
Artificial Intelligence 279 (2020) 103193
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Design and results of the Second International Competition on

Computational Models of Argumentation ✩

Sarah A. Gaggl a, Thomas Linsbichler b, Marco Maratea c,∗, Stefan Woltran b

a Faculty of Computer Science, TU Dresden, Germany
b Faculty of Informatics, TU Wien, Austria
c Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2018
Received in revised form 2 August 2019
Accepted 25 October 2019
Available online 6 November 2019

Keywords:
Abstract argumentation
Solver competition
Computational logic

Argumentation is a major topic in the study of Artificial Intelligence. Since the first edition
in 2015, advancements in solving (abstract) argumentation frameworks are assessed in
competition events, similar to other closely related problem solving technologies. In this
paper, we report about the design and results of the Second International Competition on
Computational Models of Argumentation, which has been jointly organized by TU Dresden
(Germany), TU Wien (Austria), and the University of Genova (Italy), in affiliation with the
2017 International Workshop on Theory and Applications of Formal Argumentation. This
second edition maintains some of the design choices made in the first event, e.g. the I/O
formats, the basic reasoning problems, and the organization into tasks and tracks. At the
same time, it introduces significant novelties, e.g. three additional prominent semantics,
and an instance selection stage for classifying instances according to their empirical
hardness.

© 2019 Published by Elsevier B.V.

1. Introduction

Computational Argumentation is a multidisciplinary area at the intersection of Philosophy, Artificial Intelligence (AI),
Linguistics, Psychology, and several application domains [11]. Within AI, several subfields are particularly relevant to –
and benefit from – studies of argumentation. These include decision support, knowledge representation, nonmonotonic
reasoning, and multiagent systems. Moreover, computational argumentation provides a formal investigation of problems that
have been studied informally only by philosophers, and which consequently allow for the development of computational
tools for argumentation, see [4].

Since its invention by Dung [32], abstract argumentation based on argumentation frameworks (AFs) has become a key
concept for the field. In AFs, argumentation scenarios are modeled as simple directed graphs, where the vertices represent
arguments and each edge corresponds to an attack between two arguments. Besides its simplicity, there are several reasons
for the success story of this concept: First, a multitude of semantics [8,9] allows for tight coupling of argumentation with

✩ This paper is an extended and revised version of a paper presented at the First International Workshop on Systems and Algorithms for Formal
Argumentation [46], which included the design of the event before the competition was run. A brief survey of the competition is to be published in
AI Magazine [47].

* Corresponding author.
E-mail addresses: sarah.gaggl@tu-dresden.de (S.A. Gaggl), linsbich@dbai.tuwien.ac.at (T. Linsbichler), marco@dibris.unige.it (M. Maratea),

woltran@dbai.tuwien.ac.at (S. Woltran).
https://doi.org/10.1016/j.artint.2019.103193
0004-3702/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.artint.2019.103193
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:sarah.gaggl@tu-dresden.de
mailto:linsbich@dbai.tuwien.ac.at
mailto:marco@dibris.unige.it
mailto:woltran@dbai.tuwien.ac.at
https://doi.org/10.1016/j.artint.2019.103193
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.103193&domain=pdf

2 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
existing formalisms from the areas of knowledge representation and logic programming; indeed, one of the main moti-
vations of Dung’s work [32] was to give a uniform representation of several nonmonotonic formalisms including Reiter’s
Default Logic, Pollock’s Defeasible Logic, and Logic Programming (LP) with default negation; the latter lead to a series of
works that investigated the relationship between different LP semantics and different AF semantics, see e.g. [20,79]. Second,
abstract argumentation is employed as a core method in advanced argumentation formalisms like ASPIC+ [62] or the ABA
framework [29]; in particular, semantics for such formalisms are often defined via a representation that makes use of AFs,
and moreover, some of the systems implementing ASPIC+ or ABA rely on efficient solvers for abstract argumentation. Con-
sequently, an increasing amount of work has been focused on the development of efficient algorithms and systems for AFs,
see [27] for a survey.

Given this development, it was soon recognized that there is a need for systematic benchmarking in order to have a solid
comparison of the different methods and systems that have been proposed. This is witnessed by a number of papers on the
topic, e.g. [13,14,25,75] and cumulated in the creation and organization of the International Competition on Computational
Models of Argumentation (ICCMA). The first edition took place in 2015 and focused on four prominent semantics; 18 solvers
were competing in this event, see [71,72] for details.

In this report, we present the design and results of the Second International Competition on Computational Models
of Argumentation (ICCMA’17),1 which has been jointly organized by TU Dresden (Germany), TU Wien (Austria), and the
University of Genova (Italy), in affiliation with the 2017 International Workshop on Theory and Applications of Formal
Argumentation (TAFA’17). ICCMA’17 has been conducted in the first half of 2017, and comes two years after the first edition.

The general goal of this competition is to consolidate and strengthen the ICCMA series, which in its first edition had
very good outcomes in some respects, e.g. in terms of the number of submitted solvers (18, as already mentioned above).
The second edition maintains some of the design choices previously made, e.g. the I/O formats and the basic reasoning
problems. With a slight modification to the first edition, the competition is organized into tasks and tracks, where a task
is a reasoning problem under a particular semantics, and a track collects different tasks over a semantics. ICCMA’17 also
introduces several novelties: (i) a new scoring scheme is implemented for better reflecting the solvers’ behavior, (ii) three
new semantics are included, namely semi-stable, stage and ideal semantics, (iii) a special “Dung’s Triathlon” track is added,
where solvers are required to deal with different problems simultaneously, with the goal of testing the solvers’ capability of
exploiting interrelationships among semantics, and (iv) a “call for benchmarks” has been performed, to enrich the suite of
instances for the competition, followed by a novel instance selection stage.

In addition to the report of the competition, we also compare in this article the performance of the ICCMA’15 winning
systems to the current leaders.

Besides its importance for the argumentation community, the ICCMA series is also of interest for researchers beyond this
field. This is due to the following two reasons:

• Solvers need to handle a variety of different semantics which range over different levels of complexity; in ICCMA’17 we
put even more emphasis on this rather unique feature by the introduction of the Dung’s triathlon, where the systems
are required to solve problems situated at three different complexity layers, preferably exploiting interrelationships
between these problems. (We note that problems of different complexity are also present in other competitions, e.g. in
Quantified Satisfiability (QBF) or in Answer Set Programming (ASP) competitions, see [17,50,65]; however, the situation
is more challenging in argumentation since the diverse complexity actually stems from the different semantics which
require different computational tasks including subset-maximization, fixed-point computations, etc.)

• Given the range of submitted solvers, we see a great variety of approaches. In particular, various methods including
(different forms of) reductions to SAT, ASP, constraint satisfaction, and circumscription are employed in the submitted
systems. Thus, ICCMA also provides (to a certain extent) an interdisciplinary comparison between different reasoning
paradigms in AI.2

The report is structured as follows. Section 2 introduces preliminaries about abstract argumentation, with focus on the
semantics evaluated in the competition. Then, Section 3 presents the design of the competition. Section 4 and 5 are devoted
to the description of the benchmark suite employed in the competition, and the instance selection process, respectively.
Section 6 then presents the participating solvers. The results of the competition, with respective award winners, are then
presented in Section 7. The report ends in Section 8 with a discussion on how the novelties introduced are treated in related
competitions, and in Section 9 with conclusions and final remarks.

2. Background

An abstract argumentation framework (AF, for short) is a tuple F = (A, →) where A is a set of arguments and → is a
relation → ⊆ A × A [32]. For two arguments a, b ∈ A the relation a → b means that argument a attacks argument b. An

1 http://argumentationcompetition .org /2017/.
2 It has to be mentioned that this not a completely new phenomenon. For instances, SAT-based approaches competed in ASP competitions, see, e.g. [52],

and likewise, an ASP-based approach for 2-QBF solving participated [2] to the 2016 QBF evaluation.

http://argumentationcompetition.org/2017/

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 3
a b c d

e f

g h

Fig. 1. An argumentation framework.

argument a ∈ A is defended by S ⊆ A (in F) if for each b ∈ A such that b → a there is some c ∈ S such that c → b. A set
E ⊆ A is conflict-free (in F) if and only if there are no a, b ∈ E with a → b. E is admissible (in F) if and only if it is conflict-free
and each a ∈ E is defended by E . Finally, the range of E (in F) is given by E+

F = E ∪ {a ∈ A | ∃b ∈ E : b → a}.
Semantics are used to determine sets of jointly acceptable arguments by mapping each AF F = (A, →) to a set of exten-

sions σ(F) ⊆ 2A . The extensions under complete (CO), preferred (PR), stable (ST), semi-stable (SST) [19], stage (STG) [77],
grounded (GR) and ideal (ID) [33] semantics are defined as follows. Given an AF F = (A, →) and a set E ⊆ A,

• E ∈ CO(F) iff E is admissible in F and if a ∈ A is defended by E then a ∈ E ,
• E ∈ PR(F) iff E ∈ CO(F) and there is no E ′ ∈ CO(F) s.t. E ′ ⊃ E ,
• E ∈ ST(F) iff E ∈ CO(F) and E+

F = A,
• E ∈ SST(F) iff E ∈ CO(F) and there is no E ′ ∈ CO(F) s.t. E ′ +

F ⊃ E+
F ,

• E ∈ STG(F) iff E is conflict-free in F and there is no E ′ such that E ′ is conflict-free in F and E ′ +
F ⊃ E+

F ,
• E ∈ GR(F) iff E ∈ CO(F) and there is no E ′ ∈ CO(F) s.t. E ′ ⊂ E ,
• E ∈ ID(F) iff E is admissible in F , E ⊆ ⋂

PR(F) and there is no E ′ ⊆ ⋂
PR(F) s.t. E ′ is admissible in F and E ′ ⊃ E .

For more discussion on these semantics we refer to Baroni et al. [8].
Note that both grounded and ideal extensions are uniquely determined and always exist [32,33]. Thus, they are also

called single-status semantics. The other semantics introduced are multi-status semantics. That is, there is not always a
unique extension induced by the semantics. For all semantics except stable semantics, there always exists at least one
extension, whereas the set of stable extensions can be empty. If the set of stable extensions is non-empty, it coincides with
the set of semi-stable extensions and with the set of stage extensions, i.e. ST(F) = SST(F) = STG(F) whenever ST(F) �= ∅.

Example 1. To illustrate the semantics, consider the following AF:

F = ({a,b, c,d, e, f , g,h},
{(a,b), (b,a), (b, c), (c,d), (d, e), (d, g), (e, c), (e, f), (f , f), (g, g), (g,h), (h, g)}).

F is depicted in Fig. 1, where nodes represent arguments and directed edges represent attacks. First, the conflict-free sets
of F are as follows:

{∅, {a}, {b}, {c}, {d}, {e}, {h}, {a, c}, {a,d}, {a, e}, {a,h}, {b,d}, {b, e},
{b,h}, {c,h}, {d,h}, {e,h}, {a, c,h}, {a,d,h}, {a, e,h}, {b,d,h}, {b, e,h}}.

Note that no set containing f or g can be conflict-free, since both f and g are self-attacking. Among the conflict-free sets,
the following sets are admissible:

{∅, {a}, {b}, {h}, {a,h}, {b,d}, {b,h}, {b,d,h}}.
The conflict-free set {a, d}, for instance, is not admissible since d is attacked by c in F , but {a, d} does not attack c, i.e. it
does not defend d.

For stable semantics, it can be checked that there is no conflict-free set of arguments in F attacking all other arguments,
hence:

ST(F) = ∅.

The complete extensions of F are those admissible sets which do not defend any argument not contained in the set:

CO(F) = {∅, {a}, {h}, {a,h}, {b,d,h}}.
For instance, the admissible set {b, d} is not complete since it defends h. As no argument of F is unattacked, the grounded
extension is empty:

GR(F) = {∅}.

4 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Table 1
Complexity of reasoning with AFs. C -c means that the problem is complete for class C .

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ Enumσ

CO NP-c P-c in L trivial NP-c nOP
PR NP-c ΠP

2 -c coNP-c trivial NP-c nOP
ST NP-c coNP-c in L NP-c NP-c nOP
GR P-c P-c P-c trivial in L in DelayP

STG ΣP
2 -c ΠP

2 -c coNP-c trivial in L nOP

SST ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c nOP

ID in ΘP
2 in ΘP

2 in ΘP
2 trivial in ΘP

2 nOP

The preferred extensions are just the ⊆-maximal admissible sets, which always coincide with the ⊆-maximal complete
extensions:

PR(F) = {{a,h}, {b,d,h}}.
The semi-stable and stage extensions of F are given as follows:

SST(F) ={{b,d,h}}.
STG(F) ={{a, e,h}, {b, e,h}, {b,d,h}}.

Finally, {h} = ⋂
PR(F) and {h} is admissible, hence

ID(F) = {{h}}.
In order to reason with multi-status semantics, usually, one takes either a credulous or skeptical perspective.
Given a semantics3 σ ∈ {CO, PR, ST, SST, STG, GR, ID}, we thus define the following decision problems:

• Credσ : Given an AF F = (A, →) and argument a ∈ A, a is credulously accepted in F under semantics σ if there is a
σ -extension E ∈ σ(F) with a ∈ E;

• Skeptσ : Given an AF F = (A, →) and argument a ∈ A, a is skeptically accepted in F with semantics σ if for all
σ -extensions E ∈ σ(F) it holds that a ∈ E .

Recall that stable semantics is the only case where an AF might possess no extension. In such a situation, each argument
is defined to be skeptically accepted.

Further reasoning problems for any semantics σ are defined as follows:

• Verσ : Given an AF F = (A, →) and a set of arguments S ⊆ A, decide whether S ∈ σ(F).
• Existsσ : Given an AF F = (A, →), decide whether there exists an S ∈ σ(F).
• Exists¬∅

σ : Given an AF F = (A, →), decide whether there exists an S ∈ σ(F) with S �= ∅.
• Enumσ : Given an AF F = (A, →), enumerate the set σ(F).

Complexity of reasoning problems under the various semantics has been studied in [19,31,35,36,39,58]. The most recent
survey can be found in [38]. Table 1 provides an overview. We thereby assume familiarity with basic concepts such as
completeness and the polynomial hierarchy (see [3] for more details). The class ΘP

k is a refinement of the class ΔP
k : it

contains the problems that can be decided in polynomial time by a deterministic Turing machine with at most O(log m)

calls to a ΣP
k−1 oracle, where m is the input size. By nOP we denote that the enumeration problem is not contained in the

class OutputP (also called TotalP), i.e. it is not solvable in polynomial time in the size of the input and the output [57,69].4

Containment in DelayP on the other hand means that the extensions can be enumerated with a delay which is polynomial
in the size of the input.

3. Format of ICCMA’17

This section presents the main design of the competition. The competition is organized into tracks, which are divided
into tasks. Two sub-sections are devoted to their definitions. A third sub-section then presents the scoring system, which
changed from ICCMA’15 in order to focus more on correctness of answers. Related to this issue, a fourth sub-section outlines
how we verified correctness of answers. Finally, information about I/O requirements is given.

3 For the sake of uniformity, we include here also the single-status semantics GR, ID; clearly, in this case credulous and skeptical acceptance coincides.
4 Note that the result for ID is not published, but immediate by the fact that VerID is coNP-complete [34] and therefore the ideal extension is not

computable in polynomial time.

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 5
3.1. Tasks

A task is a reasoning problem under a particular semantics. We consider the semantics CO, PR, ST, and GR which have
already been employed in the first edition, and additionally the semantics SST, STG, and ID; the motivation to add these
three semantics is due to the fact that their complexity differs from the semantics already considered. Following ICCMA’15
we consider four different problems:

DC-σ : Given F = (A, →) and a ∈ A, decide whether a is credulously accepted in F under σ ,
DS-σ : Given F = (A, →) and a ∈ A, decide whether a is skeptically accepted in F under σ ,
SE-σ : Given F = (A, →), return some set E ⊆ A that is a σ -extension of F ,
EE-σ : Given F = (A, →), enumerate all sets E ⊆ A that are σ -extensions of F ,

for the seven semantics σ ∈ {CO, PR, ST, SST, STG, GR, ID}.
For single-status semantics (GR and ID) some problems collapse, i.e. SE and EE require to compute the unique extension;

and DC and DS are equivalent. Thus, for GR and ID only the problems SE and DC are considered. At this point, we also
recall the well known fact that DS-CO coincides with DC-GR and DC-PR coincides with DC-CO.

The combination of problems with semantics amounts to a total number of 24 tasks.

3.2. Tracks

All tasks for a particular semantics constitute a track. Therefore, there is one track for each semantics.
Moreover, the competition features an eighth special track, the Dung’s Triathlon. It is named after Phan Minh Dung, and

involves enumerating three of the main semantics (grounded, stable, and preferred) from his seminal paper [32]. The aim
of this track is to evaluate solvers also with respect to their capability of exploiting interrelationships between different
semantics.

More concretely, the problem to solve in this track is defined as follows:

D3: Given F = (A, →), enumerate
• all sets E ⊆ A that are GR-extensions5 of F , followed by
• all sets E ⊆ A that are ST-extensions of F , followed by
• all sets E ⊆ A that are PR-extensions of F .

3.3. Scoring system

Each solver can compete in an arbitrary set of tasks. If a solver supports all tasks of a track, it also participates in the
track.

To compute the score for a solver, we start by defining the number of points a solver can get for each instance:

• 1 point, if it delivers a correct result;
• −5 points, if it delivers an incorrect result; or
• 0 points otherwise.

The precise understanding of what is a correct, or an incorrect, answer will be given in the next sub-section. Here, we
focus on explaining how the solvers are ranked.

But before going into these details, we would like to stress a difference to ICCMA’15: in this edition wrong answers are
penalized, while in ICCMA’15 they were treated as being neither correct nor incorrect, and got 0 points. The objective, as
already stated before, is to put focus on solvers’ correctness.

The score of a solver for a particular task is the sum of points over all instances. The ranking of solvers for a task is then
based on the scores in descending order. Ties between solvers with the same score are broken by the total time it took the
solver to return correct results.

The ranking of solvers for a track is based on the sum of scores over all tasks of the track, where each task is guaranteed
to have the same impact on the evaluation of the track by all having the same number of instances (see Section 5 for details
about the number of instances). Again, ties are broken by the total time it took the solver to return correct results.

As far as the Dung’s triathlon is concerned, scoring and ranking follow the same method as for the single tasks.

3.4. Verification of answers

In this sub-section we discuss how the solvers’ answers have been verified. Before going into the details, in the following
we precisely define the concepts of correct and incorrect answers:

5 Although grounded semantics is a single-status semantics, we treat it here like a multi-status semantics for the sake of uniformity.

6 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
• DC-σ (resp. DS-σ): if the queried argument is credulously (resp. skeptically) accepted in the given AF under σ , the
result is correct if it is YES and incorrect if it is NO; if the queried argument is not credulously (resp. not skeptically)
accepted in the given AF under σ , the result is correct if it is NO and incorrect if it is YES.

• SE-σ : the result is correct if it is a σ -extension of the given AF and incorrect if it is a set of arguments that is not a
σ -extension of the given AF. If the given AF has no σ -extensions, then the result is correct if it is NO and incorrect if it
is any set of arguments.

• EE-σ : the result is correct if it is the set of all σ -extensions of the given AF and incorrect if it contains a set of arguments
that is not a σ -extension of the given AF.

• D3: the result is correct if it is the set of all GR-extensions, followed by the set of all ST-extensions, followed by the set
of all PR-extensions, and incorrect if the first set contains a set of arguments that is not the GR-extension, the second
set contains a set of arguments that is not a ST-extension, or the third set contains a set of arguments that is not a
PR-extension.

Intuitively, a result is neither correct nor incorrect (and therefore gets 0 points) if (i) it is empty (e.g. the timeout was
reached without answer) or (ii) it is not parsable with respect to the required output format (e.g. due to some unexpected
error message). For EE-σ there is also the case that the result (iii) contains σ -extensions, but not all of them. Case (iii)
applies also to the Dung’s triathlon, recursively on the three sub-problems.

To verify the correctness of results, we employ the following checking procedure. First, we generate reference solutions
by running ASPARTIX-D [41,48], extended by the encodings for the new semantics,6 on all benchmarks selected for the
competition (see Section 5). For the instances that ASPARTIX-D is able to solve, we compare the solutions with the reference
solutions in order to assess correctness. For the other instances, we then use dedicated ASP encodings to check single
extensions (available at http://argumentationcompetition .org /2017 /SE _encodings .zip) to verify answers for the SE and EE
reasoning problems. These ASP encodings are directly derived from the ASPARTIX encodings – the part for guessing an
extension is replaced by the given extension which is to be checked. For the other tasks as well as these cases where also
checking all single extensions was not feasible, we then consider the solution provided by the majority of solvers as correct
(other solutions could always be checked to be wrong though). The detailed number of uniquely solved instances by a
certain solver will be given in Section 7, also including the number of instances for each track and solver which could not
be verified. In total only approx. 0.1% out of the 105350 solutions could not be verified and thus have been rated with 1
point. In none of the tracks these had an influence on the ranking of the solvers.

3.5. Solver requirements

Participant systems were required to support the same input-output format as used in 2015. Details on the input and
output formats can be found in [54].

4. Benchmark suite

In this section we outline the benchmark suite available for ICCMA’17, which has been the starting point for the selection
phase (described in the next section). The suite is composed both by domains employed in ICCMA’15 and by new domains,
the latter received in response to a dedicated call for benchmarks. The next two sub-sections are devoted to the presentation
of these two sets of domains.

4.1. Previous domains

ICCMA’15 introduced three new AF generators, called GroundedGenerator, StableGenerator, and SccGenerator, each of
them aiming to produce challenging AFs addressing certain aspects of computational difficulty. They have been imple-
mented [24] and employed to generate the AFs that constituted the benchmark suite of ICCMA’15. In the following, we
briefly describe the generators, but refer to [71] for more details.

GroundedGenerator This generator aims at producing AFs with large grounded extensions. It takes the number of argu-
ments n and probability probAttacks as parameters, linearly orders the arguments and adds an attack from
argument a to argument b in case a < b with probability probAttacks. Finally, it adds random attacks between
the arguments not yet connected and the graph component obtained in the first part.

SccGenerator This generator aims at producing AFs such that the graph features many Strongly Connected Components
(SCCs). It first partitions the arguments (the number of which is given by parameter n) into nSCCs (also given

6 The ICCMA’15 version can be found at https://iccl .inf .tu -dresden .de /web /Sarah _Alice _Gaggl /ASPARTIX-D; the additional encodings are available at
https://www.dbai .tuwien .ac .at /proj /argumentation /systempage. The choice of this particular solver is due to (i) its declarative nature, (ii) its good results in
2015, (iii) the fact that it is “third-party” in 2017 given that it does not participate, and (iv) its reputation in the community (“state of the art of ASP-based
solvers” Bistarelli et al. [12]).

http://argumentationcompetition.org/2017/SE_encodings.zip
https://iccl.inf.tu-dresden.de/web/Sarah_Alice_Gaggl/ASPARTIX-D
https://www.dbai.tuwien.ac.at/proj/argumentation/systempage

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 7
as parameter) components which are linearly ordered. Within each component, attacks between any pair of ar-
guments are added with probability given by parameter innerAttackProb. Among arguments of different
components, attacks are added with probability given by parameter outerAttackProb, but under the condition
that the component of the attacking arguments is ranked lower with respect to the linear order on components
than the component of the attacked argument.

StableGenerator This generator aims at producing AFs with a large number of stable extensions. It first identifies a set of
arguments to form an acyclic subgraph of the AF and, consequently, to contain the grounded extension. Among
the other arguments, subsets are iteratively singled out to form stable extensions by attacking all other argu-
ments. Besides the parameter n for the number of arguments, the algorithm is further guided by the parameters
minNumExtensions, maxNumExtensions, minSizeOfExtensions, maxSizeOfExtensions, minSize-
OfGroundedExtension, and maxSizeOfGroundedExtension, which determine heuristic values for the
minimum and maximum number of stable extensions, the minimum and maximum size of stable extensions, and
the minimum and maximum size of grounded extensions, respectively.

4.2. New domains

ICCMA’17 takes advantage, for the first time, of a dedicated call for benchmarks, which is customary in other competitions.
The goal of this call has been to enlarge the set of domains that are considered in the competition, and thus possibly having
a more heterogeneous set of benchmarks in the evaluation. Contributors were asked to provide an instance set for the
benchmark they submitted, and/or an instance generator, possibly with an indication about the estimated difficulty of the
instances. We have received 6 submissions, among them AF generators as well as concrete sets of AFs, thus meeting our
desiderata to have a heterogeneous set of benchmarks, i.e. random, crafted, and application-oriented, as a benchmark suite
of the competition.
Herewith we briefly describe the domains that were submitted:

“ABA2AF” by Tuomo Lehtonen (University of Helsinki, Finland), Johannes P. Wallner (TU Wien, Austria), Matti Järvisalo
(University of Helsinki, Finland), are assumption-based argumentation (ABA) benchmarks translated to AFs. ABA
problems are one of the prevalent forms of structured argumentation in which, differently from AFs, the internal
structure of arguments is made explicit through derivations from more basic structure [73]. The translation em-
ployed is described in [60]. The original ABA set contains randomly generated cyclic and acyclic ABAs that, after a
selection from the authors, resulted in a total of 426 instances.

AdmBuster by Martin Caminada (Cardiff University, UK), Mikolaj Podlaszewski (Talkwalker), is a crafted benchmark exam-
ple for (strong) admissibility. It is made of a fixed structure composed of 4 sets of arguments and predetermined
sets of attacks. The number n is a parameter of the generator. Two “starting” and “terminal” sets are composed
of only one element, one having only outgoing edges and the other only incoming edges. The two “intermediate”
sets have cardinality n − 2, and their attack relations are constructed in order to have only one complete labeling.
Details can be found in [18]. At the competition, 13 instances generated with different values of n are considered.

AFBenchGen2 by Federico Cerutti (Cardiff University, UK), Mauro Vallati (University of Huddersfield, UK), Massimiliano
Giacomin (University of Brescia, Italy), is a generator of random AFs of three different graph classes, with a
configurable number of arguments [23]. The three classes correspond to Erdös-Rényi [43], which selects attacks
randomly, Watts-Strogatz [78], which aims for a small-world topology of networks being not completely random
nor regular, and Barabasi-Albert [7] for large networks. For each graph class, the generator takes the number of
arguments n as parameter. 1400 instances have been generated, of which 500 are from Barabasi-Albert class, 500
are from Erdös-Rényi class, and 400 are from Watts-Strogatz class. In the following, we provide some more details
for such three classes:
• Barabasi-Albert: This graph class is motivated by a common property of many large networks, i.e. that the node

connectivities follow a scale-free power-law distribution. Therefore, the generator of a Barabasi-Albert graph
iteratively connects a new node by preferring sites that are already well connected. In addition, a postprocessing
procedure adds attacks in order to ensure a certain amount of cycles in the graph. This amount is controlled
by the parameter probCycles. An attack is added as long as the number of SCCs of the AF is higher than
n · (1 − probCycles).

• Erdös-Rényi: Graphs are generated by randomly selecting attacks between arguments. For any two distinct ar-
guments, the probability of an attack between them is given by the parameter probAttacks. The direction of
the attack is chosen randomly.

• Watts-Strogatz: First, a ring of n arguments is generated where each argument is connected to its k (a parameter
of the generator) nearest neighbors in the ring. Then, each argument is connected to the remaining arguments
with a probability β (another parameter of the generator). Finally, as in Barabasi-Albert, random attacks are
added as long as the number of SCCs of the AF is higher than n · (1 − probCycles).

“Planning2AF” by Federico Cerutti (Cardiff University, UK), Massimiliano Giacomin (University of Brescia, Italy), Mauro
Vallati (University of Huddersfield, UK), are AFs obtained from translating the well-known Blocksworld and Ferry
planning domains. Each planning instance is first encoded as a propositional formula, by using the method in [68];

8 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Table 2
Description of (generated) benchmarks constituting the benchmark suite.

Domain Inst. Parameters

ABA2AF 426 all submitted instances

AdmBuster 13 n in {1000, 2000, 4000, . . . , 10000, 20000, 50000, 100000, 200000, 500000, 1000000, 2000000}
Barabasi-Albert 500 5 random instances for each (n, probCycles) in {20, 40, . . . , 200} × {0, 0.1, . . . , 0.9}
Erdös-Rényi 500 10 random instances for each (n, probAttacks) in {100, 200, . . . , 500} × {0.1, 0.2, . . . , 1.0}
GroundedGenerator 50 n = random[100, 1500]; 10 random instances for each probAttacks in

{0.01, 0.02, . . . , 0.05}
Planning2AF 385 all submitted instances

SccGenerator 600 n = random[100, 1500]; nSCCs= random[1, 50]; 25 random instances for each
(innerAttackProb, outerAttackProb) in {0.3, 0.4, . . . , 0.7} × {0.05, 0.1,0.15, 0.2}.
n = random[5000, 10000]; no. SCCs random[40, 50]; 5 random instances for each
(innerAttackProb, outerAttackProb) in {0.3, 0.4, . . . , 0.7} × {0.05, 0.1,0.15, 0.2}.

SemBuster 16 n in {60, 150, 300, 600, . . . , 1800, 2400, 3000, 3600, 4200, 4800, 5400, 6000, 7500}
StableGenerator 500 n = random[100, 800]; 500 random instances with parameters minNumExtensions= 5,

maxNumExtensions= 30, minSizeOfExtensions= 5, maxSizeOfExtensions= 40,
minSizeOfGroundedExtension= 5, maxSizeOfGroundedExtension= 40

Traffic 600 all submitted instances

Watts-Strogatz 400 (n, k, β , probCycles) in {100, 200, . . . , 500} × {log2(n), 2 · log2(n), 3 · log2(n), 4 · log2(n)} ×
{0.1, 0.3, . . . , 0.9} × {0.1, 0.3, 0.5, 0.7}

then, each clause is transformed into a material implication; and, finally, to each material implication the transfor-
mation in [80] is applied. This domain comprises 385 instances.

SemBuster by Martin Caminada (Cardiff University, UK), Bart Verheij (Rijksuniversiteit Groningen, Netherlands), is a crafted
benchmark example for semi-stable semantics. It has a fixed structure composed by 3 sets of arguments of equal
cardinality, and predetermined sets of attacks. Given a parameter n, attack relations are defined in a way that
each instance has exactly n + 1 complete labellings that correspond also to preferred labellings, but only one
among those corresponds to a semi-stable extension. Details can be found in [21]. At the competition, 16 instances
generated with different values of n are considered.

“Traffic” by Martin Diller (TU Wien, Austria), are graphs obtained from real world traffic networks data available at https://
transitfeeds .com/ expressed as AFs. Given a graph, the corresponding AF contains the same set of vertices as the
graph, and the attack relation is defined as follows: Given an existing edge, and a probability for the attack of
being symmetric, the generator decides whether there are both attacks, or randomly selects the attack. A total
of 600 instances is provided, 200 for each of the probabilities 0.2, 0.5, and 0.8. Although these instances do not
directly relate to argumentation applications, we decided to include them in the competition, in order to have an
orthogonal class of sparse graphs with certain structural features.

More detailed descriptions for such domains can be found in the ICCMA’17 home page at [53].
Table 2 gives details on the collected benchmarks by stating, for each domain, the number of instances as well as

the parameters used for generating the instances. If the benchmark submission consists of a set of instances, we simply
considered them all. For domains emerging from submissions of benchmark generators, we produced instances randomly
with the aim of covering a possibly broad range of difficulty. The exact parameters used for generating the instances can be
read off from Table 2. In some cases, parameters are chosen randomly from an interval. This is denoted by random[a, b]. In
other cases, all values in a set are considered, denoted by {v1, v2, . . . , vn}.

Thus, the benchmark suite of ICCMA’17 is finally composed of 3990 instances over 11 domains. This yields a healthy
mixture of benchmarks ranging from random instances to more structured AFs which are either handcrafted or instantiated
from different application domains.

5. Benchmark selection

With the benchmark suite described in the previous section, the goal of this phase is to select the instances that are
indeed run in the competition. In order to guide this selection, the instances are classified into hardness categories according
to the performance of a set of solvers from the previous competition. Finally, the instances to be run at the competition are
selected based on this classification, following a predefined distribution over hardness categories.

As the tasks of the competition span over a wide range of complexity (cf. Table 1), a single set of benchmarks for the
whole competition might not be suitable. Therefore we aim to adjust the benchmarks to the complexity of the tasks, while

https://transitfeeds.com/
https://transitfeeds.com/

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 9
keeping the total amount of different benchmarks manageable. To this end, we introduce a grouping of tasks according to
their difficulty, such that each of the groups gets a dedicated set of benchmarks. The classification into groups A to E is
based on known complexity results and corroborated by the analysis of the results of ICCMA’15. The applied grouping is the
following:

Group A: DS-PR, EE-PR, EE-CO.
Group B: DC-ST, DS-ST, EE-ST, SE-ST, DC-PR, SE-PR, DC-CO.
Group C: DS-CO, SE-CO, DC-GR, SE-GR.
Group D: DC-ID, SE-ID.
Group E: DC-SST, DS-SST, EE-SST, SE-SST, DC-STG, DS-STG, EE-STG, SE-STG.

Hence, the classification and selection has to be done for each group. However, since there are no reference solvers for
the tasks of groups D and E (these are the ones newly employed in this edition), we do not perform a dedicated selection
for these groups. Instead, the tasks of these groups are assigned the same benchmark set as group A, because they are of
high complexity and we expect solvers to be less mature since ICCMA’15 did not feature these tasks yet.

The following sub-sections present how instances are classified, how instances are selected, and, finally, how the query
arguments for the DC and DS tasks are selected.

5.1. Benchmark classification

To classify the hardness of instances, competitions in other research fields such as SAT [6,56,67], ASP [50], and IPC for
automated planning [76], employ best solvers from the most recent competition in the series. We follow this idea by also
doing a classification of benchmarks based on the performance of solvers from ICCMA’15. However, in ICCMA the situation
shows two significant differences. On the one hand, the number of tasks and tracks employed in ICCMA (significantly)
exceeds the number of tasks and tracks in other competitions. On the other hand, ICCMA’17 features new semantics (and,
consequently, new tasks and tracks), so no reference results are at disposal.

Due to the second point, the option of selecting the best solvers from the previous edition for each task is not feasible.
But, even considering only tasks which are being conducted for the second time, this option would lead to a very high
number of solvers to run for the classification. Instead, we identify “representative” tasks for each task group A, B, and
C which have also been conducted in ICCMA’15. Moreover, as mentioned earlier, we abstain from classifying instances for
tasks in groups D and E, but merge these tasks with the ones from group A and employ the same set of benchmarks. We
identify the following representative tasks which will be used for classification:

• Group A: EE-PR
• Group B: EE-ST
• Group C: SE-GR

All task groups contain enumeration as well as decision tasks. We select enumeration tasks as representative, as the
performance of solvers on decision tasks highly depends on the argument for which acceptance is to be decided. Therefore,
enumeration tasks can give a better estimate of the difficulty of instances.

(Best) Solver selection. For each representative task we aim to select “representative” solvers from ICCMA’15, to get a proper
estimate of the instances’ hardness. Solvers to run for each group are thus selected by (i) considering best performing solvers
from 2015 for the tasks, and (ii) ensuring that the selected solvers are based on different solving approaches, in order not
to have results biased through a single solving approach. The following solvers from ICCMA’15 are selected (see [70] for
system descriptions):

• Group A: Cegartix, CoQuiAAS, Aspartix-V
• Group B: Aspartix-D, ArgSemSAT, ConArg
• Group C: CoQuiAAS, LabSATSolver, ArgSemSAT

Both Cegartix [37] and ArgSemSAT [22] implement (iterative) SAT based approaches; CoQuiAAS [59] makes use of Partial
Max-SAT; Aspartix-V and Aspartix-D [41,48] employ a translation to ASP; ConArg [15] is based on Constraint Programming;
and LabSATSolver [10] implements a direct approach (for SE-GR). All of the solvers have been among the top 5 solvers in
the respective tasks in ICCMA’15. Hence, the selection is in line with (i) and (ii).

Hardness categories. The obtained performance results of the 3 selected solvers in each group are then taken to classify
instances into hardness categories by picking the upmost category such that the following conditions apply:

[very easy] Instances completed by all systems in less than 6 seconds solving time.
[easy] Instances completed by all systems in less than 60 seconds solving time.

10 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Table 3
Classification results for task group A.

A: EE-PR Total Very easy Easy Medium Hard Too hard n. c.

ABA2AF 426 381 19 16 10 0 0
AdmBuster 13 4 3 2 4 0 0
Barabasi-Albert 500 267 25 20 42 145 1
Erdös-Rényi 500 180 109 43 46 122 0
Watts-Strogatz 400 264 28 10 12 86 0
GroundedGenerator 50 9 8 6 27 0 0
Planning2AF 385 95 35 34 187 33 1
SccGenerator 600 398 78 44 79 0 1
SemBuster 16 2 1 3 9 1 0
StableGenerator 500 260 34 24 182 0 0
Traffic 600 164 11 11 284 127 3

Total 3990 2024 351 213 882 514 6

Table 4
Classification results for task group B.

B: EE-ST Total Very easy Easy Medium Hard Too hard n. c.

ABA2AF 426 407 18 1 0 0 0
AdmBuster 13 9 1 1 2 0 0
Barabasi-Albert 500 262 19 5 122 92 0
Erdös-Rényi 500 247 102 31 49 71 0
Watts-Strogatz 400 201 39 26 76 58 0
GroundedGenerator 50 19 25 5 1 0 0
Planning2AF 385 117 5 5 159 99 0
SccGenerator 600 248 66 65 218 3 0
SemBuster 16 6 6 4 0 0 0
StableGenerator 500 225 26 37 73 139 0
Traffic 600 275 7 2 70 245 1

Total 3990 2016 314 182 770 707 1

Table 5
Classification results for task group C.

C: SE-GR Total Very easy Easy Medium Hard Too hard n. c.

ABA2AF 426 404 21 1 0 0 0
AdmBuster 15 7 1 1 6 0 0
Barabasi-Albert 500 500 0 0 0 0 0
Erdös-Rényi 500 424 44 11 21 0 0
Watts-Strogatz 400 296 36 21 47 0 0
GroundedGenerator 50 20 25 1 4 0 0
Planning2AF 385 359 23 3 0 0 0
SccGenerator 600 485 84 31 0 0 0
SemBuster 16 3 1 0 12 0 0
StableGenerator 500 308 62 42 88 0 0
Traffic 600 459 42 51 50 0 0

Total 3992 3265 339 162 228 0 0

[medium] Instances completed by all systems in less than 10 minutes solving time.
[hard] Instances completed by at least one system in 20 minutes (twice the timeout) solving time.
[too hard] Instances such that none of the systems finished solving in 20 minutes.

The results of the classification are summarized in Tables 3, 4, and 5 for task groups A, B, and C,7 respectively. It
can be seen that almost every combination of domain and difficulty category contains instances. Only for the “too hard”
category we are not able to obtain instances for every domain (even for no domain for task group C). If at least two of
the representative solvers crashes for an instance, the instance is not classified (abbreviated by “n. c.” in the tables), and
therefore not considered for selection.

7 AdmBuster domain in Table 5 contains two additional instances with n of 1500000 and 2500000.

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 11
Table 6
Number of selected instances for each task group, difficulty class, and domain, where difficulty classes 1 to 5 stand for very easy, easy, medium, hard, and
too hard, respectively. “T” indicates the total number of selected instances.

Task group A B C

Difficulty class 1 2 3 4 5 T 1 2 3 4 5 T 1 2 3 4 5 T

ABA2AF 5 5 12 10 0 32 5 5 1 0 0 11 5 6 1 0 0 12
AdmBuster 4 3 2 4 0 13 4 1 1 2 0 8 4 1 1 6 0 12
Barabasi-Albert 5 5 11 10 10 41 5 5 5 14 8 37 5 0 0 0 0 5
Erdös-Rényi 5 5 11 10 9 40 5 5 19 13 7 49 5 6 11 21 0 43
Watts-Strogatz 5 5 10 10 10 40 5 5 20 14 8 52 5 6 21 36 0 68
GroundedGenerator 4 5 6 9 0 24 4 4 5 1 0 14 5 6 1 4 0 16
Planning2AF 5 6 12 10 10 43 5 5 5 14 8 37 5 6 3 0 0 14
SccGenerator 5 5 11 9 0 30 4 5 19 14 3 45 4 6 21 0 0 31
SemBuster 2 1 3 9 1 16 4 5 4 0 0 13 3 1 0 12 0 16
StableGenerator 5 5 11 9 0 30 4 5 19 14 8 50 4 6 20 35 0 65
Traffic 5 5 11 10 10 41 5 5 2 14 8 34 5 6 21 36 0 68

Total 50 50 100 100 50 350 50 50 100 100 50 350 50 50 100 150 0 350

5.2. Benchmark selection

The final benchmark set for each task group is made up of 350 instances, distributed over the difficulty categories as
follows:

• 50 very easy,
• 50 easy,
• 100 medium,
• 100 hard,
• 50 too hard.

Due to the lack of “too hard” instances for group C (cf. Table 5), the number of “hard” instances is increased to 150
there.

We aim for an even distribution of benchmarks over levels of difficulty, but also among domains. Now, in order to select
n instances for a certain task group and a certain class of difficulty, we apply the following procedure: for each domain d,
we are given the set Id of instances and want to select a subset Sd of these instances. Now for each domain such that
Id is non-empty, we select one element of Id at random, i.e. remove it from Id and add it to Sd . We repeat this process
until we have selected n instances, i.e. the sum over all |Sd| is n. In the last iteration, when the number of domains where
Id is non-empty is higher than the number of instances that remains to be selected, the domains to be chosen from are
determined randomly. A more rigorous description of this procedure can be found at http://argumentationcompetition .org /
2017 /benchmark-selection -algorithm .pdf.

Example 2. Assume domains D = {α, β, γ , δ} such that we have 1 instance for domain α, 2 for β , 4 for γ , and 11 for δ, i.e.
|Sα | = 1, |Sβ | = 2, |Sγ | = 4, and |Sδ | = 11. Further assume that we want to select n = 10 instances. The selection algorithm
will return all instances from α and β , 3 instances from γ and δ, and 1 additional instance randomly selected from either
γ or δ.

The numbers of selected instances for every domain, task group, and difficulty category can be read off from Table 6.
The instances for Dung’s triathlon are selected based on the classification for task group A, but by a separate process.

That means that the numbers of instances per domain coincide with group A, but instances are not necessarily the same.

No stable extensions. Semi-stable and stage extensions coincide with stable extensions if at least one of the latter exists.
In this case, the complexity of the reasoning tasks drops to the level of the corresponding tasks for stable semantics (cf.
Table 1). Therefore, in order to force solvers to deal with the “full hardness” of semi-stable and stage semantics, we want
to make sure that the selection for these semantics contains a sufficient amount of benchmarks possessing no stable ex-
tensions. To this end, we checked the selected instances on existence of stable extensions by running ASPARTIX-D from
ICCMA’15 (winning solver for all tasks involving stable semantics). The numbers are shown in Table 7: for 22 instances no
answer is provided by ASPARTIX-D. We consider the number of instances without stable extensions (114) to be satisfac-
tory.

5.3. Argument selection

Due to the joint evaluation of all tasks for a semantics, making up a track, the number of benchmarks has to be constant
among the tasks. Therefore, for the acceptance tasks we cannot select multiple arguments for every instance. Instead, we

http://argumentationcompetition.org/2017/benchmark-selection-algorithm.pdf
http://argumentationcompetition.org/2017/benchmark-selection-algorithm.pdf

12 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Table 7
Analysis of the existence of stable extensions.

Hardness category ST(F) �= ∅ ST(F) = ∅ Unknown

Very easy 34 16 0
Easy 34 16 0
Medium 60 40 0
Hard 56 33 11
Too hard 30 9 11

Total 214 114 22

Table 8
Distribution of selected arguments for DC-ID, with F being the AF and G
its grounded extension.

G
⋂

PR(F) \ G A \ ⋂
PR(F)

Easy 14 15 21
Medium 21 21 58

select only one argument for each instance, with the exception that we dropped the “very easy” instances for acceptance
tasks and selected two arguments to be queried for the “too hard” instances, which again amounts to 350 instances in total.

For each task group except group D the query arguments are selected at random, maintaining a minimum number of
yes- and no-instances, respectively. For group A and E, the same arguments are used.

Ideal semantics. While the selection of arguments for the decision tasks DC and DS in all task groups except D was done ran-
domly, for the task DC-ID we were aiming for a more sophisticated selection in order to select the “interesting” arguments
for the acceptance task.

That selection was based on the following insights:

• if the query argument is contained in the grounded extension, then the answer to DC-ID is always yes;
• if the query argument is not contained in every preferred extension, then the answer to DC-ID is always no.

Hence, we aimed for a considerable number of instances for which we select an argument contained in all preferred exten-
sions, but not in the grounded extension.

We did so by considering the following strategy: Given an AF F = (A, R), let G ∈ GR(F) be its grounded extension.
Moreover, let α and β be random variables with a uniform distribution in the interval [0, 1].

1. if
⋂

PR(F) \ G �= ∅ and α < 0.9, select an argument randomly from
⋂

PR(F) \ G;
2. otherwise, if G �= ∅ and β < 0.6, select an argument randomly from G;
3. otherwise, select an argument randomly from A \ ⋂

PR(F).

That is, if arguments that we consider “interesting” as described before exist, we select one of them with a high proba-
bility (0.9). Otherwise we give a slight preference (probability of 0.6) to the arguments contained in the grounded extension,
given that the grounded extension is not empty.

This strategy is applied to the selection of query arguments for instances in the easy and medium hardness category.
The obtained distributions of the selected arguments is given in Table 8. We randomly select the arguments for the hard
and too hard instances.

6. Participants

Sixteen solvers participate in the competition, and are listed in Table 9, together with the list of contributors and their
institutions, and a main reference in the last column. New entries compared to the previous edition are marked by � .

System descriptions for all solvers can be found on the competition webpage at http://argumentationcompetition .org /
2017 /submissions .html. The set of participants is characterized by a great variety of solving approaches. We provide a
grouping based on these approaches and provide some highlights for each group. Detailed results will be presented in
Section 7.

• Reductions to SAT: argmat-dvisat, argmat-sat, ArgSemSAT, cegartix, CoQuiAAS, gg-sts. All of these systems are imple-
mented in C++. argmat-dvisat, argmat-sat, ArgSemSAT, and cegartix rely on reductions to SAT or (iterative) calls to SAT
solvers. Two of them are among the top five solvers for each track except GR. While the backbone of both ArgSemSAT
and cegartix is MiniSAT [40], argmat-dvisat and argmat-sat use CryptoMiniSat (https://github .com /msoos /cryptominisat)
for SAT solving. gg-sts does not use SAT directly, but a reduction to an extension of the second-order logic system

http://argumentationcompetition.org/2017/submissions.html
https://github.com/msoos/cryptominisat
http://argumentationcompetition.org/2017/submissions.html

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 13
Table 9
List of participants, with contributors, main reference paper, and link to the solver home page. � means newly submitted in the ICCMA series.

Solver Contributors Reference

argmat-clpb� Fuan Pu (Tsinghua University, China) Pu et al. [64]
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Yucheng Chen (Tsinghua University, China)

argmat-dvisat� Fuan Pu (Tsinghua University, China) Pu et al. [64]
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

argmat-mpg� Fuan Pu (Tsinghua University, China) Pu et al. [64]
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

argmat-sat� Fuan Pu (Tsinghua University, China) Pu et al. [64]
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

ArgSemSAT Federico Cerutti (Cardiff University, UK)
Mauro Vallati (University of Huddersfield, UK) Cerutti et al. [22]
Massimiliano Giacomin (University of Brescia, Italy) https://sourceforge.net/projects/argsemsat/
Tobia Zanetti (University of Brescia, Italy)

ArgTools Samer Nofal (German Jordanian University, Jordan) Nofal et al. [63]
Katie Atkinson (University of Liverpool, UK) https://sourceforge.net/projects/argtools
Paul E. Dunne (University of Liverpool, UK)

ASPrMin� Wolfgang Faber (University of Huddersfield, UK)
Mauro Vallati (University of Huddersfield, UK) Faber et al. [44]
Federico Cerutti (Cardiff University, UK) https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz
Massimiliano Giacomin (University of Brescia, Italy)

cegartix Wolfgang Dvořák (TU Wien, Austria) Dvořák et al. [37]
Matti Järvisalo (University of Helsinki, Finland) http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/
Johannes P. Wallner (TU Wien, Austria)

Chimærarg� Federico Cerutti (Cardiff University, UK) Cerutti et al. [26]
Mauro Vallati (University of Huddersfield, UK) https://github.com/federicocerutti/Chimaerarg
Massimiliano Giacomin (University of Brescia, Italy)

ConArg Stefano Bistarelli (University of Perugia, Italy) Bistarelli and Santini [15]
Fabio Rossi (University of Perugia, Italy) http://www.dmi.unipg.it/conarg/
Francesco Santini (University of Perugia, Italy)

CoQuiAAS Jean-Marie Lagniez (University of Artois, France) Lagniez et al. [59]
Emmanuel Lonca (University of Artois, France) http://www.cril.univ-artois.fr/coquiaas
Jean-Guy Mailly (University of Artois, France)

EqArgSolver� Odinaldo Rodrigues (King’s College London, UK) Gabbay and Rodrigues [45]
http://nms.kcl.ac.uk/odinaldo.rodrigues/eqargsolver

gg-sts� Tomi Jahunen (Aalto University, Finland) Bogaerts et al. [16]
Shahab Tasharrofi (Aalto University, Finland) https://research.ics.aalto.fi/software/sat/gg-sts/

goDIAMOND Stefan Ellmauthaler (Leipzig University, Germany) Ellmauthaler and Strass [42]
Hannes Strass (Leipzig University, Germany) https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/

heureka� Nils Geilen (University of Koblenz-Landau, Germany) Geilen and Thimm [51]
Matthias Thimm (University of Koblenz-Landau, Germany) https://github.com/nilsgeilen/heureka

pyglaf� Mario Alviano (University of Calabria, Italy) Alviano [1]
http://alviano.com/software/pyglaf/

presented in [16]. Finally, CoQuiAAS uses various constraint programming techniques such as MaxSAT and Maximal
Satisfiable Sets extraction.

• Reductions to CSP: argmat-clpb, argmat-mpg, ConArg. All of these systems are implemented in C++. argmat-clpb em-
ploys Constraint Logic Programming over Boolean variables in Prolog, while argmat-mpg uses a reduction to CSP using
Gecode (http://www.gecode .org/). Both are based on formulations of argumentation problems in Boolean matrix algebra.
Also ConArg implements a CSP approach using Gecode.

• Reductions to circumscription: pyglaf. pyglaf is implemented in Python and uses a circumscription solver extending the
SAT solver glucose [5]. pyglaf participated in all tracks and is one of the most successful participants (see below).

• Reductions to ASP: ASPrMin, goDIAMOND. Both systems rely on the state-of-the-art ASP system clingo [49]. While
goDIAMOND consists of a suite of different encodings for all the considered semantics (plus some native implementation

https://sites.google.com/site/argumatrix/
https://sites.google.com/site/argumatrix/
https://sites.google.com/site/argumatrix/
https://sites.google.com/site/argumatrix/
https://sourceforge.net/projects/argsemsat/
https://sourceforge.net/projects/argtools
https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz
http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/
https://github.com/federicocerutti/Chimaerarg
http://www.dmi.unipg.it/conarg/
http://www.cril.univ-artois.fr/coquiaas
http://nms.kcl.ac.uk/odinaldo.rodrigues/eqargsolver
https://research.ics.aalto.fi/software/sat/gg-sts/
https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/
https://github.com/nilsgeilen/heureka
http://alviano.com/software/pyglaf/
http://www.gecode.org/

14
S.A

.G
agglet

al./A
rtificialIntelligence

279
(2020)

103193

GR ID #Task

S SE EE DC DS DC SE
√ √

10√ √ √ √
17√ √ √ √ √ √
25√ √ √ √ √ √
25√ √
18√ √ √ √ √ √
24

1√ √ √ √ √ √
25

2√ √ √ √ √ √
25√ √ √ √ √ √
25√ √
15√ √ √ √ √ √
25√ √ √ √ √ √
25√ √
14√ √ √ √ √ √
25

9 9 14 14 10 10
Table 10
Tasks supported by solvers.

Solver D3 CO PR ST SST STG

DC DS SE EE DC DS SE EE DC DS SE EE DC DS SE EE DC D

argmat-clpb
√ √ √ √ √ √ √ √

argmat-dvisat
√ √ √ √ √ √ √ √ √ √ √ √ √

argmat-mpg
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

argmat-sat
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ArgSemSAT
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ArgTools
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ASPrMin
√

cegartix
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Chimærarg
√ √

ConArg
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

CoQuiAAS
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

EqArgSolver
√ √ √ √ √ √ √ √ √ √ √ √ √

gg-sts
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

goDIAMOND
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

heureka
√ √ √ √ √ √ √ √ √ √ √ √

pyglaf
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

#Solver 10 14 14 14 14 13 13 13 15 14 14 14 15 10 10 10 10 9 9

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 15
Solver Points Time Correct Wrong TO Other USC (u)

pyglaf 1229 28774.77 1229 0 168 3 0
cegartix 1188 19846.86 1188 0 205 7 1 (0)
argmat-sat 1167 10472.57 1167 0 204 29 0
goDIAMOND 1156 18166.98 1176 4 181 39 2 (0)
argmat-dvisat 1151 15259.38 1151 0 226 23 0
CoQuiAAS 1132 10785.98 1132 0 149 119 0
argmat-mpg 1126 15133.06 1126 0 227 47 2 (2)
heureka 1018 9869.94 1018 0 309 73 0
ConArg 1017 51015.41 1037 4 130 229 19 (11)
ArgTools 935 36134.08 935 0 444 21 0
ArgSemSAT 900 20077.48 900 0 299 201 0
EqArgSolver 401 5430.45 401 0 92 907 0
argmat-clpb 40 4779.14 40 0 1109 251 0
gg-sts −1170 18203.86 834 402 107 57 12 (12)

Fig. 2. CO track: ranking of solvers (top). Cactus plot of runtimes (bottom).

for GR and ID), ASPrMIN makes use of a particular feature of clingo to control the heuristics such that only a certain
form of subset-maximal answer-sets are delivered. This can be used to enumerate prefererred extensions. Consequently,
ASPrMIN only participated in the EE-PR task (and, in fact, was the best solver for this single task), whereas goDIAMOND
entered all tracks (and reached the 2nd place in ST).

• Direct approaches: ArgTools, EqArgSolver, heureka. All of these solvers implement genuine algorithms in C++. EqArg-
Solver is an enhancement of GRIS (submitted to ICCMA’15, [70]) and uses the discrete version of the Gabbay-Rodrigues
iteration schema [45]. ArgTools and heureka use various forms of backtracking algorithms on the basis of labellings of
arguments.

• Portfolio-based approaches: Chimærarg. This system uses all the solvers that took part in the EE-PR, and respectively,
EE-ST tasks of ICCMA’15, for generating a static schedule of solvers, whose performance are measured in terms of
PAR10 score. Chimærarg participated in these two tasks in ICCMA’17, running Cegartix, GRIS, LabSATSolver and ArgTools.
Unfortunately, Chimærarg delivered some wrong results and thus did not rank very well. Checking the number of solved
instances however shows the potential of this system. We shall provide a separate analysis of comparing best solvers
from ICCMA’15 and ICCMA’17 in Section 7.2.

In Table 10 we also provide information about the participation to tasks of each solver. The table contains the solvers in
its rows, and the tasks in its columns: a “

√
” indicates that a solver competes in a task. The table is completed by a last row

reporting the number of solvers participating to each task, and a last column with the number of tasks supported by each
solver. Without taking into account ASPrMin and Chimærarg, which are specifically designed for enumeration and focus on
very few semantics, all other solvers participate in at least 10 tasks. Half of the submitted solvers participate in all 25 tasks.
The number of participants in single tasks ranges from 9 to 15 solvers. As far as participation in tracks is concerned, each
track includes between 9 (STG semantics) and 14 (CO, ST, and GR semantics) solvers.

16 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Solver Points Time Correct Wrong TO Other USC (u)

ArgSemSAT 1146 36607.37 1146 0 234 20 8 (0)
argmat-sat 1139 25110.57 1139 0 245 16 0
pyglaf 1122 43394.57 1127 1 272 1 5 (5)
argmat-dvisat 1075 28597.16 1075 0 307 18 2 (2)
cegartix 1075 58263.31 1075 0 302 23 0
goDIAMOND 1014 51717.30 1069 11 289 31 0
ArgTools 898 53147.54 898 0 501 1 0
ConArg 773 48197.84 773 0 433 194 1 (0)
heureka 745 19691.87 745 0 655 0 0
argmat-mpg 745 30744.76 745 0 470 185 0
EqArgSolver 652 6930.97 652 0 139 609 0
CoQuiAAS −863 7756.35 477 268 228 427 0
gg-sts −1107 32999.15 678 357 285 80 2 (1)

Fig. 3. PR track: ranking of solvers (top). Cactus plot of runtimes (bottom).

7. Results and awards

In this section we present the results of our experiments, run on a cluster of Intel Xeon (Haswell) with 2.60 GHz, where
time and memory limits have been set to 10 minutes and 4 GB for all tasks but D3, and to 30 minutes and 6.5 GB for D3.
The first sub-section is devoted to announce the winners. In the second sub-section we compare the award winners of this
year and the best solvers from the ICCMA’15 competition on this year’s benchmarks, on common tracks.

7.1. Award winners

In this sub-section we outline the winners of the competition. We remind that the winner of each track has been
awarded.

Results are presented in Figs. 2–9, where at the top there is the ranking of solvers, and at the bottom the companion
cactus plots. More specifically, the ranking of solvers is presented through tables organized as follows: the first column
contains the name of the solver, the second column is the score of the respective solver (computed as defined in Section 3),
while the third column reports the cumulative time of correctly solved instances. The fourth and fifth columns count
the number of correct and wrong solutions given by each solver. In the sixth column the number of instances reaching
timeout (TO) is given. The entries in seventh column (Other) stand for all other instances which also got 0 points. These
are incomplete, memory-out and not-parseable solutions including those where the solvers could only return some error
messages. The last column with USC (u) shows the unique solver contributions (USC), being the number of instances where
only one solver could give a solution. The additional entries (u) stand for unchecked, that is the number of USC which could
not be verified (this is not specified when USC is 0). Solvers are ordered by score, and ties are broken by cumulative time, as
defined already in Section 3. Cactus plots, instead, present another view of the results by showing the cumulative number
of correctly solved instances (x-axis) within a given CPU time (y-axis).

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 17
Solver Points Time Correct Wrong TO Other USC (u)

pyglaf 1183 47155.98 1183 0 217 0 0
goDIAMOND 1143 30116.76 1143 0 224 33 5 (0)
argmat-sat 1129 22087.70 1129 0 247 24 0
cegartix 1102 33963.81 1102 0 283 15 1 (0)
argmat-mpg 1073 52284.56 1073 0 311 16 1 (1)
argmat-dvisat 1039 22591.20 1039 0 334 27 1 (0)
ConArg 1002 58792.29 1002 0 348 50 0
heureka 938 29417.69 938 0 439 23 0
ArgSemSAT 888 23200.99 888 0 291 221 1 (0)
ArgTools 687 45465.87 917 46 316 121 0
EqArgSolver 558 7820.17 558 0 118 724 0
argmat-clpb 135 8840.31 135 0 1133 132 0
CoQuiAAS −299 13647.26 821 224 297 58 0
gg-sts −1193 19037.19 782 395 187 36 1 (0)

Fig. 4. ST track: ranking of solvers (top). Cactus plot of runtimes (bottom).

To sum up:

• pyglaf has been the winner of the CO, ST, and ID semantics;
• argmat-sat has been the winner of the SST and STG semantics;
• ArgSemSAT, CoQuiAAS and argmat-dvisat won the PR, GR, and D3 semantics, respectively.

Interestingly, argmat-dvisat was not awarded as winner in any of the other track, but is the best solver in the D3 track,
where different semantics are considered. It is also worth to be noted that the set of winner solvers involves AF solvers
based on different forms of reductions to SAT, CSP and circumscription.

In the following we discuss the correctness of the solvers and the USC. The solvers argmat-clpb, argmat-dvisat, argmat-
mpg, argmat-sat, ArgSemSAT, EqArgSolver and heureka always returned correct solutions in all tracks. The solver pyglaf had
only one incorrect solution in DS-PR, ConArg returned 4 incorrect answers in EE-CO, goDIAMOND had in total 15 wrong
answers in tracks EE-CO and EE-PR. ArgTools had wrong solutions in tracks DS-ST, DC-SST, DS-SST and DC-STG, DS-STG
and EE-STG. Although the solver CoQuiAAS is the winner of the track GR and had no sanity problems in CO, in all other
tracks many wrong answers were given. Finally gg-sts had wrong answers in all tracks. From the ranking of the solvers in
all tracks it is easy to see that the penalty of −5 for each wrong answer had the desired effect to rank solvers with many
wrong answers at the very end of the ranking.

The solvers ChimaerArg and ASPrMin are not listed in the tables, as they did not contribute in all tasks of a track,
thus we summarize the results for them in the following. ASPrMin was the winner of the task EE-PR with 285 correct
solutions, 0 wrong answers and thus obtained the score 285. The 2 USCs have been verified and 63 instances resulted in
timeouts while 2 fall into the category Other. The solver ChimaerArg returned 255 correct solutions for the task EE-ST and
95 wrong answers, this results in the score −220. From the 21 USCs, 12 could not be verified. For EE-PR, ChimaerArg had
207 correct solutions and 23 wrong answers resulting in the score 92. All 120 answers with 0 points fall into the category
Other.

18 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Solver Points Time Correct Wrong TO Other USC (u)

argmat-sat 1164 26043.50 1164 0 236 0 4 (1)
ArgSemSAT 1113 38816.07 1113 0 264 23 3 (0)
cegartix 1091 62543.78 1091 0 282 27 8 (0)
pyglaf 1047 41378.28 1047 0 349 4 1 (0)
goDIAMOND 1032 57957.15 1032 0 323 45 0
argmat-mpg 755 11464.36 755 0 419 226 3 (3)
ConArg 668 38572.13 668 0 437 295 24 (24)
ArgTools 268 52108.16 568 60 614 158 0
gg-sts −1321 22846.63 564 377 237 222 8 (2)
CoQuiAAS −1642 4855.65 218 372 215 595 0

Fig. 5. SST track: ranking of solvers (top). Cactus plot of runtimes (bottom).

Solver Points Time Correct Wrong TO Other USC (u)

argmat-sat 1065 19948.06 1065 0 332 3 50 (1)
pyglaf 909 32019.47 909 0 488 3 2 (0)
cegartix 898 62852.40 898 0 502 0 3 (0)
goDIAMOND 724 31394.75 724 0 629 47 0
ConArg 649 43482.21 649 0 490 261 29 (29)
argmat-mpg 618 8381.57 618 0 396 386 4 (0)
ArgTools 67 9558.97 172 21 1207 0 3 (3)
CoQuiAAS −305 4162.59 320 125 272 683 0
gg-sts −1325 8242.35 185 302 654 259 4 (0)

Fig. 6. STG track: ranking of solvers (top). Cactus plot of runtimes (bottom).

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 19
Solver Points Time Correct Wrong TO Other USC

CoQuiAAS 695 335.85 695 0 3 2 0
cegartix 695 1152.51 695 0 0 5 0
heureka 690 671.37 690 0 8 2 0
goDIAMOND 688 627.43 688 0 12 0 0
pyglaf 683 11595.16 683 0 14 3 0
argmat-dvisat 682 163.80 682 0 4 14 0
argmat-clpb 682 263.21 682 0 4 14 0
EqArgSolver 682 502.80 682 0 18 0 0
argmat-sat 682 504.75 682 0 4 14 0
ArgTools 674 15664.26 674 0 26 0 0
argmat-mpg 662 580.80 662 0 4 34 0
ConArg 588 703.33 588 0 0 112 0
ArgSemSAT 561 11444.85 561 0 119 20 0
gg-sts −1871 4246.95 264 427 0 9 0

Fig. 7. GR track: ranking of solvers (top). Cactus plot of runtimes (bottom).

Finally, Table 11 gives more details for the track winners. In particular it is given, for each track, the number of points
acquired by the winning system in each domain. More in details, the table is organized as follows: the rows contain the
domains and the columns the track winners. Each column is then divided in two sub-columns containing the number
of points acquired by the solver and the maximum acquirable number of points in a domain, respectively. The table is
complemented by a last row and a last column containing the total number of points acquired (or, acquirable) by each
solver and in a domain, respectively.

7.2. Comparison to the results of ICCMA’15

By comparing the award winners of the 2017 event with those of the first edition, which cumulatively awarded Co-
QuiAAS, ArgSemSAT, and LabSATSolver in first, second and third place, respectively, we notice that CoQuiAAS and ArgSemSAT
are in this year the winners of two tracks and ArgSemSAT is second-best in another track, while for the remaining semantics
other AF solvers, mainly newcomers, have best performance.

Goal of this sub-section is to (qualitatively) compare the award winners of this year’s event to the best solvers in the
past competition on common tracks. The comparison is done using the benchmarks from the current competition.

Given that the first competition awarded only global results, we applied the Borda count to the tracks of 2015 to get
track winners. Thus, the 2015 (version of the) solvers ASPARTIX-D, ArgSemSAT, again ASPARTIX-D, and CoQuiAAs have been
run for CO, PR, ST, and GR semantics, respectively. Such additional experiments have been conducted on a separate machine,
which is an Intel Xeon CPU E5345, 2.33 GHz; 2 processors with each 4 physical cores; no hyperthreading enabled.

Results are reported in Figs. 10–16, where each figure contains 4 plots comparing two solvers on two tasks with the
following structure: the top and bottom plots are devoted to each task, while the left and right plots present results in
terms of box (i.e. a per-instance analysis where a point represents the results of the two compared solvers on the same
instance) and cactus (i.e. a cumulative analysis that shows the number of solved instances within a certain CPU time),
respectively. Moreover, in the left plots the 2015 solver is on the x-axis and the 2017 solver is on the y-axis, while in

20 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Solver Points Time Correct Wrong TO Other USC (u)

pyglaf 585 17341.50 585 0 88 27 4 (0)
argmat-dvisat 493 17650.83 493 0 199 8 0
argmat-sat 477 16605.80 477 0 215 8 2 (0)
goDIAMOND 414 22496.34 414 0 270 16 0
cegartix 368 25388.79 548 36 109 7 0
ArgTools 268 20089.40 268 0 385 47 0
argmat-mpg 217 16031.89 217 0 396 87 0
ConArg 181 13254.90 181 0 434 85 1 (0)
CoQuiAAS −794 2597.28 156 190 94 260 1 (0)
gg-sts −1050 13379.17 205 251 197 47 2 (0)

Fig. 8. ID track: ranking of solvers (top). Cactus plot of runtimes (bottom).

Solver Points Time Correct Wrong TO Other USC (u)

argmat-dvisat 276 20222.07 276 0 68 6 5 (5)
pyglaf 275 25212.29 275 0 55 20 1 (1)
argmat-sat 271 22441.56 271 0 64 15 3 (3)
cegartix 259 35715.67 259 0 80 11 1 (0)
EqArgSolver 192 6577.89 192 0 32 126 0
ConArg 192 52007.99 192 0 20 138 2 (2)
goDIAMOND 179 28857.58 179 0 52 119 0
argmat-mpg 164 35916.74 164 0 158 28 0
gg-sts −326 25767.12 144 94 77 35 0
CoQuiAAS −498 441.22 32 106 43 169 0

Fig. 9. D3 track: ranking of solvers (top). Cactus plot of runtimes (bottom).

S.A
.G

agglet
al./A

rtificialIntelligence
279

(2020)
103193

21

glaf D3 – argmat-dvisat Total of
points

Max. number
of points

59 32 32 513 513
22 7 13 211 242
87 31 41 782 885
84 27 40 774 1115
44 24 24 438 448
91 38 43 854 949
55 30 30 749 817
31 13 16 280 357
55 21 30 838 1036
87 22 41 1010 1146
85 31 40 894 1242

700 276 350 7343 8750
Table 11
Points acquired by track winners for each domain.

CO – pyglaf PR – ArgSemSAT ST – pyglaf SST – argmat-sat STG – argmat-sat GR – CoQuiAAS ID – py

ABA2AF 57 57 76 76 34 34 118 118 118 118 19 19 59
AdmBuster 36 39 28 34 24 24 44 44 41 44 17 22 14
BA 71 86 130 164 146 154 156 174 156 174 5 5 87
ER 157 181 147 184 124 200 97 168 74 168 90 90 58
GroundedGenerator 61 61 58 68 48 48 88 88 88 88 27 27 44
Planning2AF 81 106 136 168 147 154 169 182 169 182 23 23 91
SccGenerator 131 132 141 144 167 178 106 110 63 110 58 58 53
SemBuster 33 57 37 53 35 44 62 62 62 62 32 32 6
StableGenerator 198 224 126 159 165 208 82 110 73 110 140 140 33
Traffic 203 224 121 158 134 142 149 174 148 174 146 146 87
WS 201 233 146 192 159 214 93 170 73 170 138 138 53

1229 1400 1146 1400 1183 1400 1164 1400 1065 1400 695 700 585

22 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Fig. 10. CO track, DC and DS tasks: comparison between ASPARTIX-D (2015) and pyglaf (2017).

the right plots the behavior of the 2015 solver is indicated with a solid (blue) line with circle, while for the 2017 solver
is used a dashed (red) line with triangles. Figs. 10, 12, and 14 contain the analysis for the DC and DS decision tasks, in
top and bottom plots, respectively, of the CO, PR, and ST tracks, while Figs. 11, 13, and 15 contain analysis for the SE
and EE enumeration tasks, in top and bottom plots, respectively, of the same semantics. Fig. 16 contains the results of the
single-status semantics GR.

Let us have a closer look on these comparisons. For the CO track (Figs. 10–11) we can see that pyglaf outperforms
ASPARTIX-D on DS and SE tasks, while it is the opposite for the EE task. They perform similarly on the DC task. In the PR
track (Figs. 12–13) the general advantages of the 2017 solver winner corresponds to the improvements of the 2017 version
of ArgSemSAT in comparison to the 2015 version. About ST track (Figs. 14–15), we can note that ASPARTIX-D performances
are still state of the art, given that it performs (slightly) better on all tasks than pyglaf. Finally, results of the comparison on
the GR track (Fig. 16) show that the performances of the 2017 and 2015 versions of CoQuiAAs are quite similar, still being
the state of the art.

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 23
Fig. 11. CO track, SE and EE tasks: comparison between ASPARTIX-D (2015) and pyglaf (2017).

To sum up, we can see that in comparison to the best 2015 solvers on a track basis, results are mixed: sometimes the
best new solvers perform (much) better than the best of 2015, sometimes is the opposite. When the solver is the same, it is
either the case that it improved from the 2015 edition, or basically has similar performance. We think that this, on the one
hand, shows that some significant improvements in AF solving have been in place, on the other hand it further confirms that
there is space for improvements, by either designing new solutions, or re-importing and improving (ASP-based) solutions
already employed.

8. Related competitions

This section discusses how the introduced novelties in this year competition are treated in related competitions. A para-
graph is devoted to each of such novelties.

Benchmark suite. For the first time, the competition has featured a call for benchmarks, whose goal was to enlarge the set
of domains to be included in the evaluation, possibly having a more heterogeneous set. As we can note from Section 4.2,

24 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Fig. 12. PR track, DC and DS tasks: comparison between ArgSemSAT (2015) and ArgSemSAT (2017).

the response from the community was positive. Call for benchmarks are customary in other close competitions, especially
in the first events where the benchmark suite has to be developed.

Benchmark selection. Starting from the benchmark suite, the procedure for the selection of instances follows similar proce-
dures employed in SAT and ASP competitions [6,50,56,67]. The main differences in our benchmark selection, some of them
due to the intrinsic characteristics of AF, are detailed in the following. Differently from ASP, and similarly to SAT, there is no
“non-groundable” hardness category (Section 5.1), given that the benchmarks are inherently ground. Moreover, the variety of
semantics and reasoning tasks considered posed additional challenges and decisions to be made for the selection, which are
explained in details in Section 5.2 and 5.3. As far as solvers employed for the classification of the instances are concerned,
in the 2014 IPC competition [76] actual participant systems have been employed for evaluating the empirical hardness of
instances. With this choice, the risk is to have a selection biased toward the performance of such systems.

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 25
Fig. 13. PR track, SE and EE tasks: comparison between ArgSemSAT (2015) and ArgSemSAT (2017).

Scoring schema. This edition’s scoring schema put focus on correctness by giving a high penalty to incorrect solutions. In
the following, we briefly overview the general scoring rules employed in most recent related competitions, even if the details
usually change from different events. In the SAT competitions, the total number of solved instances is the main metric to
award winners in the tracks. A solver is disqualified in a track if it returns a wrong answer, or a wrong certificate for SAT
instances. Considering the last ASP competitions, instead, on Decision and Query problems a solver can be disqualified for
the same reasons, but the disqualification is applied to the domain the instance belongs. The score of each domain on
such problems is computed by means of number of solved instances, and ties are broken with the cumulative times of
solved instances, while for optimization problems a score based on the “quality” of returned solution and related ranking
of solvers is considered. Optimization issues are not considered in ICCMA. The global score then sums the score of each
domain. In the IPCs, the two main metrics for scoring planners are the solving times and the “quality” of returned plan. In
the deterministic track of the 2014 IPC competition focus was put toward plan’s quality. In “optimal” tracks, only optimal
solutions were taken into account: a non-optimal solution disqualified a solver from a domain, and if this happens in two
domains the planner is disqualified from the track. In IPC “satisfying” tracks, instead, the quality of the returned plans is
taken into account. Score of a solver in a track is the sum of the scores in each domain constituting a track. Similar to our

26 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Fig. 14. ST track, DC and DS tasks: comparison between ASPARTIX-D (2015) and pyglaf (2017).

competition, the SMT competitions employ a “per-division” constant penalty for erroneous results (see, e.g. [28]). For each
division, if it contains a wrong answer, a penalty based on the number of instances in the division is computed; instead, a
positive score defined as a function of the number of correctly solved instances and total number of evaluated instances in
computed. The global ranking for each track is given by the sum of the results in all divisions.

Special tracks. Among the “most common” special tracks, we mention the “Marathon” and “Parallel” tracks. The Marathon
track has been introduced in the 2006 QBF Competition [66], and then used since 2015; it has been also run in the 2015
ASP Competition [50]. In this track the best solvers of the “Regular” track are given more time (usually about one order
of magnitude more) to solve (a selection of) the benchmarks that were not solved in the Regular track, in order to test
their behavior when more time is given, and ultimately the impact of time limits on performance results. The Parallel track,
instead, allows solvers to rely on multiple processors/cores for their computation. This track is in place in several related
competitions, e.g. SAT and ASP competitions. The Dung’s Triathlon track we have introduced in ICCMA’17, differently from

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 27
Fig. 15. ST track, SE and EE tasks: comparison between ASPARTIX-D (2015) and pyglaf (2017).

these kinds of tracks, is made of a combination of tasks employed in the competition, instead of strengthening a particular
aspect.

9. Conclusions, lessons learned, and future developments

In this report we have presented the design and results of the Second International Competition on Computational Mod-
els of Argumentation (ICCMA’17). We have focused in particular on the novelties that have been introduced in comparison
to the first edition in 2015. As far as the results are concerned, the fact that about 2/3 of the tracks have been won by
solvers newly introduced at ICCMA’17 shows that the field of computational models of argumentation is not only vibrant
but also highly amenable for further improvements and innovation. In particular, pyglaf (winner of 3 tracks) uses a novel
approach based on reduction to circumscription.

In the following, we outline some of the lessons that we have learned while organizing the competition, and possible
suggestions for the chairs of the third event that will take place in 2019:

28 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
Fig. 16. GR track, DC and SE tasks: comparison between CoQuiAAs (2015) and CoQuiAAs (2017).

More variety in solving approaches. The results of the competition indicate that even more variety of solving techniques
can be fruitful for the development of the field. This is related in particular to pyglaf, but not only, e.g. ASPrMin has the best
performance on the task it can deal with (EE-PR). Also portfolio-based approaches, here followed by the Chimærarg solver,
could be developed more, possibly building on current work, e.g. [74,75]; in related competitions, such portfolio-based
approaches won some of the categories, e.g. the multi-engine ME-ASP ASP solver [61] ver. 2 won the single processor
category of the 5th ASP Competition [17]. Other alternatives can include the employment of QBFs, as e.g. the authors of
gg-sts are planning (see, [55]), and for which implementations are already in place [30].

Maintain benchmark classification and selection. Our benchmark classification and selection allowed to run the compe-
tition on a “meaningful” set of benchmarks with a high variety of expected hardness, differently from ICCMA’15, where a
significant number of the instances were easy. This helped in particular on the new domains which were unseen to solvers.
Thus, also considering that, in future editions, we expect more new domains, we think that ICCMA should stick to a guided
instance selection process as described in this report.

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 29
More variety in benchmarks. The community should aim for benchmarks from more real-world domains to be included in
future benchmark suites. In particular, the existing formalisms that use instantiations of AFs such as structured argumenta-
tion formalisms or defeasible knowledge bases could be explored towards obtaining new AF benchmarks. An example was
recently provided by Yun et al. [81], where AFs are instantiated with existential rules in a Semantic Web context.

Verification of answers. As we have seen before, the verification of answers has been a challenging issue. For decision
tasks, which involve the computation of (at most) a single extension, we have used an ASP encoding for the verification
of correctness. The resulting procedure was not particularly fast, but practical, given that we managed to check all outputs.
When the verification of answers in enumeration tasks comes into play, the situation is more difficult. Some possible
directions that could be pursued in the future are: (a) an extension of the approach for single extension, i.e. having an ASP
encoding where answer sets corresponds to extensions, (b) a more practical and a-priori solution, by aiming at selecting
benchmarks with a limited number of solutions, and/or (c) another practical approach where only part of the extensions
(e.g., randomly picked) is selected for verifying correctness.

Output format. On the more technical side, the output format adopted from the first edition of the competition turned out
to be unfavorable for checking solutions of the EE task. In particular, the fact that the solution is to be provided in a single
line makes the processing of large solutions with customary text oriented tools quite cumbersome. Introducing line breaks
as well as requiring the extensions to be in a format more amenable for verification could be beneficial for the verification
process in the next edition.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allo-
cation of computer time. We also thank Peter Steinke and Norbert Manthey for providing the scripts to run the competition
on the cluster, as well as Christian Al-Rabbaa for implementing the evaluation scripts. We finally thank the TAFA’17 officials
for the co-location of the event, and all ICCMA’17 contributors, who worked hard on their systems and benchmarks, and
made the competition possible.

This work has been supported by the German Research Foundation (DFG) (project BR 1817/7-2) and the Austrian Science
Fund (FWF) (projects I2854 and Y698).

References

[1] M. Alviano, Model enumeration in propositional circumscription via unsatisfiable core analysis, Theory Pract. Log. Program. 17 (5–6) (2017) 708–725.
[2] G. Amendola, C. Dodaro, F. Ricca, ASPQ: an ASP-based 2QBF solver, in: F. Lonsing, M. Seidl (Eds.), Proceedings of the 4th International Workshop on

Quantified Boolean Formulas (QBF 2016) co-located with 19th International Conference on Theory and Applications of Satisfiability Testing, SAT 2016,
in: CEUR Workshop Proceedings, vol. 1719, 2016, pp. 49–54, CEUR-WS.org.

[3] S. Arora, B. Barak, Computational Complexity – A Modern Approach, Cambridge University Press, 2009, http://www.cambridge .org /catalogue /catalogue .
asp ?isbn =9780521424264.

[4] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. Simari, M. Thimm, S. Villata, Towards artificial argumentation, AI Mag. 38 (3)
(2017) 25–36.

[5] G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in: C. Boutilier (Ed.), Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, 2009, pp. 399–404.

[6] A. Balint, A. Belov, M. Järvisalo, C. Sinz, Overview and analysis of the SAT challenge 2012 solver competition, Artif. Intell. 223 (2015) 120–155.
[7] A.L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.
[8] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowl. Eng. Rev. 26 (4) (2011) 365–410.
[9] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their semantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre

(Eds.), Handbook of Formal Argumentation, College Publications, 2018, pp. 159–236, Ch. 4.
[10] C. Beierle, F. Brons, N. Potyka, A software system using a SAT solver for reasoning under complete, stable, preferred, and grounded argumentation

semantics, in: S. Hölldobler, M. Krötzsch, R. Peñaloza, S. Rudolph (Eds.), Proceedings of the 38th Annual German Conference on AI, KI 2015, in: Lecture
Notes in Computer Science, vol. 9324, Springer, 2015, pp. 241–248.

[11] T.J.M. Bench-Capon, P.E. Dunne, Argumentation in artificial intelligence, Artif. Intell. 171 (10–15) (2007) 619–641.
[12] S. Bistarelli, F. Rossi, F. Santini, Benchmarking hard problems in random abstract AFs: the stable semantics, in: S. Parsons, N. Oren, C. Reed, F. Cerutti

(Eds.), Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, in: Frontiers in Artificial Intelligence and
Applications, vol. 266, IOS Press, 2014, pp. 153–160.

[13] S. Bistarelli, F. Rossi, F. Santini, A comparative test on the enumeration of extensions in abstract argumentation, Fundam. Inform. 140 (3–4) (2015)
263–278.

[14] S. Bistarelli, F. Rossi, F. Santini, Not only size, but also shape counts: abstract argumentation solvers are benchmark-sensitive, J. Log. Comput. 28 (1)
(2018) 85–117.

[15] S. Bistarelli, F. Santini, ConArg: a constraint-based computational framework for argumentation systems, in: Proceedings of the IEEE 23rd International
Conference on Tools with Artificial Intelligence, ICTAI 2011, IEEE Computer Society, 2011, pp. 605–612.

http://refhub.elsevier.com/S0004-3702(18)30202-9/bib416C7669616E6F3137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib416D656E646F6C6144523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib416D656E646F6C6144523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib416D656E646F6C6144523136s1
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib61696D61673037s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib61696D61673037s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib417564656D617264533039s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib417564656D617264533039s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib42616C696E74424A533135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4261726162617369413939s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4261726F6E693A32303131s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4261726F6E6943473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4261726F6E6943473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib42656965726C6542503135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib42656965726C6542503135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib42656965726C6542503135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib42656E63682D4361706F6E443037s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C6952533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C6952533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C6952533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44424C503A6A6F75726E616C732F6675696E2F426973746172656C6C6952533135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44424C503A6A6F75726E616C732F6675696E2F426973746172656C6C6952533135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C693137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C693137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C69533131s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426973746172656C6C69533131s1
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264

30 S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193
[16] B. Bogaerts, T. Janhunen, S. Tasharrofi, Declarative solver development: case studies, in: C. Baral, J.P. Delgrande, F. Wolter (Eds.), Proceedings of the 15th
International Conference on Principles of Knowledge Representation and Reasoning, KR 2016, AAAI Press, 2016, pp. 74–83.

[17] F. Calimeri, M. Gebser, M. Maratea, F. Ricca, Design and results of the fifth answer set programming competition, Artif. Intell. 231 (2016) 151–181.
[18] M. Caminada, Strong admissibility revisited, in: S. Parsons, N. Oren, C. Reed, F. Cerutti (Eds.), Proceedings of the 5th International Conference on

Computational Models of Argument, COMMA 2014, in: Frontiers in Artificial Intelligence and Applications, vol. 266, IOS Press, 2014, pp. 197–208.
[19] M. Caminada, W.A. Carnielli, P.E. Dunne, Semi-stable semantics, J. Log. Comput. 22 (5) (2012) 1207–1254.
[20] M. Caminada, S. Sá, J. Alcântara, W. Dvořák, On the equivalence between logic programming semantics and argumentation semantics, Int. J. Approx.

Reason. 58 (2015) 87–111.
[21] M.W. Caminada, B. Verheij, On the existence of semi-stable extensions, in: G. Danoy, M. Seredynski, R. Booth, B. Gateau, I. Jars, D. Khadraoui (Eds.),

Proceedings of the 22nd Benelux Conference on Artificial Intelligence, BNAIC 2010, 2010, Available at http://bnaic2010 .uni .lu /proceedings .html.
[22] F. Cerutti, M. Giacomin, M. Vallati, ArgSemSAT: solving argumentation problems using SAT, in: S. Parsons, N. Oren, C. Reed, F. Cerutti (Eds.), Proceedings

of the 5th International Conference on Computational Models of Argument, COMMA 2014, in: Frontiers in Artificial Intelligence and Applications,
vol. 266, IOS Press, 2014, pp. 455–456.

[23] F. Cerutti, M. Giacomin, M. Vallati, Generating structured argumentation frameworks: AFBenchGen2, in: P. Baroni, T.F. Gordon, T. Scheffler, M. Stede
(Eds.), Proceedings of the 6th International Conference on Computational Models of Argument, COMMA 2016, in: Frontiers in Artificial Intelligence and
Applications, vol. 287, IOS Press, 2016, pp. 467–468.

[24] F. Cerutti, N. Oren, H. Strass, M. Thimm, M. Vallati, A benchmark framework for a computational argumentation competition, in: S. Parsons, N. Oren, C.
Reed, F. Cerutti (Eds.), Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, in: Frontiers in Artificial
Intelligence and Applications, vol. 266, IOS Press, 2014, pp. 459–460.

[25] F. Cerutti, M. Vallati, M. Giacomin, Where are we now? State of the art and future trends of solvers for hard argumentation problems, in: P. Baroni,
T.F. Gordon, T. Scheffler, M. Stede (Eds.), Proceedings of the 6th International Conference on Computational Models of Argument, COMMA 2016, in:
Frontiers in Artificial Intelligence and Applications, vol. 287, IOS Press, 2016, pp. 207–218.

[26] F. Cerutti, M. Vallati, M. Giacomin, On the impact of configuration on abstract argumentation automated reasoning, Int. J. Approx. Reason. 92 (2018)
120–138.

[27] G. Charwat, W. Dvořák, S.A. Gaggl, J.P. Wallner, S. Woltran, Methods for solving reasoning problems in abstract argumentation – a survey, Artif. Intell.
220 (2015) 28–63.

[28] D.R. Cok, D. Déharbe, T. Weber, The 2014 SMT competition, J. Satisf. Boolean Model. Comput. 9 (2014) 207–242.
[29] K. Cyras, X. Fan, C. Schulz, F. Toni, Assumption-based argumentation: disputes, explanations, preferences, in: P. Baroni, D. Gabbay, M. Giacomin, L. van

der Torre (Eds.), Handbook of Formal Argumentation, College Publications, 2018, pp. 365–408, Ch. 7.
[30] M. Diller, J.P. Wallner, S. Woltran, Reasoning in abstract dialectical frameworks using Quantified Boolean Formulas, Argument Comput. 6 (2) (2015)

149–177.
[31] Y. Dimopoulos, A. Torres, Graph theoretical structures in logic programs and default theories, Theor. Comput. Sci. 170 (1–2) (1996) 209–244.
[32] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif.

Intell. 77 (2) (1995) 321–358.
[33] P.M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation, Artif. Intell. 171 (10–15) (2007) 642–674.
[34] P.E. Dunne, The computational complexity of ideal semantics, Artif. Intell. 173 (18) (2009) 1559–1591.
[35] P.E. Dunne, T.J.M. Bench-Capon, Coherence in finite argument systems, Artif. Intell. 141 (1/2) (2002) 187–203.
[36] P.E. Dunne, W. Dvořák, S. Woltran, Parametric properties of ideal semantics, Artif. Intell. 202 (2013) 1–28.
[37] W. Dvořák, M. Järvisalo, J.P. Wallner, S. Woltran, Complexity-sensitive decision procedures for abstract argumentation, Artif. Intell. 206 (2014) 53–78.
[38] W. Dvořák, P.E. Dunne, Computational problems in formal argumentation and their complexity, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre

(Eds.), Handbook of Formal Argumentation, College Publications, 2018, pp. 631–687, Ch. 14, also appears in IfCoLog J. Log. Appl. 4 (8), 2557–2622.
[39] W. Dvořák, S. Woltran, Complexity of semi-stable and stage semantics in argumentation frameworks, Inf. Process. Lett. 110 (11) (2010) 425–430.
[40] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.), Proceedings of the 6th International Conference on Theory and

Applications of Satisfiability Testing (SAT 2003), Selected Revised Papers, in: Lecture Notes in Computer Science, vol. 2919, Springer, 2003, pp. 502–518.
[41] U. Egly, S.A. Gaggl, S. Woltran, Answer-set programming encodings for argumentation frameworks, Argument Comput. 1 (2) (2010) 147–177.
[42] S. Ellmauthaler, H. Strass, The DIAMOND system for computing with abstract dialectical frameworks, in: S. Parsons, N. Oren, C. Reed, F. Cerutti (Eds.),

Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, in: Frontiers in Artificial Intelligence and
Applications, vol. 266, IOS Press, 2014, pp. 233–240.

[43] P. Erdös, A. Rényi, On random graphs I, Publ. Math. (Debr.) 6 (1959) 290–297.
[44] W. Faber, M. Vallati, F. Cerutti, M. Giacomin, Solving set optimization problems by cardinality optimization with an application to argumentation, in:

G.A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (Eds.), Proceedings of the 22nd European Conference on
Artificial Intelligence, ECAI 2016, in: Frontiers in Artificial Intelligence and Applications, vol. 285, IOS Press, 2016, pp. 966–973.

[45] D.M. Gabbay, O. Rodrigues, Further applications of the Gabbay-Rodrigues iteration schema in argumentation and revision theories, in: C. Beierle, G.
Brewka, M. Thimm (Eds.), Computational Models of Rationality, Essays dedicated to Gabriele Kern-Isberner on the Occasion of her 60th Birthday,
College Publications, 2016, pp. 392–408.

[46] S.A. Gaggl, T. Linsbichler, M. Maratea, S. Woltran, Introducing the second international competition on computational models of argumentation, in: M.
Thimm, F. Cerutti, H. Strass, M. Vallati (Eds.), Proceedings of the 1st International Workshop on Systems and Algorithms for Formal Argumentation
(SAFA 2016) co-located with the 6th International Conference on Computational Models of Argument, COMMA 2016, in: CEUR Workshop Proceedings,
vol. 1672, 2016, pp. 4–9, CEUR-WS.org.

[47] S.A. Gaggl, T. Linsbichler, M. Maratea, S. Woltran, Summary report of the second international competition on computational models of argumentation,
AI Mag. 39 (4) (2018), Winter.

[48] S.A. Gaggl, N. Manthey, A. Ronca, J.P. Wallner, S. Woltran, Improved answer-set programming encodings for abstract argumentation, Theory Pract. Log.
Program. 15 (4–5) (2015) 434–448.

[49] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo = ASP + control: preliminary report, CoRR abs/1405.3694, 2014.
[50] M. Gebser, M. Maratea, F. Ricca, The sixth answer set programming competition, J. Artif. Intell. Res. 60 (2017) 41–95.
[51] N. Geilen, M. Thimm, Heureka: a general heuristic backtracking solver for abstract argumentation, in: E. Black, S. Modgil, N. Oren (Eds.), Proceedings

of the 4th International Workshop on Theory and Applications of Formal Argumentation (TAFA 2017). Revised Selected Papers, in: Lecture Notes in
Computer Science, vol. 10757, Springer, 2017, pp. 143–149.

[52] E. Giunchiglia, Y. Lierler, M. Maratea, Answer set programming based on propositional satisfiability, J. Autom. Reason. 36 (4) (2006) 345–377.
[53] ICCMA’17-Soldes, http://www.argumentationcompetition .org /2017 /submissions .html, 2017.
[54] ICCMA’17-Solreq, http://www.argumentationcompetition .org /2017 /SolverRequirements .pdf, 2017.
[55] T. Jahunen, S. Tasharrofi, http://www.argumentationcompetition .org /2017 /gg -sts .pdf, 2017.
[56] M. Järvisalo, D.L. Berre, O. Roussel, L. Simon, The international SAT solver competitions, AI Mag. 33 (1) (2012).
[57] D.S. Johnson, C.H. Papadimitriou, M. Yannakakis, On generating all maximal independent sets, Inf. Process. Lett. 27 (3) (1988) 119–123.

http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426F6761657274734A543136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib426F6761657274734A543136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616C696D657269474D523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616D696E6164613134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616D696E6164613134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616D696E61646143443132s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616D696E616461534144313561s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43616D696E616461534144313561s1
http://bnaic2010.uni.lu/proceedings.html
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694756313461s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694756313461s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694756313461s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4365727574746947563136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4365727574746947563136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4365727574746947563136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694F5354563134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694F5354563134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474694F5354563134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474695647313661s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474695647313661s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436572757474695647313661s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4365727574746956473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4365727574746956473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44424C503A6A6F75726E616C732F61692F43686172776174444757573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44424C503A6A6F75726E616C732F61692F43686172776174444757573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib436F6B44573134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43797261733138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib43797261733138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44696C6C657257573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44696C6C657257573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44696D6F706F756C6F73543936s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E673A31393935s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E673A31393935s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E674D543A32303037s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E6E653039s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E6E65423032s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44756E6E6544573133s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44766F72616B4A57573134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44766F72616B443138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44766F72616B443138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44766F72616B573130s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib45656E533033s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib45656E533033s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib45676C7947573130s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib456C6C6D61757468616C6572533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib456C6C6D61757468616C6572533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib456C6C6D61757468616C6572533134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4572646F73523539s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib46616265725643473136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib46616265725643473136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib46616265725643473136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476162626179523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476162626179523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476162626179523136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4C4D573138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4D5257573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib476167676C4D5257573135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4765627365724D523137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4765696C656E543137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4765696C656E543137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4765696C656E543137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4769756E636869676C69614C4D3036s1
http://www.argumentationcompetition.org/2017/submissions.html
http://www.argumentationcompetition.org/2017/SolverRequirements.pdf
http://www.argumentationcompetition.org/2017/gg-sts.pdf
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4A6172766973616C6F4252533132s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4A6F686E736F6E50593838s1

S.A. Gaggl et al. / Artificial Intelligence 279 (2020) 103193 31
[58] M. Kröll, R. Pichler, S. Woltran, On the complexity of enumerating the extensions of abstract argumentation frameworks, in: C. Sierra (Ed.), Proceedings
of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, 2017, pp. 1145–1152, ijcai.org.

[59] J. Lagniez, E. Lonca, J. Mailly, CoQuiAAS: a constraint-based quick abstract argumentation solver, in: Proceedings of the 27th IEEE International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2015, IEEE Computer Society, 2015, pp. 928–935.

[60] T. Lehtonen, J.P. Wallner, M. Järvisalo, From structured to abstract argumentation: assumption-based acceptance via AF reasoning, in: A. Antonucci,
L. Cholvy, O. Papini (Eds.), Proceedings of the 14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU 2017, in: Lecture Notes in Computer Science, vol. 10369, Springer, 2017, pp. 57–68.

[61] M. Maratea, L. Pulina, F. Ricca, A multi-engine approach to answer-set programming, Theory Pract. Log. Program. 14 (6) (2014) 841–868.
[62] S. Modgil, H. Prakken, The ASPIC+ framework for structured argumentation: a tutorial, Argument Comput. 5 (1) (2014) 31–62.
[63] S. Nofal, K. Atkinson, P.E. Dunne, Looking-ahead in backtracking algorithms for abstract argumentation, Int. J. Approx. Reason. 78 (2016) 265–282.
[64] F. Pu, G. Luo, Z. Jiang, Encoding argumentation semantics by Boolean algebra, IEICE Trans. 100-D (4) (2017) 838–848.
[65] L. Pulina, The ninth QBF solvers evaluation – preliminary report, in: F. Lonsing, M. Seidl (Eds.), Proceedings of the 4th International Workshop on

Quantified Boolean Formulas (QBF 2016) co-located with 19th International Conference on Theory and Applications of Satisfiability Testing, SAT 2016,
in: CEUR Workshop Proceedings, vol. 1719, 2016, pp. 1–13, CEUR-WS.org.

[66] QBF-Comp, QBF evaluation 2006, http://www.qbflib .org, 2006.
[67] SAT-Comp, SAT competition 2009, http://www.satcompetition .org /2009/, 2009.
[68] A. Sideris, Y. Dimopoulos, Constraint propagation in propositional planning, in: R.I. Brafman, H. Geffner, J. Hoffmann, H.A. Kautz (Eds.), Proceedings of

the 20th International Conference on Automated Planning and Scheduling, ICAPS 2010, AAAI, 2010, pp. 153–160.
[69] Y. Strozecki, Enumeration Complexity and Matroid Decomposition, Ph.D. thesis, Universit’e Paris Diderot – Paris 7, 2010.
[70] M. Thimm, S. Villata, System descriptions of the first international competition on computational models of argumentation (ICCMA’15), CoRR

abs/1510.05373, http://arxiv.org /abs /1510 .05373, 2015.
[71] M. Thimm, S. Villata, The first international competition on computational models of argumentation: results and analysis, Artif. Intell. 252 (2017)

267–294.
[72] M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass, M. Vallati, Summary report of the first international competition on computational models of

argumentation, AI Mag. 37 (1) (April 2016) 102–104.
[73] F. Toni, A tutorial on assumption-based argumentation, Argument Comput. 5 (1) (2014) 89–117.
[74] M. Vallati, F. Cerutti, M. Giacomin, On the combination of argumentation solvers into parallel portfolios, in: W. Peng, D. Alahakoon, X. Li (Eds.),

Advances in Artificial Intelligence – Proceedings of the 30th Australasian Joint Conference, AI 2017, in: Lecture Notes in Computer Science, vol. 10400,
Springer, 2017, pp. 315–327.

[75] M. Vallati, F. Cerutti, M. Giacomin, Predictive models and abstract argumentation: the case of high-complexity semantics, Knowl. Eng. Rev. 34 (e6)
(2018) 315–327.

[76] M. Vallati, L. Chrpa, M. Grzes, T.L. McCluskey, M. Roberts, S. Sanner, The 2014 international planning competition: progress and trends, AI Mag. 36 (3)
(2015) 90–98.

[77] B. Verheij, Two approaches to dialectical argumentation: admissible sets and argumentation stages, in: Proceedings of the 8th Dutch Conference on
Artificial Intelligence, NAIC’96, 1996, pp. 357–368.

[78] D.J. Watts, S.H. Strogatz, Collective dynamics of “small-world” networks, Nature 393 (1998) 440–442.
[79] Y. Wu, M. Caminada, D.M. Gabbay, Complete extensions in argumentation coincide with 3-valued stable models in logic programming, Stud. Log.

93 (2–3) (2009) 383–403, https://doi .org /10 .1007 /s11225 -009 -9210 -5.
[80] A.Z. Wyner, T.J.M. Bench-Capon, P.E. Dunne, F. Cerutti, Senses of ‘argument’ in instantiated argumentation frameworks, Argument Comput. 6 (1) (2015)

50–72.
[81] B. Yun, S. Vesic, M. Croitoru, P. Bisquert, R. Thomopoulos, A structural benchmark for logical argumentation frameworks, in: N.M. Adams, A. Tucker,

D.J. Weston (Eds.), Proceedings of the 16th International Symposium on Advances in Intelligent Data Analysis, IDA 2017, in: Lecture Notes in Computer
Science, vol. 10584, Springer, 2017, pp. 334–346.

http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4B726F656C6C50573137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4B726F656C6C50573137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4C61676E69657A4C4D3135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4C61676E69657A4C4D3135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4C6568746F6E656E574A3137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4C6568746F6E656E574A3137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4C6568746F6E656E574A3137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4D61726174656150523134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4D6F6467696C503134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib4E6F66616C41443136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib50754C4A3137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib50756C696E613136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib50756C696E613136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib50756C696E613136s1
http://www.qbflib.org
http://www.satcompetition.org/2009/
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib53696465726973443130s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib53696465726973443130s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5374726F7A65636B693130s1
http://arxiv.org/abs/1510.05373
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5468696D6D563137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5468696D6D563137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5468696D6D3A32303136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5468696D6D3A32303136s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib44424C503A6A6F75726E616C732F617267636F6D2F546F6E693134s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943473137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943473137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943473137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943473138s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943474D52533135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib56616C6C61746943474D52533135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5665726865696A3A31393936s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5665726865696A3A31393936s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib5761747473533938s1
https://doi.org/10.1007/s11225-009-9210-5
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib57796E65724244433135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib57796E65724244433135s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib59756E564342543137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib59756E564342543137s1
http://refhub.elsevier.com/S0004-3702(18)30202-9/bib59756E564342543137s1

	Design and results of the Second International Competition on Computational Models of Argumentation
	1 Introduction
	2 Background
	3 Format of ICCMA'17
	3.1 Tasks
	3.2 Tracks
	3.3 Scoring system
	3.4 Veriﬁcation of answers
	3.5 Solver requirements

	4 Benchmark suite
	4.1 Previous domains
	4.2 New domains

	5 Benchmark selection
	5.1 Benchmark classiﬁcation
	5.2 Benchmark selection
	5.3 Argument selection

	6 Participants
	7 Results and awards
	7.1 Award winners
	7.2 Comparison to the results of ICCMA'15

	8 Related competitions
	9 Conclusions, lessons learned, and future developments
	Acknowledgements
	References

