Agency for Science, Technology and Research
(A*STAR) under its AME Programmatic Funding Scheme (Project #A18A2b0046).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ma, Y.; Nguyen, K.L.; Xing, F.; Cambria, E. A Survey on Empathetic Dialogue Systems. Inf. Fusion 2020, 64, 50–70. [CrossRef]
2. Cambria, E.; Hussain, A.; Durrani, T.; Havasi, C.; Eckl, C.; Munro, J. Sentic Computing for Patient Centered Applications.

In Proceedings of the IEEE ICSP10, Beijing, China, 24–28 October 2010; pp. 1279–1282.
3. Grassi, M.; Cambria, E.; Hussain, A.; Piazza, F. Sentic Web: A New Paradigm for Managing Social Media Affective Information.

Cogn. Comput. 2011, 3, 480–489. [CrossRef]
4. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465.

[CrossRef]
5. Zhao, S.; Ding, G.; Huang, Q.; Chua, T.S.; Schuller, B.W.; Keutzer, K. Affective Image Content Analysis: A Comprehensive Survey.

In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July
2018; pp. 5534–5541.

6. Mehta, Y.; Fatehi, S.; Kazameini, A.; Stachl, C.; Cambria, E.; Eetemadi, S. Bottom-Up and Top-Down: Predicting Personality
with Psycholinguistic and Language Model Features. In Proceedings of the 2020 IEEE International Conference on Data Mining
(ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1184–1189.

7. Valdivia, A.; Hrabova, E.; Chaturvedi, I.; Luzon, V.; Troiano, L.; Cambria, E.; Herrera, F. Inconsistencies on TripAdvisor Reviews:
A Unified Index between Users and Sentiment Analysis Methods. Neurocomputing 2019, 353, 3–16. [CrossRef]

8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

9. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

10. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

11. Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; Peste, A. Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks. arXiv 2021, arXiv:2102.00554.

12. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
13. Lin, D.; Talathi, S.; Annapureddy, S. Fixed point quantization of deep convolutional networks. In Proceedings of the International

Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 2849–2858.
14. Majumder, N.; Poria, S.; Hazarika, D.; Mihalcea, R.; Gelbukh, A.; Cambria, E. DialogueRNN: An Attentive RNN for Emotion

Detection in Conversations. AAAI 2019, 6818–6825. . [CrossRef]
15. Shenoy, A.; Sardana, A. Multilogue-net: A context aware rnn for multi-modal emotion detection and sentiment analysis in

conversation. arXiv 2020, arXiv:2002.08267.

http://doi.org/10.1016/j.inffus.2020.06.011
http://dx.doi.org/10.1007/s12559-011-9101-8
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1016/j.neucom.2018.09.096
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1609/aaai.v33i01.33016818


Sensors 2021, 21, 4496 16 of 17

16. Chaturvedi, I.; Satapathy, R.; Cavallari, S.; Cambria, E. Fuzzy Commonsense Reasoning for Multimodal Sentiment Analysis.
Pattern Recognit. Lett. 2019, 125, 264–270. [CrossRef]

17. Stappen, L.; Baird, A.; Cambria, E.; Schuller, B. Sentiment Analysis and Topic Recognition in Video Transcriptions. IEEE Intell.
Syst. 2021, 36, 88–95. [CrossRef]

18. Zhang, K.; Li, Y.; Wang, J.; Cambria, E.; Li, X. Real-Time Video Emotion Recognition based on Reinforcement Learning and
Domain Knowledge. IEEE Trans. Circuits Syst. Video Technol. 2021. [CrossRef]

19. Delbrouck, J.B.; Tits, N.; Brousmiche, M.; Dupont, S. A Transformer-based joint-encoding for Emotion Recognition and Sentiment
Analysis. arXiv 2020, arXiv:2006.15955.

20. Rahman, W.; Hasan, M.K.; Lee, S.; Zadeh, A.B.; Mao, C.; Morency, L.P.; Hoque, E. Integrating multimodal information in large
pretrained transformers. In Proceedings of the Conference. Association for Computational Linguistics, Online, 5–10 July 2020;
doi:10.18653/v1/2020.acl-main.214. [CrossRef]

21. Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; Zhou, D. Mobilebert: A compact task-agnostic bert for resource-limited devices.
arXiv 2020, arXiv:2004.02984.

22. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. Tinybert: Distilling bert for natural language understanding.
arXiv 2019, arXiv:1909.10351.

23. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter.
arXiv 2019, arXiv:1910.01108.

24. Turc, I.; Chang, M.W.; Lee, K.; Toutanova, K. Well-read students learn better: On the importance of pre-training compact models.
arXiv 2019, arXiv:1908.08962.

25. Iandola, F.N.; Shaw, A.E.; Krishna, R.; Keutzer, K.W. SqueezeBERT: What can computer vision teach NLP about efficient neural
networks? arXiv 2020, arXiv:2006.11316.

26. Ragusa, E.; Gianoglio, C.; Zunino, R.; Gastaldo, P. Image polarity detection on resource-constrained devices. IEEE Intell. Syst.
2020, 35, 50–57. [CrossRef]

27. Ragusa, E.; Apicella, T.; Gianoglio, C.; Zunino, R.; Gastaldo, P. Design and deployment of an image polarity detector with visual
attention. Cogn. Comput. 2021, 1–13. [CrossRef]

28. Park, J.; Boo, Y.; Choi, I.; Shin, S.; Sung, W. Fully neural network based speech recognition on mobile and embedded de-
vices. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada,
3–8 December 2018; pp. 10620–10630.

29. Pandelea, V.; Ragusa, E.; Young, T.; Gastaldo, P.; Cambria, E. Toward hardware-aware deep-learning-based dialogue systems.
Neural Comput. Appl. 2021, 1–12. [CrossRef]

30. Han, K.; Yu, D.; Tashev, I. Speech emotion recognition using deep neural network and extreme learning machine. In Proceedings
of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014.

31. Tran, H.N.; Cambria, E. Ensemble application of ELM and GPU for real-time multimodal sentiment analysis. Memetic Comput.
2018, 10, 3–13. [CrossRef]

32. Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. Moving deep learning to the edge. Algorithms 2020, 13, 125. [CrossRef]
33. Zaman, K.S.; Reaz, M.B.I.; Ali, S.H.M.; Bakar, A.A.A.; Chowdhury, M.E.H. Custom Hardware Architectures for Deep Learning on

Portable Devices: A Review. IEEE Trans. Neural Networks Learn. Syst. 2021. [CrossRef]
34. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
35. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April
2017; pp. 1273–1282.

36. Liu, G.; Wang, C.; Ma, X.; Yang, Y. Keep Your Data Locally: Federated-Learning-Based Data Privacy Preservation in Edge
Computing. IEEE Netw. 2021, 35, 60–66. [CrossRef]

37. Anil, R.; Pereyra, G.; Passos, A.; Ormandi, R.; Dahl, G.E.; Hinton, G.E. Large scale distributed neural network training through
online distillation. arXiv 2018, arXiv:1804.03235.

38. Tao, Y.; Tu, Y.; Shyu, M.L. Efficient incremental training for deep convolutional neural networks. In Proceedings of the 2019 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 28–30 March 2019; pp. 286–291.

39. Awasthi, A.; Sarawagi, S. Continual learning with neural networks: A review. In Proceedings of the ACM India Joint International
Conference on Data Science and Management of Data, Swissotel, Kolkata, India, 3–5 January 2019; pp. 362–365.

40. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
41. Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287.

[CrossRef]
42. Lowe, D. Adaptive radial basis function nonlinearities, and the problem of generalisation. In Proceedings of the 1989 First IEE

International Conference on Artificial Neural Networks, London, UK, 16–18 October 1989; pp. 171–175.
43. Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net.

Neurocomputing 1994, 6, 163–180. [CrossRef]
44. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks.

In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume
2, pp. 985–990.

http://dx.doi.org/10.1016/j.patrec.2019.04.024
http://dx.doi.org/10.1109/MIS.2021.3062200
http://dx.doi.org/10.1109/TCSVT.2021.3072412
http://dx.doi.org/10.18653/v1/2020.acl-main.214
http://dx.doi.org/10.1109/MIS.2020.3011586
http://dx.doi.org/10.1007/s12559-021-09829-6
http://dx.doi.org/10.1007/s00521-020-05530-1
http://dx.doi.org/10.1007/s12293-017-0228-3
http://dx.doi.org/10.3390/a13050125
http://dx.doi.org/10.1109/TNNLS.2021.3082304
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/MNET.011.2000215
http://dx.doi.org/10.1016/j.neucom.2017.08.040
http://dx.doi.org/10.1016/0925-2312(94)90053-1


Sensors 2021, 21, 4496 17 of 17

45. Rahimi, A.; Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Adv. Neural Inf. Process. Syst. 2008, 21, 1313–1320.

46. Zhou, P.; Jiang, Y.; Wen, C.; Dai, X. Improved Incremental RVFL with Compact Structure and Its Application in Quality Prediction
of Blast Furnace. IEEE Trans. Ind. Informatics 2021. [CrossRef]

47. Gao, Y.; Luan, F.; Pan, J.; Li, X.; He, Y. Fpga-based implementation of stochastic configuration networks for regression prediction.
Sensors 2020, 20, 4191. [CrossRef] [PubMed]

48. Ragusa, E.; Gianoglio, C.; Zunino, R.; Gastaldo, P. A design strategy for the efficient implementation of random basis neural
networks on resource-constrained devices. Neural Process. Lett. 2019, 1–19. [CrossRef]

49. Yao, E.; Basu, A. VLSI extreme learning machine: A design space exploration. IEEE Trans. Very Large Scale Integr. Syst. 2016,
25, 60–74. [CrossRef]

50. Chuang, Y.C.; Chen, Y.T.; Li, H.T.; Wu, A.Y.A. An Arbitrarily Reconfigurable Extreme Learning Machine Inference Engine for
Robust ECG Anomaly Detection. IEEE Open J. Circuits Syst. 2021, 2, 196–209. [CrossRef]

51. Frances-Villora, J.V.; Rosado-Muñoz, A.; Bataller-Mompean, M.; Barrios-Aviles, J.; Guerrero-Martinez, J.F. Moving Learning
Machine towards Fast Real-Time Applications: A High-Speed FPGA-Based Implementation of the OS-ELM Training Algorithm.
Electronics 2018, 7, 308. [CrossRef]

52. Safaei, A.; Wu, Q.J.; Akilan, T.; Yang, Y. System-on-a-Chip (SoC)-based Hardware Acceleration for an Online Sequential Extreme
Learning Machine (OS-ELM). IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018. [CrossRef]

53. Shao, Z.; Er, M.J. An online sequential learning algorithm for regularized extreme learning machine. Neurocomputing 2016,
173, 778–788. [CrossRef]

54. Chang, C.H. Deep and shallow architecture of multilayer neural networks. IEEE Trans. Neural Networks Learn. Syst. 2015,
26, 2477–2486. [CrossRef]

55. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

56. Cambria, E.; Huang, G.B. Extreme Learning Machines. IEEE Intell. Syst. 2013, 28, 30–59. [CrossRef]
57. Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A fast and accurate online sequential learning algorithm for

feedforward networks. IEEE Trans. Neural Networks 2006, 17, 1411–1423. [CrossRef] [PubMed]
58. Poria, S.; Hazarika, D.; Majumder, N.; Naik, G.; Cambria, E.; Mihalcea, R. MELD: A Multimodal Multi-Party Dataset for Emotion

Recognition in Conversations. arXiv 2019, arXiv:1810.02508, 527–536.
59. Busso, C.; Bulut, M.; Lee, C.C.; Kazemzadeh, A.; Mower, E.; Kim, S.; Chang, J.N.; Lee, S.; Narayanan, S.S. IEMOCAP: Interactive

emotional dyadic motion capture database. Lang. Resour. Eval. 2008, 42, 335–359. [CrossRef]
60. Ghosal, D.; Majumder, N.; Gelbukh, A.; Mihalcea, R.; Poria, S. COSMIC: COmmonSense knowledge for eMotion Identification in

Conversations. arXiv 2020, arXiv:2010.02795.
61. Susanto, Y.; Livingstone, A.; Ng, B.C.; Cambria, E. The Hourglass Model Revisited. IEEE Intell. Syst. 2020, 35, 96–102. [CrossRef]
62. Wang, Z.; Ho, S.; Cambria, E. A Review of Emotion Sensing: Categorization Models and Algorithms. Multimed. Tools Appl. 2020,

79, 35553–35582. [CrossRef]

http://dx.doi.org/10.1109/TII.2021.3069869
http://dx.doi.org/10.3390/s20154191
http://www.ncbi.nlm.nih.gov/pubmed/32731462
http://dx.doi.org/10.1007/s11063-019-10165-y
http://dx.doi.org/10.1109/TVLSI.2016.2558842
http://dx.doi.org/10.1109/OJCAS.2020.3039993
http://dx.doi.org/10.3390/electronics7110308
http://dx.doi.org/10.1109/TCAD.2018.2878162
http://dx.doi.org/10.1016/j.neucom.2015.08.029
http://dx.doi.org/10.1109/TNNLS.2014.2387439
http://dx.doi.org/10.1109/MIS.2013.140
http://dx.doi.org/10.1109/TNN.2006.880583
http://www.ncbi.nlm.nih.gov/pubmed/17131657
http://dx.doi.org/10.1007/s10579-008-9076-6
http://dx.doi.org/10.1109/MIS.2020.2992799
http://dx.doi.org/10.1007/s11042-019-08328-z

	Introduction
	Related Work
	Materials and Method
	Feature Extractor
	Classification Model 
	Hardware Setup

	Generalization Performance Results
	Generalization Performance
	Feature Extractor Task-Specific Pre-Training
	Dimensionality Reduction
	Performance under Limited Data Assumption

	Hardware Deployment Results
	Feature Extraction
	Linear Separator Training

	Conclusions
	References

