
A Formal Approach for Cautious Reasoning in Answer Set Programming
(Extended Abstract)∗

Giovanni Amendola1 , Carmine Dodaro1,† and Marco Maratea2

1DeMaCS, University of Calabria, Italy
2DIBRIS, University of Genoa, Italy

{amendola, dodaro}@mat.unical.it, marco@dibris.unige.it

Abstract
The issue of describing in a formal way solv-
ing algorithms in various fields such as Proposi-
tional Satisfiability (SAT), Quantified SAT, Satisfi-
ability Modulo Theories, Answer Set Programming
(ASP), and Constraint ASP, has been relatively re-
cently solved employing abstract solvers.
In this paper we deal with cautious reasoning tasks
in ASP, and design, implement and test novel ab-
stract solutions, borrowed from backbone compu-
tation in SAT. By employing abstract solvers, we
also formally show that the algorithms for solving
cautious reasoning tasks in ASP are strongly related
to those for computing backbones of Boolean for-
mulas. Some of the new solutions have been imple-
mented in the ASP solver WASP, and tested.

1 Introduction
Abstract solvers are a method to formally analyse solving al-
gorithms. In this methodology, the states of a computation
are represented as nodes of a graph, the solving techniques
as edges between such nodes, the solving process as a path
in the graph, and formal properties of the algorithms are re-
duced to related graph properties. This framework enjoys
some advantages w.r.t. traditional ways such as pseudo-code-
based descriptions, e.g., being based on formal and well-
known, yet simple, mathematical objects like graphs, which
helps (i) comparing solving algorithms by means of compar-
ison of their related graphs, (ii) mixing techniques in differ-
ent algorithms in order to design novel solving solutions, by
means of mixing arcs in the related graphs, and (iii) stat-
ing and proving formal properties of the solving algorithms,
by means of reachability within the related graphs. Abstract
solvers methodology was introduced in 2006 for Proposi-
tional Satisfiability (SAT) and Satisfiability Modulo Theories
(SMT) [Nieuwenhuis et al., 2006], and was the basis for the
design and implementation of the BARCELOGIC SMT solver
awarded as winner of some tracks at the 2005 SMT Compe-
tition. Then, it proved to be useful in various fields such as
Quantified SAT [Brochenin and Maratea, 2015b], Answer Set
∗Summary of the ICLP 2019 paper [Amendola et al., 2019].
†Contact Author

Programming [Lierler, 2011; Lierler and Truszczynski, 2011;
Brochenin et al., 2014], and Constraint ASP [Lierler, 2014],
for analysing current algorithms, proposing and/or imple-
menting new solvers based on the analysis.

In ASP, abstract solvers have been so far mainly applied to
ASP solvers for brave reasoning tasks where, given an input
query and a knowledge base, answers are witnessed by some
stable model [Gelfond and Lifschitz, 1988], or answer set.

However, in ASP, also cautious reasoning has been deeply
studied in the literature: differently from the previous task,
answers here must be witnessed by all stable models. This
task has found a significant number of interesting applica-
tions as well, including consistent query answering [Arenas
et al., 2003; Manna et al., 2013], data integration [Eiter,
2005], multi-context systems [Brewka and Eiter, 2007], and
ontology-based reasoning [Eiter et al., 2008]. Two of the
most well-known ASP solvers, i.e., DLV [Leone et al., 2006]
and CLASP [Gebser et al., 2012], have been extended for
computing cautious consequences of ASP programs. Several
algorithms for cautious reasoning in ASP, including those im-
plemented in DLV and CLASP, borrowed from the backbone
computation of Boolean formulas [Janota et al., 2015], have
been presented in a unified, high-level view in [Alviano et
al., 2014]. Moreover, some of these techniques have been
implemented on top of the ASP solver WASP [Alviano et al.,
2019], and further strategies have been analyzed through ab-
stract solvers in [Brochenin and Maratea, 2015a].

In this paper we design, implement and test novel abstract
solutions for cautious reasoning tasks in ASP. We show how
to improve the current abstract solvers with further techniques
borrowed from backbone computation in SAT, in order to de-
sign new solving algorithms. In particular, we import a tech-
nique called “chunk”, which generalizes previous techniques
by testing a set of atoms simultaneously, and core-based algo-
rithms, which can be considered either a solution per se, or a
way for pruning the set of atoms to be considered, given that
they can not guarantee completeness. By doing so, we also
formally show, through a uniform treatment, a strong rela-
tion among algorithms for solving cautious reasoning tasks in
ASP and those for computing backbones of Boolean formu-
las. Finally, we implement some of the new solutions in the
solver WASP and we show that their performances are compa-
rable to state-of-the-art solutions. This paper is a summary of
the best technical ICLP 2019 paper [Amendola et al., 2019].

2 Preliminaries
Here, we recall basics on Answer Set Programming (ASP);
Boolean logic formulas; and abstract solvers framework.

2.1 Boolean Formulas and Answer Set Programs
We define ASP programs and Conjunctive Normal Form
(CNF) formulas so as to underline similarities, thus to com-
pare algorithms on CNF formulas and ASP programs.
Syntax. Let Σ be a propositional signature. An element a ∈
Σ is called atom or positive literal. The negation of an atom a,
i.e., ¬a, is called negative literal. Given a literal l, we define
|l| = a, if l = a or l = ¬a, for some a ∈ Σ. For a set of atoms
X ⊆ Σ, a literal relative to X is a literal l s.t. |l| ∈ X , and
lit(X) is the set of all literals relative to X . We set l̄ = a, if
l = ¬a, and l̄ = ¬a, if l = a. A clause is a set of literals (seen
as a disjunction). A CNF formula is a set of clauses (seen as
a conjunction). Given a set of literals M , we denote by M+

(resp., M−) the set of positive (resp., negative) literals of M ,
and by M the set {l̄ | l ∈ M}. M is consistent if l ∈ M
implies l̄ 6∈ M . A rule is a pair (A,B), written A ← B,
where B is a set of literals and A is an atom or ∅. A program
is a finite set of rules. Given a set of literals M , a program Π
and a CNF formula Φ, we denote by atoms(M), atoms(Π)
and atoms(Φ) respectively the set of atoms occurring in M ,
Π , and Φ. Note that in Boolean logic ¬ is classical negation,
while in ASP it is negation by default.
Semantics. Let X be a set of atoms, Φ a CNF formula, and
Π a program. An assignment to X is a total mapping from X
to {⊥,>}. A consistent set M of literals is an assignment to
atoms(M) s.t. a ∈ M iff a is mapped to >, and ¬a ∈ M
iff a is mapped to ⊥. A model of Φ is an assignment M to
atoms(Φ) s.t. for each clause C ∈ Φ, M∩C 6= ∅. A model of
Π is an assignment M to atoms(Π) s.t. for each rule (A,B)
∈Π , A∩M 6= ∅ or B 6⊆M . Let M(Φ) be the set of all mod-
els of Φ. The reduct Π X of Π w.r.t. to X is obtained from Π
by deleting each rule A← B+∪B− s.t. X∩atoms(B−) 6= ∅
and replacing each remaining rule with A← B+. An answer
set of Π is a model M s.t. M+ is minimal among the M+

0 s.t.
M0 is a model of Π M+

. Let AS(Π) be the set of all answer
sets of Π. We define backbone(Φ) =

⋂
M∈M(Φ) M

+and
cautious(Π) =

⋂
M∈AS(Π) M

+.

2.2 Abstract Solvers
Abstract solvers are graphs that represent the status of the
computation, and how it changes in response to an appli-
cation of a technique in a search for a solution with certain
properties, e.g., the satisfiability of a formula. We present the
notion of states, transition rules, and abstract solver graphs.

States. Let X be a set of atoms. We denote by A(X)
the set of action relative to X . A record relative to X is
a string L from lit(X) without repetitions. We may view
a record as the set containing all its elements stripped from
their annotations. For example, we may view ¬ab as {¬a, b},
and hence as the assignment that maps a to ⊥ and b to >.
Let Π be a program, and X = atoms(Π). The set of the
states relative to Π is the union of: core states relative to

Π: LO,U,A,P where O,U ⊆ X , A ∈ A(X), and P is
a program depending by Π, O, U , A (e.g., ¬ab{a,b},∅,A,P ,
∅{a},{b},A,P , ¬a¬b¬c∅,∅,A,P); control states relative to X:
Cont(O,U) where O,U ⊆ X (e.g., Cont({a, b}, {a}),
Cont({a, b, c}, ∅), Cont(∅, ∅)); terminal states relative to X:
Ok(W) where W ⊆ X (e.g., Ok({a, b, c}), Ok(∅)). In-
tuitively, these states represent computation steps of the al-
gorithms that search for assignments with certain properties,
in our case backbone or cautious consequences. Core states
LO,U,A,P and control states Cont(O,U) represent all the
intermediate steps of the computation, where L is the cur-
rent state of the computation of a model; O is the current
over-approximation of the solution; U is the current under-
approximation of the solution; and A is the action currently
carried out. Intuitively, a core state represents the computa-
tion within a call to an ASP oracle, i.e., an ASP solver, while a
control state controls the computation between different calls
to ASP oracles, depending on over- and under-approximation.
Terminal states represent the end of the computation.
Transition Rules. Transition rules are of the form:

ruleName S =⇒ S′ if { conditions
where ruleName is the name of the rule; S =⇒ S′ rep-
resents a transition from the state S to the state S′; and
conditions is a set of conditions for the rule to be applied.
We also consider a special transition rule, Oracle, reported
in Figure 1. Intuitively, it represents an oracle call to an
ASP [resp., SAT] solver by providing as result a set of lit-
erals L corresponding to the output of an ASP [resp., SAT]
solver, i.e., L is an answer set of a program [resp., a model
of a formula], if such an answer set [resp., model] exists, and
to lit(atoms(P)), otherwise. Transition rules will be orga-
nized into Return rules, dealing with the outcome of an ora-
cle call, or the application of a given technique, depending on
the status of the set of literals L returned; and Control rules,
starting from a control state and directing the computation de-
pending on the content of the over- and under-approximation.
Abstract Solver Graphs. Given a program Π, and a set
of transition rules T , an abstract solver graph G(Π, T) =
〈VX , ET 〉 is such that VX is the set of all states relative to
X = atoms(Π); and (S, S′) ∈ ET if a transition rule of the
form S =⇒ S′ can be applied. Moreover, S′ ∈ VX is reach-
able from S ∈ VX if there is a path from S to S′; there is a
state in VX called initial state (from which the computation
starts, depending on the specific algorithm); a state reachable
from the initial state is called reachable state (it represents a
possible state of a computation); and no cycle is reachable if
there is no reachable state which is reachable from itself.
Definition 1. Given a program Π [a CNF formula Φ] and
a set of transition rules T , we say that an abstract solver
graph G(Π, T) [G(Φ, T)] solves cautious reasoning [back-
bone computation], if (i) G(Π, T) [resp., G(Φ, T)] is finite
and no cycle is reachable; and (ii) the unique terminal reach-
able state is Ok(cautious(Π)) [resp., Ok(backbone(Π))].

3 Abstract Solvers for Cautious Consequences
In this section, without loss of generality, we focus on the
computation of cautious consequences for an ASP program.

Oracle ∅O,U,A,P =⇒ LO,U,A,P if
{

L ∈ AS(P), or AS(P) = ∅ and L = lit(atoms(P))

Failover LO,U,over,P =⇒ Cont(O,O) if
{
L is inconsistent

Return Failunder LO,U,underS ,P =⇒ Cont(O,U ∪ S) if
{
L is inconsistent, and S = ∅ or S = {a}

rules Failchunk LO,U,chunkN ,P =⇒ Cont(O,U ∪N) if
{
L is inconsistent

Find LO,U,A,P =⇒ Cont(O ∩ L,U) if
{
L is consistent and L 6= ∅

Terminal Cont(O,U) =⇒ Ok(O) if
{
O = U

Control OverApprox Cont(O,U) =⇒ ∅O,U,over,P if
{
O 6= U

rules UnderApprox Cont(O,U) =⇒ ∅O,U,under{a},P if
{
a ∈ O \ U

Chunk Cont(O,U) =⇒ ∅O,U,chunkN ,P if
{
N ⊆ O \ U and N 6= ∅

Figure 1: Transition rules for over-approximation, under-approximation, and chunking.

In the following we assume that all abstract solvers share the
same general structure. In particular, given a program Π,
over-approximation O is set to atoms(Π), while the under-
approximation U is empty. Note that U ⊆ cautious(Π) ⊆ O.
Iteratively either under-approximation or over-approximation
are applied. When U = O, the set of cautious consequences,
O, has been found and the computation terminates. It means
that the state Ok(O) is a reachable state. Hence, the full ex-
tent of states relative to X becomes useful. The unique ter-
minal state is Ok(W), where W = cautious(Π).

3.1 Solving Techniques
In this section, we report three techniques, namely over-
approximation, under-approximation, and chunking.
Over-approximation. We set A(atoms(Π)) = {over},
and P = Π ∪ {← O}. The initial state is ∅atoms(Π),∅,over,P .
We set ov = {Failover ,Find ,Terminal ,OverApprox} (see
Figure 1), and OS(Π) = (Vatoms(Π), {Oracle} ∪ ov). Intu-
itively, Failover means that a call to an oracle did not find an
answer set, so O is the solution. If Find is triggered, instead,
we go to a control state where O is updated according to the
answer set found: then, if O = U a solution is found through
Terminal , otherwise the search is restarted (L = ∅) in an or-
acle state with OverApprox . Thus, in OS(Π), the oracle is
called to find answer sets that reduce the over-approximation
O in the over action, unless no answer set exists. If an answer
set M is found, then M ∩O 6= ∅, as P = Π ∪ {← O}.
Under-approximation. Let A(atoms(Π)) = {under∅} ∪
{under{a} | a ∈ atoms(Π)}, let P = Π ∪ {← a},
if A = under{a}, and P = Π, if A = under∅.
The initial state is ∅atoms(Π),∅,under∅,P . We set un =
{Failunder ,Find ,Terminal ,UnderApprox} (see Figure 1),
and US(Π) = (Vatoms(Π), {Oracle} ∪ un). Intuitively,
Failunder updates over- and under-approximations in case a
test on the atom a failed, and leads to a control state, while
UnderApprox restarts a new test if Find is not applicable. In
US(Π), again, a first oracle call takes place with the action
under∅, which provides first over-approximation, then calls
with actions under{a}, where a is the tested atom.

Chunking. In [Janota et al., 2015] a more general tech-
nique for under-approximation that allows to test multiple lit-
erals at once is presented. Let A(atoms(Π)) = {chunkN |

N ⊆ atoms(Π)}, and P = Π ∪ {← N}, if A =
chunkN . The initial state is ∅atoms(Π),∅,chunk∅,P . Let
ch = {Failchunk ,Find ,Terminal ,Chunk} (see Figure 1)
and CS(Π) = (Vatoms(Π), {Oracle} ∪ ch). In particular,
Failchunk updates the over- and under-approximations ac-
cordingly in case the test on the set N fails (the ASP ora-
cle call failed, thus all literals in N must be cautious con-
sequences), and goes to a control state. Meanwhile, Chunk
restarts a new ASP oracle call with a new (nonempty) set N
such that N ⊆ O \U in case the computation must continue.

3.2 Designing New Abstract Solvers
The composition of techniques described so far can be ap-
plied to computing cautious consequences of a program, but
actually is not included in any solver. This outlines another
important feature of the abstract solvers methodology, i.e., its
capability to design new solutions by combining techniques
implemented in different solvers. We can mix techniques
from Section 3.1 to compute either cautious consequences or
backbones.
Theorem 1. Let Π be a program, and S ⊆ {ov , un, ch}
s.t. S 6= ∅. Then, (Vatoms(Π), {Oracle} ∪

⋃
x∈S x) solves

cautious reasoning and backbone computation.
Core-based Methods. We now model core-based algo-
rithms from [Janota et al., 2015] in terms of abstract solvers,
in particular Algorithm 6, and apply it to the compu-
tation of cautious consequences of ASP programs. Let
A(atoms(Π)) = {coreN | N ⊆ lit(atoms(Π))}, and P
= Π ∪ {← l|l ∈ N}, if A = coreN . The initial state is
∅atoms(Π),∅,core

atoms(Π)
,P . Moreover, given a logic program

Π, we say that a set C ⊆ lit(atoms(Π)) is a core of Π, if
Π ∪ {← l|l ∈ C} is incoherent. By cores(Π) we denote the
set of all cores of Π. Cores have two important properties:
(1) if C is a core, then all of its supersets are also cores; (2)
p ∈ atoms(Π) is a cautious consequence of Π iff {¬p} is a
core. To define an abstract solver graph, we start with the rule
CoreOracle ∅O,U,coreN ,P =⇒ LO,U,coreN ,P

if {L ∈ AS(P), or L ∈ cores(P) and L ⊆ N.

It represents an oracle call to compute a set of literals L,
which is a core of P and a subset of N , whenever P is in-
coherent; and an answer set of P , otherwise. Then, we intro-
duce two intermediate control states, namely PreN and Eval .

Moreover, we introduce the following set of return rules:
Fail1pre LO,U,coreN ,P =⇒ PreN\L(O,U ∪ L̄)

if
{

AS(P) = ∅ and |L| = 1
Fail2pre LO,U,coreN ,P =⇒ PreN\L(O,U)

if
{

AS(P) = ∅ and |L| > 1
Findpre LO,U,coreN ,P =⇒ Eval(O ∩ L,U)

if
{

AS(P) 6= ∅ and L 6= ∅
and the following set of control rules:
Main PreN (O,U) =⇒ Cont(O,U) if

{
N = ∅

Continue PreN (O,U) =⇒ ∅O,U,coreN ,P if
{

N 6= ∅
NewSet Eval(O,U) =⇒ ∅O,U,core

O
,P if

{
O 6= U

Final Eval(O,U) =⇒ Ok(O) if
{

O = U

Let in be the set of rules defined above, and let FS (Π) =
(Vatoms(Π), in), which represents Algorithm 6 in [Janota et
al., 2015]. In particular, PreN is reached in case of inconsis-
tency, where N is the set of literals that may be used for the
potential upcoming core action; and Eval is reached in case
of consistency. From an outermost state Eval , a new core is
started with NewSet , whenever there is a gap between over-
and under-approximation; otherwise, Final leads to the ter-
minal state. Fail1

pre and Fail2
pre lead to the intermediate type

of control state, PreN , that can either restart a core action
with Continue, or continue with the Main rule.
Theorem 2. Let Π be a program. Then, the only reachable
terminal states are either Cont(O,U) or Ok(O), for some
O,U ⊆ atoms(Π): (i) if Ok(O) is reachable, then FS(Π)
solves cautious reasoning; (ii) if Cont(O,U) is reachable,
then U ⊆ cautious(Π) ⊆ O.

Chunking and core-based methods can be combined using
our methodology to abstract Algorithm 7 from [Janota et al.,
2015]. Such a combination will be used in the experiments.

4 Experimental Analysis
The abstract solvers reported in this paper have been used
for implementing several algorithms in WASP [Alviano et al.,
2015; Alviano et al., 2019], resulting in two new versions of
WASP, namely WASP-CHUNK, i.e., WASP running the algo-
rithm based on chunking, and WASP-CB, i.e., WASP running
the algorithm based on cores. Both versions can limit the size
of the chunk, reported in the following using the suffixes -2
and -20% representing that the size of the chunk is set to 2
and to the 20% of the number of atoms, respectively.

The performance of these versions of WASP was mea-
sured on the benchmarks considered in [Alviano et al., 2018],
which includes (i) all the 193 instances from the latest ASP
Competitions [Gebser et al., 2017] involving non-ground
queries; (ii) 115 instances of ASP Competitions classified as
easy, that is, those for which a stable model is found within
20 seconds of computation by mainstream ASP systems.

As a reference to the state of the art, we report the per-
formance of CLASP [Gebser et al., 2012], which implements
algorithm OR (i.e., over-approximation), and the best per-
forming algorithms implemented by WASP [Alviano et al.,
2014; Alviano et al., 2018], namely OR, ICT (i.e., under-
approximation), OPT, and CM. We refer the reader to [Al-
viano et al., 2014; Alviano et al., 2018], for a detailed de-
scription of such algorithms.

20 40 60 80 100 120 140 160 180 200
0

150

300

450

600

Number of solved instances

Pe
r-

in
st

an
ce

tim
e

lim
it

(s
)

CLASP
WASP-OR
WASP-ICT
WASP-CM
WASP-OPT

WASP-CHUNK-20%
WASP-CHUNK-2
WASP-CB

WASP-CB-20%
WASP-CB-2

Figure 2: Benchmark (i): Performance comparison on non-ground
queries in ASP Competitions.

15 20 25 30 35 40 45 50 55
0

150

300

450

600

Number of solved instances z
Pe

r-
in

st
an

ce
tim

e
lim

it
(s

)

CLASP
WASP-OR
WASP-ICT
WASP-CM
WASP-OPT

WASP-CHUNK-20%
WASP-CHUNK-2
WASP-CB

WASP-CB-20%
WASP-CB-2

Figure 3: Benchmark (ii): Performance comparison on computation
of cautious consequences for easy instances of ASP Competitions.

Results are shown in the cactus plots of Figure 2 and Fig-
ure 3, where for each algorithm the number of solved in-
stances in a given time is reported, producing an aggregated
view of its overall performance.

Concerning benchmark (i), we observe that WASP cannot
reach the performance of CLASP on the execution of algo-
rithm OR, and indeed CLASP solved 41 instances more than
WASP-OR. However, a better performance is obtained by
WASP-CB-20% and by WASP-OPT, which actually solve 13
instances more than CLASP. Moreover, we observe that even
a small size of the chunk may influence the performance of
the algorithms. Indeed, WASP-CB solves 13 instances more
than WASP-CB-2. Finally, we observe that WASP-CHUNK-
20% and WASP-CHUNK-2 are not competitive to algorithms
based on cores.

Concerning benchmark (ii), we observe that CLASP is the
best performing solver solving 53 instances. If we focus on
WASP, the best performance is obtained by WASP-CHUNK-
2, WASP-OR, WASP-CM, and WASP-CHUNK-20% which are
able to solve 41, 41, 41, and 40 instances, respectively. More-
over, WASP-CB cannot reach the same performance on this
benchmark, solving only 25 instances, whereas WASP-CB-
20% and WASP-CB-2 solve 37 and 39 instances, respectively.

5 Conclusion
In this paper we modeled through abstract solvers advanced
techniques for solving cautious reasoning tasks in ASP. We
also designed new solving procedures, and implemented
them in WASP. The results of the experiments showed that our
implementation is competitive to state-of-the-art approaches.

References
[Alviano et al., 2014] Mario Alviano, Carmine Dodaro, and

Francesco Ricca. Anytime computation of cautious con-
sequences in answer set programming. Theory Pract. Log.
Program., 14(4-5):755–770, 2014.

[Alviano et al., 2015] Mario Alviano, Carmine Dodaro,
Nicola Leone, and Francesco Ricca. Advances in WASP.
In Proc. of LPNMR, volume 9345 of Lecture Notes in
Computer Science, pages 40–54. Springer, 2015.

[Alviano et al., 2018] Mario Alviano, Carmine Dodaro,
Matti Järvisalo, Marco Maratea, and Alessandro Previti.
Cautious reasoning in ASP via minimal models and unsat-
isfiable cores. Theory Pract. Log. Program., 18(3-4):319–
336, 2018.

[Alviano et al., 2019] Mario Alviano, Giovanni Amendola,
Carmine Dodaro, Nicola Leone, Marco Maratea, and
Francesco Ricca. Evaluation of disjunctive programs in
WASP. In Proc. of LPNMR, volume 11481 of Lecture
Notes in Computer Science, pages 241–255. Springer,
2019.

[Amendola et al., 2019] Giovanni Amendola, Carmine Do-
daro, and Marco Maratea. Abstract solvers for computing
cautious consequences of ASP programs. Theory Pract.
Log. Program., 19(5-6):740–756, 2019.

[Arenas et al., 2003] Marcelo Arenas, Leopoldo E. Bertossi,
and Jan Chomicki. Answer sets for consistent query an-
swering in inconsistent databases. Theory Pract. Log. Pro-
gram., 3(4-5):393–424, 2003.

[Brewka and Eiter, 2007] Gerhard Brewka and Thomas
Eiter. Equilibria in heterogeneous nonmonotonic multi-
context systems. In Proc. of AAAI, pages 385–390. AAAI
Press, 2007.

[Brochenin and Maratea, 2015a] Rémi Brochenin and
Marco Maratea. Abstract answer set solvers for cautious
reasoning. In Proc. of ICLP, volume 1433 of CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

[Brochenin and Maratea, 2015b] Rémi Brochenin and
Marco Maratea. Abstract solvers for quantified boolean
formulas and their applications. In Proc. of AI*IA, volume
9336 of Lecture Notes in Computer Science, pages
205–217. Springer, 2015.

[Brochenin et al., 2014] Remı̀ Brochenin, Yuliya Lierler,
and Marco Maratea. Abstract disjunctive answer set
solvers. In Proceedings of ECAI 2014, volume 263 of
Frontiers in Artificial Intelligence and Applications, pages
165–170. IOS Press, 2014.

[Eiter et al., 2008] Thomas Eiter, Giovambattista Ianni,
Thomas Lukasiewicz, Roman Schindlauer, and Hans Tom-
pits. Combining answer set programming with descrip-
tion logics for the semantic web. Artif. Intell., 172(12-
13):1495–1539, 2008.

[Eiter, 2005] Thomas Eiter. Data integration and answer set
programming. In Proc. of LPNMR, volume 3662 of Lec-
ture Notes in Computer Science, pages 13–25. Springer,
2005.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[Gebser et al., 2017] Martin Gebser, Marco Maratea, and
Francesco Ricca. The sixth answer set programming
competition. Journal of Artificial Intelligence Research,
60:41–95, 2017.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Proc. of ICLP/SLP, pages
1070–1080, Cambridge, Mass., 1988. MIT Press.

[Janota et al., 2015] Mikolás Janota, Inês Lynce, and Joao
Marques-Silva. Algorithms for computing backbones of
propositional formulae. AI Comm., 28(2):161–177, 2015.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV system for knowledge rep-
resentation and reasoning. ACM TOCL, 7(3):499–562,
2006.

[Lierler and Truszczynski, 2011] Yuliya Lierler and
Miroslaw Truszczynski. Transition systems for model
generators — a unifying approach. Theory Pract. Log.
Program., 11(4-5):629–646, 2011.

[Lierler, 2011] Yuliya Lierler. Abstract answer set solvers
with backjumping and learning. Theory Pract. Log. Pro-
gram., 11:135–169, 2011.

[Lierler, 2014] Yuliya Lierler. Relating constraint answer
set programming languages and algorithms. Artif. Intell.,
207:1–22, 2014.

[Manna et al., 2013] Marco Manna, Francesco Ricca, and
Giorgio Terracina. Consistent query answering via ASP
from different perspectives: Theory and practice. Theory
Pract. Log. Program., 13(2):227–252, 2013.

[Nieuwenhuis et al., 2006] Robert Nieuwenhuis, Albert
Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). Journal of
the ACM, 53(6):937–977, 2006.

	Introduction
	Preliminaries
	Boolean Formulas and Answer Set Programs
	Abstract Solvers

	Abstract Solvers for Cautious Consequences
	Solving Techniques
	Designing New Abstract Solvers

	Experimental Analysis
	Conclusion

