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Abstract

PhD program in Civil, Chemical and Environmental Engineering
Curriculum Wind Science and Engineering

Doctoral Thesis

Transient phenomena induced by thunderstorm out�ows on slender structures

by Stefano Brusco

The climatology at mid-latitudes (for instance, Europe) is dominated by both extra-tropical
depressions at the synoptic scale and by mesoscale thunderstorm out�ows (also called down-
bursts). Thunderstorm out�ows are non-stationary phenomena, complex and potentially dev-
astating, which strongly di�er from synoptic winds under many points of view (genesis, scale,
duration above all). Consequently, the induced wind �elds are highly di�erent. Modern codes
and guidelines are mainly based on the cyclonic model, because of the persistent lack of knowl-
edge about thunderstorm out�ows, in particular concerning full-scale measurements. On the
other hand, severe wind damage is often induced by downbursts, especially concerning low-
and medium- rise structures (e.g., cranes, small turbines, light poles, low-canopies).
The present PhD Thesis is collocated within the framework of the ERC THUNDERR Project.
It investigates aspects connected with the aerodynamic loading of structures subjected to
thunderstorm out�ows, particularly focusing on the transient aerodynamics and transient
aeroelasticity. This is �rstly pursued through the de�nition of analytical formulations which,
starting from compatible vertical wind �elds, permit to evaluate the aerodynamic wind load-
ing by using the strip and quasi-steady theory. The application of the procedures on selected
slender test structures shows that a crucial role is played by thunderstorm-induced variations
of the wind angle of attack, which may increase or reduce the structure response. The sec-
ond part of the Thesis is devoted to an extensive experimental campaign carried out at the
multiple-fan wind tunnel of the Tamkang University, Taipei, which is able to simulate unsteady
�ows. The sectional model of a sharp-edged square cylinder, equipped with 94 pressure taps,
is investigated and numerous con�gurations of the �ow parameters are considered in order to
study the e�ects of acceleration on the aerodynamic loads and on the vortex-shedding from
the body. The drag coe�cients and the �uctuating cross-�ow force coe�cients connected
with vortex shedding are found to be either comparable or de�nitely lower than their corre-
sponding values for steady �ows. Furthermore, discontinuities of the shedding frequency are
present during the transients and their number and magnitude appear to be connected with
the acceleration of the �ow.
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ũ′eq longitudinal equivalent reduced turbulent �uctuation
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Chapter 1

Introduction

1.1 Mixed climatology: extra-tropical depressions and thun-
derstorms

Wind is the most destructive natural phenomenon, producing more fatalities and damage
than any other natural event (Solari, 2019). Wind actions on structures are crucial to be
determined for the social safety and economy. Guidelines and national codes support designers
to protect structures to withstand wind actions with speci�c sections devoted to them. These
are based on the model of the extra-tropical depression, or extra-tropical cyclone, whose
e�ects dominate the climatology of large part of the world (Solari, Burlando, et al., 2020).
Extra-tropical depressions are well known in their genesis and evolution (Figure 1.1). Their
e�ects have consequences on a large horizontal scale (synoptic scale), being their geographical
extensions in the order of thousands of kilometers and lasting for days. Their study in the
course of the years allowed Alan Garnett Davenport to formulate the classical solution of the
dynamic alongwind response of structures (Davenport, 1961).

Figure 1.1: Extra-tropical depression on the Atlantic Ocean; source:
https://weatheritalian.wordpress.com.
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Davenport's formulation considers the wind generated from an extra-tropical depression
(synoptic wind) in a neutral atmospheric condition, assuming that the wind velocity in a time
interval between 10 minutes and 1 hour may be studied as a stationary Gaussian process
(Van der Hoven, 1957). Moreover, its vertical pro�le is assumed to grow with the height,
generating an atmospheric boundary layer with a depth in the order of 1-3 [Km]. Considering
the turbulence as small, and neglecting the e�ect of the quadratic term of the �uctuation, the
wind velocity may be converted into an aerodynamic action which, in turn, is still Gaussian.
The aerodynamic loading is applied on a structure which is considered as linear. This permits
to consider also the dynamic response as a Gaussian quantity, which is investigated by studying
the up-crossings of a threshold, considered as rare and independent. The resulting probability
density function (PDF) is sharp and narrow, allowing its mean value to be representative of
the maximum response. This process, nowadays robust and consolidated, is known as the
Davenport chain. It constitutes the foundation of the whole set of guidelines and codes in the
world to evaluate wind actions on structures.
However, the climatology at mid-latitudes (for instance, Europe) is dominated either by extra-
tropical depressions and by mesoscale thunderstorm out�ows or downbursts (Solari, 2020).
These are non-stationary phenomena, complex and potentially devastating, which strongly
di�er from synoptic winds. Knowledge about thunderstorms has been gained in the early
1950s, when Byers, an American meteorologist, led the Thunderstorm Project (1946-1947).
A thunderstorm is a cloud or a cluster of clouds that produces thunder, lightning, heavy rain.
It may also give rise to hail, tornadoes and strong winds, the downbursts. Thunderstorm
clouds are named Cumulonimbus. The �nal report of the project (Byers and Braham, 1949)
describes the evolution of the cell through three stages. The �rst one is the cumulus stage (on
the left in Figure 1.2), in which hot and moist air moves towards the top of the troposphere.

Figure 1.2: The cycle of the evolution of a thunderstorm cell; the �gure is
after (Byers and Braham, 1949).

This is strictly associated with a high level of instability of the atmosphere. The second
stage (in the middle of the picture) is the mature one. This phase is linked to the high
impact weather factors (lightning, tornadoes, downbursts...) mentioned before. Finally, a
downdraft of cold air impinges over the terrain, generating a sudden wind �eld and a drop of
temperature. Eventually, the thunderstorm loses strength in the �nal dissipation stage (on
the right of Figure 1.2). The entire process may last less than 30 minutes.
Every year, 16 millions of thunderstorms strike the Earth's surface. At any given time, there
are 2000 thunderstorm cells active (Solari, 2019). Their global distribution is represented in
Figure 1.3A, which highlights that the regions crossing the Equator are the ones most likely
to be subjected to the action of a high number of thunderstorms. This is associated with
the high instability of the atmosphere in this area. The outcome is also re�ected by the
global map of lightning (Figure 1.3B), which points out the same regions as before. This is
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unsurprising, since it has been said that lightning constitutes one of the major high impact
weather factors related to to thunderstorms.

(A) Global downburst climatology; the �gure is after Electrical Engineering Portal.

(B) Global lightning distribution; the �gure is after NASA.

Figure 1.3: Global maps associated with thunderstorms.

Pictures of thunderstorms coming from three di�erent continents (Australia, America and
Europe) are furnished in Figure 1.4. Often, thunderstorms are associated with wind of limited
magnitude. On the other hand, their dangerousness has been �rstly noted one hundred year
ago, when the aviation started to be developed. In the history, there have been many dramatic
accidents of aircraft and dirigibles entered thunderstorms and crashed, following the action
of the updraft or of the downdraft. This was actually the reason of the development of the
Thunderstorm Project.
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(A) Thunderstorm in Brisbane, Australia (2016);
source: www.centrometeoitaliano.it .

(B) Thunderstorm in Kansas, US (2014); source:
www.express.co.uk .

(C) Thunderstorm in Sergnano, Italy (2019); source: www.cremaonline.it .

Figure 1.4: Pictures of thunderstorms from three continents.

Hence, after the Fifties, thunderstorms have been studied in order to make the �ights safer,
as it is discussed in the next section. On the other hand, awareness about the importance
about thunderstorm out�ows arose also in the Wind Engineering community. Davenport
himself (Davenport, 1968) recognised the need for more speci�c studies for these phenom-
ena, which may be treated separately from synoptic winds. This concept was considered
by Gomes and Vickery, while developing the map of the extreme wind speeds in Australia
(Gomes and Vickery, 1978). They separated thunderstorm out�ows from non-thunderstorm
ones, and carried out independent analyses for each of the sub-sets. Eventually, they derived
the mixed statistical model, which provided the expected design wind velocity concerning a
certain return period for thunderstorm out�ows and for non-thunderstorm winds. Nowadays,
there is a spread conviction that wind speeds associated with high return period are, for mixed
wind climate regions, often induced by thunderstorm out�ows. In particular, Letchford, Mans
and Chay (Letchford, Mans, and Chay, 2002) pointed out the importance of thunderstorm
winds in Australia (taking up the �ndings obtained by Gomes and Vickery and by (Whit-
tingham, 1964)), US, South Africa and Argentina. Also (Solari, 2014), stated that "design
wind velocities with mean return periods greater than 10-20 years are often associated with
such phenomena".
Extra-tropical depressions and thunderstorms are profoundly di�erent phenomena under many
points of view (genesis, scale, duration ...). This fact has to be re�ected on the relevant wind
�elds, which in fact are anything but similar. General characteristics of the wind �eld relative
to thunderstorm out�ows are provided in the next paragraph.
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1.2 Thunderstorm out�ows or downbursts

In the Seventies and in the Eighties, three projects were launched in US by the national
government, to support full-scale measurements of thunderstorm out�ows. These are named
NIMROD (Northern Illinois Meteorological Research on Downburst, 1978), JAWS (Joint Air-
port Weather Studies, 1982) and MIST (Microburst and Severe Thunderstorms, 1986). They
provided an extensive set of data about the wind �eld associated with thunderstorm out�ows.
One of the most prominent scientist in the �eld has been Fujita, who, also collaborating with
Wakimoto, realised that the downdraft impacting Earth's surface produces radial out�ow and
ring vortices (Fujita, 1981; Fujita and Wakimoto, 1981; Fujita, 1985; Fujita, 1990). Fujita
himself called the whole ensemble as "downburst" (Figure 1.5A), distinguishing the cases of
a "macro-burst" and of a "micro-burst". The �rst is characterised by a size greater than 4
[Km], whereas the seconds is smaller in size.

(A) Downburst.

(B) Time-history of a thunderstorm out�ow.

Figure 1.5: Scheme and measurements by Fujita; the �gures are after (Fujita,
1985).

Furthermore, Fujita provided a fundamental additional contribution, providing a link be-
tween meteorological aspects and wind �eld properties. He reported a time-history of a wind
speed signal recorded on the 1st of August 1983 by an anemometer close to the ground at the
Andrews Air Force Base (Figure 1.5B). The time-history is highly di�erent than what usually
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related to a synoptic wind, being characterised by an evident non-stationarity. Moreover, the
intensity of the wind speed appears as high, exhibiting a gust speed up to 149 [mph]. Fujita
noted that the wind speeds relevant to thunderstorm out�ows are lower than the ones induced
by a tornado. However, tornadoes are much rarer and smaller, therefore downbursts may well
have a strong impact on the safety of structures.
In the same years, Hjelmfelt (Hjelmfelt, 1988; Hjelmfelt et al., 1989) has been another promi-
nent scientist in the �eld of thunderstorm. He focused on the causes, morphology and life cycle
of thunderstorms. In particular, he provided articulated schemes of the wind �eld induced by
a thunderstorm, focusing on the possible e�ects of a background wind speed (Figure 1.6A),
and furnishing average values of structural features of thunderstorm out�ows (Figure 1.6B).

(A) Action of the ambient wind on the wind �eld
of the downburst.

(B) Wind �eld generated by a thunderstorm.

Figure 1.6: Schemes relative to the structure of thunderstorm out�ow; the
�gures are after (Hjelmfelt, 1988).

Moreover, he clari�ed a concept already anticipated by (Go�, 1976). The vertical pro�le
of a thunderstorm out�ow does not increase with the height, as for a synoptic wind. It has a
nose-like pro�le that increases up to a certain level, and then decreases (Figure 1.7).

Figure 1.7: Vertical wind pro�le of a thunderstorm out�ow; the �gure is after
(Hjelmfelt, 1988).

The amount of measurements gathered in the years and, even more, the use of Doppler
radar to detect thunderstorms and tornadoes allowed a strong reduction of accidents induced
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by downbursts on jets and �ights, as documented by The Washington Post in 2014 (Figure
1.8).

Figure 1.8: Article by The Washington Post in 2014.

However, Doppler radar could not prevent the damage induced by thunderstorm out�ows
on structures and forests (Figure 1.9).

Figure 1.9: Trees felled by straight-line winds in Minnesota, 2011; source:
www.nssl.noaa.gov.

In particular, structures may deeply su�er the action of thunderstorm out�ows. This
seems true for low- and medium-rise structures and building. The nose-like pro�le is strongly
enhanced in correspondence of their elevation, reaching high wind speeds that cannot be
predicted by employing the model of the extra-tropical depression. Figure 1.10 proposes a
representation of this statement. Two structures, a medium-rise one (a crane) and a tall
one (the World Financial Center in Shanghai), are subjected to possible vertical wind �elds
associated with a synoptic wind (in blue, with legend ETD = extra-tropical depression) and
to a thunderstorm out�ow (in red, T = thunderstorm). This picture points out that the low-
and medium- rise building is exposed to wind actions that are much greater than the ones
induced by blue pro�le. Conversely, a tall building may be less a�ected by that discrepancy,
since for high elevations the synoptic winds dominates in terms of speed and, consequently,
in terms of loading.
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Figure 1.10: Comparison between vertical pro�les caused by an extra-tropical
depression and a thunderstorm; the �gure is after (Lerzo, 2018).

Also in the light of what expressed before concerning the design wind speed, it is unsur-
prising to note that severe wind damage of low- and medium- rise structures (namely cranes,
small turbines, light poles, canopies, ...) is often associated with thunderstorm out�ows (Fig-
ure 1.11).

(A) Seaport of Genoa, 1994, (Solari, 2020). (B) Gym in North Carolina, 2020; source:
www.cnn.com.

Figure 1.11: Damage caused by downbursts.

(A) Iowa, 2020; source: www.accuweather.com. (B) South Brazil, 2006; the �gure is after (Almin-
hana, Albermani, and Mason, 2016).

Figure 1.12: Transmission lines collapsed following downbursts.

To this point, a striking comment has been made by (Kwon and Kareem, 2009), who stated
that: "... the traditional velocity pro�le does not exist; rather it bears an inverted velocity
pro�le with its maxima near the ground potentially exposing low- to mid-rise structures to
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higher wind loads.". Real structures that mostly su�er the largest number of collapses and the
most extensive damage due to thunderstorms are transmission lines and towers (Figure 1.12).
In the last twenty years, numerous scientists put e�ort to study the e�ects of thunderstorm
out�ows on structures. In particular, traditional wind tunnels have been modi�ed to allow the
reproduction of peculiar aspects of the phenomenon, �rst and foremost the non-stationarity.
Moreover, novel facilities have been realised to simulate their phenomenon in a bigger scale.
This is the case of the WindEEE Dome (Figure 1.13), where the phenomenon is reproduced
by a jet on the ceiling of the dome which impinges over the �oor, as a downburst over the
Earth's surface.

Figure 1.13: Simulation of a downdraft in the WindEEE Dome, at the Uni-
versity of Western Ontario; source: www.navigator.innovation.ca.

However, today there is not yet a shared and common view about the representation and
the modeling of thunderstorm out�ows. In fact, these topics are still full of uncertainties
(Solari, 2014). Thunderstorm out�ows are complex phenomena, for which it is di�cult to
propose simple and reliable models, able to capture their prominent characteristics, as ac-
complished for the synoptic winds. Moreover, their short duration and limited extension do
not allow the traditional wind monitoring networks to detect their passage. Indeed, these
are usually realised with stations placed at 50-100 [Km] one from the other, and the output
of such measurements is usually a mean value over a period of time, which is between 10
minutes and 3 hours. This choice is implicitly linked to the synoptic winds, and therefore
thunderstorm measurements are lost.
The absence of robust �eld data and the limited knowledge about a model to represent thun-
derstorm out�ows are also re�ected into the de�nition of methods to evaluate the loading and
response of structures subjected to these events. In fact, there cannot be yet a shared and
established chain to support designers to protect structures, as the Davenport chain allows
for synoptic winds. There are codes (e.g., ASCE 7-16) which perform a separation between
thunderstorm and non-thunderstorms storms, enabling the separation of the phenomena. On
the other hand, to make matters worse, it might happen that in the rare cases in which the
mixed statistical analysis is made, the thunderstorm-induced wind speeds are used as the in-
put for the traditional Davenport chain. This constitutes a huge distortion, which completely
rules out the noteworthy di�erences between synoptic and thunderstorm winds.
In the last years, since 2007, the WinDyn Group (Wind Engineering and Structural Dynamics
Research Group) of the University of Genoa has been persevering the study of thunderstorm
out�ows. After the �rst years of research, the European Research Council (ERC) has granted
Prof. Giovanni Solari and his Research Group an Advanced Grant 2016. Generalities about
this topic are provided in the following section.
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1.3 The ERC THUNDERR Project

The ERC Advanced Grant 2016 led to the project THUNDERR (Figure 1.14), "Detection,
simulation, modeling and loading of thunderstorm out�ows to design wind-safer and cost-
e�cient structures". It is an acronym, since THUNDER stands for THUNDERstorm, and
the last R points out the Roar with which the project aims at tackling the subject.

Figure 1.14: ERC Advanced Grant 2016.

This prestigious grant has been assigned to Prof. Giovanni Solari, the Principal Inves-
tigator of the project, after the remarkable results obtained during four previous/ongoing
projects. The �rst and the second are the European projects "Wind and Ports", (Solari,
Repetto, et al., 2012), and "Wind, Ports and Sea", (Repetto et al., 2018). The third has been
supported by Compagnia di San Paolo, "Wind Monitoring, simulation and forecasting for the
smart management and safety of port, urban and territorial systems". The fourth has been
granted by the Italian Ministry for Instruction, University and Research, "Measurement and
representation of wind actions and e�ects on structures" (PRIN 2015 - 2019).
The �rst two focused on the safe management and risk assessment of the main ports in High
Thyrrenian Sea. An extensive wind monitoring network has been realised, equipped with 28
ultrasonic anemometers in the Ports of Genoa, La Spezia, Livorno, Savona, Bastia, and L'
Île-Rousse (Figure 1.15). Moreover, three LiDAR pro�lers and three meteorological stations
have been installed as well.

Figure 1.15: Wind monitoring network in the northern Thyrrenian Sea; WP
shortens "Wind and Ports", while WPS means "Wind, Ports and Sea".

The anemometers were mounted on high-rise towers or on antenna masts at the top of
building, at heights never lower than 10 [m] and in positions were no local e�ects could
contaminate the measures. The sampling frequency for the anemometers is 10 [Hz], except
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for the devices in Bastia, whose sampling frequency is set at 2 [Hz]. The precision of wind
measurements is up to 0.01

[
m
s

]
for its intensity and up to 1 [degree] for the direction. As it

is clari�ed by Figure 1.15, the anemometers are quite close to each other in a single port area.
The �rst analyses carried out on the huge amount of data pointed out a typical mixed climatic
condition (Solari, 2014). Di�erent wind phenomena interest the area, as testi�ed by the
anemometer recordings (Figures 1.16, 1.17). These two graphs show the time-histories of the
wind speed U and of the �ow direction γ, as well as their relevant PDFs. The red dashed
line in the plots of the wind speed draws the mean value of U , U . It was then possible to
distinguish between signals associated with extra-tropical depressions and thunderstorms.
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(A) Time-history of the wind speed. (B) PDF of the wind
speed.
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(C) Time-history of the direction. (D) PDF of the direc-
tion.

Figure 1.16: 10-minute signal associated with an extra-tropical depression,
recorded in Livorno.

The �rst ones are characterised by large mean wind velocities and small gust factors. The
�uctuating part of the signal may be considered as a realisation of a stationary and Gaussian
process. The wind direction is regular in time.
Events caused by thunderstorm out�ows are usually associated with small mean wind speeds
and large gust factors. The relevant turbulence is a non-stationary and non-Gaussian random
process. The wind direction may exhibit remarkable changes. A third family of wind signals
concerns stationary and non-Gaussian events, named as gust fronts (Solari, 2014).
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(A) Time-history of the wind speed. (B) PDF of the wind
speed.
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(C) Time-history of the direction. (D) PDF of the direc-
tion.

Figure 1.17: 10-minute signal associated with a thunderstorm, recorded in
La Spezia on 25th of October, 2011.

Figure 1.18 shows an even more direct comparison between the PDFs of the residual
�uctuation (which is the signal subtracted of its mean value) of the event recorded in Livorno
and in La Spezia. The orange line is the Gaussian reference, drawn by imposing the same
mean and the standard deviation of the sample.
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(A) Synoptic wind in Livorno.
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(B) Thunderstorm out�ow in La Spezia.

Figure 1.18: PDF of the �uctuating component of U , U ′, and comparison
with the Gaussian reference for the two events shown before.

Thunderstorms have been classi�ed considering the duration (Burlando, Zhang, and So-
lari, 2018), de�ning time-scales of 10-minute, 1- and 10-hour.
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Initially, 93 transient events have been extracted from the database (Solari, Burlando, et al.,
2015). In a second phase, more than 250 transient recordings have been gathered (Zhang,
Solari, De Gaetano, et al., 2018). The �rst extreme wind speed analyses carried out after 6
years of measurements revealed that wind events with a high return period in speci�c loca-
tions of the High Thyrrenian Sea (namely Livorno and La Spezia) are likely to be associated
with thunderstorm out�ows (Zhang, Solari, Yang, et al., 2018). As a matter of fact, the mixed
extreme distribution for high return period tends to coincide with the thunderstorm distribu-
tion. Not to distinguish between the two phenomena leads to an ensemble distribution which
underestimates the extreme peak wind speed, particularly for high return period.
The other two projects mainly focused on downburst wind �eld and wind loading of struc-
tures. In particular, concerning to this latter task, it was observed that thunderstorm out�ows
are transient events and, usually, the dynamic response to such phenomena is evaluated by
response spectrum technique (as in the case of earthquakes). This inspired a new line of re-
search, �rstly taken up by converting the wind measurements into an identically coherent wind
�eld for single-degree of freedom systems (Solari, De Gaetano, and Repetto, 2015). Besides,
the study has been extended to multi-degree of freedom systems (Solari, 2016), introducing
suitable methods to take the aerodynamic admittance into account. Moreover, time-domain
analyses (Solari, Rainisio, and De Gaetano, 2017) showed that the probability density func-
tion of the maximum value of the structural response induced by thunderstorm out�ows is
more spread than the one associated with synoptic winds.
The THUNDERR project aims at �rstly dealing with the thunderstorm as a physical phe-
nomenon, seeking the de�nition of an unitary model. To pursue this aim, the monitoring
network has been enhanced with the installation of new 10 ultrasonic anemometers at the
end of 2019 in Genoa. Furthermore, a Windcube 400S pulsed LiDAR scanning system by
Leosphere has been installed in the Port of Genoa on 18th of April 2018. Secondly, it pur-
sues the de�nition of methods to evaluate thunderstorm-induced loading on structures and
to assess the dynamic response. In particular, the THUNDERR Project aims at developing
three complementary methods to evaluate the wind-induced loading. These are the response
spectrum technique, time-domain analysis and the non-stationary random dynamics by the
evolutionary power spectral density (EPSD) model. As far as the already mentioned re-
sponse spectrum technique is concerned, its results have been checked with the time-domain
solutions, providing a satisfying agreement (Solari and De Gaetano, 2018). Besides, an evolu-
tionary spectral density model of thunderstorm out�ows has been proposed in 2020 (Roncallo
and Solari, 2020).
This PhD Thesis is collocated in this branch of the project. In particular, it concerns
thunderstorm-induced loading on slender structures through numerical and experimental
methods. Deeper details about its outline are provided in Chapter 2.
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Chapter 2

Outline of the Thesis

This chapter illustrates from a general viewpoint the structure of the Thesis.
The Thesis deals with the transient aerodynamics and transient aeroelasticity of slender struc-
tures subjected to thunderstorm out�ows. These topics have extreme relevance with regards
the wind loading and the dynamic response of slender structures to transient events.
Blu�-body aerodynamics is the discipline that establishes the principles to transform the
undisturbed �ow �eld into a pressure or force �eld acting on a blu�-body. The wind-induced
pressure and forces acting on a structure are usually evaluated by assuming the �ow to be
incompressible and by invoking the strip and quasi-steady theory (Kawai, 1983). This allows
one to derive them from the knowledge of the kinetic pressure (i.e. the kinetic energy per unit
volume, 1

2ρU
2) of the undisturbed wind �eld and of adequate pressure and force coe�cients,

which are treated as constant quantities and estimated in wind tunnels reproducing steady
�ows. This procedure is well-consolidated when studying e�ects on structures induced by syn-
optic winds, which have indeed steady characteristics in both wind speed and direction. On
the other hand, the transient nature of thunderstorm out�ows might subvert its application,
making the coe�cients time-varying functions, as the kinetic pressure. Consequently, the
aerodynamic actions would have to be evaluated through convolution products. It is unclear
whether these e�ects associated with thunderstorm out�ows have to be taken into account in
the assessment of the structural response. Concerning this topic, a deep discussion is ongoing
within the Wind Engineering community.
Conversely, at the author's best knowledge, transient aeroelasticity is still a subject completely
ignored in the literature, if not by isolated papers which highlight the interest towards the
topic (Kareem and Wu, 2013). Aeroelastic phenomena may lead to various types of structural
instability, exposing the structure to high risk of collapse (e.g., resonant vortex-shedding in
lock-in regime, galloping, �utter, torsional divergence). The potential insurgence of such phe-
nomena is always studied by considering that a long time (usually, in the order of minutes) is
provided to the �uid and the structure to interact between them, allowing the building-up of
the instability. This situation seems to well picture the e�ects of synoptic winds on structure,
whereas it might be questionable in presence of thunderstorm out�ows.
Transient aerodynamics and transient aeroelasticity are investigated in the following, with
two di�erent approaches. The �rst aims at investigating both the transient aerodynamics and
transient aeroelasticy of slender structures to determine the relevant aerodynamic loading and
dynamic response. Their de�nition is accomplished by invoking the strip and quasi-steady
theory, which permits to use the traditional aerodynamic coe�cients. This is made by implic-
itly considering that the passage of the gust front is moderately slow (Solari et al., 2015; Zhang
et al., 2018; Mason, Yang, et al., 2016). Consequently, any sort of e�ect on the blu�-body
aerodynamics induced by the change of wind speed and direction is neglected. In this phase,
vortex-shedding phenomenon is neglected in the analyses and the aeroelasticity is investi-
gated by considering the transversal galloping. Conversely, the second approach challenges
the application of the strip and quasi-steady theory, exploring the e�ects of accelerating �ows
on structures. This is �rstly investigated by analysing anemometric signals, and estimating
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acceleration-induced forces. Moreover, an experimental campaign has been carried out in the
multiple-fan wind tunnel of the Tamkang University, in Taipei, on a rigid model. Therefore,
in this case the aeroelasticity has not been investigated, and the analyses concern the tran-
sient aerodynamics only. The acceleration reproduced in the wind tunnel are consistent with
thunderstorm anemometric measurements. The results obtained are not omni-inclusive of the
whole set of cases investigated in the �rst part of the Thesis. However, they provide �rst
precious pieces of information about the reliability of the methodology adopted in there.
Therefore, it seems justi�ed the separation of the Thesis in two distinct parts, named as "On
the dynamic response of slender structures through the strip and quasi-steady theory" (Part
II) and "E�ects induced by accelerating �ows on rigid slender structures" (Part III). A general
and brief introduction to them is given in the two following sections, depicting how these are
articulated.

2.1 On the dynamic response of slender structures through the
strip and quasi-steady theory

In the Thesis, the aerodynamic loading and the dynamic response of slender structures are
evaluated through time-domain analyses. Well-suitable techniques are introduced to take the
non-stationarity of the wind speed into account, but also to consider other interesting aspects
related to thunderstorm out�ows, above all the potential change of the direction of the wind
event. In fact, literature is rich about methodologies to de�ne a slowly-varying mean wind
speed from a signal of a thunderstorm out�ow, which is separated from the residual non-
stationary �uctuation. The �rst authors to put forward this separation have been (Choi and
Hidayat, 2002), who applied a simple moving average technique. This has been followed by
many other techniques, often more advanced and complicated, for instance involving wavelets,
e.g. (Su, Huang, and Xu, 2015). On the other hand, the same e�ort has not been devoted
to study the role of the change of the direction. This has been discussed from a qualitative
point of view, e.g. (Holmes et al., 2008). This is induced by the simultaneous actions of
wind �elds associated with di�erent nature. In fact, the wind �eld directly induced by the
downdraft (Figures 1.6B) is not the only one acting, but is potentially �anked by other two
e�ects. These are the background wind speed (Figure 2.1A, as already noted by (Hjelmfelt,
1988) and discussed in Chapter 1), and the translational wind speed (associated with the trav-
eling thunderstorm cell), when the downburst is non-stationary (Figure 2.1B). Therefore, the
passage of a non-stationary downburst thunderstorm cell nearby an anemometer is re�ected
by a sudden change of direction detected by the device (Figure 2.1C).

(A) Wind �eld associated with a background wind.
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(B) Wind �eld associated with a traveling thunderstorm cell.

(C) Overall wind �eld, in two di�erent instants.

Figure 2.1: Qualitative wind �elds induced by a thunderstorm out�ows.

In spite of the peculiarity of this phenomenon, there is not yet a model to study the struc-
tural dynamic response which considers this characteristic in explicit form.
The �rst chapter of Part II, Chapter 3, aims at this purpose. As deepened in this chapter,
the choice of neglecting the variation of the angle of attack in the process of signal decom-
position has induced several shortcomings. It oriented the dynamic response of structures to
thunderstorm out�ows to be considered in an alongwind, invariant direction only. On top of
that, the traditional separation between alongwind and crosswind response was prevented.
To overcome this drawback, Chapter 3 investigates whether directionality e�ects may instead
play a role in the structural dynamic response, giving rise to an increase of the maximum
displacement. As a consequence, Chapter 3 is entitled as "Directional bu�eting of slender
structures subjected to thunderstorm out�ows".
Moving to Chapter 4, its aim is an attempt to answer questions about the e�ects of the
non-stationarity of the wind speed and of the angle of attack on the building-up of aeroelas-
tic instabilities (tranversal galloping). As far as the wind speed is concerned, it is unclear
whether a phenomenon of short duration as a thunderstorm out�ow is su�cient to trigger an
instability. Nonetheless, the role of the variation of the angle of attack appears striking again.
In fact, its variation may give rise to rapid alternations of stable or unstable conditions, in a
classic synoptic study. Chapter 4 is entitled as "Transient aeroelasticity of slender structures
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subjected to thunderstorm out�ows" and basically extends the methodology of Chapter 3 tak-
ing aeroelastic e�ects into account.
As mentioned earlier on, these two chapters neglect the e�ects of vortex-shedding around
the body. This choice is made to focus on the role played by the directionality e�ects on a
generalised quasi-steady formulation of the aerodynamic forces. In this way, the in�uence of
the sudden change of directionality of the force on bu�eting forces (Chapter 3) and galloping
(Chapter 4) can be deeply analysed without the in�uence of vortex-shedding e�ects, usually
challenging to be included in an all-encompassing model. Both chapters investigate the sub-
ject of the dynamic response of slender structures in a complete analogy with the traditional
formulation for synoptic winds. In fact, they allow a separation between the alongwind and
crosswind forces. Moreover, the hypothesis of small turbulence is made. These choices open
the doors to a robust comparison between synoptic winds and thunderstorm out�ows in terms
of wind loading and structural response.
In the framework of this part of the Thesis, signals acquired by anemometers are converted
into compatible vertical wind �elds through suitable pseudo-deterministic approaches, e.g.,
Equivalent Wind Spectrum Technique (Solari, 1988; Piccardo and Solari, 1998), adequately
applied on stationary and Gaussian components of the original signal. This choice allows the
burdensome Monte Carlo technique to be avoided, and permits to clarify whether the phe-
nomenon might be of interest from a physical point of view. The wind �elds are employed to
evaluate the aerodynamic wind loading on selected slender structures invoking the strip and
quasi-steady theory (Figure 2.2). The dynamic response is eventually numerically evaluated
in the state-space domain.

Figure 2.2: Strip and quasi-steady theory. The picture in the background is
after (Davenport, 1961).

2.2 E�ects induced by accelerating �ows on rigid slender struc-
tures

As mentioned in the overture of this chapter, the application of the strip and quasi-steady the-
ory to evaluate thunderstorm-induced e�ects on structures constitutes an important debate
in the Wind Engineering community (Figure 2.3). In this sense, a striking comment has been
made by (Letchford and Chay, 2002): "It remains to be seen whether it is possible to retain
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the large database of pressure coe�cients obtained in boundary layer �ow and apply an appro-
priate 'design' thunderstorm wind speed pro�le". In fact, literature about this topic is quite
limited and fragmentary (Solari, 2020) and generally disregarded from accelerations typical of
thunderstorm out�ows. The pioneer of this subject has been Sarpkaya, who realised himself a
device to allow a rapid growth of the �ow speed from zero to a certain value (Sarpkaya, 1963;
Sarpkaya, 1966). The tests performed on a circular cylinder and a �at plate led to an increase
of the drag coe�cient of about 25 %, if compared with the steady condition. (Sarpkaya and
Ihrig, 1986), studying a square cylinder, found that the overshooting coe�cients of the drag
and lift coe�cient are strongly dependent on the incidence angle. Subsequently, as deeply
described in Chapter 6, other researchers tried to deepen the subject (Okajima, Matsumoto,
and Kimura, 1997; Katsura, 1997). In the meanwhile, as anticipated in Chapter 1, the inter-
est for thunderstorm out�ows in the Wind Engineering community grew (Letchford, Mans,
and Chay, 2002), and researchers came up with new techniques to reproduce downbursts in
laboratories. At the beginning, these were limited to suitable modi�cations of already existing
wind tunnels. This is the case of the realisation of stationary wall jets (Chay and Letchford,
2002), followed by their traveling version, aiming at the reproduction of a moving downburst
(Letchford and Chay, 2002). In the same years, another remarkable paper, this time concern-
ing the technique of the pulsed wall jet, has been proposed (Mason, Letchford, and James,
2005).
Following these attempts, modi�cations were directly made on the traditional axial �ow of the
wind tunnel, as the stationary (Lin and Savory, 2006) and non-stationary slot jet technique
(Lin, Orf, et al., 2007), or the introduction of a plate suddenly introduced in the oncoming
�ow (Butler and Kareem, 2007). In parallel, albeit with aims that were not related to the
reproduction of downbursts, the realisation of multiple-fan wind tunnels with individually
controlled fans began to step up (Cao et al., 2002).

Figure 2.3: Questioning the application of the strip and quasi-steady theory.
The picture in the background is after (Davenport, 1961).

A multiple-fan wind tunnel is a facility characterised by a wall of fans, whose dimension
is limited with respect to classic fans of a traditional wind tunnel. Figure 2.4 shows the
comparison between the 31-foot diameter wooden fan of the Altitude Wind Tunnel (Figure
2.4A, NASA) and three models of the prototype fan for the multiple-fan wind tunnel of the
Tamkang University, in Taipei, whose characteristic length is 22 [cm].
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(A) Altitude Wind Tunnel (AWT) Fan, 1944;
source: www.nasa.gov.

(B) Three models of the prototype fan, for a
multiple-fan wind tunnel.

Figure 2.4: Wind tunnel fans.

A discussion of the potential e�ects relative to the �ow acceleration on the aerodynamic
loading is given in the �rst chapter of Part III, Chapter 5. This is followed by the estimation
of thunderstorm-induced accelerations, evaluated from �fteen selected anemometric signals
by adopting a tailored technique. Besides, this chapter also o�ers remarks about how the
procedure for the de�nition of a "mean" wind speed in a transient event is a procedure which is
unlikely to always �t under any condition, but has to be related with its application. Chapter 5
is named as "Estimation of thunderstorm-induced mean wind speeds and accelerations through
continuous wavelet-based procedures".
Subsequently, a wind tunnel testing campaign has been undertaken to investigate the e�ects
of accelerating �ows on structures. This has been carried out in Taipei (January 2020 - August
2020), at the Tamkang University Multiple-fan wind tunnel (TKU-MKWT) (Figure 2.5). A
sectional model of a square cylinder is the object of the investigation. It is equipped with 94
pressure taps and it is studied for zero incidence only.

The analyses of the huge amount of data have been divided in two main elaborations.
The �rst concerns the e�ect induced by the acceleration on the aerodynamic drag, while the
second focuses on vortex-shedding around the body in transient conditions. Three chapters
of the Thesis are devoted to the description of the wind tunnel test campaign and of the
relevant analyses. The �rst one, Chapter 6, is a general elucidation about the characteristics
of the facility and of the wind tunnel model, providing information about the choice of the
�ow parameters. It is entitled as "Wind tunnel tests". It is followed by Chapter 7, which
deals with the de�nition of the aerodynamic drag in steady and unsteady conditions, even-
tually proposing a comparison between the two cases. It is named as "Aerodynamic drag of
a square cylinder in steady and unsteady conditions". The corresponding analyses carried
out on vortex-shedding are presented in Chapter 8, entitled as "Vortex-shedding on a square
cylinder in steady and unsteady conditions".
The �nal part of the Thesis, Part IV, includes Chapter 9, "Final remarks and future perspec-
tives", which expresses the general conclusions of the work, drawing possible future perspec-
tives following this Thesis.
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Figure 2.5: Render of the TKU-MFWT with the model installed.
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